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The finite element technique is the standard procedure of analysis for many
problems in geotechnical engineering. However, the question of assessinsg the reliabil-
ity of the admittedly approximate results memains to be solved.

In this paper a node-relocation adaptive procedure is proposed. The nodal forces
caused by the stress discontinuity between elements are used for the adaptive reloca-
tion of nodes.

A test problem of a footing on the elastic ground is analyzed for three types of
meshes : fine, medium and rough meshes. The error included in the solutions was
estimated in two ways : one is to assume that the finest mesh used can give the
correct solution and another to use the error estimate proposed by Zienkievicz and
Zhu. It is shown through the numerical test problem that the adaptive procedure can
reduce the error.
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1. Introduction

The finite element technique is the standard procedure of analysis for
many problems in geotechnical engineering. However, the question of assessing
the reliability of the admittedly approximate results remains to be solved.

In the usual formulation for the displacement finite element technigque,
the continuity of stresses between elements are a priori assumed, but the
resulted stresses become discontinuous between elements. The main error
included in the solution is caused by the discontinuity. The degree of inter-
element discontinuity of stresses can be reduced by some adaptive finite
element techniques: higher order interpolation method (p-method), element
refinement method (h-method) and node relocation method (r—method)1].

In this paper a node-relocation adaptive procedure is proposed. The concept
of the nodal forces caused by the stress discontinuity between elements will
be introduced and used for the adaptive relocation of nodes.

Zienkievicz and Zhu?! proposed a simple method for estimating the error.
In the method the correct stresses are approximated with the same
interpolation functions as those for displacements and they can be evaluated
from the finite element solution by requiring that the weighted residual for
the estimated error be zero in the element domain.

In this study, a test problem of a footing on the elastic ground was
analyzed for three types of meshes: fine, medium and rough meshes. It will be
shown from the results of the analysis that the adaptive procedure can reduce
the nodal forces due to stress discontinuity.

The error included in the solutions will be estimated in two ways: one is
to assume that the finest mesh used can give the correct solution and another
to use the error estimator proposed by Zienkievicz and Zhu%]It will be shown
through the solutions to the test problem that the adaptive procedure can
reduce the error.

In this paper, compressive stresses and strains are taken positive; and

the vectors and tensors are referred to a Cartesian coordinate, (x1,x2,x3).

2. Theoretical Basis
2.17. Weighted residuals of governing egquations

The eguation for the equilibrium of stresses:

3B -0 (i=1,2,3) in v v
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Boundary conditions:

-0y3ny = E5 (i=1,2,3) on 8Vy (2)
uj = Uy (i=1,2,3) on av, (3)
In egs.(1) to (3), V is a domain to be analyzed, and 3V 1is the boundary of

Vi 035 is the Cauchy's stress tensor, b; is the body force per unit volume, uj

is

The double bar
In the displacement method of the finite element technique,

the displacement and n:

is the outer normal unit vector of the boundary.

i
"=" denotes the quantity specified or given.

displacements

ui(i=1,2,3), unknown functions, are approximated with functions, of spatial

coordinates,

including a finite number of parameters.

Approximate functions

are denoted temporarily by ﬁi(x1,x2,x3) (i=1,2,3), i.e.

(4)

e

uj = Gyixq,x%5,%x3)  (i=1,2,3)

Stresses are also approximate because they are related, through the constitu-

tive relations, to the strain field compatible with the assumed displacements:

034 = 933(x)  (i,3=1,2,3) (5)
where
315 = Dispgipq  (1:3=1,2,3) te)
1 30 3u
- % q
= = ~(z== + z==) (p,q=1,2,3) (7)
pa
2 qu axp
Stresses resulted from the assumed displacements do not satisfy the
equilibrium of stresses and boundary condition on avt; however the boundary
condition on 9V, can easily be satisfied by usual nodal-approximation
technique for the approximation of displacements.
We define residuals for egs.(1), (2) and (3) as:
3044 -
rgi T --2- - by (i=1,2,3) (8)
X
J
rey T - Gyqny - £y (1=1,2,3) ()
ryy =83 -u; =0 (i=1,2,3) (10)

Weighted residual in a domain V can be given as

R =/
v

wiXgiQV o+ S

wirtid(avt) (11)

Ve
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where the condition (10) was taken into account. In the above eguation, Wi
(i=1,2,3) are arbitrary weighting functions. In the weighted residual method,
the problem is to find a finite number of parameters included in the
approximate functions u; by imposing that

R = 0 for any weighting functions (12)

2.2. Residual due to stress discontinuity between elements

In the context of the finite element method, the whole domain V is
e’ Ng
elements). The residual, R, in V is considered to be the sum of residuals Reg

divided into finite elements Ve (e=1,2,.,N is the total number of

(e=1,2,.Ne) in V, and their boundary 9V.¢ (e=1,2...Ng):

Ne
R=1I R
our (13)
where
Rg = J wyjrgidv + J WiT1A(3Vgy) (14)
Ve 3Vet

The second term appears only for such elements that a part of their boundaries
is also a part of V.

By using egs.(8) and (9) in eq.(14), we can obtain the expression for R,

as
Ry = favewiojinjd(ave)
Bwi~ = ~ =
- J gg—OjldV - J wlbldV + [ Wi(—Ojinj—ti)d(aVet) (15)
Ve 9 Ve Vet

We divide the boundary 3V, of an element e into 8Vgy. and oV, where

The boundary oVg; is usually an inter-element boundary. The residual R, can be

rewritten as:

Re = Rgg + Rey (17)
where‘l

- 5 VoL 18
Reg = f wiojinjd(avet) (18)
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oW,

1 = =

ve Ve A

In a usual formulation for the displacement finite element method, the

condition of inter-element continuity of stresses is a priori assumed, 1.e.,

N
Rg 2 L R =0 (20)
e

In facts, for two adjacent elements, weighting functions take the same value
on the inter-element boundary ; the unit outer normal vectors on the inter-
element boundary have opposite directions for these two elements; and
therefore, if the continuity of stresses between elements is assumed, the sum
of Rgy will be reduced to zero in the whole domain V.

Thus the displacement FEM requires the following condition:

Ry X Rgy =0 for any weighting functions
(21)

This condition leads to the so-called stiffness equation, which is expressed
in a discretized form.

However, stresses computed from the displacement finite element solution
are not continuous between elements and the condition (20) can not be
guaranteed. From this point of view, in this study, the residual Rg is
considered to be related to a measure for the error included in results from
the displacement method.

We can not adopt Rj itself as a measure for estimating the error because
the residual Ry is defined in terms of arbitrary weighting functions and its
value can not be determined uniquely. The weighted residual R; may be divided,
as will be described in the next paragraph, into two parts: one is the vector
of nodal values of weighting functions and another the vector of nodal forces
caused by stress discontinuity. We will find that the vector of nodal forces
depend on the choice of weighting functions but not on the values of weighting

functions and it can be determined uniquely from a finite element solution.

2.3. Error indicator

We use the matrix notation hereafter for the convenience of expression. A
vector quantity is denoted by {.} in which components are arranged in a column
and its transpose by <.>. A matrix is denoted by [.] and its transpose by the
superscript "T!". The bar: if; a vector, for ‘instance, {3}, ‘Meahs that components

of the vector {a} are nédal values.
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The approximate functions for displacement and strain are given as:
{4} = [Nyl{a} (22)
{€) = [BI{U} (23)
The constitutive relation is given by:
{G} = [DI{E} (24)

We use the same type for weighting function as that for displacement functions

(Galerkin method), i.e.,
{w} = [N, 1{w} (25)

By using expressions (22) to (25) in eqg.(18), we can rewrite the

expression for Rgg a@s:

Reg = <> {f5 ) (26)

where

{£5) = [kg1{T} (27)

[kl = f (N1T[n1[DI[BIIN,1d(3V ) (28)
Wet

The matrix [n] is composed of components of outer normal unit vector on Vati

for example, in two dimensional problems

n1 On2

[n] = (29)

0 ny ny

A component of the vector {fO} can be considered a component of a force vector
applying at a node in an element e.

By the usual assembly procedure, in which the continuity condition of
weighting functions and displacement are taken into account, the weighted

residual Ry is given as:

Ry = <W>{Fg} (30)
with
Fgl o= [K 10} 31)

where <ﬁ>, {6} and [Kc] are expanded forms of <§>, {a} and [ko], respectively.
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The vector {FO} is also the expanded form of {fo}.

The nodal force vector {FO} is considered to be a measure for estimating
errors included in the solution because it is expected that the larger the
degree of inter-element discontinuity of stresses is, the larger the values of
components of {FO} would be. It will be examined later if {Fgz} can really be a
measure for error estimate.

We adopt the L2 norm of {F,}, denoted by ||Fs||, as the magnitude of {Fs}
in the whole domain:

Il = [<Fo>{Fo}]1/2 (32)

oll

2.4. Adaptive procedure for relocating nodes

(i) Solve the following stiffness equation, ordinarily derived from the

condition (21).
[K]{U}={(F) (33)

in which [K] is the stiffness matrix, and {;} is the external force vector.
(ii) Calculate the nodal force vector {F4} according to eq.(31) from the
solution obtained in the step (i).

(iii) Solve the stiffness equation by applying {Fst as

[K){U*) = (Fg) (34)
and obtain displacement {5*}.

(iv)Relocate nodes by {6*} according to:

x*y = (xy) + (0%} (35)

in which {Xp}? is the vector of coordinates of nodes used in the steps (i) and

(iii), and {X*} is coordinates of nodes for subsequent computation.

Applying {F5} in the step (iii) means that we preliminarily relocate
nodes by the magnitude which could produce the nodal forces due to stress
discontinuity. The effects of relocating nodes on the reduction of ||F4|| will
be shown in the Results section.

The boundary condition in the step (iii) is such that:

(1) the boundary is the same as that in the step (i);

(2) nodes on the boundary can move only along the boundary; and therefore

(3) nodes at corners of the boundary can not move.

An example of the boundary condition will be shown in relation to the test

problem which will be described later.
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3. Numerical tests

The problem in which a rigid strip footing was loaded on the surface of an
elastic ground was treated to test the effectiveness of the procedure
described above. The problem and values for elastic parameters are shown in

Fig.1.
¢ Rigid strip

footing

e 5
() )

-

E=3000 (tf/m2)
n=0.3

74 ) W e 10 10
(a) e 10m - ay (b) (c)

Fig.1: The test problem and elastic constants. (a) Ng=32; (Db) N,=64; and (c)
N =128.

Aval 5

Constant strain triangular

elements were used. Three types of

meshes were analyzed: the mesh of
N.=32, 64 and 128. All the types are
regular in the beginning of

computation, as shown in Fig.1. The

footing was vertically lowered by

increments of 1mm. The boundary

condition for the adaptive relocation of =/ {
nodes is shown in Fig.2 for the case of Fig.2: Boundary condition for the
Ng=32. adaptive procedure (N, =32)
4. Results

The relocation of nodes resulted from the adaptive procedure, when the footing
was lowered by 1 mm below the original level, is shown in Figs.3(a) to (f).
Figures (a) to (d) are results for the mesh of N,=32, in which we can see how
nodes are relocated with the iteration for adaptive procedure. The figure (e)
is for Ng=64 and (f) for No=128.

We can see in these figures that the magnitude of the relocation of nodes
is the largest.for the miesh of Ng=32 than others of Ng#64'and 128. We can see
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(a)Ng=32;n=4 (b)N,=32;n=8 (C)Ng=32;n=12

y \§’

(d)Ne=32;n=20 (e)Ne:64;n=20 (f)Ne=128;n=20

Fig.3: Meshes of relocated nodes. (a) to (d) are for Ne=32; (e)Ne=64; and

(f)No=128, "n" is the number of iteration for the adaptive procedure.

also that elements near the footing tend to become smaller with the iteration.
In such elements, stresses induced by the settlement of the footing are
expected to be relatively large.

The adaptive procedure is a method
by which we can expect for the nodal

forces, defined in eq.(31), to be }*~**“*****~k$ﬂpy*_,*ﬁkﬁﬁ&*_&ﬁ

reduced to be null. The relationships Ne=32

120

between ||F per node, which is

ol
defined as [|F ||

of nodes, and the number of iteration

80

divided by the number

are presented in Fig.4. From this

40

figure, in facts, we can observe that

[Fo| per node (tf)

the norm decreases with the adaptive 64

procedure; the effect of the adaptive n"-'".‘"“.."".‘“izg

iteration on the decrease of the norm

is appreciable for the case of N =32. 0 5 10 H5 ABO
In Fig.5, the computed load- Number of iteration

settlement relationships are presented. for node relocation

The relationships are resulted after 20th

iteration for adaptive procedure in Fig.4: Change in the norm of nodal

each increment, of the sgttlement. They forg¢e vector,

are compared with those calculated fron
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the solution obtained without the o
adaptive procedure. For the rough mesh ga__ Ne=32
of Ne-32, the reduction of the load is o Non relocated
appreciable when the adaptive procedure EZ Relocated
was performed; the magnitude of the <
reduction due to the adaptive procedure ]; g
is less for the mesh of Ne=64. < S

§ Relocated

= E%_- Non relocated
5. Discussion Ne=64
It was assumed that the norm of the CDgzv —t— Attt
nodal force vector, ||Fg ||, would be 0 .05 -1
able to be an error indicator in a Vertical Displacement (m)
finite element solution. To examine Fig.5: Load-settlement relationships.

the assumption, we have to estimate

the error included in the finite element solution. For estimating the error,
we adopt two ways: one is to assume that the solution for the finest mesh of
N.=128 may be correct and another to estimate the error by the error estimator
proposed by Zienkiewicz and Zhuz].

Basically we can define the error in computed stresses as:
~ *
{eg) = {3y} - {07} (36)
where {eo} is the vector of the error, {8h} is the vector of stresses computed

for a mesh h and {o*} the vector of correct stresses.

The magnitude of the error can be evaluated by the L2 norm of {eO},

e . PFurther the relative error can be given by e, defined as
o o
|
Heol| ¢W
S 37 N
o T (37) o Ne=32
=
The relative error e, is different g ~
[
from point to point in the domain. For 5
evaluating the magnitude of error in Q
the global domain, we introduce the s 2
global error Eg defined as follows 3
o~ 64
Eg = [ e4av (38) o epesesgssosgonnny
\Y g 5 10 15 20

The global error E; was estimated Number of iteration

for de 1] ti

by assuming that the solution obtained ot mede relocation
for the mesh of N =128 is correct. The

Fig.6: Global error vs. number

of iteration
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results are presented in Fig.6. In the case when Ng=32, the global error
decreases with the number of iteration up to 7 but subsequently it increases.
For the finer mesh of N.=64, the global error decreases with the number of
iteration examined.

Zienkievicz and Zhu?! proposed a method by which the correct stresses
{o*} can be estimated. In the method the correct stresses are approximated by
the same interpolation functions as those for displacements and the weighted
residual for eq.(36) is required to be zero in each element. They introduced

the following quantity as the error estimator for an element:
lleglle = (7, <o tegrave) /2 (39)
e

The global error corresponding to

eq.(39) can be defined as

O ™2

® legl 1021172 (40)
=1

Ey = [

The suffix Z is used to distinguish

it from Eo defined in eq.(38). - t

4

In Fig.7, the global error Eg is 0 5 10 15 20
shown as a function of the number of Mmber of iteration for node relocation
iteration; the ratio of E, to Egzq, Fig.7: Global error estimated with the
which is the value of E, calculated error estimator by Zienkievicz
before the adaptive procedure, is used. and zhu?l.

We can see in the figure that,
for the rough mesh of N,=32, E; decreases with the number of iteration less
than 8 and, for the finer mesh of N =64, E; continues to decrease with the
numper of iteration. The rate of the reduction of E; is appreciable for the
rough mesh.

In Fig.6 and Fig.7, we find that the variation of the error, estimated in
two ways, is very similar. As a conclusion, the adaptive procedure proposed in
this study can reduce the error although the effective number of iteration

for the adaptive procedure is limited.

6. Conclusions

An adaptive node-relocation procedure was proposed in which the vector of
nodal forces caused by the stress discontinuity between elements is required
to be reduced. The error was estimated in two ways: one is to assume that the
finest mesh among examined meshes can give the correct solution; and another
to use the error estimator proposed by Zienkiewicz and zhu?l,

It was shown that, with these two methods for theiertoriestimation, the

adaptive procedure can ¥edudce the error. However, when!theé number of iteration



234 BKIFE - AT - IUHEH | An Adaptive Node Relocation Procedure in FEM with Its
Application to Deformation Analysis of Ground

for the procedure exceeds a certain value, the error tends to increase.
Therefore in applying the proposed procedure to practical problems, the error
estimator, for instance, by Zienkievicz and zhu?] should be used to judge the

end of the iteration.
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