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This paper presents a method to calculate the characteristic root areas and loci
band of control systems with frequency-dependent uncertainty. When the upper
boundary of the frequency response is also frequency-dependent, the frequency-
dependent terms are included in the characteristic equation of the nominal system.
This lead to the boundary equations of the root areas for control systems with
frequency-dependent uncertainty. Numerical examples of the control systems with
multiplicative perturbations including frequency-dependent terms are presented to
verify this calculation method and to clarify the effectiveness for analysis and design
of actual control systems.
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1 Introduction

In this paper, we present a method to calculate
the characteristic root area and its array, i.e., root
loci band of control systems with uncertainty. The
method of calculating the characteristic root areas
for additive and multiplicative perturbations is dis-
cussed. A little adjustment is performed between the
nominal system and the uncertain part particularly
in the case of multiplicative perturbation, so that the
characteristic root area is not too large, or in other
word, boundary curves are not too conservative.

For the control systems with uncertainty, we pre-
viously presented the method to directly calculate
the existence area and boundary of the characteris-
tic root, assuming that an upper bound was given
to the absolute value of the frequency characteristic
of an uncertain part!!h2l, This is based on the idea
that the upper bound of the frequency characteristic
of uncertain part does not depend on the frequency.
When it depends on the frequency, a sufficient con-
dition is provided so that the characteristic root will
exist based on two inequalities?®],

This report presents a new method to calculate
the characteristic root areas when the upper bound
of the frequency characteristic of an uncertain part
depends on the frequency. When the upper bound
of the absolute values of frequency respenses for
the uncertain part is also frequency-dependent, the
frequency-dependent terms are included in the char-
acteristic equation of the nominal system. In either
case, the upper bound of the absolute values for the
uncertain part is given, the equation of the boundary
curves can be derived, and an algorithm for the nu-
merical calculation of the array of closed curves can
be presented.

In this paper we present some numerical examples
for it and clarify its effectiveness for analysis and de-
sign of actual control systems.

2 Control Systems with Un-
certainty

The dynamic characteristics of controlled objects
and control elements are often given in experimen-
tal data of frequency response. In addition, the fre-
quency response characteristic should be considered
in a certain band because of nonlinearity and uncer-
tainty. Also, the band is considered to be dependant
on the amplitude by the gain change of amplifier and
the saturation (dead zone) of sensor and actuator.
Though it is a well-known method to express such
a frequency response characteristic band by Nyquist
or Bode plot, we will catch it as a root loci band on
the s-plane to make it easy to observe the influences
on stability with the gain change.
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Fig. 1 Control system with uncertainty.

2.1 Additive Perturbation

We consider a control system, as shown in Fig. 1,
where the controlled objects have the additive per-
turbation (uncertainty by interference with other
loops). The open loop characteristic viewed from
the point P in the figure is represented as

AG(s)K C(s)

L) = T xcma &

where G(s), C(s), and K is plant, compensator and
gain parameter respectively. The robust stability
condition concerning the H,, norm! is obviously
given by

()0 < 1. V]
If we use 14 KC(s)G(s)

5)G(s

Fu(s) = —xCG)

then Eq. (2) is equivalently written as
|Fa ()l > |AG(jw)] 3)

for the frequency response characteristic.

It is necessary to provide an uncertain part AG(s)
as an upper bound of the amplitude in experimental
data of frequecy response, i.e.,

[AG(w)] < lpa(jw)ls 4)

where p,(jw) is a parameterized frequency transfer
function. If the upper bound of the absolute value
of frequency responses for the uncertain part is given
by a frequncy-dependent radius in Eq. (4), then Eq.
(3) is rewritten as follows:

lFu(jw)I > lpa(jw),‘ (5)

2.2 Multiplicative Perturbation

When the uncertain part in Fig. 1 is represented by
AG(s) = A(s)G(s), it is possible to discuss control
systems with multiplicative perturbation in the same
way as those with additve perturbation. In that case,
the open loop transfer function viewed from the point
of P is expressed as

_A(s)KG(s)C(s)
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If the upper bound of the absolute value of fre-
quency responses for the uncertain part A(s) is given

by
|AGGw)] £ lom (G, M
then the robust stability condition Eq. (2) is ar-

ranged by
[Em (F)] > lom (jw)}. ®)

Here, concerning jw — s the characteristic function
F,.(s) can be written as

14 KC(s)G(s)

N, (3)
Fn(s) = KC(s)

= D, (s)’

9

and a frequency transfer function p,, (jw) is replaced
by a parameterized radius function p,,(s).

2.3 Mocdification

In order to avoid conservativeness, a little adjust-
ment is performed between the nominal system
G(s) and the uncertain part A(s) particularly when
dealing with multiplicative perturbation[’). Here,
we consider that the parameterized radius function
pm(s) is expressed as a radius function p,, (s, 7) with
an uncertain parameter 7. In addition, we assume
that the phase characteristic of the uncertain part
A(s) is similar to that of the radius function p,, (s, 7).
Therefore, we can identify the uncertain part A(s)
with the radius function p,, (s, 7).

If the uncertain parameter 7 of the radius func-
tion pm (s, 7) varies from 0 to 7, the modifying term
gm (8, 7) by which to multiply the nominal system is
as follows:

Im(8,7) =1+

b0 tom(n?) )

Therefore, the modified term of uncertainty py (s, r)
can be written as

Pm(8:0) — pin(s, 7)
24 pm(5,0) + pim (5, 7)

/Sm(sr i') = (11)

2.4 Stability Invariance

The foregoing concept can also be expanded to the
case where an nominal closed loop system is unstable.
In such a case, we consider the complex variable s on
the contour T' which encloses the left (or right) half
plane containing the imaginary axis.

When considering the multiplicative perturbation,
the robust stability condition is rewritten as

[Fm ()] > lom ()], (12)

This inequality is an invariant condition of the dy-
namic characteristicl®, that is, a condition so that
stability and instability will not change regardless of
the uncertainty.

sel.
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3 Root Loci Band

3.1 Array of Boundary Curves

The invariant condition of the dynamic characteristic
in Eq. (12) contains all the properties in the complex
frequency s domain. From the aspect of the control
system design, it might also be important to know
how the area, that is, the “boundary curve” based
on the radius of the uncertainty moves according to
the change of the gain constant K.

A method to calculate the array: of the curves is
mentioned below. In the case of the multiplicative
perturbation, the locus of a zero s; (i = 1,2,---,n)
of

|Fn(s, K)| =0 and

for K : 0 — oo is obviously a root locus, whereas
for some positive constant p,, the array of the closed
curves satisfying

1P (8, K0)) = pm > |pm(8)], 1=1,2,---,00 (14)

shows the boundary curves of the area containing
characteristic roots of control systems. When we
consider Eq. (14) for some positive constant pp,,
the close curve I;; on the s-plane for K K
shows the invariance of the number of zeros in the
area. That is, the inequality Eq. (12) corresponds
to Rouché’s theorem(¥. Consequently, we can con-
sider that the array of the boundary curves for
K =K, Kq,+++, K is a band of root loci. In this
paper, the array of the boundary curves is refered to
as the root loct band.

However, the boundary curves should satisfy the
sign of inequality at the right side of Eq. (14). In
the previous paper, we presented the idea to evalu-
ate the area satisfying it with the sign of inequality.
Here presented is the method to calculate the root
locus band by including a frequency-dependent term
of the uncertainty in the left side of inequality.

[N (s, K){ =0 (13)

3.2 Frequency-Dependent
Uncertainty

When the upper bound of the absolute values of fre-
quency responses for the uncertain part is frequency-
dependent, the frequency-dependent terms such as
the right side of Eq. (12) can be included on the left
side of .the inequality. If the frequency-dependent
radius function is given by
. No(s)

D,(s)’
then the characteristic functions Egs. (5) and (11)
are written as follows:

Fr(s)

pml(8) = ¢ €: const., (15)

=2
]

~—
~—

= m (s . p(s
Di(s) Ny(s)’

(16)
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Therefore, the inequality corresponding to Eq. (14)
is

(s K = pln > e, 1=1,2,-++,00, (17)

and the right side of Eq. (14) is modified as the
following equation:

floyw, K)) = |[F*(s, K))| - p* =0, 1=1,2,--,00.

(18)
In later examples, we will use Eq. (18) as the equa-
tion of the root loci.

4 Algorithm

4.1 Equation of Boundary Curve

The equation of the boundary curves corresponding
to Eq. (18), in other words, root contours Ty, is
generally represented by

flo,w, K)) = |F(s, K1) ~ 5, 1=1,2,---,00. (19)

Roots s = (o,w) of this equation are obtained
sequentially by using Newton’s algorithm together
with the gradient method in the complex s-plane.
Note that any boundary curve of Eq. (19) is a sim-
ple closed curve, that is, a Jordan curve.

The algorithm obtaining the closed boundary
curves represented by Eq. (19) will be shown in sev-
eral calculation steps. A course of computation is
illustrated in Fig. 2.
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Fig. 2 A root contour and its calculation.

4.2 Algorithm

The algorthm for the calculation of Eq. (19) is as
follows!?l:

(1) Leti:=1, I:=1 be the initial setting.

(2) Calculate root locus according to Eq. (13) from
K =K.y (I=1,2,--') to the appropriate gain
K = K, by using the two-dimensional Newton
method.

When calculating the root locus, it is neces-
sary to pay close attention to the vicinity of
the points where roots are breakaway from real
quantities to complex ones, or break-in from
complex quantities to real onesl®], i.e., multiple
roots, a node or a saddle point in Eq. (19).
However, the method to calculate such points is
not discussed here in detail.

(3) Proceed from the root p;; of the nominal system
for K = K; to a direction of zero argument and
then calculate root s¢ = (¢, wo) of Eq. (19) by
using the Newton method.

(4) Proceed from the point so to the tangential di-
rection (the orthogonal direction to VF ) and
at this time proceed from the point s; to the
direction of —VF. And then calculate root
s = (o,w) of Eq. (19) by using the Newton
method.

(5) Repeat step(8) until returning the vicinity of
point sg.

(8) Let!:=1+1 and repeat from step(1) until
K = K max is satisfied,

(7) Leti:= i+ 1 and repeat from step(1) until
i = n is satisfied.

5 Numerical Examples
[Example 1]

Consider a control system as shown in Fig. 1, where
plant (controlled system) is given by

1
G(8) = —. 20
0= 7055 (20)
Suppose the parameterized radius function p,,(s, )
for the plant uncertainty of multiplicative perturba-
tion A(s) can be written as a first-order lag charac-

teristic as follws:

—T8

<r<LT7. 21
1478’ 0<srs? 1)

pnls,7) =

In such a system, the modifying term Eq. (10) is
written as

14 (7/2)s
14 7s
and the modified term of uncertainty Eq. (11) is
expressed as

Gm(s, ) = ' (22)

(3, ) = T{:(%%—s- (23)

For the case where 7 = 0.4 and compensator is not
used (C(s)=1), the calculation result of an array of
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the boundary curves, that is, the root loci band for
K :0.2 — 20 is shown in Fig. 3(a). Fig. 3(b) shows
the case where the following phase lead compensator

is used: 1404
As
C) = 13025

As is obvious from the figure, the control system with
uncertainty is successfully stabilized up to the con-
siderably higher gain K.

s-plane

Fig.3 Root loci band of control system with
first-order lag uncertainty.

[Example 2]

Consider a control system with a transport lag (dead
time) uncertainty for multiplicative perturbation.
Obviously, the modifying term Eq. (10) is written
as

. _ 1+ e—'T'a

(s ) = (24)
and the modified term of uncertainty Eq. (11) is
expressed as
1 _— e_TS

Pm(s,7) = (25)

Suppose plant is the same as that in Example 1, that
is,

_ 1

T s(l+s)

For ¥ = 0.4, the calculation result of an array of the
boundary curves, that is, the root loci band as to

“dominant poles”for K : 0.2 — 20 is shown in Fig.
4.

G(s)

s-plane

-2 -1

Fig.4 Root loci band of control system with
transport lag uncertainty.

[Example 3]

Consider the following third order plant with an os-
cillating mode:

1

G6) = oyt

(26)

The calculation result of an array of the boundary
curves for K : 0.2 — 20 is as shown in Fig. 5.
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oscillating mode.
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In an actual control system, the gain parameter K
changes due to the saturation {dead zone) of sensor
and actuatorl”). From the figure, at the gain param-
eter Ky we can see that the control system is stable
regardless of the existence of the uncertainty (robust
stable). On the other hand, at the gain parameter
K, we can see that the control system is unstable
regardless of the existence of the uncertainty (‘ro-
bust unstable’). When the gain parameter change
depends on the amplitude of the system; for instance,
the gain parameter K incleases as the amplitude pa-
rameter ap decreases, and vice versa, the gain pa-
rameter K decleases as the amplitude parameter ay
incleases, we will estimate a limit cycle between the
gain parameter /(; and K.

[Example 4]

Consider plant is the same as that in Example 3,
that is,

1

G = Gt

(27)

When the following second order compensator

_ 54 25+ 82
Cs) = 577045 1 0.00852

is used, an array of the boundary curves for the gain
parameter changes I : 0.2 — 15 is calculated as
shown in Fig. 6. As is obvious from the root loct
band, we can see that the control system is perfectly
stabilized for any gain parameter K,

@
s-plane
F=04
2
1
h 0 o

Fig. 6 Root loci band for perfectly stabilized
system.

These numerical examples show the applicability of
this method to the robust control systems design.

6 Conclusions

In this paper, we have presented a method to cal-
culate the characteristic root areas and loci band of
the control system with a frequency-dependent un-
certainty. An actual control system has “scattering”
in experimental data of frequency response, because
it contains uncertainty and nonlinearity. Therefore,
it is necessary to deal with the frequency response
characteristic in a band. In addition, it is considered
that the band depends on the amplitude by the gain
changes of amplifier and the saturation (dead zone)
of sensor and actuator(®. Therefore, we suppose that
it is effective in analysis and design to graphically ex-
press the dynamic characteristic of the control sys-
tem with the root loci band as described in this pa-
per.

With such a graphical expression of the control
system characteristic, we can clarify the existence
of the big gain change, amplitude dependency, and
limit cycle which are often disregarded in design of
the robust control system.
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