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Abstract: In this paper, we describe modeling and composition rules of frequency response character-
istics based on experimental data of plants (controlled systems) with uncertainty and nonmlinearity, and
the robust stability evaluation of feedback control systems. Analysis and design of control systems using
the upper and lower bounds of such experimental data would be effective as a practicable method which
is not heavily dependent upon mathematical model such as the transfer function. In this report, sets of
the experimental data are assumed to include not only the band of the gain characteristics but also the
band of the phase characteristics. The stability robustness of the feedback control system is investigated
based on modeling and composition rules of the interval of frequency response characteristics. Numerical
examples are shown to illustrate the stability robustness for interval systems.
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1. INTRODUCTION 2. FREQUENCY RESPONSE INTERVAL

. . Consider a controlled element with uncertainty by the
The controlled systems in practice should be modeled

. ) i multiplicative perturbation as shown in Fig. 1, that

in the frequency domain, considering physical char- .

acteristics and uncertainties in the high-frequency

range. When considering the physical characteris- G*(jw) = Gjw)(1 + A(jw)). (1)

tics, the model should be determined based on the

frequency response characteristics of the input and

the output of the controlled system.
In this paper, sets of the experimental data are as- ». A(s) -.

sumed to include not only the band of the gain char- N SR

acteristic but also the band of the phase characteristic ;

[1]. The stability robustness of the feedback control : ‘é—*. G(s) —

system is investigated based on modeling and compo-

is,

sition rules of such a frequency response characteris-
tic [2][3][4]. By taking phase characteristic into con-

sideration, gain change and sector nonlinearity can Fig. 1 Control element with multiplicative
be included in the same discussion. perturbation.
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The frequency response characteristic of uncertain
term
G (jw) — Gjw)

G(jw)
is assumed to be given by not only the upper and
lower bounds of the absolute value, but also by the
interval of the argument determined theoretically or

Afjw) =

experimentally.

In addition, the absolute value and the argument of
the frequency response characteristic of the uncertain
term

A(jw) = [A(j)]e “A09) = a(w) +jBw)  (2)
are expressed respectively as the following interval:
|AGw)| = r(w) € [2(w); F(w))], ©))

LA(jw) = $(w) € [p(w); $(w))- (4)

Although the band of such frequency response char-
acteristics in an actual system contains various errors
during actual experiments, that is, identification er-
rors, it is remarkably influenced by nonlinear charac-
teristics of each controlled element.

iB

Fig. 2 Frequency response characteristics area for
fixed w = wy.

When the frequency is temporarily frozen with fixed
w = wg > 0 as shown in Fig. 2, the interval of real
part @ and imaginary part £ can be written respec-
tively as follows:

Awo) = [a(wo);@(wo)], B(wo) = [B(wo); Blwo)],
(5)

where

@ = min{ rcosd, rcos @, 7cos @, Fcosd ),

= max{ 7 cos ¢, T cos @, r.cos ¢, rcos¢ },

= min{ rsing, rsing, Tsin ¢, Tsing },

™ Qf

= max{ Fsing, Tsin @, rsin g, rsing }.

Here, in the case of (¢ + "7")($+ &L) < 0, the upper
and lower bounds of «, # are rewritten as follows:

-7, (n::?,b',---), a=7, (
-7, (n=3,7,--), B

& IR
1]
oY
1l
s
i

As an extreme example, the case where phase shift is
zero, that is, ¢ — 0 is also included in the above dis-
cussion. This case corresponds to a sector nonlinear
characteristic and an interval set parameter.
Rectangular area R, is determined by interval sets
Eq. (5) from the sectorial area as shown in Fig. 2.
The center of rectangle is obviously written as follows:

) IBC(L‘)O) = /H(""D) +£(WO)'
(6)

Thus, rectangular R, is also covered with circle C,
represented by

_ ¥(wo) + a(wo)

a.(wp) 5

center

(ac, ﬂc)’

_JE-r 4 F-pp
.= - .

radius

In general, however, the area can also be covered
with a smaller circle C; as shown in the figure [1].
The center of the circle is on the straight line (radial
line) of phase angle

and the circle passes the following four points:

pL=re’l py=rel? P3=7€j£; pa =T7el?,

[Theorem 1]  The circle which passes above four
points p1, pa, ps, ps is represented by

center (ag, Ba),
radius : rg=1/r? +rd — 2rrq cos(¢ — ¢o)
= \/FZ + r2 — 2Frg cos($ — bo),
where
ag = rocosdo, PBag= rosindy,
T+r
g =

2 cos(zg—i)
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(Proof) Due to its symmetry, radius 7o on the radial
line of angle ¢y which is at an equal distance from
points p; and py have only to be determined. That
is, _ _

rg= |£ej¢——roej¢°l = |Fej¢—roej¢°| )

From this equation,
72 —_7;2—27'0(F—£)cos($—¢0) =0. (8)
When 7 # r,
T4+r—2r cos(a—— $0) = 0.
Therefore,
F+r
™y = —————.
2cos(¢ — o)

As for rg in Eq. (9), the square of radius r4 can be
given as follows:

(9)

7*3 = r?4rZ-2rr cos(a— é0)

= T 47§ —rocos(d—¢o).  (10)

3. MODIFICATION OF NOMINAL SYS-
TEM

When the center of a sectorial area of A(jwg) is off
the origin as shown in Fig. 2, correcting the nominal
system may facilitate a subsequent analysis. There
are various approaches in modification of the nominal
system. One of the methods is taking the frequency
response characteristic at rectangular center (., f3.),
the center of circle C;. Another is a method of taking
the frequency response characteristic of the nominal
system at (g, B4), the center of circle C,.

In the manners described above, the modified sys-
tem can be rewritten as follows:

G" = G(Ge+ Ap) = Gu(L+ Ap),  (11)

where G, and A,, are expressed as

Gm = G-Gey Ge=1+4a.+jib, (12)
. A,
Am = O‘m+]ﬁm:a‘; (13)

for the case of circle C,. In these expressions, variable
w is abbreviated.

Obviously, interval sets o, Bm can be written as
the following symmetric expressions:

By = ["'/—gm ) /?m]a

A = [“‘am; a—m]a

where @,, > 0 and -Em > 0. The radius r,, of the
circle which covers this area is expressed as

= re(w)
)= GGl 14

In the above discussion, it should be noted that the
modified nomnal system,

Gm(jw) = G(jw)Ge(jw) (15)

might not be a parameterized frequency response, be-
cause G.(jw) is not generally parameterized.

4. COMPOSITION OF FREQUENCY RE-
SPONSE

In this section, G(s) and A(s) are identified with
G (s) and A, (s), respectively. The transfer fune-
tion of the cascade-connected systems is written as

G*(jw) = G(jw)(1 + A(jw)), (16)
where
Gw) = Gi(jw)Ga(jw), (17)
A(jw) = (14 Ax(jw))As(jw) + Az (jw). (18)
B GI () reiBaGa(s)by
—id Gy(s) -:Qi‘_. Gals) foOE-

Fig. 3 Cascade-connected plants.

[Theorem 2] As for the absolute value of the
frequerncy response of the uncertain term (radius), the
following inequality can be given [3]:

[AGW)] < [T+ Az(jw)l - [A1(jw)] + [A2(jw)]
< AL+ A2 (jw) + AL (Gw)] - |Az(Gw)l. (19)

(Proof) Eq. (19) can be easily obtained from Eq.
(18) by using the triangular inequality in the complex
plane. [

When information on the interval set of phase char-
acteristics or the intervals of a real and an imaginary
part is given by

A,(jw) = ai(w) -l—jﬂi(w), 1=1,2 (20)
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where
@i € A; = [oy; @), B €Bi =[B,; B,
the following theorem is obtained.

[Theorem 3]  The cascade connection (composi-
tion) of the uncertain terms represented by Eqgs. (16)
and (20) based on the multiplicative perturbation is
written as

A(jw) = a(w) +iBW), 2y
aeA=lg a], FeB=[g; A
and
@ = a1 +ar+max{ o 0,,0,0,010,, 710 }
—  min{ éléz)ﬁl—ﬂ-%ﬁléz!ﬁlEZ};
@ = oy +op+min{ g a0, T, T |
—  max{ ﬁlﬁg)ﬁlﬁz’ﬁlﬁyﬁlﬁz 1
B = Byi+Py+max{ f a, B &, Bay, BT }
+ max{ a1f,, 8, @, @B, },
B = B, +B,+min{f a, B @,Bia, B0 }
+ min{af,, 0,5, @B, @B, }.
(Proof) The interval set representation of Eq. (21)

is expressed as

[a(w); T(w)] + j - [B(w); Bw)]

lag; ) + [og; @] + [ 01 - oy )
8,3 B1] - (B, B2+ 3 - {[B,: Bil + 8,: B3
+ [Ql;al] : [_,3_2§—,B—2] + [ﬁ1§ﬁ1] : [.Clz;az] }

Thus, the above result can be easily proved from the

A(w)

I m

multiplication rule of interval sets. []

Fig. 4 Feedback control system with uncertain
plant.

5. STABILITY ROBUSTNESS

Based on the foregoing assumption for the open loop
frequency response characteristics with uncertainty,

the stability of feedback control systems should be
investigated. Consider a control system with C(s) as
an appropriate compensator as shown in Fig. 4. The
closed loop characteristic equation becomes

14+ G(s)C(s)(1+ A(s)) = 0. (22)
Concerning the complementary sensitivity function

(s) = G(S)C(s)
1+ G(s)C(s)’

it is well known that robust stability condition is writ-

ten as
AT (s)]loo < 1, (23)
where || - || denotes a Hy, norm, that is,
I ($)lloo = Sup - Sup |f (o + jw)l. (24)

For a stable nominal system, the robust stabil-
ity condition concerning radius r(w) of the uncertain
term easily becomes

TG0 < 75 (25)

As for the modified system described in section 3,
it can be written as

[AGw)| = r(w) < 7(w),

G (jw)C(jw)
TF Gn(G)OGe) | “ @) ()
where A
I e )

[Theorem 4] When considering the Nyquist plot
of G (jw)C(jw), that is,

G (jw)C(w) = Un (W) + jVm(w),  (27)

the robust stability conditions, Egs. (23) and (26)
are rewritten as follows:

|AG) G (j0)C) € () < (14U (0)-+5Vin ()],
(28)

Whete prn(0) = T () Gom (0) Cj0)].
(Proof) Eq. (28) is obvious from Eqs. (26) and (27).
O

On the other hand, using Kharitonov’s concept
the stability robustness can be evaluated as follows.
When the uncertain terms in Theorem 4 are written
as interval sets;

Am(Jw)Gm(JW)C(]w) = amc(w) + jﬂmc(w);
amc(w) € [Q_mc§amc]; ﬁmC(w) € [ﬁmc;—lgmc]’
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the robust stability condition can be also represented
by the following theorem based on the Nyquist sta-
bility criterion.

[Theorem 5] When the following inequality holds
for the Nyquist locus:
max  Gme(w) < |14 Up(w)] (29)

we[wywe

for all w € [wy;wy] satisfying
Vm(w) + [—ﬁmc(w);ﬁmc(w)] = 01 (30)

the feedback control system is guaranteed to be sta-
ble.

(Proof) Thisresult can be obtained from the Nyquist
criterion, and also the Kharitonov theorem [5] [6]. [

6. NUMERICAL EXAMPLES

[Example 1] Consider the following controlled

systems with first-order delay:

o 5
Gi)) = Aieatns) (31)
[zy; T1] = [0.0; 0.4],
o 8
Gals) = (1+ 105)(L + m25)’ (32)

Ty € [y T2] = [0.0; 0.3].

m

1

In this example, it is assumed that only the time con-
stants 71, 79 are uncertain and represented by interval
sets.

Obviously, the frequency response characteristics
of uncertain terms A; and A, can be written repec-
tively as follows:

—JTow

—jnw
1+ jmw’

A(jw) =

= As(g =
TG imw 220

B

0.5

Fig. 5 Rectagular, circular and sectorial areas for
uncertain term A;(jwg) and Az (jwo).

As for a fixed w = wg; wg = 1.0 rectangles R,1, Ryo,
circles C;1, Cso and circles Cy1, Cyp are as shown in
Fig. 5.

When modifying the nominal system as described
in section 3, the following can be given:

GT :Gm1(1+Am1)a ; - Gm2(1+Am2)~

Here, the modified frequency response characteristics
Gty Gmo are written as

o 5(1+020)
T (1 + 5jw) (1 + 0.45w)’

8(1 +0.15jw)
Gm2

= (1 + 10jw)(1 + 0.3jw)’

and the uncertain terms A,,1, Ama can be expressed

as follows:
—0.2jw .
Am = T = Qm ml)
V= T 0w - om T iPm
- = 0.04w = 0.2w
™ T4 0.0402’ P T 1 40.040%°
—0.15jw .
Apo = m = m2 + jBm2,
oo 002w g 015w
™27 140022602’ ™27 140.0225w2

When these systems are connected in cascade as
shown in Fig. 3, the composited frequency response
characteristics are expressed by rectangle and circle
arrays as shown in Fig. 6. As for a fixed w; wg = 1.0,

the rectangular and the circular areas are as shown
in Fig. 7 and Fig. 8.
ARG

v

A

Fig. 6 Rectagle and circle arrays for a composited
system in Example 1 (w: 0.2 — 5.0).
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1 RN Modified circle |
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rectangle \\
0 104 o o VO /) 01
",
. T r1(wo) g o)
\\-. g __’__/‘
+-04 -~ 0.4

Fig. 7 Rectagular and circular areas for wg = 1.1,

Actual frequency

7 responses
] - -
- 6'; 1/] |- Modified circle
i
4
|- Modified rectangle
. | =]
\-'0.4 0 04 4
AN r(wo)
o ~-04 7

Fig. 8 Rectagular and circular areas of a
composited system for wg = 1.0.

When the composited system described above is fed
back by unity gain, t.e., C(s) = 1, the stability of
the closed loop system cannot be guaranteed from
Theorem 4 and Theorem 5 as shown in Fig. 6.
[Example 2] Consider the case where the following
controller (compemsator) is connected in cascade to
the controlled system G7:

14 2s
1+s°
In this case, rectagle and circle arrays for the compen-
sated system is as shown in Fig. 9. As is obvious from
the figure, the stability robustness is guaranteed.

\

JRG

C(s) = 0.5 (33)

GiC

' G*C
Modified circle J -2

N,

G3
“Modified rectangle N

.

( Modified Nyquist locus

Fig. 9 Rectagle and circle arrays for a compensated
control system (w: 0.2 — 5.0).

7. CONCLUSIONS

This paper described the composition rule of fre-
quency response characteristics represented by the
interval sets based on the experimental data of con-
trolled systems with uncertainty and nonlinearity.
Then, the stability robustness of feedback control sys-
tems was graphically evaluated by using Kharitonov’s
concept. Not only the band of the gain characteris-
tic but also the band of the phase characteristic is
assumed to be given in the sets of the experimen-
tal data. Considering information on the phase en-
ables to determine the robustness of the control sys-
tem with uncertainty in a less conservative form.
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