31

Calculation of the Static Pressure Distribution around
a Circular Cylinder with Tangential Blowing

by
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The circumferential static pressure distributions around a circular cylinder with
tangential blowing were calculated by using the modified Parkinson-Jandali’s method,
extended to an asymmetrical flow. It was confirmed that the distributions calculated
by the present method were well consistent with the experimental results except for
the neighbourhood of the separation points.

1 Introduction

It is one of the very important and basic problems in practice to estimate an aerodynamic
force acting on a bluff body immersed in a uniform flow. Differing from the case of a stream-
lined body, the flow past a bluff body is always accompanied with the flow separations and
a broad wake region caused by its rear shape of the body. The theoretical calculation of the
flow around a bluff body at the high Reynolds number has been mostly carried out based on
the free streamline theorem for an inviscid fluid.

Though many flow models have been considered up to date, there are no theories which can
predict or describe all of the characteristics of the flow around such a body because of the
complexity of the wake dynamics, the viscous effect, and so on.

Nowadays the static pressure distribution and a drag coefficient can be calculated fairly
well for a symmetrical flow by the free streamline theorem, though of course the separation
points and the base pressure (assumed constant over the separated region) obtained
empirically have to be prescribed. These calculations are made for the flows past
symmetrical bodies with respect to the incident streamline, e. g., for those past a flat plate,
a 90° wedge, a circular cylinder, an elliptical cylinder, and so on."?As far as the authors know,
however, there are few examples applying the free streamline theorem to the asymmetrical
flow.

In this report the authors described the calculation method which was the extended
Parkinson-Jandali’s method® and could be applied to the asymmetrical flow such as the flow
past a circular cylinder with tangential blowing in a uniform flow. The calculated pressure
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distributions are compared with the experimental results. And it was confirmed that both
distributions by the theory and experiment fairly well agreed with each other except for the
neighbourhood of the separation points.

2 Main nomenclatures

Cp=pressure coefficient.

Cpp = base pressure coefficient.

Ce=(momentum of the jet per unit span)”((1, 2 )p-UD]} .

D = diameter of the circular cylinder.

Re = Reynolds number (=U.D_ "v).

U. = velocity of the uniform flow.

# = angle measured clockwise from the leading edge of the cylinder.
6; = angular location of the slot,

6, &6, =angular locations of the separation points on the upper and lower surfaces of the
cylinder, respectively .

v = kinematic viscosity coefficient.

vvvvvv

The calculation method of a static pressure distribution, described in this report, is based
on the Parkinson-Jandali’s method which is applicable to a two-dimensional, incompressible
potential flow external to a symmetrical bluff body and its wake. Here, the Parkinson
-Jandali’s method is extended to an asymmetrical flow past a circular cylinder with
tangential blowing.

Fig.1 shows basic and physical planes, that is, the T"-plane and the ¢-plane, respectively.
Any point in the T-plane, T =X +iZ (i is imaginary unit), is transformed to the point, { =
x-+1iz, in the #-plane by the transformation,

l‘:f(T):e'”(T—cota“—T:*lm) PR T TTRTT P (n,
where y and ¢ are the angles between the incident flow and the X -axis and between the
stagnation point and the X -axis in the T -plane, respectively. Then, the complete circle,AS,
BS,A, of which the center is at the origin is conformally mapped to a circular arc slit,A’S,’B’
S/A’, in the #-plane by Eq(1). This circular arc slit mapped from the circle is not symmetrical
but asymmetrical with respect to the x-axis. The stagnation points S; and S, in the T -plane
are mapped to the separation points S;” and S’ in the #-plane, respectively and the stagnation
streamlines at S, and S, are transformed to the tangential separation streamlines at S;” and
Sy

Now, consider the two-dimensional, incompressible, potential steady flow past a circular
cylinder immersed in a uniform flow inclined by the angle y with respect to the X-axis. The
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T-plane L

t-plane 52

Fig.l1 Basic and physical planes.

complex potential W, (T) of this flow is expressed as follows;

L R? .
W D= Us( Te" + ei) R @),

where U, and R are the velocity of the uniform flow and the radius of the circular cylinder,
respectively. In addition to this, consider (1) two sources of different strength 26, and 2
at symmetrical angular locations € and -& on the circumference of the circle, respectively,
(2) a sink of strength (@, +Q.) at the origin, and (3) a circulation of strength I around the
circle (see Fig. 1).

Then the total complex potential W(T) of the asymmetrical flow with a broad wake region
in the T -plane is expressed as follows;

W(T)= U T+ e+ D in( T— R+ L n(T— Re ™)

_(Qé_'i'_”Lﬂ /nTe‘”-l—%/nTe"” ............................................. (3).

Substituting Re'® for T in Eq. (3) after differentiation, the absolute velocity | w(8) | on the
circumference of the circle in the T -plane is given by

| 0(8) =2 Uusin(B— p+—ptlsinfrainelt Qlsinfosine) .
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where g is the angle in the T -plane (see Fig. 1).

Hence, @ and @, in Eq. (4) are determined from Eq. (4) by setting | w(8) | = 0 at g=+
¢ on the circumference of the circle, because S, and S, are stagnation points. Substituting
these values thus obtained for @, and @, in Eq. (4) again gives, some modifications, the
absolute velocity in the T -plane;

[ (B)l :%[2 U.{sin(B— y)+sin y(cose—cosa)}-kﬁ] --------------- (5)

Therefore the absolute velocity | w(8) | on the circular arc slit in the f-plane is obtained from
Egs. (1) and (5) as follows;

lw 1 |w(g)
U. I/ U

1-2 z . .
= 2&??5;:3?;;;? 8[2Uw{sm(ﬂ—7)+sm y(cose —cos )}

Here, the radius R is taken to be R=1sin || and the separation velocity K at the
separation point is related to the base pressure coefficient Cp, obtained empirically by

Substituting these R and K in Eq. (6), the absolute velocity | w(g) | in the ¢-plane is given
by

2 L g
. ; — i _SIN"osinycosy
|wL§:’9)| | 2Ccot;s€,6’_cg(s)§;—cos 8 [sin (8~ 7)+sin ycos e—Sil 8511}{ COSY ... @

The angular location of each source on the circumference is related to K, ¢ and y by

oy - - T I i 3 i
cos(ie)—m[l{cosa-l-smza{sm(a+ y)F R0 OSIYCOS Y 831?{ COSY NI e 9

(double sign in the same order)
Then the pressure distribution along the circular arc slit $’A’S,” is expressed by

Here, the angles 8 in the T -plane and 6 in the #-plane are related to each other as follows;
sin{zr—#)=sin(8— y)cosd

- .
+ 1—2coss¢;gosa,8+coszé {sin y —2cosdcos fsin y+cosdsin{B+y)} - 1)
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On the other hand, the angles ¢ and y in the T-plane are related to the upper and lower
separation points which are empirically determined on the circular cylinder, that is,

SZM and 7:‘91_HU__180 ...................................................... 12
4 2
Consequently the pressure distribution along the circular arc slit S,’A’S,” in the ¢-plane can
be calculated by using the present equations, Eqs. (7) to (12), if the three empirical values

of 8, 6, and C,, are prescribed.

4 Experimental apparatus and method

The measurement of the circumferential static pressure distribution of the model cylinder
was made with the same apparatus as reported before®,

Fig. 2 shows a cross section of the model cylinder. The cylinder with an outer diameter
of 100 mm is hollow and is inscribed by a small circular cylinder with a diameter of 25 mm.
The height of the slot is constant, 0,55 mm, across the whole span and the outer surface of
the cylinder is chromium-plated. The cylinder can be revolved about its axis to give a
desired angular location of the slot . The cylinder has 55 static pressure holes at the mid
~span, which are circumferentially distributed.

Fig. 3 shows the test section of the wind tunnel. The cylinder is mounted at the center of
the test section and passes through two partition walls made of a transparent acrylic-resin
plate of 10 mm thick and the tunnel side-walls,

The experiment was carried out by varying C« from 0 to 0.3 at the fixed values of the
aspect ratio of the cylinder of eight and at the slot locations 6 of 50° and 90°. In the case
of 6 =50", the experiment was made at the constant Reynolds number of 2.1X10° only and
in the case of 6 =90", the Reynolds numbers of the experiment were 1.4X10° and 2.1 X 10°

1000 1500
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440 ! 1= Uo ! ! i
o | + !
) I\ A ! ! :

AP i
Floor Partition-plate
\Eylinder P

Fig.2 Cross section of the model cylinder. Fig.3 Test section of the wind tunnel.
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5 Calculated results and discussion

Fig. 4 shows the typical examples of the calculated results of the circumferential static
pressure distributions of the cylinder for a symmetrical (C«= ( ) and an asymmetrical (Cyu >
0) flows with respect to the x-axis. This figure includes also the calculated distributions
obtained from the Dunham’s equation together with the experimental results.

When Cu = 0, the present method becomes the Parkinson-Jandali’s one and the calculated
distribution confirms this. Also the calculated distribution agrees fairly well with the
experimental results.

When Cu >0, the calculated distribution, in spite of the asymmetry of the flow, is fairly
consistent with the experimental results over a wide range of §. It is found from Fig. 4 that
the present calculated result agrees better with the experimental results for the range of ¢
between the angular locations of the lowest pressure 6. and the upper separation point 4, in
comparison with the result calculated by using the Dunham’s equation. As a whole, the
degree of consistency of the calculated result with the experimental results appears
satisfactory except for the neighbourhood of the separation points. The discrepancy near
the separation point is thought to be caused by the fall of the calculation accuracy there,
because the effects of the boundary layer thickness and the vorticity in the wake on the flow
past the cylinder are ignored in this theory.

On the other hand, the separation condition is described here, though about only one of the
two separation points for convenience. If the condition of “smooth separation” by Woods* is
applied to the flow at the separation point S, the separation velocity K(+# 0 ) at that point
is determined uniquely as a function of only the angles of ¢ and y in the T -plane, In this
case, the curvature of the separation streamline is finite and the pressure coefficient C, is
continuous at the point S The static pressure distribution curve and the value of Co

_.2._ o .
- Re 14x10° 21510’
-4t B 90 50
- G, O 02

Present eqgs.
————— Dunham’s eq.

Fig.d Static pressure distributions on the

circular cylinder.
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calculated in this case, however, were not so consistent with the experimental results.
Ignoring the condition of “smooth separation”, the pressure distribution was re-calculated for
many given values of K, different a little from each other, in Eq. (7) and the best fitted curve
with the measured values was chosen, Thus, for the optimum value of K, the calculated
pressure distribution was best consistent with the experimental results. However,
the pressure gradient 8C, 26 became to be infinite, the curvature of the separation
streamline was also infinite, and the base pressure coefficient C,, was discontinuous at the
separation point S,” Here, to avoid a singularity of the calculated pressure distribution curve
at the separation point, the calculated values of 8, and C,, at the separation point were
replaced with the experimental ones.

The same manipulation mentioned above has to be made at the other separation point S,

6 Concluding remarks

An attempt was made to calculate the circumferential static pressure distribution of a
circular cylinder with tangential blowing by the modified Parkinson-Jandali’s method,
extended to an asymmetrical flow. It was confirmed that the pressure distributions calculated
by using the present method were better consistent with the experimental results over a wide
range of # in comparison with the distribution calculated by using the Dunham’s equation.
However the fall of the calculation accuracy in the neighbourhood of the separation point is
unavaidable as far as the calculation of the pressure distribution is based on the free
streamline theorem. The present method may easily be applied to other asymmetrical flows
past bluff bodies.
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