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Carrier Wave on Transverse Field Type
Electron Beam in Solids*

Hiroshi Kosayasurt#

(Reccived september, 30 1971)

The kinetic power theorem for transverse field type electron beam in semi-
conductors is reviewed on the basis of the first order linearized set of Maxwell’s
equations and the equations of motion whch include the effects of collisions and
diffusion. Kinetic power flow is given in terms of the equivalent kinetic voltages
due to longitudinal and transverse velocity modulation, and equivalent current

densities.
Dispersion relation is also found for this type of electron beam in a thin semi-
conductor slab.

§ 1. Introduction

In recent years, several experiments and theories have been reported of a solid
state travelling-wave amplifier of semiconductors. These treat the same arrange-
ments as the longitudinal electron beam of the vaccum travelling wave tube.l-% On
the other hand, the theories and experiments for the same operation principles as
transverse field type have little been presented. Lately, a theoretical treatment
for the case of a transverse magnetic field has been shown by Kino.®» However,
the temperature effect is not taken into account.

In this paper, the conservation principle and the dispersion relation including
the effect are derived. Only generalized and fundamental relations are found.

Feasibility for such devices is not discussed.

§ 2. The Fundamental Equations and the Complex Poynting Theorem

The geometric arrangement of the transverse field type electron beam is shown
in Fig. 1. We assume that all ac quantities vary as exp(jot). The linearized equa-
tions of motion are given by’-9
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and

(7 XPo)x = gBy -+ m* 3;); s (2.2)

where po is the dc total momentum defined by mvo -+ gAo[with A, the vector po-
tential. w,»,g and m* represent the angular frequency, the collision frequency, the
carrier charge and the effective mass. Except where otherwise stated subscript 0
denotes a dc component, subscript 1 an ac component. Then, p; denotes the ac
component of pressure and po the charge density. Ei, Eiy are the electric fields
and vy, vy, the ac velocities. The equivalent current densities K;, and Ky, are

Ky = jopoyi,

ad
B = Ji + - Cpovoyi) » 2.3)

where Ji, is the current density. y; represent the ac displacement in the y-direc-

tion.
The equivalent current density

A\ y . K,y is connected with o1y :
Eo
(j{.() +‘U0 —g—z) K1y= ].(A)p() U1y (2.4)

The continuity equation reads

6]1_v+ 0112 =0 (25)

The current densities are
Jiz = poviz + P12 (2.6)

Fig. 1 The geometric arrangement of the electron 5

beam. Dc electric field is applied in the y-direc— Jiy= poviy= po {jo + % ‘52”’1 .
tion and dc magnetic field in the x-direction.
The electron beam moves in the z-direction with Using egs. (2.4) through (2.6), Kz
a constant drift velocity vo. The electron beam
has a thickness d and a unit length in the x-di-
rection,

is related to vz and Ayy
. 0 " . 009
(Jo +vo -a-z—) K1z =jopo ”12+I‘1y”8; .

2.7

The complex Poynting theorem for the transverse field type of electron beam

is given by®
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where Syand S; denote the components of the vector S (1, z) given by

S = 5 Bi(na x Hy (52 . 2.9)

Integration is taken over the volume V as shown in Fig. 2.
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Fig. 2 The electron beam bulges and contracts, following the displacement y, (y) in
the y-direction. The surface currents (K., K_:) are introduced and integration is
taken over the dashed region.

We put the last term on the right-hand side of eq. (2.8) as G, coming from ex-
istence of the carrier motion. The term E,, £;; may be obtained from dot-multi-
plying eq. (2.1) by K, and using eq. (2.4). The term E,. K,;* is obtained in a simi-
lar manner. Substitution of these into eq. (2.8) gives

' 1 ¢ ' *® s 8UO > m’ Uﬂlz P1 Pl*
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| dz] a4y 2o ( P AT g s ) .
A A T (2.10)

where #2 4, T and £ are the r. m. s. value of the thermal velocity, the room temper-



Roports of the Faculty of Engineering, Tottori University, Vol.2 No.2 121

ature and the Boltzmann constant. We define each term of eq. (2.10) as H;,
H,, H; and H,, respectively. Then the following interpretations are put on each

term.”.10
(1) H,is the time averaged kinetic energy of the electron beam. The third is a

newly added term implying the energy due to pressure.
(2) H,is a newly added term representing the dissipation power, which may be

rewritten as,

a

H, = —!—— ” dzf %4 {Vvy Eiy 4+ Vi Ei* } (2.11)

where / is the mean free path.
(8) H;is the kinetic power flow along the electron beam and may be written in

terms of the equivalent kinetic voltages,

a
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21
The fifth coming from pressure is a newly added term.
(4) H;, which is newly added, represents the power flow due to pressure in the

y-direction. This may be written with V,
22 a 8
H, = —— dzf dy " (Vp K1) (2.13)

The kinetic voltages in the above equations are defined as
V,y = the kientic voltage in the y-direction = m* v, 0,,/¢
V,z = the kinetic voltage in the z-direction = m* vy v1/q
V, = the kinetic voltage of density modulation = (p; /po) (kT/¢)
Thus the complex Poynting theorem (2.8) is finally brought in the form,

R 8,6, 2) = 85 (~0 2 | +Ref_a {8 a) — S
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where

1 5 . . 1 «
Spz (3, 2) = 5 { Ve Ki2" - Vyy Kiy o+ Vp K -+ ’q— (F X py)xwvoy Hid

+ By povoyi”} (2.15)

and
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Sy (3, ) = o VyKis (2.16)

The first term on the left-hand side of eq. (2.14) is the electromagnetic power
flow in the y-direction, the second the electromagnetic power flow in the z-direction,
the third and fourth the kinetic power flows in the y-and z-directions, respectively.
The right-hand side represents the kinetic powér loss due to collisions.

§ 3. Dispersion Relation for a Thin Semiconductor Slab

We consider a semiconductor slab having the arrangement as shown in Fig. 3.
We assume that the slab is thin enough. The electron hbeam in the semiconductor flows
straight-forwards along it, because the Hall voltage is induced in the y-direction.
Assuming that snaking arises slightly inside the both surfaces of the slab, we neg-
lect the pressure gradient in the y-direction, although accumulation or absence of
carriers comes out in the surface region.

The equations of motion are giv-
en by?
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Fig. 3 The electron beam in the thin semiconductor - _ 1 ajfl
slab. The suffixes -, — and i denote the corre- 7 (Eyz— 01z Bo) — 7 po 0z
sponding quantities above, under and inside the
electron beam, respectively. E. H. and d are the 3.D
electric, magnetic field and thickness. The dashed
boundaries are metals,

. -8 -
(Jo +v) vy + % g Uiy =

7 {Eiyi‘{‘%'}l“ + O1e BO}

where
7 = g/m’

Since the slab is thin, quantities are represented by the average values denoted
by bars above them. The electric field E, in eq. (3.1), which is the corresponding
electric field inside the semiconductor, is written in the form?

- 1 1 Y
Ey = 5 { Ey (d) + Ey (0)} = 5 Ep + Ey) = pog')(;l -

= By — P2 (3.2)

‘where & is the permittivity of vaccum.
The continuity relation yields
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py = Ppoiz (3.3)

v~ Buy

where @ is the propagation constant.
The average electric field E;, and Ey are given by®

= 1 ¢ - -
By = 5 (Eyr + Ey.) = {WO“ pr + ‘%J* 52 9 }

— . 2 -
By = j{ g = e 1 (3.4)
where
_ sinh (Ba) sink (Bb)
= sk @ + b pd
cosh (Ba) cosh (Bb)
s = B (e + B) pd (3:5)
-~ sinhB(a — b)
b= 2sinhfB(a - b) Bl
for the conditions Ba > 1 and Bb > 1, egs. (3.5) are simplified as
= Bd/2, 2= Pd/2, t =0 (3.6)
The ac displacement y, is obtained by egs. (3.1) and (3.3)
v = L Jn [ (2 — jv) ~— (Bos)? /83 Ely"" We 7/7212 (3.7
T T @ = ) (@ = ) — (Boa)? /) R ol '
where
_4Bo_

2 = o — Bu, n = g/m" and o, = p=

Using eqgs. (3.1) through (3.7), we obtain a dispersion
relation

(Le@—jn — Buyr —wp2r2} {22 =) +wpre | = { Qo0+ ap2t ] ]

x [{ oy — P2 gy — 02 ] =0 (3.8)

where w, is the plasma frequency. The roots of eq. (3.8) are complicated. Ac-
cordingly the dioctron wave” which dominates the operation principle of the trans-
verse field type electron beam is also much affected by thermal velocity and colli-
sion.

§ 4. Concluding Remarks

The complex Poynting theorem has been extended for transverse field type elec-
tron beam in solids of finite thickness to include collision and diffusion effect. An
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expected conclusion is obtained.
And dispersion relation is found for a thin semiconductor slab. For this case we

assume dc accumulation or absence of carriers in the surface region, which induces
the Hall voltages, does not strongly affect the carrier wave motion. However, a
slight suppresion effect on the wave motion will actually occur in the surface re-
gion, especially in the accumulation side. Accordingly the ac pressure gradient
term neglected in eq. (8.1) should be reexamined more in details when we study
the effect of carrier density gradient in the »-direction, however, the condition
assnmed here is considered to be reasonable enough as the first-order approxima-
tion.

The surface and bulk relaxation time are apparently different. In this paper,
however, we introduced an equivalent collision frequency like the averaged one.

Temperature modulation effect and the velocity dependence of relaxation time
should be considered, scince the electrons must be accelerated up to hot electron
region enough to couple with the external circuit. Discussions on the temperature
modulation effect will soon appear elsewhere.

Only the wave accompanied by the carrier is discussed in the present paper.
However, in the course of the development of the solid state amplifier the external
circuit becomes important and the very fine photoeching technique is also required.
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