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1. INTRODUCT10N

A fish agBregation device (FAD)is a structure to gather fishes, usually

placed on the sea bottOm of a depth fron about 30 to 100 meters. Although the

properties of FAD which gather fishes have not been sufficiently clar■ fied

yet, phenonena such as vortex formation and its shedding induced by FAD have

been po■ nted out to be the inPortant hydraulic faCtOrs fOr aggregating fiShes,

In the case of a multi― FAD system, the efficiency of the indiv■ dual TAD to

gather fishes is amplified if the FAD system have an  effeCt Of

m■ ltiPlicatiOn. This Paper investigates if the FAD systen has aboVe effect,

and the optinal lay out of the FAD which actiVate the system most.

The FAD systen is mainly constructed by throwing them down from a ship to

lay out on the fishing Bround. It is difficult to set up the FAD in the right

pOsition,  since a settling motion of FAD in the f■ u■ d is consisted by

f01lowing three complex motions(ioe. an oscillatory motion in horizontal

direction, a rotationai notion and vertical droP ). BeCause of the pOsition

errors induced in the set uP, the Work of the system on gathering fishes may

not be demoostrated sufficiently. Hence, it becomes very important to make

clear the settling behav■ ors of FAD so as to carry out the■ r accurate

settlings on the designed POSitiOn.

On the other hand, from the strength po■ nt of v■ ew, the crushing behav■ or

Of FAD is closely concerned vith Velocity, angular velocity and Posture at

landing,  Nakanura, et al.1) and Kono2) discussed the inpulsive force exerted

On the FAD induced by the settling motion in the Vertical directiono However,

the angular velocity and the Posture of FAD which seem to don■ nate fully in

the total inpulsive force exerted on the FAD at landing have not been

considered in these studies.

In this study, in other to clarify (1)the effective method to set uP

FADs on designed positions most accurately ,(2)lhe relation between the

allovable scatter range of the landing FAD On the sea bottom and the initial

condition of its posture at the throwing, the numer■ cal simulation technique

which can analyze behav■ ors of the setting FAD is developed in connection w■ th

the effect of vortices generated behind the FAD. The FAD treated in this study

is a cubic type With a hollow inside and gaPs on the surface. This type of TAD

has been used most frequently.

2. MATHEMATICAL DESCRIPT10N OF THE SIMULATION METIOD

The oscil■ atory motion of a settling FAD in a per■ odic wave is affected
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by the ■nstantaneous fluctuations of the pressure distribution arounも
 it,

because Of the vOrtices generated frOn ■t and the wave mOtiOn. Hence, in this
numer■ cal simulation Of the settling FAD, the flu■ d resistance  exerted on it
is estimated firstly by integrating the pressure distribution around the

surface Of the FAD. This  surrounding pressure distribution 
■s calculated frOm

the s■ m■ lated f10w Pattern arOund the settling FADo Secondly, the osc■ 1■ atOry
motiOn of the settling FAD at every moment is numerically calculated from the

equatiOn of mOtiOn.

2-l DescriptiOn of the f■ uid fie■ d around the setiling FAD

The discrete vOrtex apprOx■ matiOn which has been su8gested by a number Of
works as a powerful methOd fOr the analysis Of the f10w Patterh around a

bluff― based bOdy with separated f10w, is used tO simulate the f10w pattern
around the settling FAD in the present study. The singularity methOd3)(the

source distributiOn methOd)is adOpted tO fOrm■ late the boundary cOndition On
the surface Of the FAD.

Fig.l Schematic figure of f10w field around settling FAD.

In the case of twO― dinensiOnal wave field as shOwn in Fi8・ ユ, the free
surface in the wave field is replaced by the fixed rigid surface, since it can

be assuned that the wave induced by the vOrtex generation frOm the settling

FAD is the lOng periOdic wave. The cOnditiOn(30/Dy=0)is satisfied at any

POSitiOn On the free surface, in which φ is the ve10city pOtential fOr the
f10w around the FAD. Then, the approPriate cOnPlex POtential fOr the discrete

vortex and fOr the strength of the sOurce pO■ nt can be determined using the
Schvartz― ChristOffel transfOrmatiOn t。 prOject an upper half Of the λ―Plane
with the bOundary a10ng the real axis ■nto とhe interior reB工 on between the

discrete
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boundaries in the z― plane (see Fig。 2)。  The λ―Plane

physical z― Plane by the function

dZ    l
誘 =(ア

z = x+iy = (logλ ttC

where K is the constant determined by the water depth, and C

constant. Since λ=-l at z=O and λ=l at z=― ih in which i=/-l and

depth, Eq。 (2) is rearranged in term of Z as,

λ = ―exp(co z) (CO=T/h)

is transformed into the

(■ )

(2)

■s a integral

h is the Water

(3)

_∞  -1      0       1  +∞

(a)ど皐ざとini
Fig。 2 (a)transfOrmed Plane λ

(b)(Zz三 母等
e)

, (b)physiCal plane z.

The compleX Potential (ω vλ k) 。f the discrete vortex (λ k) in λ
―plane

(Fi8・ 2)is giVen by the following equation in terms of the inaginary discrete

vortex which is necessary to ma■ ntain the boundary condition of zero f10W

across the real aX■ s in λ―plane.

ωvλk=弁dOgぃ―λp― hgは―酌 } (4)

where Γk and λk are the c■ rculation and the complex coordinate of the vortex

respectively, the clrculation ■s defined as Pos■ tiVe be■■B clockW■ Se, and the

over bar denotes the comPlex con」 ugate, Substituting Eq。 (3)into Eq。 (4), the

complex Potential (ω vzk)in z― Plane is introduced as

ωVZk=井 {hg∝
C° Zk―
eCOZ)― 10g∝

C° Zk―
eCO Z)}   (5)

where zk is the complex coordinate of the vortex ■■ z― Plane, With the same Way



that used fOr the discrete

the sOurce pO■ nt in z― plane
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vortex (eq。 (4)), the complex Potential(ω Rzm)° f
is given by

(7)

。R監 =発 砕
止{log(eC°

Zm―
eC°
Z)+log(eC° Zm―

eC°
Z〕

} (6)

vhere zn and D(zm)are a 10cation and a strength of the source point

respectively.

When the f10w around the settling FAD in z― plane consists of a periodic
Wave, Q vOrtices with sOme circulations generated from P separatiOn Points,

and the f■ Ow from the source points oa the FAD surface, the complex Potential

ωz at the po■ nts z ■n z― Plane ■s given by

ωz = φz十二ψz = ωwキωvzキ d【 Z

=賄
券
j登這.wh餌 船

止ざ的 ■明 騨 発生 eC°
Zl〕

十
井 すcD(Zml(10g(eCOZm_eCo Z)+10g(eCOZm― eCO Z)}dc

where oz and ψz are the ve10city POtential and the stream functiOn for the
total f10v in the z― plane respectively,  ωw is the cOmplex veloc■ ty potential
°f tle Wave, Oc represents the cOntour integral a10ng the surface C of the

settling FAD, and zm is the POint On C。

(a)                (b)

Fig。 3 (a) flow arOund settling FAD ;
(b)flow arOund fixed FAD.

The strength D(zm)° f the sOurce point is determined by the boundary
conditiOn(i.et the fluid ve10city norma■  tO FAD surface is zero)。  When the
FAD is settling with sPeed U(=/UG2+v百 万) at the angle α (=tan~lUc/v8)and with
an angular ve10city ω as shOwn in Fig,3(a), taking the origin at the center of
the settling FAD, the FAD motion can be fixed in such a f10w field that is
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consisted of the un■ fOrm f10w v■ th the mentioned velocity

resPect to y axis and the rOtational flow generated by

TherefOre, the identical equation of the strength D(zm)

becones as

vhere SN, SH and l are the following function.

SN(a′ b)=Sin{CO(a一 b)}

SH(a′ b)=Sinh{CO(a_b)}

=(a′
b,C′ d)=cos五 {c。 (a― c)}― cos(C。 (b― d)〕

Putting

uc = (uwキ uv ttuu十 ur)lz=zc

Vc = (VwttVvttVu+Vr)lz=zc

The ve10city components are given as follows, respectively.

Behaviors of Settling

at an angle α with

the FAD rotation.

of the source po■ nt

(9)

(10)

(11)

Real[半 〕 = (uc nx+vc ny) (8)

where n is a unit vector outward normal to the surface of the FAD, nx and ny

are the x and y componeats of the vector respective■ y, uc and vc are the x , y

components of the velocity in the n directiono Using the normal differential

(o/en=3/Э x,■ x+3/Э y・ ay) and Eq。 (6),  the left― hand side term in Eq。 (8) becones

Real鳴
半 ]=花 D(Zm)弓岳P[{2十 三頁ξll'手i;,}子冨戸

十巧謡 撃 守 嗚 証
}nx

+{鵜 +     )Ay]dC

uv=→
l許どとk!♪ k{罪斗考鍔戸

――顧畿考詳鍛
「

}

Vv =北」lk:」「jk
uu = usinα  ′

鴫 =ω (y― yG)′

uw = 80/8X  ′

{   ―   〕

Vu i Ucosα

Vr=い ω(X― XG)

vw = 8φ /8y

where (uw,vw), (uv,Vv), (uu,Vu) and (ur,Vr) are the velocity compOnents

■nduced by the Periodic wave, the discrete vortices, the un■ form flow and the

rotational flow, respectively, xc and yc are the position of the Brav■ tational

center of the FAD in the moving coordinate system.
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In the numerical calc■ latiOn Of Eq。 (8), the surface C Of the FAD is
divided intO N sectiOns of length  △Cm(m喜 1｀ N)(as shown in Fig,4), and the
source point is set on the center Of the each sectiOn. Then the cOrner Of the

FAD is apprOx■ mated w■ th a circular arc Of a radius r=0。 02a, in which a is the
length Of the FAD sideo Hence, the strength D(zm)。 f the individual sOurce
p。■nts are given as s。 lutiOns of the fOl10wing equations,

N

mとと
D tZmlttm~{uc tZml境 …cに mれ

"〕

〕=■～N (12)

where

Ajm=粋 [{―百器糀武許〒
+〔      キ

+ 2}nxj

h"lACm

Aぅ m=粋〔2nxぅ +ギ理窪器堵nyう ]△Cm+与

う≠m

3=m

■n which nxj and nyj are the x , y cOmponents Of the nOrmal vectOr n of the j―

th sectiOn.

鶴 輔

鶴

IΔ
Cm輔

source point

Fig。 4 SegmentatiOn Of
FAD model side and
locatiOn of sOurce
pOints.

二 (tr/4く 0くT/2)   I (0<0<T/4)   皿 (0=Tr/4)

Fig.5 1nitial POsitiOns Of nascent vortices.

In Eq。 (7), the ve10cities of the vOrtices are decided frOm the kinenatic
conditiOn for the discrete vOrtices(ite. A marked vOrtex is affected Only

frOm the periOdic wave and the Other vOrtices). TherefOre, the ve10city

compOnents ujk, v」
k Of the j― th vOrtex generated frOm the k― th separatiOn

PO■ nt, are expressed as

(13)

If there are QP Pieces Of discrete vOrtices s■ nultaneOusly around the settling
FAD, a set Of QP Ordinary differential equatiOns are derived as equatiOns Of

uう k~iVjk=£ {ω z―暑 許 log(eCOZ― eCoZjk)}lz=zjk

( 0<0<T/4 ) 皿  ( 0=Tr/4 )
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the kinenatic conditions for the discrete vortices。

In Eq。 (13), the unknOwn initial position of the nascent vortex and the
c■ rculation of vortices are ■ncluded. There have been no established method,

however, to calculate the ■a■ tial position of a nascent Vortex, its position

has been determined With(A)the Kutta condition at the edge of the body or

(B)the bOundary layer thickness. In this study,(B)iS adOpted, and the six
nascent vortices are fiXed firstly at sl, S2' S3' S4' S5' S6 as shoWn in

Fig.5。  Thesc POintS are located at the distance of 6 (bOundary layer thickness

which is determined by 6=/り T/T in which ψ is the kinematic Viscosity

coefficient and T is the period of the wa.ve)fron the separation POints of the

FAD. Each pos■ tion of the nascent vortex ■s changed With the relation between

the angle of the FAD and the settling direction. The three separatiOn patterns

Of the bOundary layer are treated in this study as shown ■■ Fig.5。  Secondly,

the circulation of the nascent vortex is calculated with the RoshkO's

approxinate equation4). The damping effect of the vortex due to the turbulent

diffus■ on and the fl■ ■d vlscoSity is ne81ected. Taking the direction of the

rotation of vortices into consideration, the c■ rculation of the nascent Vortex

is given by

3T/at = uslus1/2 (14)

where Us is a fl■ ■d velocity at the in■ tial position of the nascent vortex.

Although some vortices induce large veloc■ ties when they approach each other

because we ne81ect of the v■ scos■ ty, this phenomenon is avo■ ded by replacing

the distributed discrete vortices with the Rankine vorteX. The core radius of

the Rankine vortex is Biven by l「
i」 1/2TUs5) in this study。

2-2 F■■id resistance on the sett■ ing FAD

The flu■ d res■ stance exerted on the settling FAD can be obtained by

integrating the pressure distributions around it, vhich is given in terms of

3φ z/3t, u and v on the FAD surface (Z=Zc)as

Pzttc={― p鍔
争
―
p(・ 2+v2)Jlttzc

(15)

where p is the flu■ d density.

8指
lz=zc=Real[

Since the pos■ tion zjk of the

pOs■ tion of the source po■ nts

ls wr■ tten in the form

The first term of Eq.(15)is 8iVen by

帥
+伴 十e≒

常争
左)屹
=乳
]   い の

discrete vortices, its strength D(zm)and the

are functions of time in Eq。 (16)。  ThiS equation
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撃 争lz=zc=良●ュ■〔ざ子磐
と

'塾

名t争
こと(魚 R tZ′ Zヽ )十tttkkz!名 )〕

+DIZnH碧蜂里・警鞠鋒‐・粋}
十瞥 ・率 +皇學・警 屹=r

WheFe

転 R修サ鴇 〕 =丸
些
l∞ cC。年 ec。 2)

Gttk儡名〕=丸と11。g leCOムーe∞ Z)
野駒k=亀 k≧率

的g lec呼ェ →
CO Zl｀

いV7)k= ~ぅ
と.k:ェ ≒寿

辞=10g teCOZう
士‐eC0 2)

The st.c。 lnd terme‐  。f lEq。 (15) is giヤ 。■ |,

(u2+v2〕嶋=zc=|(a柱 /,z〕 12嵯.zc ′

(■ 7)

(■ 8)

aD(zm)/St in Eq。 (17)can bo こia l● ulated by ldifferen■ iating E■ ,(SI)with
respect to tine t, the difterentiated equation is ana-lyred in the s‐ ame mainer
.as tie abo■ o― mentioned meth。 こ for tie strengt― h Of the souFCe p。 1■ t`
The hOFiZOntal a■ d the vertica■  fluid reSistante Fx, Fy exerted on the

SO■ tling F―Ap are 3■ Ven as f。 1lo車6 1tstly,

Ptt dC

Pれ
す
dC

of tho sett■ i■ 8F▲ D

(19)

2-3 The e■■ations

ｒ
｛
Ｔ
ｔ
ｒ
ム
Υ
妃
　
　
”

一一　
　
　
　
一一　
　
　
　
〇

Ｌ
　

■

　

Ｆｎ

RofeFring to Fi3・ 6, the equatio■ s Of hoFizonta.1, vortital .and rOtational
notiOn foF the Settling FAp are=iv。 .as

瑞 = iと
lFxi

受発=i!ェモ帝.… ⅢⅢ叶うg'       t20)

千4:→: ・
 i!ェ 
¶F,i―ッ」Fxi,

WheFe M is a μais of the FAD per unit thicえ ュess, Mi and M. aFe maSSes of a
piece of siender b― Ody a■ d fldid (per unit thiciness)displaced by the pieco, 8



Yoshiharu MATSUMI and Akira SEYAMA:Numerical Simulation of Behaviors Of Settling
Fish Aggregation Device

■s the Bravity acceleration, and lr ■s an inertia moment of the FADo xi and

yi  are the diPtance frOm the center of the FAD cross― section to the center of

an ■―th Piece ■n the x and y direction respectively.

In the nuner■ cal calculations,  the second― order Runge― Kutta method Was

used to calculate the veloc■ ty of the discrete vortices and the motion of the

settling FADo The selection of an optimum time interval was of pr■ mary

■mportance ■n achiev■ ng a relatively insens■ tive time step. After the

preliminary calculations,  the reSults reported here■ n vere carr■ ed out with

time― step  t=0.05s.

Fig.6 Fl■ ■d resiStance on Seitling FAD。

3. DISCUSSION

At the first stage of the study, the exPer■ ments and the calculations for

the settling FAD in a still water vere perforned, in order to obtain basic

data to apply the present theory for the settling FAD in a periodic wave

field,

The exper■ ments were carr■ ed out using a vater tank of the cross section

of lm x lm and 2m in depth to observe the behaviors of the settling FAD. Two

kinds of FAD with the void ratios γ=64 and 84Z vere usedo The FAD the cross

section of which is 5cm x 5cm cOnsists of four pieces of slender rectangular

(1.5cm x l.5cm in the cross section)bodies. The photoBraphS Of the settlin8
figures of the FAD vere taken on a same film using a strobe flash, the

interVal time of the flash is O.2s, From the experinents, the behav■ ors of the

settling FAD w■ th γ=63% may be classified into three patteris as shoWn in
Fig.7. In Fig。 7(I), fOrn the 5-th to 7-th Positions of the FAD, it settles

with the clockvise rotation, and from the  8-th to the  25-th positions it

settles in nearly right down direction with an ■nclined posture to the still

water surface at angle of about 45° . In Fig。 7(II) the direction of the

settling FAD altered according to its rotational direction in the settling.
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Fig.7 :Riti:::l fiこ
骨
t子

とを,身 . ehaVi°
r of Fig.8 Patterns Of settling

behaviOr of FAD model
vith γ=84%.

Until the 24-th pOsitiOn in Fig。 7(III) ■ts motiOns shOw the sim■ lar patterns
observed in Fig。 7(II). The FAD settles in the positive and negative directiOn
of hOrizOntal― axis alternatively fOrm the 25-th POS■ tiOns, Fig.8 shOws the
typical behaviOr Of the settling FAD with 

γ=84%。  From Fig.8,  it can b℃
recogn■ zed that the fluctuatiOns Of the settling FAD in the hOr■ zOntal
directiOn are smaller in cOmpar■ sOn with the γ=64Z case. The most stable
situatiOn(no oscillatOry mOtiOn)for the FAD set[ling can be observed when

its surface ■nclinatiOn from the still water surface becomes the angle Of
about 45。 .

Fig,9 shOws the calculated behav■ Ors Of the settling FAD with   
γ=64%. In

the figure, O indicates the initial angle frOn the still water surface at the

beginning Of the calculatiOn, x/a and y/a are the nOrmalized x, y pOsitions Of

the FAD center at each calculated POs■ tiOn vhere a ■s a length Of the FAD
s■ de. FrOn these calculatiOns, it can be seen that a mOtiOn of the settling
FAD cOnverges to the stable situatiOn which is recogn■

zed in the exper■ ments
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(a) 0=0°           (b)0‐ 15°            (c)o=30°         (d) 0=45°

Fig.9 Calculated behaviors of settling FAD model.

(1.e. the angle of the TAD inclination to the still water surface approaches
t0 45° ). In the region y/aく -20 in each calculations, the settling behaviors

show the osc■ llatory motion ■n the horェ zontal direction, The present theory

can s■ mulate this osc■ 1latory nature of the settling FAD motiOn which may be

■aduced by the Karman vortex street formed behind the FAD. The sign■ ficant

differences in each calc■ lated results for the different initial angles(0)

were not recogn■ zed. This phenomenon has yet been sufficiently clar■ fied in

the present study, In addition,  the behaviors of the settling FAD in the

periOdic wave・ field have to be investigated to verify the presen[ theory. And

the impulsive force exerted on the FAD at landing on the bottom may be an

another ■mportant prOblem in the future study.
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