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An algorithm for solving linear differential equations (DEs) by Walsh
functions(WFs) is proposed. In this algorithm, the solutions are given by partial
integrals of Walsh series of derivatives of the solutions. Consequently, the solutions
are determined in a form of piecewise-linear approximation(PWLA) by means of fast
algorithms of inverse Walsh transforms. In this approach, the accuracy of the solu-
tions is improved and hence the number of computations is reduced greatly, compared
with that of the conventional stairstep approximations for the same order of the
approximations of the solutions.
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1. Introduction

Walsh functions (WFs) have been applied to many fields of engineering be-
cause of their significant computational advantages([ll,[2]. 1In applications
of WFs to solution of differential equations(DEs), advantage is taken of the
fact that operations of integration in problem systems are reduced to algebraic
operations through the so called operational matrix for integration. In the
conventional Walsh approach, the solutions can be obtained by solving matrix
equations and then expressed in the form of stairstep approximation[3]1,[4].

In general, the solutions of DEs are given/defined in a continuous form. Hence
to improve the accuracy of the Walsh approximations, many terms in Walsh series
expansion to the solutions are needed. As a consequence, computations using
matrix of a large size are performed and this also necessitates a large memory
capacity.

To overcome such a difficulty, as we have already described in the solu-
tions of linear DEs by rationalized Haar functions[5], we propose to express
the solutions in a form of piecewise-linear approximation(PWLA). For this pur-
pose, we expand first derivatives of the solutions of the problem equations into
Walsh series with unknown coefficients, When the unknown coefficients are ob-
tained by the matrix computations, their solutions in a form of PWLA can be
determined by means of fast Walsh transformations efficiently. Inthis approach,
the accuracy of the solutions is improved greatly compared with that of the
conventional stairstep approximation. This saves a good deal of time and memory
locations in matrix computations in the conventional Walsh approach.

2. Walsh Functions and Their Integrals in Terms of Time Variable

Walsh functions(WFs) form an ordered orthonormal set of rectangular wave-
forms taking only two values +1 and ~l1. Like the sine-cosine functions, two
arguments are required for complete definition, a time t and an ordering number
i related to frequency in some way. Put the sequency-ordered WF to Wal(i,t)[1],
[2]. The first four WFs are shown in Fig, 1. As for the WF system, we have

the orthogonality relation as

TWal(i ©)Wal(j,t)de =< T for i (1)
0 ’ altd, T 0 for i

. -

A0
(SR

Integrals of WFs in terms of the time variable t can be expressed as

t k-1
J Wal(i,t)dt = % % Wal(i, p/N) + (t - tk)Wal(i, tk) (2)
0 P=0

for t, < t < t

k — k+1
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Wal(0,t) = f§Ha1(0,t)dt
1
o — |
Wal(1,t) ] = [Euar(r,t)dt
— | — [
Wal(2,t) : JHat(2,t)dt
1 -1 t
Wal(3,t) & ] ] f ] JoWal(3,t)dt i
L 1 ‘ : L o TR [ L L L 1 1 L 1 i
0 /2 t > T 0 1/2 t - T
Fig. 1. The first four Walsh Fig. 2. Integral waveforms of the
functions, first four Walsh functions.

where t, =KT/N, t, . = (k+1)T/N, k=0, 1, ....., N-1, N=2, n=1, 2, .......,
i =0, 1, +vee, N-1, and p=0, 1, eese.., N=1. Integral waveforms for the first

four WFs are shown in Fig. 2.

3. Solution of Linear Differential Equations by Walsh Functions

As a solution of linear DEs by WFs, we consider the following equation in
which the solutions are called as the error function :

Y"(t) + 2ty'(t) =0, 0 _<_ t < T, N 3
> (3
y'(0) = 2//7 and y(0) = 0, J

For expressing the solution of (3) in a form of PWLA, we expand the first de-

rivative y'(t) into a truncated Walsh series with unknown coefficients Gr’
N-1

y'(t) = =% G Wal(r,t). If the coefficients {Gr}, r=0, 1, «v..., N=1, are
r=0

written as G = [GO, ceey Gr' cesey GN—l]' y(t) of (3) is expressed by (GD+ Y) 9,

e,i.,

where D denotes an N XN operational matrix for integration as shown in Figs. 3
and 4, and & denotes the transpose of the vector [Wal(0,t), eeeeee, Wal(N-1,t)]
[3]1,[4]. &also Y shows an initial value vector of N components, Y = [y(0), O,..
«+esy 0]. Besides y"(t) of (3) can be expressed in a matrix form using the in-
verse of the matrix D, D—l, which may be regarded as an operational matrix for
differentiation, as (G-—Y')D_lﬁlsee Figs. 5 and 6), where DX D'-1 = E, E denotes
an N XN identity matrix. Y¥Y' denotes a vector of N components for corresponding
to y'(0) where Y' = [y'(0), 0, ...., Ol.

With these relations, equation(3) can be transformed into a matrix eqgua-
tion as

(¢ -y")p~t + 26D = 0 (4)
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Fig. 5. A matrix D . . Fig., 6.

0 -1/4 0 0 0 -1/87]
~-1/4 0 0 0 -1/8 0
0 o] 0 -1/8 0 0
0 0 -1/8 0 0 0
0 1/8 0] 0 0 0
1/8 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 |
The matrix D for N=8.
0 0 0 0 0 0 8
0] 0 0 0 0 8 0
0 0 o] 0 8 0 Q
0 0 0 8 0 0 0
0 0 -8 0 0 0 16
0 -8 0 0 0 16 0]
8 0 V] 0 -16 0 32
0 0 0-16 0 -32 64 |
The matrix D_l for N=8.

where Dt is an N XN matrix determined by a Walsh series expansion of &, i.e.,

D = [Dt(i,j)], and its matrix elements are given as

T .
D, (i,3) = %J t Wal(i,t) wal(j,t)dt
0

T
1 . .
= -'I—'Jo tWal(J.(Z) @ 32y t)dt,

(5)

In (5), @ denotes binary addition without carry, and i(2) and j(2) denote

binary representation of i and j, respectively. A numerical example of D

N =8 is shown in Fig, 7. A simple arrangement of (

4) leads to

for

t
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= 1 -1/2 0 -1/4 0o 0 0 -1/8
12 1 -1/4 0 0 0 -1/8 0
0o -1/4 1 -1/2 0 -1/8 0 O
o - | -1/4 0 <12 1 -1/8 0 0 0
t 0O 0 0 -1/8 1 -1/2 0 -1/4
0 0 -1/8 0 =172 1 -1/4 0
0 -1/8 0 0 0 -1/4 1 =172
<178 0 0o 0 -1/4 0 -1/2 1 ]
Fig. 7. A numerical example of Dt for N=8.
et + ) =¥’ pt (6)

Equation (6) represents simultaneous linear equations with respect to unknown
coefficients Gr' Values of Gr can be determined by means of a numerical method
of linear equations.

Upon using the numerical values of G in (6), solutions of (3) can be ex-

pressed in a form of piecewise-linear approximation such that

y£) = At + B, & <t <ty (7)
k=0, 1, ¢oesee, N-1.
where
N-1
Ak = rEOGrWal (r, tk) ’ ]
> (8)
T N-1 N-1
B, == ¥ G_ [ I Wal(r, pT/N) - kwWal(r, t,)] + y(0).
k N _~“.°r - : k
r=0 p=0
Also, at the equal-space points tk ( = kT/N), we have
y(t) = At + By (9)
(Coefficients Ak and Bk are detailed in the reference [6].). Values of Ak and
Bk are given in Table 1, where N=8 and 0<t<2., With values of Ak and Bk’
the solutions y(t) can be obtained as seen in Fig. 8 in a form of PWLA. 1In Fig.

8, numerical values of y(t) is drawn with its stairstep approximation.

'Other examples of the solutions are shown in Table 2 with their numerical
results of Figs. 9 and 10, where the numerical solutions are plotted with their
true values, respectively. Further, these numerical solutions yield the Dawson

integral and the Bessel functions JO(t) and Jl(t), respectively.
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y(t)
Table 1. Numerical Values of
G_, A, and B, for the
1 4 r k k
error function.
t r/k Gr Ak Bk
0 f }
1 2 0 0.4942 1.0942 0.0000
1 0.3430 0.9691 0.0313
2 0.0498 0.7596 0.1360
3 0.1447 0.5259 0.3113
. 0.15 ¢
e 4 -0.0009 0.3207 0.5165
< 0 1
w
-0.15 1 2 5 -0.0263 0.1715 Q.7030
6 0.0202 0.0800 0.8402
7 0.0694 0.0324 0.9236
Fig. 8. Solutions of y"(t)+2ty'(t) N=28, 0<t<?
=0, y'(0)=2//7, y(0)=0, N=8, -
in forms of PWLA and stair-
step approximation and their
corresponding errors, respec-
tively.
Table 2. Examples of Different Differential Equations.
Differential Equations [
Y -1+2ty=0* &=K(E+200,)"!
y(0)=0 K=[1,0,0,....,0]
2. 2 2y . _ -1 -1 -1
toy"+ty '+ (t7-n%)y=0** 6=(YD"D,p-¥Dp_2) (D7D 2+D +DD2 o)
¥1(0) =y and ¥(0) =, Y= [4(0),0,0,....,0]
Y =[y(0),0,0,....,0]
D242 = Dy2 - n2E
* k%

Solutions are called as the Dawson integral and the Bessel
functions respectively.
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t
y(t) y(t)
1 14
(a)
(b)
t t
0 ‘ 3 0 ; :
! 2 2 4
Fig. 9. Numerical solutions of
y' (t)+2ty(t)-1=0, y(0)=0,
N=16 and 0 <t <2.
-1 ﬂ

Fig. 10. Numerical solutions of
t2y" (£) +ty"' (£)+(t2-n2)y (t)
=0, N=32 and 0 <t <4, (a)
n=0:y'(0)=0 and y(0)=1,
(b) n=1:y'(0)=1/2 and y(0)
=0,

4., Discussion

In the PWLA of the solution, values of the approximations, in principle,
equal the theoretical solutions at the equally spaced points tk’ k=0,1, ...,
N-1[5]. Hence, the approximation yields inscribed- and/or circumscribed- ones.
In this approximation, maximum magnitudes of the errors can be estimated as

1,T,2

§(ﬁ) ly"(t 6], where 'y"(t)lmax denotes the maximum absolute value of y"(t)

)Imax[
within the defined interval. Thus the error caused by this method is reduced

"
at the rate o f%.;%lfilﬁii compared with that by the stairstep approximation,
' () oy

where y'(t)’max denotes the maximum absolute value of y'(t) within the de-
fined interval.

As for the solutions of the equation : y"(t) + 2ty'(t) = 0, y'(0) = 2/V7,
y(0) = 0, N = 8 and 0 <t <2, errors caused by their piecewise-linear- and stair-
step- approximations are less than 0.0126 and 0.1368, respectively(see Fig. 8).
In this example, the necessary order of the stairstep approximation correspond-
ing to the accuracy of PWLA for N = 8 is estimated as 27 = 128. Hence, this
serves to reduce the number of computations greatly in the conventional Walsh
approach with a little additional computational procedures of fast algorithms
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of inverse Walsh transforms.
5. Conclusions

Solutions of linear DEs have been expressed in a form of piecewise-linear
approximation (PWLA)., From the view point of expression of the solutions, this
algorithm is different from that of the conventional Walsh approach, This algo-
rithm serves to reduce greatly the number of computations required in that
Walsh approach for the same order 'of the approximations to the solutions.
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