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Tetragonal and Orthorhombic Lattices of Martensites with Stable
v precipitates — Calculations Based on Eshelby’s Theory

by
Motozo Havakawa* and Muneo Oxa*

(Received May 31, 1980)

The lattice parameters and the elastic strain energies of martensites which
include fine stable o precipitates have been calculated by using the Eshelby
method. In the calculations, the ¢’ particles in a martensite plate were assu—
med not to transform te martensite. But a possibility of their deformation by
a lattice invariant shear (LIS) due to the large internal stress was taken into
account. The average lattice of a martensite varies from a tetragonal to
orthorhombic lattice as the LIS inceases. 'The elastic strain energy accumu-
lated in a martensite plate is also reduced by a LIS. The results are success—
fully compared with the recent experimental data.

1 .Introduction

The martensites of an Fe-Ni-Ti alloy bave been reported to exhibit a tetragonal

~P. The tetragonality of this alloy

lattice, in spite of the absence of interstitial atoms'
has been attributed to the ¢’ precipitates, which form during an austenite aging or
even during a quench. The ' also stabilizes the austenite’ ”. There are two diffe-
rent explanations proposed for these experimental observations.

In the first propositi0n3’4) the o precipitates are assumed to transfrom to bct ma-
rtensite together with the surroundings. The reason why a bet lattice, instead of a
bee, forms is shown in Fig. 1: The

X3 v’ has an ordered structure of the

L1, type, in which the cube corners
are occupied by Ti atoms and the

* ° ‘s face centers by Ni atoms. When
_ this structure is transformed to ma-

" i rtensite maintaing the Bain corres-

’;Icc (:2‘:, pondence, the crystallographic sy-

{Liz) . .
z mmetry of the resulting martensite

Fig. 1 Bain mechanism of an fcc to bce lattice
transformation (ignore the atom differen- becomes tetragonal. ~Along the c

ce), and a formation of a bct lattice from axis a lattice row consists of either
L1, structure.

* Department of Mechanical Engineering
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all Ti or all Ni, while along the a and b axes Ti and Ni atoms alternate. Since a Ti
atom is larger than Ni, the ¢ axis becomes longer than the a and b axes. Asa
result, the transformed 4’ precipitate becomes bct. The rest of the region of a mart-
ensite plate is bcc by itself. However, because of the uniformly dispersed tetragonal
centers of the transformed v/, the entire martensite is elastically distorted. As an
average the martensite lattice becomes tetragonal. The transformation of the v’ to
bet is a result of mechanical forces by the surroundings. Therefore the existence of
v’ precipitates requires an excess driving force for a martensitc transformation.
Thus, the transformation of v’ also explains the stabilization of the austenite.

In the second proposition4'5) , the v’ precipitates are assumed not to transform ;
only the surrounding matrix transforms to martensite. Then a large stress field
will be generated in a martensite plate because of a mismatching in shapes. The
stress field would be such as to cause a tetragonal lattice of the martensite on an
average. Since the transformation is possible only by surmounting this extra strain
energy, a stabilization of the austenite would be expected.

Both the above propositions appear to explain the experimentally observed change
in M, temperature and the tetragonmality of the martensite successfully, at least
qualitatively. In order to decide which of these is really operative, a more quantit-
ative analysis is needed. For the mechanism of the first proposition, since the dime-
nsions of the hypothetical bct structure of o' is not known, the average tetragona-
lity of a martensite plate caused by the dispersed tetragonal centers cannot be esti-
mated. Furthermore, since the chemical free energy of the hypothetical bct o’/ is
not known, the drop in M, temperature cannot be estimated. On the other hand,
the transformation mechanism in the second proposition can be dealt with by Eshel-
by’s method” , where an elastic state of a body with an ellipsoidal inclusion with a
known transformation strain can be solved. In addition, a recent X-ray diffraction
study7) using a monocrystalline specimen has revealed an orthorhombic lattice of
martensite in an Fe-Ni-Ti alloy. The orthorhombic lattice cannot be explained by
the transformed v’ precipitates. However the second model may explain this when
an additional lattice invariant shear (LIS) is introduced in the ¢’ precipitates. In
the present paper, we attempt to calculate the average dimensions of the martensite
plates with a uniform dispersion of non-transformed o' precipitates. The results
will be discussed in the light of some experimental observations.

2. procedure of calculations

The model we consider in this paper is as follows: The parent austenite contains
uniformly dispersed spherical ' precipitates. When this is cooled from the austenite
state to a lower temperature, lenticular or plate-like martensites form. The «’
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particles contained in a martensite plate keep their original structure. As a result, a
large stress and strain field will result in the plate. A possibility of a LIS in the v’
precipitates due to a large shear stress is also taken into account. In such a case we
can calculate the average lattice of the martensite, the lattice orientaion of the o’
and the elastic strain energy accumulated in the plate.

The same elastic state will result when the above mechanism is reversed; i.e., in an
originally uniform martensite plate, spherical regions transform into the ¢’ structure
and LIS may be introduced. This way of viewing the problem conforms to Eshelby’s
method” . We will assume an elastically homogeneous and isotropic medium with
Poisson's ratio of 1/3. Then, the only necessary parameter is the stress free strain
(eigenstrain) of the spherical regions. Before we evaluate the strain components for
the inverse transformation of the ¢/, distortion matrices of various proposed mechan-
isms of martensitic transformation will be considered.

2,1 Matrix representation of martensitic transformations

According to the phenomenological theories”” , a martensitic transformation con-
sists of a lattice transformation, a LIS, and a rotation. Since the size of ' precip-
itates is comparable to or smaller than the scale of inhomogeneity of a usual LIS*,
this should not be included in the elastic interactions between the martensite and '
particles. Without a LIS, several plausible mechanisms of the lattice transformation
from fcc to bee have been proposed (see e.g. refs. 10 and 11)

Bain mechanism

This is the simplest of all, yet very meaningful. Fig. 1 shows two fcc unit cells
in juxtaposition (ignore the atom difference for the time being). The cell outlined
by broken lines can be regarded as a bct unit cell, but its tetragonality is much
higher than ordinary martensites. A compression along the vertical axis and a un-
iform expansion in the horizontal plane by a suitable amount will result in a mart-
ensite lattice (bcc or bet). The matrix representation referred to either fcc or bet

axes is:
. 7, O 0
S ={0 5 O ) =B (1)
0 0 7,
with », = v2a/a,, 5, = c/a,, {2)

where, a, is the lattice constant of an fcc lattice, a and ¢ are those of the bct. The
lattice correspondence between the two lattices is:

1 -1 0

(Cp) =<1 1 0), (3
0 0 1

* This LIS is different from the LIS in ¢’ considered in this paper.
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and the following lattice orientaion relationship results:
(001, (001), and (100), 7 (11 0}, .

Nishiyama mechanism

This mechanism is described in two steps. The shear in a (1 1 1), plane toward
a (11 2),by 1/2/ 2 results in a slightly distorted bcc lattice. A subsequent size
adjustment keeping the (1 1 1), plane fixed accomplishes the lattice transformation.

The resulting orientation relationship is:
01,7 A1, and (011),7 (11 2),.

The lattice correspondence is the same as Eqg. (3.

Although the above procedure is a usual interpretation of the mechanism, as far
as the initial and the final states are concerned, there is another way of describing
the mechanism. Namely the Bain distortion followed by a rotation around the (1
1 0), axis would result in exactly the same lattice and the same orientation. The-
refore, the matrix representation of this mechanism referred to as the fcc lattice
may be written:

N N
S =R B, (4)

where,

1//2 1//6 1/]3 1 0 o0
R'=|—1//2 1//? 1//? 0 cosésiné
o —2//6 1//3 0 —sin g cos ¢

1//2 —1//2 o
% 1//? 1//? —2//@ P (5)
1//3 1//3 1%

and E:Tan"la/c—Tan_ll/fé_. B R (o)}

Kurdjumov and Sachs mechanism
This is similar to the Nishiyama mechanism. After the same first shear as the
Nishiyama mechanism, a subsequent size adjustment takes place so that the follow-

ing orientation relationship results:
0l1l),~ (A11), and (A11), 7 (10 1),.

Since this orientation of the martensite lattice can be obtained from the N orientation
by a rotation around the (1 1 1), axis, the K-S mechanism can be also expressed
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by the Bain distortion followed by a rotation:

S =R B, (7)

where,

1/7/2 1//6 1//3 \ {cost—sinf O
R*=|-1//2 1//6 1//3 | |sin¢ cos¢ O
o -2//6 1//3 0 0 1

1 o0 o\ (W/z -1/Jz o
X10 cosésing 1//6  1//6  2//6 | e (g)
0 —siné cosé 1/7/3 1//3 1//3

and ¢ = Sin '1//3 — 30° = 5.26°

Bogers and Burgers mechanism

This mechanism consists of two successive shears on non-parallel close packed pla-
nes. The orientation of the resulted bcc varies depending upon which planes are
chosen for the shears. In fact, since the shear planes are not implied to be kept
fixed, the orientation relationship is indeterminate. Yet the distortion matrix can be
written by a product of the Bain distortion and a rotation:

B-B B

s*" - R"" B, ()

In all of the cases considered above, a distortion matrix can be expressed by the
Bain distortion and a rotation. This is true for other mechanisms as long as the
Bain correspondence holds. Since, as will be shown later, for a calculation of an
elastic state, we need only the strain component (the symmetric part of a general
distortion matrix); a rotation has no influence. Since B is the symmetric part of
distortion matrices and common to all cases, we don’t have to distinguish between
the above mechanisms. Regardless of which mechanism we assume for a martensitic
transformation in a matrix, the resulting elastic state, including the orientation rel-
ationship, would be the same. Therefore we will use the Bain distortion as a repr-
esentative transformation strain.

2.2 Inverse transformation of v/ from bec to fee lattice

Since the lattice transformation can be represeated by the Bain distortion irresp-
ective of the actual mechanism, the inverse lattice transformation can be expressed
B™'. When a LIS is introduced in the inversely transformed fcc o’ lattice, the shape
distortion of an original bcc ¢/ precipitates may be written:
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1

S =PB , {10)
where, P is the LIS. In order to decide which shear system will be most likely to
operate, a preliminary calculation has been made. {1 1 1}, planes are @ priori chosen
as probable shear planes. The highest shear stress on these planes has resulted in
the systemof (1 11) (11 ?]F. Although there is no such shear system in an fcc
metal, a combination of 1/2 (1 0 1) and 1/2 (0 1 1) is assumed. Therefore this
system will be used for the LIS. Now the LIS can be expressed in the fcc basis:

1//6
GPe) =1+t 1/J6 | (1/f3 173 1/J3 ), coeeevemenneens an
-2/]6

where, t is an amount of the LIS. It should be noted here that the maximum prob-
able wvalue of t is 1/2y 2, because at this value the shear stress subjected by the
surroundings will be annulled.

Since it is convenient to make calculations on the bcc basis, Eq. (1) will be rew-
ritten specifically on this basis using the Bowles and Mackenzie‘s notation.

(580 = (5Pp) (BBB—1> = (BB;I> (5Cp) (5Fx) (5Cp) (12

A substitution of Eqgs. (1), (3), and (I) into this equation results:

/7, 0 0 1 0 0

(:8:)=| 0 1/p, 0 ||01+2t/3/2 2t/3/2 |; e 13
0 0 1/p/\0 —2t/3/2 1-2t/3/2,
0<t=1/2/2.

The above shape distortion matrix for a bce o’ precipitate is non-symmetric. This
can be factored into a symmetric part (S) and a rotation (8) (see for the procedure,
e.g. ref. 12):

s — B8, it
For the elasticity problem, we need only the symmetric part S. In fact an eigen-
strain is directly obtained from S—I.

The 8 in Eq. (14 gives the lattice orientation of the &’ lattice relative to the surr-
ounding martensite. This can be explained as follows: After an application of S on
a bce ¢/ precipitate without the constraint of the surroundings, the lattice parallelism
between the transformed v’ lattice and the surrounding martensite (Bain orientation
relationship) will be maintained, since neither B nor P distroys the lattice paralle-
lism. The removal of 8 for the calculation of an eigenstrain, however, causes a
rotation of the ¢’ lattice by B8~'. An application of S under the constraint of the
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surroundings may also cause a rotation. However this does not happen when the tra-
nsforming region is a sphere. Therefore 8 ' gives the orientation of the ' lattice
with respect to the martensite lattice.

2.3 Eshelby’s methed

According to Eshelbye), when an ellipsoidal region embedded in an infinitely
large matrix undergoes a shape and size change, the stress and strain within the
ellipsoid, and the total elastic strain can be calculated from the following set of

equations:
€55 Sijky GRp s  ftrrtreretteerressiiiieestereiiteree et aarreetear e (15)
dj:C”k](eﬁ]_ele), ........................................................... (16)
Ee = — % dfj BV, rrresm e eea e an

where, the summation convention for repeated indices is implied. ei? is the total
(elastic plus plastic) strain of the ellipsoid under the constraint of the surroundings,
>, of the ellipsoid.

These are related by a fourth rank tensor called an Eshelby tensor, S, - when the

T . . . « 13
¢, 1sa stress free strain, or sometimes called an eigenstrain

region is a sphere, the Eshelby tensor becomes quite simple:

7—5v 8
S1111 = Sp220 = Ssazs =m~ 15"
1—5p 1
Si122 =Sa233 =Sg3; = “—1_5_(—1—:_,7)‘ S, e 18
4—5vyp 7

S1212 = Sa2323 = Suim :m 30

S« = 0, for other ijkl,
where, the last terms are obtained by assuming Poisson’s ratio is 1/3. Since ekcl - e:]
is an elastic strain, a multiplication of this by the elastic stiffness constant, C”.kl ,
yields the internal stress within the ellipsoid, ‘T:;' E, in Eq. (7 is the total (the
ellipsoid plus the matrix) elastic strain energy, while V is the volume of the ellips-
oid. Therefore, the elastic strain energy per unit volume of martensite, E, will be

given by multiplying the volume fraction of the ellipsoidal region, f.
E = fE, /V. {19

In the above equation, only an eigenstrain, except for the known constants, is
needed for the calculation. The required eigenstrain is obtained from the following
equation:

. =8§-1, @0

where, S is the symmetric part of a shape distortion matrix defined by Egs. (I3 and
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(14 , and ¥ is the unitary matrix.

2.4 Average lattice of the martensite

When a spherical region in a medium undergoes a shape change, the matrix is
also strained. The strain field is not uniform and a calculation of the strain at an
arbitrary point is generally difficult. However, if many particles with the same
eigenstrain are uniformly distributed, the average strain of the entire body is simply
given by:

<y, >p = feg, o1)

13
where, < >, denotes the average taken over the entire body (the particles plus
the remaining matrix), and f is the volume fraction of the particles“). What we
actually measure by X-ray diffraction, however, is the average over the matrix
(martensite). The left hand side of Eq. () may be eXpressed by a weighted average
of the average strain of the matrix (v, >,) and that of the paritcles (v, >,),

i.e.,

<r>/ij >D = (l_f) <ryi’_ >M + f <r)'ij >_(_)’
or rewriting the last term,
oy >y = () <yy >y + 1S 0. o)

By equating ‘the right hand sides of Eqgs. @) and ) , the average strain of the mar-
tensite can be obtained:

f
<ry>w = T (o

ij

- Szjk[ e:l> . (@23

From this, the dimensions of the average martensite can be calculated. In the pre-
sent case only <<v, >, <lv,,~>, <v,,>>, and <{y,,>> are non-zero. Therefore, the dim-
ensions of the average martensite becomes a monoclinic lattice. That is :

a =14+ (ndu,
b= / (1+<722>M)2+ (Yaadies

c= / (1 -+ <733>M)Z + (723)#4»
a=90—2Tan* (¥ u,

where, o is the angle between the b and ¢ axes. Since « is nearly equal to 90°, an
orthorhombic lattice is a fair approximation.
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3. Results and discussion

Calculations have been made for an Fe-30Ni-3.5Ti alloy. A complete precipitation
was assumed, resulting in f = 0.165, For the calculation of the Bain distortion in
Eq. (1), the lattice parameters of Fe-31Ni were used, i.e_, a, = 0.3591lnm and a =
0.2875nm’®. This is because the measured parameters of Fe-Ni-Ti alloy are already
influenced by the &' precipitations, and not adequate for the calculation of eigen-
strains.

Components of the calculated eigenstrains referred to the martensite basis for
various amount of LIS are listed in Table 1. Components not listed are all zero.

Table 1 The eigenstrains and the rotation angles of the v’ lattice

*1 T T T T *2) *3

x L % %3 s g

0.0 —0.1168 —0.1168 0.2490 0.0 0.0
0.1 —0.1019 0.2283 —0.0058 0.96
0.2 —0.0865 0.2077 —0.0110 1.92
0.3 —0.0707 0.1873 —0.0157 2.89
0.4 —0.0544 0.1671 —0.0197 3.86
0.5 —0.0378 0.1471 -0.0231 4.83
0.6 —0.0208 0.1273 —0.0259 5.81
0.7 —0.0034 0.1078 —0.0281 6.79
0.8 0.0143 0.0885 —0.0297 7.77
0.9 0.0324 0.0695 —0.0306 8.75
1.0 0.0508 0.0508 —0.0309 9.74

*¥1 x = t/21/2, where t is an amount of LIS in an fcc lattice

*2 Components are referred to the martensite lattice basis. Those not
listed are all zero.

*3 Rotation is around the (100], axis (in deg).

Since the rotations of the ¢’ lattice relative to the martensite were around the (1 0
0 Jgaxis (see Eq. (14), only the angles of these rotation are sufficient to describe 3.
The angles of the rotation are listed in the last column. Using these eigenstrains,
the lattice parameters of the average martensite have been calculated from Egs. (%3
and (24 for each amount of LIS. The calculated parameters are relative to the par-
ameters of unstressed martensite. Elastic strain energies have been also calculated
from Egs. 15-07 and (9. The results are summarized in Table 2. These are also
plotted in Fig. 2. A development of an orthorhombic lattice and a reduction in the
strain energy with an increasing LIS are clearly seen.

Now, in order to examine the plausibility of the present model, the results will be
compared with some recent experimental data. Lysak et al.,” wused a monocrytalline
specimen of an Fe-31Ni-5.3Ti for X-ray diffraction and measured a change of the
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lattice parameters of martensites with the time of aging at 700°C. Fig. 3 is a repr-
oduction of their result. A tetragonality is already seen even in as quenched mart-

Table 2 Relative parameters of the average martcnsiet and elastic
strain energies of martensite

X a b c o *1 E *2
0.0 0.9875 0.9875 1.0260 90.00 7.87><10_3p,
0.1 0.9876 0.9891 1.0239 90.07 6.72
0.2 0.9876 0.9908 1.0218 90.13 5.68
0.3 0.9877 0.9926 1.0197 90.19 4.83
0.4 09877 0.9943 1.0177 90.24 3.99
0.5 0.9878 0.9961 1.0156 90.28 3.33
0.6 0.9878 0.9979 1.0136 90.31 2.79
0.7 0.9879 0.9998 1.0115 90.34 2.38
0.8 0.9879 1.0017 1.0095 90.36 2.08
0.9 0.9879 1.0036 1.0075 90.37 1.90
1.0 0.9879 1.0056 1.0056 90.37 1.83

*1 Angle between the b and ¢ axes (in deg)
*#2 Elastic strain energy in a unit of shear modulus p

|0X|0-’ T T T T T T Y T T
of .
8
T Y T T T T T T T ‘3. 7
w
» LO3F - . 6
o <)
s 102 5 g
o c
zg (o]} :
f. £
55 £ 4
®a =
~ o OO w3
L L
- =
§0.99 _6 2
[ ]
0.98} E ik ]
1 i 1 1 1 1 1 i L
00 03 10 It L t 1 t L J 1 I
amount of LIS x 00 05 1.0

amount of LIS x
(b)

Fig. 2 Variation of the relative lattice parameters (relative to the uustressed martensite)
(a), and the elastic strain energy per unit volume of martensite (b), with the am-
ount of LIS x (x = t/21/2).

(a)

ensites. The tetragonality increases rapidly and reaches a maximum in 30 min. The
quick increase of the tetragonality to this point is attributed to the rapid development
of the v’ precipitation. In this alloy it has been reported “that an Ostwald ripening
of the ' starts in an bour, at latest; possibly starts earlier if the meaurment could
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be done in the early stage. Therefore,

o € 0.2950

after 30 min of aging the precipitation -

reaction can be assumed to be comple- E

ted, i.e., the assumption made in the 30-29'0 Is;

’ o 0\0« c

present calculation is fulfilled. There- 5 ON“O""‘TO
a

fore the present results should be com- o 02870 & y a— o &

pared with the data in Fig. 3 at and 2 f . a .
- X—x——- st st ¢

longer than 30 min of aging. The ma- 2 &fl

24 6 8 101314 16
aging time hr

R Fig. 3 Dependence of the lattice parameters of
gonality of the present result (1.039). martensite on the time of austenite aging

The development of the orthorhombic at 700°C (Fe-31Ni-5Ti), after ref. (7).
lattices may be also explained, if the

ximum tetragonality in Fig. 3 is 1.036,
in accordance with the maximum tetra-

aging time is correlated to the amount of LIS.

In the present calculation, the LIS was assumed to be homogeneous, although a
shear by slips is inhomogeneous on an atomistic scale. The degree of the inhomoge-
neity is dominant especially when the size of v’ precipitates is small. When a par-
ticle size is less than, say 1.2nm, only a single slip by the Burgers vector (a/2 (1 1
Z)) will exceed the maximum allowable LIS. In such a case, a LIS is prohibited in
the particlé. As a particle grows, the number of probable slip planes increases.
If this is interpreted as a meaure of ease of shearing, the amount of LIS is correla-
ted to the size of 4’ precipitates. Furthermore, since the ' growth follows the
Ostwald ripening, the average radius increases proportionally to (aging time]”3 "
This explaines the development of the orthorhombic lattice and why the change oc-
curs quickly at the begining and slows down later. Comparing the lattice parameters
in Fig. 2 and Fig. 3, the LIS appears never to reach its maximum. The increasing
slowness of the growth of the v’ may

not be sufficient for an explanation. ::;;): %“9?:"“':%‘5 = l Lo
According to Fig. 2, the elastic strain ] ;7
energy is more effectively reduced for 00t
smaller LIS. In addition, when v’ pr- 9,,20.
ecipitates grow large, other mechanism ,'_”_'40
of strain accommodation may come into
play. These might be additional reas- -160
sons for the immature LIS. Y
Fig. 4 shows the variations of the ‘20q | O-Tl—l-u-’-""os

M, temperature with the aging time aging time sec

after Abraham and Pascover” . Altho- Fig. 4 Dependence of M, on the time of auste-

.- . . it i Fe-29.5Ni-4T1), aft f. (3).
ugh the alloy composition is different nite aging (Fe Ni-4Ti), after ref. (3)
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from the previous one, the time for the minimum M, teperature (aged at 700°C) is well
correlated to that for the maximum tetragonality in Fig. 3. Thus, the quick drop of
the M, temperature to its minimum is similarly attributed to the fast development
of the ' precipitates. Beyond this point, as the ¢’ precipitates grow the amount of
LIS increases causing a reduction in the elastic strain energy (Fig. 2). This will
explain the elevation of the My temperature in Fig. 4.

Lattice rotations of the ' have also been observed'” in electron diffraction patterns.
Their explanation of the rotation is somewhat different from ours. Since only the
projected angles have been recorded, a detailed comparison with the present results
cannot be made.

In the present model, a LIS was assumed to occur only in o’ precipitates to reduce
the high stress field caused by the large misfits. However, a LIS may occur in the
surrounding martensite or in both of the phases. In such cases the calculation would
become considerably laborious. However, as long as the LIS is localized in the nei-
ghbourhood of the ' precipitates, the results would not be very different from the
present results.

4. Conclusions

The average lattice and the elastic strain energy of Fe-Ni-Ti martensite have been
calculated. Where, it was assumed that : a) the ' precipitates do not transform
during the martensitic transformation of the surrounding matrix, b) but these may
plastically deform by slips due to the large internal stress. We have been led to
the following conclusions :

1) When the v’ precipitates do not deform (neither by lattice transformation nor
by slips), the martensite containing these particles becomes tetragonal and the elastic
strain energy accumulated in the martensite is high. '

2) When the v’ precipitates deform by slips, the martensites becomes orthorhombic
and the strain energy is reduced.

3) The transition from (1) to (2) may be correlated to the size of v’ precipitates,
since when the precipitates are small, say less than 1.2nm, a slip is prohibited, but
as they grow these can be sheared.

4) The results are generally in good agreement with experimental observatiouns,
supporting the plausibility of the present model.
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