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The finite element technique is the standard procedure of analysis for many

problems in geotechnical engineering IIollrever,the question of attessinsg the reliab■ ‐

ity of the admittedly approximate results memains to be solved

ln this paper a node‐ relocation adaptive procedure is proposed The nodal forces

caused by the stress discontinuity between elements are used for the adaptive reloca‐

tion of nodes.

A test problem of a footing on the elastic ground is analyzed for three types of

meshes:  fine, medium and rough meshes The error included in the solutions was

estimated in tttro M′ ays :  one is to assume that the finest mesla used can give the

correct solution and another to use the error estimate prOposed by Zienkievicz and

Zhu lt is shown through the numerical test probleni that the adaptive procedure can

reduce the errOr
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l. Introduction

The finite element technique is the standard procedure of ana■ ysis for

many problems in geotechnical engineeringo However′  the question of assessing
the re■ iability of the adm■ tted■y approx■ mate resu■ ts rema■ ns to be solved.
In the usual formulation for the displacement finite element technique′

the continu■ ty of stresses between elements are a prェ οri assumed′  but the
resu■ted stresses become discontinuous between elements. The main error

included in the solution is caused by the discontinu■ ty. The degree of inter―
element discontinu■ ty of stresses can be reduced by some adaptive finite

element techniques: higher order interpolation method (p― method), element
refinement method (h―method)and node relocation method (r― method)1].
In this paper a node―relocation adaptive procedure is proposedo The concept

of the noda■  forces caused by the stress discontinuity between e■ ements will
be introduced and used for the adaptive re■ ocation of nodes.
Zienkievicz and zhu2]proposed a simp■ e method for estimating the error.

In the method the correct stresses are approx■ mated with the same
interpOlation functions as those for disp■ acements and they can be evaluated
from the fin■ te element solution by requiring that the weighted residual for

the estimated error be zero in the element domain.

In this studyr a test problem of a footing on the elastic ground was

ana■yzed for three types of meshes: fine′  medium and rough meshes. It will be
shown from the results of the ana■ ysis that the adaptive procedure can reduce

the nodal forces due to stress discontinu■ ty.
The error inc■ uded in the solutions wi■ l be estimated in two ways: one is

to assume that the finest mesh used can give the correct solution and another

to use the error estimator proposed by Zienkievicz and Zhuそ ].t w.ll be shown

through the solutions to the test problem that the adaptive procedure can

reduce the error.

In this paper, compressive stresses and stra■ ns are taken positive, and
the vectors and tensors are referred to a Cartesian coordinate, (Xl,X2,x3).

2. Theoretical Basis

2.1. Weighted residuals of governing equations

The equation for the equ■ librium of stresses:

f手
:二

 ― Si = 0 (■ =1,2,3)in V (I,



鳥 取 大 学 工 学 部 研 究 報 告 第 22巻

Boundary conditions:

~σ
うinう  = ti (i=1'2′ 3)on 3Vt                                               (2)

ui = ui         (i=η ′2′ 3)on eVu                                             (3)

In eqs。 (1)to (3), V iS a dOmain to be analyzed′  and aV is the boundary of
V' °

iう  iS the Cauchy's stress tensor, bi is the body force per unit volumer ui
ェs the disp■ acement and ni is the outer normal unit vector of the boundary.
The doub■ e bar it=:i denotes the quantity specified or given.

In the disp■acement method of the finite element technique′  displacements
ui(i=1′ 2,3)′  unknOwn functions, are approximated with functions′  of spatial
coordinates, including a finite number of parameters. Approx■ mate functions

are denoted temporarily by Si(xl,x2'X3) (131r2,3)′  i.e.

ui g ii(xl,x2′ X3)   (i=1,2′ 3)

Stresses are also approximate because they are related′

tive relations′  to the strain field compatib■ e with the

σ主ぅ 
二 3主
ぅ
(X)   (i′ う=1,2′ 3)

where

Б主  (i=1'2′ 3)

3ぅ inj _ ti   (i=1,2,3)

(itl,2,3)

in a doma■ n V can be given as

∫
3vと
irtid(3Vt)

(4)

through the constitu―

assumed displacements:

(9)

(10)

(11)

5iぅ
 = Diぅ pqgpq   (i′ う=η ′

2,3)                                                 (6)

キq―多義十攀 lpPq 4′為勤        ロ
Stresses resulted from the assumed displacements do not satisfy the

equilibrium of stresses and boundary condition on aVt, hOweVer the boundary

condition on aVu Can easily be satisfied by usua■  noda■ ―approximation

technique for the approx■mation of displacements.

We define residuals for eqs.(1)′  (2)and (3)as:

rσュ ニ

rti =

¨
０
　
一
Ｘ

rui tt ui ― ui = 0

Weighted residual

R = ∫
v  irσ
idV +
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where the condition (η O)was taken into account. In the above equation, wi

(■ =1,2,3)are arbitrary weighting functions, In the weighted residual method′
the problem is to find a finite number of parameters inc■ uded in the

approx■ mate functions ui by imposing that

R = O  for any weighting functions                                          (12)

2.2. Residual due to stress discontinuity between e■ ements

ln the context of the finite element method′  the whole domain V is
divided into finite elements Ve (e=1,2,.′ Ne' Ne iS the tOta■ number of

elements)。  The residual′  R, in V is considered to be the sum of residuals Re '

(e=1,2′ 。Ne)in Ve and their boundary 3Vet (e=1,2...Ne):

Ne

R = 
と=lRe

where

(13)

Re = ∫
vewirσ
idV + ∫
8vetWirtid(3Vet)                                       (14)

The second term appears only for such elements that a part of their boundar■ es

is also a part of 3Vt.

By using eqs。 (8)and (9)in eq.(刊 4)′  we can Obtain the expression for Re
as

Re ヨ ∫
3ve i5ぅ

inぅ d(3V,)

―
埓e鶏
弾 V― ∫

ぴ
iW+∫
ぱ
」為 均 却 ЩWi)  伸剪

We divide the boundary ave Of an element e into aVet and aVet' where

avet n 3vet = o                                                              (16)

The boundary 8Vet is usually an inter― e■ ement boundary. The residua■  Re Can be

rewritten as:

Re = Reσ  + Reu                                                               (17)

where  t

Reσ =∫   Wi3ぅ inぅ d(巧 )                  (18)

3Vet



鳥 取 大 学 工 学 部 研 究 報 告 第 22巻 227

In a usual formulation for the displacement finite element methodf the

condition of inter― e■ement continuity of stresses is a prttOri assumed′  i.e.′

Reu = ~ ∫
ve:と :。
jidV ~ ∫

 vと
iБidV ~ ∫

 Эveとiこid(Ovet)

R。  こ
 と:lReσ
 = 0

Ru 三 どe Reu = O   f° r any we■ ghting functions
e=1

(珂 9)

(20)

(21)

In facts, for two adぅ acent elements, weighting functions  take the same value

on the inter― element boundary , the unit outer norma■  vectors on the inter―

element boundary have opposite directions for these two elements, and

therefore′  if the continu■ ty of stresses between elements is assumed, the sum

of Reσ Wi・ l be reduced to zero in the whole domain V.

Thus the disp■ acement FEM requires the fo■ lowing condition:

This condition leads to the so― called stiffness equation′  which is expressed
in a discretized form.

Howeverr Stresses computed from the displacement finite element solution

are not continuous between elements and the condition (20, can nOt be

guaranteed. From this po■ nt of v■ ew′  in this study, the residua■  Ro iS

considered to be re■ ated to a measure for the error included in resu■ ts from

the displacement method.

We can not adopt Rσ its.elf as a measure for estimating the error because
the residual Rσ  is defined in terms of arbitrary weighting functions and its
value can not be determined unique■ y. The weighted residual Ro may be divided′

as w■■■ be described in the next paragraph, into two parts: one ■s the vector

of nodal va■ ues of weighting functions and another the vector of noda■  forces

caused by stress discontinuityo  We will find that the vector of noda■  forces

depend on the choice of weighting functions but not on the values of weighting

functions and it can be determined unique■ y from a finite element so■ ution.

2.3. Error indicator

We use the matrix notation hereafter for the convenience of expression. A

vector ttuantity is denoted by {.}in WhiCh components are arranged in a column

and its transpOse by く。〉. A matrix is denoted by [.]and its transpose by the

superscript "T'1. The ba」 l ittt a vector', fOr iinstance, (ユ ウ′ 1担eahs that components

of the vector (a)are nttdal va■ ues.



228

諦 :勇と剰冶隠 氏I金餓盤胤諧
碓Rd∝市On恥亜ばe� FEM �血h

The approximate funCtions foF diSp■ acernent and strain are given as:

〔S, = [Nul(d〕

{ε ) = [B]ti〕

The constitutive re■ atと 。n is‐ given by:

〔缶〕 = [D]{ε }

(22)

(23)

weighting function as

(24)

that fOF diSplacement functionsWe use the same type for

(Ga■ erkin 

“

othod), ■..e`′

{W} ■ [Nu]{"}

Btt using expressions

expressと On for Reσ ユS:

R99=(">(fσ  〕

where

tfσ )= [kσ ](■ )

(22)to (25〉 in eq。 (18), we can rewrite the

[k。 1 = ∫ [NETIn][D][B〕 [Nu]d(嘔 )

is compose― d of compohents of Outer norma■  unit
two dimensional proゎ■oms

(25)

(26)

(27)

(2a)

veoこor on aVさ t,

3Vet

The matrix [n]

for example, in

団 =PE¶

A COmponent of the vector (fσ }can be considered a co中 pOnent
app■ンing at ュ れOde in an element e,
By the usual assembly procedure, in whicn tれ e c。4tintity cOndition of

weighting functions and displacement are takeln‐  into account, the tteighted
residual 長。 と, given as.:

R。 = くW>〔 Fσ 〕

with

〔Fσ }= [kσ ]〔百}

where く
"〉

′{U}and [К 。]are expanded

(29〕

of a force vector

(3o)

出

forms of <w,, cu}and [k。 ]′  respective■ y.
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The vector  (Fσ }is alSO the expanded form of {fσ ).
The nodal force vector (F。 )is cOnsidered to be a measure for estimating

errors included in the solution because ■t is expected that the larger the
degrec of inter― element discontinuity of stresses is′  the ■arger the values of
components of {F。 )wou■ d be. It will be examined later if (F。 )can real■y be a

measure for error estimate.

We adopt the L2 norm of 〔F。 )′  denOted by llFσ ll′  aS the magnitude of (F。 }
in the whole domain:

|IF。 ||=[く Fσ 〉(Fσ 〕]1/2                      (32)

2.4. Adaptive procedure for re■ ocating nodes

(1)So■ ve the fo■ ■owing stiffness equation′  ordinarily derived from the
condi tion (2司 ).

[K]{U)={F}                                                                      (33)

in which [K]is the Stiffness matrix′  and (F}is the external force vector.
(ii)Calculate the nodal force vector モFσ〕 accOrding to eq.(31)from the
solution obtained in the step (i).

(iii)Solve the stiffness equation by app■ ying {Fσ }as

[K](5*}= (Fσ )                                                         (34)

and obtain displacement (5*).

(iV)Relocate nodes by 〔5*}according to:

〔X*) と {XO} + 〔5*)                                                           (35)

in which {xO)iS the Vector of coordinates of nodes used in the steps (1)and

(主主主)′  and (X*〕  iS COOrdinates of nodes for subsequent computation。

Applying {Fσ 〕 in the step (i■ i)means that we preliminarily re■ ocate

nodes by the magnitude which cou■ d produce the nodal forces due to stress

discontinuity. The effects of relocating nodes On the reduction of llF。 |l wil■

be shown in the Resu■ ts section.

The boundary condition in the step (i■ i)iS such that:

(1)the bOundary is the same as that in the step (1),

(2)nodeS on the boundary can move on■ y along the boundary, and therefore

(3)nodeS at corners of the boundary can not move.

An example of the boundary condition will be shown in re■ ation to the test
problem which will be described ■ater.
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3。 Numerical tests

The problem in which a rigid strip footing was ■oaded on the surface of an
e■astic ground was treated to test the effectiveness of the procedure

described aboveo The problem and values for elastic parameters are shown in

Fig.1.
喧 Rigid striP

footing

丁

日
Ｃ
用

上

(a)

Fig。 1: The test

Ne=呵 28.

E=3000 (tf/m2)

10m―
―and elastic

(b)

constants。 (a)Ne=32,
(C)

(b)Ne=64, and (c)

Constant strain tr■ angular
elements were used. Three types Of

meshes were analyzed: the mesh of

Ne=32, 64 and 128. A■l the types are

regular in the beginning of

computationf as shown in Fig.1. The

footing was vertically ■owered by

increments of lmm. The boundary

condition for the adaptive relocation of

nodes is shown in Fig。 2 for the case of  Fig.
Ne=32.

4. Resu■ts

2: Boundary condition for the

adaptive procedure (Ne=32)

the adaptive procedurer when the footing

level, is shown in Figs.3(a)と o (f).

mesh of Ne=32, in which we can see how

for adaptive procedure. The figure (e)

The relocation of nodes resu■ ted from

was lowered by l mm be■ ow the original
Figures (a)to (d)are results for the

nodes are relocated with the ■teration

iS for Ne=64 and (f)for Ne=128.

We can see in these figures that the magnitude of the relocation of nodes
is the largestiifor the tteSとloこ Nさ=32 than っthers of Nさ■641ィand 128。  We can see



(a)Ne=32,n=4
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(b)Ne=32,n=8 (C)Ne=32,ni1 2

(d)Ne=32,n=20 (e)Ne=64,n=20 (f)Ne=128,n=20

Fig。 3: Meshes of relocated nodes。  (a)t。  (d)are for Ne=32, (e)Ne=64, and

(f)Ne=128, !intt is the number of iteration for the adaptive procedure.

a■ so that elements near the footing tend to becOme sma■ ■er with the iteration.
In such elements, stresses induced by the settlement of the footing are

expected to be relatively large。

The ddaptive procedure ■s a method

by which we can expect for the nodal        R

forces, defined in eq。 (31), to be
reduced to be nu■ l. The relationships

I::と写:告 !!F千 1!σ ittrd:;::とdWを:Cthと
Snumber  ] Ξ

of nodesf  and the number of iteration   目
are presented in Fig.4. From this         8

figurer in facts, we Can observe that   ≧ 軍

the norm decreases with the adaptive    」塁生
procedure, the effect of the adaptive

■teration on the decrease of the norm

is appreciab■ e for the case of Ne=32.

In Fig.5′  the computed ■oad―

settlement relationships are presented.

The relationships are resulted after 20th

iteration for adaptive procedure in     Fig.4: Change in the norm of noda■

each increment、 。f the scttHtemant. Thjey          forfe veotor・

are compared with those calculated froけ

0       5       1o       15      20

Nunber Of iteration

for node re■ ocation
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PrOcedure in FEM ttrith lts

the solution obta■ ned without the

adaptive procedure. For the rough mesh

of Ne-32′  the reduction of the load is
appreciab■ e when the adaptive procedure

was performed, the magnitude of the

reduction due to the adaptive procedure

is ■ess for the mesh of Ne=64.

5. DiscuSsion

Eσ = ∫v codV                      (38)

The g■ obal error Eo was estimated

by assuming that the solution obta■ ned

for the mesh of Ne=呵 28 is correct, The

Ne=32

Non relocated

Relocated

Re10cated

relocated

Vertical DisPlacement (m)

5: Load― settlement re■ ationships。

CJ
〇
翻

Ｏ
Ｄ
「
　
　
〇
〇
引
　
　
　
〔

（Ｎ
日
ヽ
】
ｐ
）　
や、
ｏ
ロ

It was assumed that the norm of the

nodal force vector′  |IFσ ll′ wOuld be

ab■ e to be an error indicator in a

finite e■ ement so■ ution. To examine     Fig.

the assumption, we have to estimate

.05

the error included in the fin■ te element solution. For estimating the error′

we adopt two ways: one is to assume that the solution for the finest mesh of

Ne=128 may be correct and another to estimate the error by the error estimator

proposed by Zienkiewicz and Zhu2].

Basically we can define the error in computed stresSes as:

teσ }= {5h}―  (o*) (36)

where teσ } iS the vector of the error′  〔6h〕  is the vector of stresses computed
for a mesh h and 〔σ

*} the veCtOr of correct stresses.

The magnitude of the error can be evaluated by the L2 norm of {eσ }′

|le。 ||・  Further the relative error can be given by co defined as

c。
 = |li軍||                        (37)

The relative error εo is  different
from po■nt to po■ nt in the domain. For

evaluating the magnitude of error in

the globa■  doma■ n, we introduce the

global error Eσ  defined as follows

寸
曲
．　
　
　
　
　
　
山
．　
　
　
　
　
∽
Ｈ
．
　
　
　
　
［
「
．

。

］

　

】
ｏ

指

Ｈ
ｏ
　

‐［
に

や

ｏ

出
ф

0      5      10     15

Number of iteratiOn
for node re■ ocation

Clobal error vs. number

of iteration

Fig。 6:



鳥 取 大 学 工 学 部 研 究 報 告 第 22巻          233

results are presented in Fig。 6. In the case when Ne=32′  the g■ obal error

decreases with the number of iteration up to 7 but subsequent■ y it increases.

For the finer mesh of Ne=64′  the global error decreases with the number of
iteration examined.

Zienkievicz and Zhu2]proposed a method by which the correct stresses

(σ
*}Can be estimatedo ln the method the correct stresses are approximated by

the same interp。 lation functions as those for disp■ acements and the weighted

residua■  for eq.(36)is required to be zero in each element. They introduCed

the following quantity as the error estimator for an e■ ementi

|leσ lle = (∫
veく
eσ〉{eσ }dVe)1/2

The g■ oba■  error corresponding t。

eq。 (39)can be defined as

馳=[≧lHtt p″

(39)

(40)

】
〇
．
「

】
　
　
　
０
０
．　
　
　
　
∞
〇
．

。
Ｎ
噌
＼
Ｎ
Щ

The suffix z is used to distinguish

it from Eσ
 defined in eq。 (38).

In Fig.7, the g■ obal error Ez is

shown as a function of the number of

iteration, the ratio of Ez to EzO′

which is the va■ ue of Ez ca■ cu■ ated

before the adaptive procedure′  is used.
We can see ■n the figure that′

for the rough mesh of Ne=32, Ez decreases with the number of iteration ■ess

than 8 and′  for the finer mesh of Ne=64, Fz COntinues to decrease with the
number of iteration. The rate of the reduction of Ez is appreciab■ e for the

rough mesh.

In Fig.6 and Fュ g。 7, we find that the var■ation of the error′  estimated in
two ways, is very similar. As a conclus■ on′  the adaptive procedure proposed in
this study  can reduce the error although the effective number of iteration

for the adaptive procedure is limited.

6. Conclusions

An adaptive node― relocation procedure was proposed in which the vector of

nodal forces caused by the stress discontinu■ ty between elements is required

to be reduced. The error was estimated in two ways: one is to assume that the

finest mesh among examined meshes can give the correct solution, and another

to use the error estimator proposed by Zienkiewicz and Zhu2].

It was shdttn that,I with むheSe ttto mettlodお  for ths'erttori estimation′  the
adaptive procedure can llё dttce the errorⅢ  Hbwever, whenithむ number of iteration

0      5      10     15     20

Ntmber of iteration for頑中 ●_■― ti on

Fig。 7: G■oba■  error estimated with the

error estimator by Zienkievicz

and zhu2]。
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de m∝�on PЮ catt h ttM tth h

for 14e procedure exceeSs a certai4-Vユ luo, the errolF te4SS tO inlcrease.

Therefore in app■ ylng the proposed procedure to practical lprob■ ems, the error

est― imat。と, foF inlStancef btt zienkieviё z and Zhu21 sぃ o.■d. be ■6ed to juage the

end of the iteration.
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