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Neural networks, neurocomputing is based on the wistful hope that we can repro-
duce at least some of the flexibility and power of the human brain by artificial means.
Recently much interest has been focused on the development of advanced traveler
information systems using neural network technique. This paper presents a neural
network model to predict traveling time on networks and to investigate the impacts
of route guidance systems upon drivers’ long-term behavior. The model explicitly
takes into account drivers’ learning behavior. The prototype model of route naviga-
tion information systems are designed through simulation experiments. The paper
concludes by assessing pros and cons of neural network modelling to route navigation
systems and by suggesting further research subjects.
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1. Introduction

Transport networks are increasingly faced with the problems of congestion externalities which tend to re-
duce the overall performance of networks. Thus, the advanced traveler information system (ATIS) have been
investigated in many countries as a high-tech approach to aid drivers more informative route choices and to
alleviate increasing levels of traffic congestion on networks. This study has tried to design a prototype model for
route navigation systems. In this paper, our focus are upon the development of prediction system of traveling
time of routes by using neural network technique. The neural network systems are constructed through a series
of computer experiments, which hypothetically simulate the fluctuation of network flow and realize individual
drivers route choices. In designing simulation experiments, only one O-D pair connected by two routes with
different characteristics are considered. The overall turbulence of travel time by local traffic is assumed to obey
a certain type of stochastic process and is generated by a time series model. Through experiments, the optimum
configuration of the neural network architecture is determined. A three layer, feed forward neural network with
a back-propagation learning algorithm is coded in the C language on P.C. The three-layer neural network was
implemented with 4 neurons in the input layer and two neurons in output layer, corresponding to the number of
attributes in the input vector and the number of output alternatives, respectively. The number of neurons used
in the experiments ranged from 1 to 4 for the first layer and from 1 to 4 for second hidden layer. This paper
also tries to provide with a unified framework for understanding how drivers act in response to exogenously
provided route guidance information; and how they form subjective expectations on traffic conditions from re-
peated learning. The paper is organized as follows. In Section 2, the basic analytical strands for designing route
navigation systems are described. Section 3 formulates drivers’ route choice behavior and Section 4 explains
how the paper models the drivers’ learning processes in the simulation experiments. In Section 5 the neural
network model is presented by which the public agency can provide drivers with route guidance information. In

Section 6, the results of simulation experiments are summarized.

2. Analytical Strand

2.1 Information and Route Choices

An important feature of existing traflic assignment models is the representation of the interactions between
link travel cost and link traffic volume. Most of these models have been concerned with predicting average
conditions over a period of time rather than actual conditions on a particular day. Many of them have sought
to generate equilibrium flow patterns which might be expected to come about after a period of time. Recent
developiments in assignment modeling have been more concerned with the incorporation of network dynamics
and stochastic choices. The stochastic user equilibrium (SUE) approach firstly formulated by Daganzo and Sheffi
(1977)") has been extended to cope with dynamic network modeling by incorporating driver behavior models
and network performance models. This framework explicitly treats the distribution of traffic by time-of-day and
the drivers’ pretrip and en-route adjustment process (e.g., Fisk 1980%; Sheffi 1985%; Ben-Akiva et al. 19919).

Given what has been learned from the models and empirical works, it is now the time to develop a more
comprehensive framework for understanding drivers’ route choice behavior with and without route guidance
information. The basic form of the model is determined by the need to be able to represent the performance of
route guidance information systems in the context of sporadic and dynamically evolving congestion. It follows
that the models must represent drivers’ perceptions and expectations as they might evolve on a particular day
rather than being concerned with average or equilibrium conditions. If the average performance of the system

over a period of time is required it will be necessary to consider a number of days and then derive an average
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performance rather than take an average day. There has been no obvious analytical solution to this and a
dynamic simulation of drivers’ learning and fluctuations in their route choices over periods therefore seeins
necessary.

The basic rationale behind this belief is that many drivers possess little or no reliable information concerning
travel routes and alternative travel decisions. As drivers’ decisions are affected by expected network conditions,
the most useful type of information to a driver faced with travel choices would be reliable predictive information.
Predictive information must be based on projected traffic conditions which are dependent on the ways in which
drivers will respond to the information. The validity of predicted information depends on their consistency
with current and future drivers’ choices which depend on their use of such information. Thus, the relationships
among drivers expectations, information reliability and drivers’ behavior need to be models in a way which
explicitly describes drivers’ evolving perceptions and learning mechanisms.

2.2 Problem Setting

Route guidance information systems have the potential of reducing or eliminating poor route choices and
consequently excess travel distance and cost incurred by unaware or uninformed drivers. However, it is very
likely to happen the concentration of traffic on the recommended routes and the overreaction of drivers in
their response to guidance information. It is also expected that the reliability of the guidance system will be
faded away as the fraction of informed drivers increases. Hence, the impacts of the guidance information itself
on drivers’ perceptions and expeclations need to be explicitly taken into consideration if one tries to design
navigation systems providing drivers with route guidance information.

Consider a situation in which a small number of drivers start to receive route guidance information. Assume
that the information provided is unbiased. The information corresponds to various signals which reduce or
eliminate uncertainty. When a driver is able to efficiently use this information he or she is better off. However a
driver may be unable to process this information to select the optimal route if he or she may be distracted by the
large amount of available information. Thus, information need to be provided drivers with in an understandable
(stylized) way. Consider a more complicated situation in which the majority of drivers receive public information
on traffic conditions. In this case, it is very likely to happen that drivers overcorrect their beliefs and drivers’
overreaction to public information may cause congestion to transfer from one road to another. Overreaction
happens if too many drivers respond to public information on current traffic conditions. It may also generate
oscillations in road usage.

The above descriptions outline a number of important questions which must be addressed in relation to future
developments of electronic route guidance systems. Is it possible to provide drivers with reliable predictive
information? Do we have the tools to provide predictive information which is consistent with realized traffic
conditions? If the above two questions are answered affirmatively, then when, how frequently, and to whom
should such information be provided? The fraction of drivers which should be informed is an important policy-
variable.

More predictive information is most costly, but may decrease the possibility of an overreaction. When drivers
with communication devices receive public information and alter their behavior, they affect driving conditions
for others, both those with devices and those without. Moreover, if uninforined drivers know that informed
drivers are out there they may adjust their behavior too, albeit on a routine rather than daily basis because they
lack day-specific information. This may cause informed drivers to make further adjustments, and so on. Thus,

the reliability of the route guidance information systems are endogenously determined by the whole drivers’
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behavior within urban networks. A driver’s behavior changes over time, often from day-to-day, due to learning,
expectations formation, variable perception of the reliability of the information received, etc. Thus, in broad
terms, any framework aimed at analyzing the potential iihpacts of route guidance information systems should
incorporate dynamic models of drivers’ behavior and expeétations formation.

2.3 Type of Information

When making route choices, drivers constantly combine sources of information to form perceptions and
expectations of traffic conditions. Conventional sources of information available to drivers include personal
experience, word of mouth, and media messages. Drivers who rely solely on such information a‘re likely to
have incomplete information about traffic conditions on the network. Information available to drivers may
conceptually fall into three calegories: (1) historical information - information describing the state of the
transportation system during previous time periods; (2) current information - the most up-to-date information
about current traffic conditions; (3) predictive information - information concerning during subsequent time
periods when travel can occur. Another classification is also useful for our current purpose: a dichotomy of
information into that category of common (public) information and private information. Public information, like
knowledge about networks, is, in principle, available to the public, and forms a part of the common knowledge
for all drivers in Aumann’s sense (Aumann, 1976)%). That category of private information may include a broad
spectrum of a driver’s information totally hidden to others. A driver’s preference, characteristic, historical
information and prediction may be classified into this category.

If a state of nature is known and the driver’s choices of routes are known to all, each driver will know the travel
cost of the available routes and his corresponding utility. In contrast to the single driver decision probiemn, we
consider multi drivers. Thus, a complete description of a state of nature must contain information not only for
resolving the uncertainties, but also for determining the extent to which each driver knows the state of nature.
There must be some states of nature that are distinguishable from others if there is iﬁcomplete information.
The degree to which the natural states are indistinguishable will affect the drivers’ behavior and must be part of
the description of a natural state. Recognizing the possible ability of drivers to differentiate among states allows
us to analyze asymmetric information beyond that treated by standard decision theory. A complete description
of a network should resolve these uncertainties.

In a world not subject to incomplete information, drivers need look no further than their own preferences to be
able to make a decision. They need give no thought to the actions of other drivers. However, in a world subject to
incomplete information and random fluctuations, this is no longer the case. Drivers are faced with the problem of
forecasting travel conditions whiclh are dependent on the actions of other drivers. Rational expectations theories
provide for a model of how drivers make these forecasts. Furthermore, in a world of incomplete information,
drivers possibly try to acquire information about the future realization of travel conditions. It will, in general,
be the case that different drivers have access to different information. The fact that information is dispersed
throughout the drivers has the potential to cause a misallocation of route choices relative to what would be the
case if all drivers know everything. An efficient allocation of route choices will in general require the transfer of
information from the public agent who has some information about the fluctuations of the traffic conditions to
individual drivers who can take current actions to mitigate avoidable congestions.

2.4 Rational Expectations Hypothesis

The past decade has witnessed important developments in the study of the expectations formation processes

and the problem of decision-making under uncertainty. Of the theories of expectations formation so far advanced,
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the rational expectations hypothesis has attracted by far the greatest attention. The rational expectations
hypothesis (REH) due to Muth (1961)® states that subjective expectations held by economic agents will be
the same as conditional mathematical expectations based on the true probability model of the economy; or
more generally - that the agents’ subjective probability distribution coincides with the objective probability
distribution of events. Although the REH was advanced by Muth it was work of the Lucas (1978)"), Sargent
(1973)®, Barro (1976)% and others that brought it into prominence. This paper makes no attempts to survey
the literature on rational expectations. The reader is referred to Shiller (1978)® for a macroeconomics and
Sheffrin (1983)'1), Radner (1980)!*) for a survey of the microeconomics.

In the given context of drivers’ route clioice behavior, REH assumes that a driver who has a good understanding
of a network can efficiently utilize his daily experience to make inferences about the consequence of the route
choices taken by other drivers. These inferences are derived, explicitly or implicitly, from an individual’s
model of the relationship between the information received by himself and the traffic conditions realized in
the network. On the other hand, the true relationship is determined by the individual drivers’ behavior, and
hence by their expectations. The drivers have the opportunities to revise their expectations in the light of
observations. Hence, there are feedback routes from the true relationship to the individual expectations. An
equilibrium of this system, in which the individual expectations are identical to the true distributions, is called a
rational expectations equilibrium (REE). In what follows, we characterize a network equilibrium with incomplete

information where the respective drivers may form the rational expectations about traffic conditions.

3. Rational Expectation Equilibria

3.1 Information Structure

In this section, we presents a new analytical framework for network equilibria with rational expectations.
The basic element of our network equilibrium concept is differential information; different users have different
information about the route traffic conditions; they choose their route on the basis of their private (differentiated)
information. The purpose of this section is to develop a general equilibrium concept that makes explicit the
information or knowledge that a user has as part of his primitive characteristics. The model we describe in this
section is a reinterpretation of Harsany’s model of incomplete information game (Harsanyi 1967-1968)'3). The
difference from Harsany’s approach is the explicit consideration of the rational expectation formation by drivers
(Kobayashi 1990)4).

Consider N driver and the set of drivers S. Let us explain how one can formally describe a driver’s information
about other drivers’ characteristics, preferences and route choices. Driver s € § has his/her own private
information, w, € €1, which is not observable by others including the public agent. Let § be the set of all
possible w. For driver s, let @,(w) : w — w, be an onto mapping defined on 1. Let w, be the signal observed by
driver s if w occurs. Driver s can distinguish between o' and w” if @,(w’} # ®,(w"). If ®,(w) # w, the private
information space of driver s is called incomplete. Let us define the whole space of private information © which

is defined by a product of drivers’ private information spaces:
N .
0 =J]2.(9) (1)
=1

Let us define information structure i € © which is an explicit representation of the incompleteness of all drivers’
private information spaces. The realization of driver s’s private information and the information structure is
represented by w,(= P,(w)) and i = [1, ®,(&) € O, respectively. Further, we assume that there are some

common measures concerning the distribution of information.
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3.2 Route Choice Behavior

Travel cost of each route is varying from time-to-time depending upon the fluctuations of local traffic volume
and of individual choices. Travel cost of route a, 7,(a € 4,), is a random variable, and each driver is assumned to
forecast the probabilistic distribution of 7,. Driver s’s subjective expectations on 7,, 74,(3), can be formalized
in the form of probability density functions m,,(7.;%). The symbol ¢ designate the basic case where no route

guidance information is provided. Given m,,(7,; ¢), the expected utility of driver s for route « is defined by
Vioasi $) = [ UTay s )as (e ), (2)

where w,, is driver s’s private information on route ¢ and U is a Newmann-Morgenstern type of utility function.
Assume that JU/dr, < 0 and 9*U/d7, > 0. Driver s is assumed to choose the route which maximizes his/her
expected utility function (2).

Let us next investigate the drivers’ behavior when route guidance information is provided to the public.
Denote the information (message) transmitted to the drivers at each period by e € 1, where 7 is the set of
messages. If the messages, for example, ‘Choose rote 1 (e = 1)’ and ‘Choose route 2 (e = 2)’ are concerned,
then the set of messages is denoted by n = (1,2). Denote also the subjective expectations for all available
routes conditional on message ¢ € n by a tuple of mutually independent probability density functions, n,(e) =
{mus{7a; €),a € &,}, and describe the whole spectrum of subjective expectations conditional on the message set
n by ,(n) = {m,(e); e € y}. Each density function specifies a driver’s subjective belief regarding a conditional
distribution of travel cost given a message.

Consider a situation where the public agent inform drivers message é € 5. Then, given the subjective

expectations 7,,(€) in I1,(7), the expected utility of driver s for route a, V(as; mas(€)), can be represented by
V(usi Mas(€)) = [ U(7usas)as (e €)dre: (3)

The driver chooses the route which maximizes his/her expected utility (3). Then the route chosen by driver s
is given by
Tas (W35 75 (8)) = arg max{V (@as; mas (€))}, (4)

where the symbol arg designates the route which can maximize the R.H.S. of (4). Extend the above discussions
for a single driver to all drivers on the network. The Nash equilibria induced by the situation where all
noncooperative drivers compete with each other with incomplete information on a network environment fully
characterizes our equilibriumn concept with incomplete information. Given the information structure fi and the
message €, the set of the route chosen by all drivers - a network equilibrium with incomplete information - can
be described by y*(i;7(é)) = {v;{(,; 7,(8))},c5- Since, as have repeatedly explained, the information structure
jt is constituted by a set of private information, no one can have access ex ante to the whole results of route
choice y*(ji; w(€)) in each period.

3.3 Rational Expectations and Equilibrium

After each choice, each driver is able to record not only his private information and public information, but
also the realization of travel cost of each run. After m route choices of route a, the s-th driver obtains an
m-size empirical sample from the objective distribution of travel cost of this route. Based on the empirical
samples, driver s forms his/her subjective expectations on travel cost conditional on public information. A
rational driver, sooner or later, will be motivated to revise his/her m,,(7,; €) if he notices that it differs from

the objective distributions of travel cost conditioned on essage e, v, (7,; €), through learning process. If both
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all rational drivers’ conditional expectations m,,(74;€) and the conditional objective distributions v,(74;e) are
simultaneously converge to the rational cxpectations w}{7,; €), let us call that-the system reaches to the rational
expectations equilibrium conditioned on public information.

A formal characterization of network equilibrium with rational expectations appears in Kobayashi (1990,
1993)!)15) The existence of the rational expectation is guaranteed under fairly weak network conditions
(Mertens et al. 19385'); Kobayashi 1993,1994'71819)), Rational expectation is a condition of network equi-
librivin rather than being only a condition of individual rationality. In a rational equilibrium, the information
requirements are no greater; drivers need only know the stochastic process generating travel cost. Though the
theory of rational expectations equilibrium tells the public agent about the underlying structural factors that
determine the distribution of travel cost, in equilibrium drivers need not know anything about the structural
form of the system. They need only know the relationships between public information and stochastic factors
that may determine network performances.

It must be noted here that the time interval between dates is short relative to the speed of adjustnent of
expectations, before expectations can adjust to a temporary network flow the system will already be at the next
date, and the environment will have changed. One will then observe a process of repeated incomplete adjustment,
together with stochastic changes in the environment, and the system will always be in disequilibrium in the
sense that networks will never equilibrate. Nevertheless, even in this case of repeated disequilibrium one would
want to distinguish situations in which travel cost and drivers’ route choices fluctuated in some ‘steady’ manner
around long-run averages, from situations in which travel costs or route choices, or both, fluctuated with greater
and greater variance, or increased without bound. To describe the situation it is natural to use the concept
of a stationary stochastic process, which is the generalization to the case of uncertainty of the concept of a
deterministic equilibrium. However, it is important to emphasize that the stationarity of a stochastic process
does not rule out fluctuations of varying period and amplitude. The drivers can learn what is happening around
him/her and to form the rational expectations, since their decision environment is subject to a stationary

stochastic process.

4. Rational Expectations Formation

4.1 Expectations Formation by Learning

A useful way to model a driver’s learning process is to imagine that at the beginning of period ¢, driver s has
his/her own subjective expectations on travel cost of each route and receives message e from the public agent.
Suppose, at the period, the driver makes his/her choice 7! based on his/her subjective expectations conditioned
on message e. At the end of this period, he/she eventually observes travel cost 7} 7!, is commonly observed
by all drivers having chosen it, but not by other drivers. The drivers may update their subjective expectations,
as far as they are motivated to revise it. But, the learning problem is a little bit complicated by the presence
of unobserved routes.

We assume that the learning actions described in the above are repeated over periods, and in each sample
period L (t =0, 1,2, -} the adjustment process takes place, given all drivers’ route choices. For adjustment stage
¢, driver s must use the data 7!, to form, in sample period ¢ + 1, new estimates of the conditional distributions
of travel cost on public message e. A rule for estimating the conditional distribution is called an estimation
procedure, and the entire array of estimation procedures for all drivers and all adjustment stages is an estimation

scheme.
Let us show that in a given stationary environment, each driver’s subjective expectations converge to the
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[rational expectations through learning processes. Define here the set of historical information. Historical infor-
‘mation designate the one which a driver can obtain by past experience. It comprises four types of information:
(1) private information w;, (2) a route choice in period ¢, 7%, (3) travel cost of chosen route 7! , and (4) message
provided by the public agent in period ¢, ¢'. Designate the set of historical data which driver s obtains in
period ¢ through his/her choice by a triple of o} = (v}, 75 ,w,€'). Let Z% = []:2} {07} be the whole spectrum of
historical information which driver s have compiled up to period t.

At each stage of the learning processes, the drivers’ éxpectations to message e are determined by their
estimation procedures and their historical information (experience) in previous sampling periods. For each ¢,
driver s’s initial beliefs are assumed to be n%(e) = {78,(7,;€)}aes,. For each ¢ > 0 the drivers’ subjective

expectations for message e is fully regulated by their past experience Z! and an initial belief 7%(e):
m(rie) = ¢i(r, 6, 5, m5), (5)

where ¢} represents a ‘expectations formation mechanisin’, which explains how driver s form his/her subjective
expectations from his/her past experience and initial expectations. The recursive nature of the learning process
is critical to the expectations formation. At each stage, learning affects the subjective beliefs being learned
at the next stage, but there is no feedback from later to earlier stages. With a certain learning rule T, the

expectations formation mechanism ¢! (7, e; =%, 7%) can be expanded in a recursive form:
(/)f,(T, € Ei,ﬂ’?) = T{U;—l> T{U.:_27 ] {T{a:a W?}} . } (6)

An estimation scheme is successful (a.s.) if, for almost every infinite sample, the estimates converge to the
conditional distributions mentioned in our initial description of the adjustment process given above.

The problem of learning rational expectations is greatly complicated by the dependence of the correct condi-
tional distributions on drivers’ beliefs. Indeed, if drivers modify their subjective expectations through learning
procedures, their route choice behavior will change. Eventually, the objective distribution of travel cost will
change time after time. Thus, the bilateral relationships exist between the conditional subjective expectations
and the conditional objective distribution of travel cost.

4.2 Specification of the Information Structure

Consider a discrete network with a finite number of nodes and links. Denote the set of drivers by § =
{1,---, N} and the set of admissible routes for driver s € S by §,. Suppose that driver s chooses route a € §,
with his/her subjective expectations m,4(7,; &) given private information w; and public message e. Let use specify
the expected utility function of driver s for route a given private information w,, and message € in the additively

separable form with respect to private information:
V (wasi Mas(€)) = [ V() mas(7as ), + sy (")

where w,, is a random variable representing private information concerning route a.

If route choice probabilities are mutually independent, the distribution of link traffic volume can be approxi-
mated by a multi-variate normal distribution function (Sheff 1985)%). If linear link-performance functions are
applied, travel costs are also subject to nornxlal distribution functions. For the case of non-linear link-performance
functions, travel costs are generally subject to certain skewed distributions. Normal distributions can be re-
garded as the second-order approximation of arbitrary probabilistic distributions. Assume the independency
among private information, i.e., Efw,,,wyy] = 0 (@ € &, a’ € §y)). This property implies that private informa-

tion conveys no information about others’ behavior. In this notion, private inforination designates any local,



EBRAFILTZHWIREEH26H 229

accidental and non-memorable factors affecting current drivers’ route choices. Private information is varying
from day-to-day and causes the fluctuations of drivers’ route choices. Let us specify the representative driver's

deterministic utility function by
U(TU) =1- exp{((‘ru - E,[Tu])} - Es[Tu]1 (8)

where E,[7,] is the expected value of 7, with respect to his subjective expectations Tas(Ta; €) and ¢ is the measure
of the absolute risk aversion. Equation (8) is the first-order approximation of the utility function at E,[r.]- Let
us take the Taylor expansion of driver s’s conditional expected utility function on message e (see (7)) around
Es[7s]. Then it is approximated in the formn of the additive sum of means Tias(€) (= Eyfr.]), variances my,,(e)

and private information wy,. It is shown that
1
V (Was; Tas(€)) = —mr145(€) — 5C27rza,(e) + Was. (9)

where my,,(e) and my,,(e) characterize driver s’s subjective expectations conditional on message e. The route

chosen by driver s given é and &,, with the subjective expectations (m14,(€), 724,(€)) is described by

Yi(ws;m(8)) = arg max{V (@, : may(€))}

Il

1
aryg nljlx{'-"'lus(é) - 5(27"'2113(&) + ‘:)us}- (10)

4.3 Bayesian Learning Rules

Describe the drivers’ mechanism for expectations formation ¢2 by use of a Bayesian estimation method. In
a Bayesian framework probability is defined in terms of a degree of belief. The probability of an event is given
by an individual’s belief in how likely or unlikely the event is to occur. This belief may depend on quantitative
and/or qualitative information, but it does not necessarily depend on the relative frequent of the event in a
large number of future experience. Because this definition of probability is subjective, different individuals may
assign different probabilities to the same events. '

As drivers can obtain more sample information through their daily route choices, they are able to update their
subjective expectations to reflect this additional information. Bayesian learning procedures can be described in
the form of updating rules of (n{,,(e), 7},,(e)) based on the new of. This can be achieved using some convenient
recursive formulae. Suppose that (7f,,(e), 75,,(e)) is the posterior parameters calculated from observations up
to period t, and assume driver s accepts message e in period ¢ and chooses route a. For the simplicity of
expression, let us omit subscripls a,s, e for the moment. Then, for additional observations given (a,1,), the

forecasting model in period ¢ + 1 is shown that

1 Volio + ”tfi 11
ust - vy + 11' ) ( )
!
. nn =
it = {514 - ) e 12)

where oy = ag+n'/2, 7 = 1/n- LI, 7;, 58 = UL, (15 — %)% and n' is the number of observations on route a up
to i-th period. Once these quantities have been obtained it is straightforward to derive the updating formulae.

By expanding equations (11}, the learning rule T of mean n} can be given by the following recursive formula:

1

v +nt

41 _
mT =T+

(1 — ). (13)
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The subjective expectation 7} is revised by use of the forecasting error (1, — 7!) to yield the new expectation
mitt. As shown by (13), the weight 1/(1y +n*) is no more constant. As n* becomes large, the significance of the
forecasting error in revising the subjective expectations will decrease and eventually the weight converges to 0.

Analogous results for 75 can be derived from equation (12):

1 v mt

141 t -1yt 2 2

5 __71-2+w{_;__(7|—1_7-l) ___2_. s
[e]] t

(14)

*! can be given

where oy = ag + n'/2,1, = vy + n'. Note from equation (14) that the posterior variance 7}
by modifying ! based on the forecasting error v, (n} — 7,)%/v, — n}/2. As drivers accumulate historical
information, the weight 1/a, will converge to 0. The definition of the recursive formulae (13) and (14) embodies
the assumption that the driver having chosen route a never observe 7/(j # a) even after 7/ is realized. Hence,
the subjective expectations for route j(€ 4,) # « are not updated until it will be chosen. That is, for j(€ §,) # a
we assume that

7rij+-,‘ = W;js, W;;T,l = néja. (15)
If { becomes sufficiently large, from equations (11) and (12), we know that n},n} can be approximated by

32
t = ¢ ¢
™, My, (16)
n
where 7, and (5?/n') are the sample mean and variance, respectively. As drivers obtain more observations, their
subjective means and variances asymptotically converge to the objective ones, respectively. Thus, given a triple

of initial subjective expectations, the rational expectations appear as the limits of drivers’ learning procedures.

5. Neural Network Model for Route Navigation

5.1 Information Systems for Route Navigation

In order to investigate the impacts of public information on individual drivers’ decisions and on expectations
formation, let us carry out the simulation experiments. Given a description of the route choice context, of which
are specified in such a way as to bear simultaneously to actual conditions, the drivers independently supply
decisions of route to destination. These decisions form the time-varying input function to a traffic simulator
that yields the corresponding travel cost. Information on these consequences is subsequently provided to each
driver. By controlling the type and amount of information supplied to the drivers, we can study the impacts of
alternative information strategies on drivers’ behavior as well as their expectations.

In what follows, we address to the question of whether route guidance information can convey substantially
additional information to drivers even if drivers behave with rational expectations of their environment. Assume
that at the beginning of period ¢, the public agent observes traffic volume at certain monitoring points on a
network, and tries to forecast travel cost to be realized in period t. The major question for the public agent is
how to forecast travel cost every point in time. The rational expectations are the stationary points to which
all drivers’ subjective expectations will converge in the long run. In the short run, the rational expectations
are unknown to drivers. The same story goes for the public agent. Although the public agent is generally
blessed with more informative environment than drivers, they are not in the position to know the exact states of
rational expectations equilibria in the short run. Thus, the public agent should also learn how drivers subjective
expectations will converge to the rational expectations. In what follows, the neural network modelling techniques
are applied to design the mechanism by which the public agent can learn the final states of drivers’ rational

expectations.
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FIGURE 1. A Hypothetical Network for Numerical Examples

Let us first characterize the learning environment of the public agent. Denote the set of historical data
observed at monitoring points up to this period by x' = {af(i = 1,---,n;k = t,t = 1,--)}. Given the set
of historical data, the public agent forecasts the travel time 7(x') = {7.(x') : @ € §,)} based on x'. The
forecasting mechanism is generally described by ['(x'; ©), where © represent a forecasting model describing the
relationship between the historical data and the travel time to be realized. Thus, the public agent can forecast
the travel time by use of monitoring information x* and a forecasting model ©. 7(x') need not coincide with
the drivers’ subjective or rational expectations, or both. Generally speaking; the public agent can have richer
inforination than drivers, since drivers have no access to monitoring information. Thus, there exists information
asymmetricity between the public agent and the drivers. This asymmetricity endows the public agent with the
major informational advantage by which it can manipulate indirectly, in some ways, the drivers’ route choices
through public information. ,

The information providing rule A is the one which selects the message ¢ to be inforined to drivers based on the
forecasting results {¥(x*)}. The information providing rules can be described by a system é = A(¥(x}, e);e € 1),
where 7 is the set of messages and A is the selection rule. Let us consider, among others, the following rule:
that to recommend the route to be chosen.

5.2 Description of Network Models

To simplify the experiments, we consider only one O-D pair connected by two routes with different charac-
teristics as shown in Figure 1. Drivers are informed public messages at bifurcation point A. The drivers’ initial
expectations for travel cost of routes 1 and 2 are assumed to be homogeneous. They are described by normal
distributions N(50,15). The private information w,, is subject to a Weibull distribution W(0,10). The overall
turbulence of travel cost by local traffic is subject to a certain type of stochastic process described later in the
next chapter. It is asswuned that 100 risk-neutral drivers are motivated to make simultaneous decisions in each
iteration. The travel cost of both routes is varying over pe\riods due to the fluctuation of local traffic and of all
drivers’ route choices. At the beginning of each period, the public agent can observe the local traffic volume of
the period, but drivers cannot know it.

5.3 Neural network models

Artificial neural networks have been widely studied for information processing. Recently there has been also
an increasing interest in application of neural network techniques to transportation engineering. Transportation
application of neural networks modeling includes, namely, travel demand estimation, image processing, classifica-

tion and pattern recognition and driver route choice analysis(Hai Yang. et al. 1993)29). It is generally recognized
g g Y 8
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FIGURE 2. A Typical Multi-layer Feed-forward Neural network

that the neural network techniques have the capability to accomimodate complicated problems without requiring
explicit equations and/or correlating input/output data, generating reasonable results efficiently.

Figure 2. shows the connection scheme of a typical multi-layer feed-forward network. This network consists
of processing elements arranged in four layers: an input‘ layer, two hidden layers, and an output layer. The
output of our neural model is the estimated travel time of each run. Given the estimated travel time, the public
agent recommends drivers the route to be chosen. The input to the neural network is the travel time observed
on both routes. The realized travel timne which can be observed at the end of each period in time can be utilized
as a teaching information in the learning procedure of the neural network model itself.

Let us sumunarize the basic scheme of our neural network modeling. Processing elements in adjacent layer are
connected through connections W;;, U;;, and V;;. The output emitted from each processing element is a function

of the weighted outputs from the processing elements in the proceeding layer. Matheiatically,
Y; = F(X) = f[Vaf{Uof (W1 + 6) + v} + ¢] (17)

where f is a nonlinear operator, Wy, U,, and V3 are weight matrices, and 8,+, and ¢ are threshold vectors. Thus,
it is possible to realize the X and y; relationship by adjusting the weight matrices and threshold vectors.

The above equation can be written as three sub-equation in a neural network:

M
yj=f(zvij,zi+¢j)v (18)
=1
N
zj =[O Uishi + v, (19)
=1

K
hy = f(3_ Wi+ 6;) (20)
i=1
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where v, N and M are the number of neurons for the input, first hidden, and second hidden layers of the neural
nelwork, respectively: w; is the ith element of input vector: W;; is the weight of the interconnection between the
ith element of inpul vector and the neuron j of the first hidden layer: U;; is the weight of the interconnection
between the neuron i of the first hidden layer and the neuron j of the second hidden layer, and ¥, is the weight
of the interconnection between the neuron ¢ of the second hidden layer and the neuron j of the vutput layer.
Moreover, 0;,v; and ¢; are the thresholds for the jth neuron of hidden layer one, hidden layer, and the output
layer, respectively. f(+) is called an activation function which scales and smooths the output. Usually, a logistic

function is used for this function. At the oulpul layer, the error associated with the neuron j is
cj=d, —y (21)

where d; is the desived output{or "teacher signal®) of the neuron j of output layer. Minimizing the sum of the
squared errors:
,_ 2 e
B=53 (di-y) (22)
J
with respect to Wij, Uij, Vi, é;,; and and 0; requires that the variables are moved in the descent direction of
the objects function. According to the gradient decent method in optimization theory, these parameters should

be modified as follows:

Vi, (n 4 1) = Vi;(n) + AV;;(n), (23)

where:
AVi;(n) = yzidy; + aAVi(n ~ 1), (24)

where:
Sy; = e;y;(1 — y;) = (d; — y;)y; (L — ;). (25)

where 1) is a parameter of the learing rale, and 0 < 5 < 1. a is the momentum gain which is used to speed up
convergence and to restrain overshoot in the learning process, also 0 < a < 1. 4 is the error, AV is change in

weight and n is the cycle number. The threshold of the output layer is adjusted according to:
di(n+ 1) = ¢;(n) + Adj(n), (26)
where:
Agi(n) = ndy; - | + abdj(n — 1) (27)
Adaption of the weight for hidden layer two neurons is then given by:
Uij(n + 1) = Uii(n) + AUi(n), (28)
where:

Al (n) = nhidz; + adlUj(n - 1),

o

dzj = 211 — ) ) Vi;dy;

i=t
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where o 15 the number of neurons for output layer. The threshold of this hidden layer is adjusted according to:
vi(n 4 1) = 7(n) + Ay (n), (29)
where
Ayi(n) = ndz; - L + ady;(n + 1) (30)
Adaption of the weight for hidden layer one neurons is then given by:
Wiln 4 1) = Wi (n) + AW;(n), (31)
where:
AWii(n) = gaidh; + aljj(n— 1)
dh; = hi(l —hj)ﬁU;sz}- (32)
j=1

The threshold of this hidden layer is adjusted according to:
Oi(n+ 1) =0;(n) + Ab;(n), (33)
where:
ADj(n) =ndhj - | + adb;(n — 1) (34)

Training of the network starts with small random numbers assigned to all the weights and the thresholds.
The training is terminated when either the maximum number of iterations is reached or the sum of squared
output errors is reduced to an acceptable value. Figure 3. shows the training process with a back-propagation

algorithn.

6. simulation experiments

Simulation is operated according to the following steps: (1) to construct the hypothetical neural network
architecture; (2) to assume each driver’s initial subjective expectation; (3) to generate local traffic volume
by ARMA(2,2) model and Weibul random numbers associated with private information; (4) to calculate each
driver’s conditional expected utility for every message; (5) to determine the respective route that each driver
may choose given a message; (6) to calculate the travel time on the routes by aggregating the results of individual
route choices and using the three-layer, feed forward neural network with a back-propagation learning algorithiy;
{7} to calculate the conditional ex post utility given private information; (8) to aggregate for each message the
conditional ex post conditional ulility over all drivers; (9) to select the message which maximizes the aggregated
ex post utilities; (10} to determine the driver’s choices in this iteration; (11) to up-date each driver’s subjective
expectation;

As mentioned earlier, one objective of this paper is to construct a neural network model for predicting traveling
time on a network where route navigation information is provided. Using the neural network, the public agent
tries to forecast the travel time to be realized. The neural network used in this paper consists of an input layer,

a hidden layer and a output layer as shown in Figure 4. There are 4 processing elements i the input layer,
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FIGURE 3. Flow Chart of a Back-propagation Training Algorithm.

these are the local traflic volume of route | and 2 and through traffic volume of route | and 2, respectively.
All the values taken in input processing elements will be normalized into values to be between 0 and 1 using a
logistic function and then transmitted to the hidden layer in the neural network. Two processing elements in
the output layer are used to indicate a predicted travel time of route 1 and 2.

Before examining route navigation in detail, we report some results of the validation experiments on the
petformance of the neural network model. The number of neurons used in the experiments ranged from | to 4

for the first layer and from I to 4 for second hidden layer.

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

Local Traffi¢ Yolume ‘
—
of Route |

Expected Travel Time
of Route 1

Through Traffic Yolume

Y
of Route | °<\l‘

Expected Travel Time
of Route 2

Local Traffic Volume
of Route 2

Through Traffic Yolume___
of Route 2

FIGURE 4. Neural Network Model for Route Navigation

Table la presents the results of the sum of squared learning errors with the different numbers of the hidden
element(s) from 1 to 4 and where 3*3 hidden elements stands for 3 elements in the first hidden layer and 3
elements in the second hidden layer. Table 1b shows the difference of the sum of squared ertors with the different

values of learning rate for momentum gain o = 0.8. In this test, the difference of the hidden layer had little
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impact but the networks with 1 and 3 # 3 hidden elements indicated a limitation. In contrast, we observed that

the value of learning rate had large impact on the performance of the network as shown in Table 1b, but the

initial value of the sum of squared of errors are very similar.

TABLE la. Changes of Sum of Squared Errors across the Number of Hidden elements for o 0.8

SS.E* [teration
Learning rate | Hidden elements (5000 iteration) | (S.5.E.=0.009)
0.00956 [P
2 0.00553 1083
0.9 3 0.00550 450
4 0.00548 310
3x3 0.00956 1.P.

+S.5.E.: Sum of Squared Errors  #+[.P.: Impossible

TABLE 1b. Changes of Sutn of Squared Errors across the Value of Learning rate for o 0.8

. S.S.E. Iteration
Learning rate Initial value | 5000 iteration | (S.S.E.=0.009)
0.01 0.287 0.01500 13740
0.1 0.265 0.00571 2480
0.9 0.277 0.00548 310

Through this test, the optimum configuration of the neural network architecture was determined. Learning
rate and momentum gain were set to be 0.9 and 0.8 respectively for all siinulation experiments. Moreover,
the number of processing elements in the hidden layer was fixed as 4 as shown in Figure 4. Also, the overall
turbulence of travel time by local traffic is given by a time series model. A time series is a set of observations
that are arranged chronologically. If a process consists of both AR({Autoregressive) and MA(Moving Average)
parameters, it is called an ARMA process. When there is one AR and one MA parameter the ARMA process

is denoted as ARMA(1,1) and the equation for this process is
(Zi —p} = d(Zeoy — ) =y — Broy (35)

where j¢ is the mean level of the process, ¢, is the nonseasonal AR paramecter, a is the white noise term at time
t that is identically independently distributed(IID) with a mean of 0 and variance of ¢2 [i.e. 11D(0,62)]. By

utilizing the B operator (backward shift operator B}, the ARMA(1,1) processor can be equivalently written as
(1= B)(Zy—p) = (1 =0, By,

or

H(B)Z: — pt) = (B (36)
where ¢(B) = (1 — ¢ B) and 0(B) = 1 — 8;(B) are, respectively, the AR and MA operators of order one. For
example, with p AR parameters and ¢ MA parameters, the ARMA processor is denoted by ARMA(p,q) and is
written as

(Z - /‘) - ¢’l(Zt—1 ~ )~ ¢’2(Zt—2 - ,U) R ¢17(Zl—p - /l)¢x

= Oy — 01().'1__1 jaed 020‘(._2 e e 0,,orln,, (37)
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By implementing the B operator, equation(37) can be presented more conveniently as

(1= B—¢yB> - =, B2y — ) = (1 —0,B = 0,8> — <. — 0,B")a,
or
HB)NZ, — i) = (B (38)
where §(B) = 1 — ¢ B — ¢y B* — - -+ — ¢,B? is the AR operator p and 0By =1-6;B—-0,B>~--. ~0§,B"is

the MA operator of order ¢. In this paper, the white noise term o, was set at a mean of 0 with a variance of 2.
In equation(37), the mean level of the process y was determined to be 15. The nonseasonal parameters my, m,

set to be 0.7, 0.2 respectively. Moreover, §,,8, was set to be 0.7, 0.2 respectively.
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FIGURE 5. Public Information and Learning Procedures

In this paper, two experimental cases are conducted. In case 1, the predicted travel time are provided at point
A. In contrast, no public information is provided in case 2. Figure 5 illustrates the impacts of information on
the objective distributions of travel time. The public agent informed the drivers with the message 'Choose route
1" or 'Choose route 2’. For each sample period, we calculated the respective average of travel time which had
been observed up to the concerned period. Figure 5 also shows the changing patterns of the calculated means of
travel time. In this figure, E[t;], ¢ and E[t,), ¢ represents the objective distribution of travel time of route 1 and
2 when no public information is provided. In contrast, Eft, | €] and E[t; | e] are the objective distribution of
travel time when public information is provided. Also, we know that the travel time of both routes for Elt1 ] €]
and Elt, | ] decrease compared to the cases when no public information is provided.

Thus, as far as our simulation is concerned, public information is not neutral and conveys substantial additional
information to the drivers.

Figure 6 shows the changing patterns of expectations for objective distributions of travel time of routes 1 and

2. In this figure, E[t;] and E[t,] stands for the expectations of objective distribution of travel time of route 1 and



238 Myungsik DO - Kiyoshi KOBAYASHI : Applying Neural Network Modeling to Route
Navigation

2. E[tl } € = 1] and E[t; | e = 1] shows conditional expectations on message (e = 1) for objective distribution
of travel time of route 1 and 2, respectively. E[t; | e = 2] and Elt; | € = 2] shows conditional expectations on
message (e = 2) for objective distribution of travel time of route 1 and 2, respectively.

From this figure, when the message indicates e =1 or 2, the conditional expectations of the objective distri-

bution of route 1 converge upon different values.
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FIGURE 6. Changing of Objective Expectations of Travel time
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FIGURE 7. Formation of the Process of Rational Expectations by the Learning Procedures
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Simulation was continued over 200 periods. Figure 7 shows that each drivers’ process of rational expectations
forms objective distributions and subjective distributions of travel time of route 2 by the learning procedures.

The drivers’ subjective beliefs on travel time converge upon the rational expectations by around the 200-th

period as shown in this figure.

7. Conclusion

This paper presented a neural network model to predict traveling time on networks and to investigate the
impacts of route guidance systems upon driver’s long-term behavior. Through experiments, the optimal config-
uration of the neural network architecture is determined., There are 4 processing elements in the input layer, 4
processing elements in the hidden layer and 2 processing elements in the output layer to indicate a predicted
travel time of route 1 and 2. Also, the objective distributions and subjective distributions of travel time of routes
forins rational expectations by the repeated learning. More work is needed to enlarge the scope of the study

and to explore more deeply the drivers’ behavior with rational expectations under incomplete and decentralized

information.
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