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Synopsis

In this paper, the authors describe theoretical studies on the bearing strength of
concrete. Main results which have been obtained by them are as follows.

(1) In the bearing pressure test of concrete, the dimension ratio, the Poison’s ratio,
the compressive: tensile strength ratio and the loading ratio have an effect on the
stress distributions and severity in the specimen, and that is on the bearing strength
of it. The effects of such factors have been estimated in detail.

(2) The theoretical formulas of bearing strength of concrete have been suggested using
the above estimated coefficient, and examined in connection with the experimental
formulas have been pointed out so far.

1 Introduction

Bearing capacity which is a kind of compressive strength of concrete shall be
taken in consideration for the concrete under the actions of local stresses, in such
as end anchorage zones of PC wire or bar, as supports with shoe in bridge pier and
as doweled joints of combined girder.

Bearing strength or capacity for a cylindrical
concrete specimen which is set on the flat plate
having diameter (d) and height (%) can be evalu-
ated by means of its ultimate compressive load
due to circular pressure at the center of the top,
as shown in Fig.1. In this respect, bearing
strength (0. ) is defined as follows;

P 4P
T T T wd, M

where P is ultimate compressive load when the

failure of specimen is occured, 4; and d, are

the area and the diameter of a circular bearing

Fig. 1 Diagrams illustrating the bear-  plate respectively.
ing pressure on the specimen
accompanied by the cylindri-
cal coordinates adopted. to make certain about the effects of the dimen-

Many laboratory tests have been carried out
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sion ratio in the specimen (4/d) , the ratio of the area in specimen to that in cir-
cular bearing plate (4. /4;), the concrete mix proportion, the types and kinds of
aggregate, and the strength of concrete, on the bearing capacity and the failure
conditions, and the various experimental formulas on the relations between bearing
strength (o, ) and compressive strength (o, ) have been suggested.

The authors describe the results of theoretical investigations on the relations
between bearing capacity and above-mentioned factors, under considering the inter-
nal stress distributions in the specimen and the failure criterion of concrete in this

paper,

2 Stress Distributions

At the analysis of the distribution of stresses in the concrete specimen by means
of the elastic theory, following assumptions are required.

A footing plate is rigid, and any frictions between the plate and bottom of the spe-
cimen may be negligible (Assumption 1) . However, if the height of specimen is
too short (such as 2/d < 1) , there are some problems in this assumption. The dis-
tribution of the load due to the circular bearing plate at the top of the specimen is
uniform (Assumption 2) .

Then, the distributions of stresses in the cylindrical specimen subjected to bearing
pressure will be analysed by using the Michell’s stress function® based on the
above-mentioned assumptions. In this case, stress states at any points in the speci-
men depend on the dimensions of the specimen that are expressed in %/d, the ratio
of loading area (4, /4y or d, /d=v/4; /4;) and the Poisson’s number of used material
(m). Vertical stress (o, ) and horizontal stresses (orand oy ), each of them being
perpendicular to the other, producing in each point on the central axis of specimen,
are calculated as to combine various dimensional ratios (4/d); 0.5, 1.0, 1.5, 2.0, and
various loading ratios (d, /d); 0.1, 0.2, 0.3, ------ ,0.9 (when its ratios are expressed
in 4, /4y, those values become 100, 25, ««veveeee , 1.2), and Poisson’s number (m); 4, 6
and 8. Along the central axis, that is, z-axis, those stresses express the three prin-
cipal stresses and o, is equal as oy . An example of calculated stresses is shown in
Fig. 2. In Fig. 2, the ordinate shows the ratio of height and distance from top of
specimen (z/k). and the abscissa shows the divided value of stress by —P/4;.

Some charactristics for stress distribution may be observed from Fig. 2, as fol-
lows.

(i) The principal stress on vertical direction presents always compressive stress,
but those on horizontal show tensile at lower parts and compressive at upper parts.
In the near of bearing pressure both principal stresses become large value, and
produce the state of tri-axial confining stresses.

(ii) At any point, tensile stress o, is smaller by one order than compressive
stress o, . On the other hand, ¢, is hardly effected by Poisson’s number but o, may
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Fig. 2 Stresses along z-axis of cylindrical specimen subjected to the bearing
pressure.

be achieved relative large effect by m. As the loading ratio is small (that is, do/d
< 0.3), maximum of tensile stress that is produced at the near of bearing pressure

(such as z/k=0.3~0.1) is particularly effected by Poisson’s number. Thus, if the
states of stresses at that local position dominate the failure of concrete specimen,
the effects of Poisson’s number may not be negligible.

(iii) As the loading condition spread over whole surface of specimen, o; is equal
to —1x (—P/4.) at any cross section. If the load is applied partially, as principle
of Saint-Venant have been shown, o, develops progressively at whole cross section
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according as increase distance from loading point, and put up in o; = ~1 X (—P/4;)
lastly. Therefore, it can be recognized that the effect of dimension in bearing ca-
pacity is negligible when #4/d is more than 1.5, because the siress states become
uniform, that is, o, = — 1 and o, = o5 = 0.

3 Criterion of Failure for Concrete

It has been assumed in the above analysis that the distribution of the load under
the bearing plate is uniform. But generally considering the pressure between two
elastic bodies in contact, it may be thought that the distribution of the load is not
uniform but varying such as its smallest value is at the center (r=0) and its largest
value is at the boundary of the circular area of contact (r=d, ). Moreover it may
be that the diametrical stress (o, ) is the largest tensile stress at the same boundary
(r=d, ) although only near the surface. Due to these stress states a circular tensile
crack along that boundary is produced when the propotion of the loading ratio d, /d
is relatively small.

It has been reported at the previous papers? that the crack however is of local
character which does not substantially affect ultimate failure of the specimen, and
that if the bearing plate with rounded corner is used the distribution of the load
becomes such uniform that the crack is almost hard to be produced.

Then the failure of the specimen, apart from that local fracture, must be depend-
ed on the distribution of stresses along the z-axis as shown in Fig. 2. Because
stress states along the axis differ from points to points, it, however, is complicated
to predict where the ultimate failure of the specimen begins and to estimate the
ultimate load at the failure.

Now the authors adopt such a procedure as follows. At first we will determine
the equation of the parabolic Mohr envelope which enclosed a circle of the uniaxial
tensile strength of concrete (o)) , touching it at the vertex (o:,0), and a circle of
the uniaxial compressive strength of concrete (o) , that is

a{ynET- Yo -0, 2)

where n = —o, /o; . Changing the value of » adequately, the corresponding envelopes
can include most actually generalized criterions of failure of concrete, such as reduc-
ing to the Griffith Criterion when n = 8.

Next let us assume that when a Mohr stress circle at a point, theoretically calcu-
lated, may touch the envelope the failure occurs at that point (Assumption 3) .

Then we can obtain the measure of the stress severity®, in other words the mea-
sure of the likelihood of failure at each point along the z-axis. That is, the stress
severity is defined as the ratio of the (theoretical) load at failure of the specimen
to the load which would (theoretically) have been required to cause failure at the
point, and its calculation is as follows. The relative failure load (P) of each point
which would theoretically have been required for the Mohr stress circle of the each
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point to touch the envelope of Eq.(2)is calculated from the stress states as shown in
Fig. 2. Letting Pui: be the minimum value of B, P, would indicate the load at
the first failure of the specimen, and the stress severity s at each point is given by
the ratio of P, to P at the point, .

s = Ppin /P. (3)

Thus, s at the point where being the most likely to fail is equal to 1, and the
other points where s 2 1 (1 > s > 0) have not yet failed untill the load would
increased to 1/s ( > 1) times of the load that has caussed failure of the point where
s = 1. For an example to clarify the above discription, the Mohr critical envelope
of Eq. (2) and the Mohr stress circles accompanied by the values of s of points along
the z-axis when the circle of the point where s =1 touches the envelope are graphically
shown in Fig. 3. It is clearly seen from Fig. 3 that the points where s== 1 (z/&

= 0.2 and 0.3) may be the likely-

'?.’2={‘\'/'rT+_l-i}201- (GF - 0) ho?d of failure while the other

hA= 1 / points where s << 1 are not yet so

when the point where s = 1 (z/k =
0.25) is failed.

It is to be noted that the value
of s may vary naturally correspond-
ing with n (= -0,/ o;) although
the stress states are the same.
Therefor in each of such three cases
as n =8, 10 and 15, the values
of s are calculated on every stress
states as shown in Fig. 2. Some of

the results, i. e. when m =6 are

Fig. 3 Diagram explaining the stress severity . : .
(s) by Mohr stress circles of points along shown in Fig. 4. In Fig. 4 the left,
z~axis at failure of the pont where s=1.0, middle and right figures are when n
accmpanied by the Mohr critical envelope. .
On this example, h/d=1, do/d—0.5, m—6 =8, 10 and 15 respectively, and the
and n=10. upper, second, third and lower fig-

ures are when #/d = 0.5, 1.0, 1.5
and 2.0 respectively. At each figure the contour lines of s are drawn on the coordi-
nates whose horizontal and vertical lines are the propotion of the loading ratio (d,
/d) and the position of points on the z-axis of each test piece (z/k) respectively,and
the zones. I, Tf and Il enclosed by the dotted lines correspond to those characteriz-
ing the stress states of each point by where Mohr stress circle of the point would
touch the envelope as shown in Fig.3. That is to say, failure -at any points in the
zone I would occur under the condition that three principal stresses are compres-
sive, while failure in the zones T and I would do under the condition that at least
maximum stress o, (= oy ) must be tensile, and failure in the zones II and I, espe-
cially in the zone I, is therefor affected by these tensile stresses. Thus an aspect
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Fig. 4 Diagrams showing the stress severity (s) at points along z-axis, where m
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of failure of a specimen would vary according as in which zone T, I or II substan-
tial failure of the specimen may be caused.

It is clear from the results,

(i) that the values of s of the points in the near of the bearing pressure is relat-
ively little, i.e. showing little likely to failure, no matter how high compressive the
three principal stresses would be,

(ii) that the greater zone is critically stressed, i.e. s == 1, as the larger loading
ratio d, /d is approached, so that failure throughout the test piece is easy to occur,
while the smaller zone is critical as the smaller 4, /d is,

(iii) that the point where s = 1 positions near the upper end of the specimen when
the smaller d, /d is, while the inner or lower of the specimen as the larger o, /d is,
and that this position is dependent on =,

(iv) that the point where s = 1, almost agreeing with the point where the maxi-
mum tensile stress arises, belongs always to the zone 1, and that the failure is
therefor affected also by the tensile stress o, (=04 ) and, then, the values of m and

n.

4 Theoretical Formula of Bearing Strength

Under the above assumptions, the ultimate compressive load when the specimen is
failed can be calculated from o, and o; .

At first let us assume that the ultimate load is equal to the load (P; ) which would
cause failure at the point where s = 1, the relations between P, and o, (or o:)
are shown, for an example, by the dotted lines in Fig. 5 where 2/d = 1 and » = 10.
Hereupon %; is given by the equation,

ke =(~P1 fAc) [oo = (P, /Ac) [nor . (4)

1.0

h/d—“-l As has been mentioned, the extension

08— n=[0 / of the zone where s == 1 is varied with
o the loading ratio (d, /d) ; the smaller
x 06 the ratio d, /d is, the smaller that zone is.
3‘; , In the case of the small ratio d, /d, when
0.4 Kc ot Eq.5/ Z the load is increased untill the stress cir-

r 4,,’ cle of the point where s = 1 would theo-
0.2 é%y ke of Eqﬂ» e retically touch the envelope of faifure,
’f/’,yﬁ/’// ! the small zone is critically stressed but

0 02 04 06 08 10 most part of specimen is not at all. In
'__>d°/d such a case the specimen, as is experimen-

tally known, does not entirely fail at

Fig. 5 Relations between the coefficients, that load as far as new stress states
Kc of Eq. (4) and Kc¢’ of Eq. (5) , cyeq s . .
and the values of do /d and m, where of equilibrium in the specimen may be

h/d=1, and n=10, achieved by the redistribution of the
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load. Consequently when the bearing strength (o, ) defined by Eq. (1) is regarded
as a ultimate strength of the specimen subjected to the bearing pressure, the value
of k, determined from the load (P, ) which would cause failure at the point where
s = 1 must be suitably modified as follows.

Considering the characteristics of the stress states and the actual conditions of
failure of the specimen, it is assumed that the ultimate load is equal to the load
(P ) which would cause failure at the points in the some range on the z-axis, such
as the range equal to a half of radius of crosssection of the specimen(d/4), including
the point where s = 1 (Assumption 4) .

Then for the above mentioned example, the relations between P and o, (or o; )
are shown by the solid line in Fig. 5 where %.’ is given by the equation,

ko' = (=P, fAc) Joo = (P /4c) /nos. (5)
Substituting Eq. (5) in Eq. (1), we obtain the relations between o, and o, (or o; )
as follows.
0"5’“;1:;&‘;(,1'.0 15 z:.o 2-8?‘(;/4.0;0 15 20 ou/ oc = ko' 4,/ 4p. (6-2)
g e, - oy /) or = —nk;" 4./ Ap . (6-b)
Whenever considering n=—o, /

o both the above expressions

are the same and then the for-

mula of bearing strength can

generally be expressed in Eq.

(6-a) inspite of conditions of

failure of the specimen. One

should however note that the

coefficient &£/ in itself is depend-

ent on n as well as the values of
k/d, d,/d and m.
Converting the value of £’/

theoretically, the various formu-

las of bearing strength which

have been proposed experimen-
tally can be deduced. But the
coefficients of those formulas

should also be functions of the
factors, such as %/d, d,/d and m,
which affect the stress states of

do/d =04

20

the specimen and the other

s s factor, such as n, which affects
7 =

< 09 e the criterion of failure. Conse-

1o quently it is difficult to obtain

Fig. 6 Theoretical relations between oy/0c and the

such a formula with simple form
values of h/h, do /d, m and n., p
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and a constant coefficient which would be available under very different conditions
at bearing pressure test.

At the end, the values of o, /o, theoretically calculated from Eq. (6-a) under var-
ious conditions are shown in Fig. 6. When theratio (4/d) is less than 1.0 or the ratio
(d, /d) is more than 0.5 effects of friction should not be ignored in actual test.
This is the subject for a future study.

5 Conclusions

The effects of the various factors on bearing strength (o ), such as the dimen-
sion ratio of the specimen (/d) , the loading ratio (d, /d), the Poisson’s number (m)
and the strength ratio (») have been made clear theoretically. It has also clarified
from the stress severity diagrams that the failure conditions of the specimen vary
from tensile failure to entire compressive failure according as the conditions pro-
vided by the above mentioned factors.

Using the coefficient (k,’) estimating the effects of the same factors, the theore-
tical formula of bearing strength has been shown in Eq. (6-a). These results may
be useful in discussion of the experimental results and formulas of bearing stre-
ngth quantitatively as well as qualitatively. It should be noted that the formulas
so far have not merely been sufficient because of the disregard for the relationship
between (o, ) and (o; ), but also overlooking the effect of Poisson’s number (m)

on (o).
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