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ABSTRACT
Hepatocellular carcinoma (HCC) is a malignant tumor 
with poor prognosis, and is one of the leading causes of 
cancer-related deaths worldwide. Recently, the develop-
ment of therapeutic drugs via novel mechanisms of 
action, involving molecular-targeted drugs and immune 
checkpoint inhibitors, has progressed in the field of 
HCC. However, the recurrence rate remains high, and 
further improvement of the prognosis of patients with 
HCC is urgently needed. Cancer stem cells (CSCs) are a 
promising target for further development of novel anti-
cancer drugs because they are reportedly involved in tu-
mor initiation, maintenance, recurrence, and resistance 
to conventional therapies. Although several studies have 
already been conducted, the functions and roles of CSCs 
in the development and progression of tumors remain 
to be elucidated. In this review article, we will clarify 
the fundamental knowledge of CSCs necessary for the 
understanding of CSCs and will outline so-far identified 
markers specific to liver CSCs and the pathological and 
therapeutic implications of CSCs in HCC.
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Hepatocellular carcinoma (HCC), which is the most 
frequent primary liver cancer, is a poor-prognosis 
malignant tumor with a high recurrence rate. A study 
suggested that approximately 850,000 people have de-
veloped liver cancer in 2015, which is the sixth common 
cancer worldwide.1 In the same year, approximately 
810,000 people have died of liver cancer globally, which 
is the fourth leading cause of cancer-related deaths.1 
The etiologies accounting for HCC include hepatitis 
B virus (HBV), hepatitis C virus (HCV), alcohol, and 
aflatoxin. In addition, non-alcoholic steatohepatitis 
(NASH) developed from a fatty liver without excessive 
alcohol consumption is becoming the major cause of 
HCC.2 In Japan, the numbers of patients with HCC and 
HCC-related deaths are apparently decreasing because 
of the establishment of preventive interventions, includ-
ing HBV vaccination, direct acting antivirals for HCV, 
and decontamination of aflatoxin.3 However, globally, 
the prevalence and death rate of HCC tend to increase, 

and, interestingly, this increase was more profound in 
countries with high socio-demographic index, where the 
latest therapeutic options are believed to be more readily 
available to people.4 Although the research and devel-
opment of drugs for NASH are currently underway, 
sufficient HCC prevention remains to be established.5, 6 
Moreover, although several novel molecular-targeted 
drugs were recently approved for HCC treatment, these 
drugs have not attained a remarkable improvement in 
the prognosis of HCC patients.7 Thus, the identifica-
tion of previously unrecognized molecular targets is 
keenly necessary to develop innovative drugs for HCC 
treatment.

We elaborated, in the present review article, the 
fundamental functions of cancer stem cells (CSCs) and 
summarized the molecular markers defining liver CSCs, 
all of which are suggested to have profound functions in 
HCC. Moreover, we explained the recent findings on the 
pathological and therapeutic significance of liver CSCs. 
This review emphasizes that CSCs will provide novel 
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insights into the understanding of the development and 
progression of HCC and hold a promising potential as 
a therapeutic target for the diagnosis, treatment, and 
prevention of HCC.

TUMOR-INITIATING PROPERTY OF CSCS
CSCs are defined as cancer cells that are capable of 
self-renewal and differentiation into non-CSCs and 
were first determined as tumor-initiating cells.8, 9 That 
is, only a small subpopulation of cancer cells has been 
demonstrated to be able to initiate a tumor tissue in 
an immunocompromised mouse.8, 9 The stemness has 
been postulated to have conferred to cancer cells via 
(1) the transformation of tissue stem or progenitor cells 
with maintaining the self-renewal ability or (2) the 
reprogramming of cancer cells transformed from differ-
entiated cells.10 The underlying molecular mechanisms 
remain unclear, although the above scenarios may occur 
depending on the context of tumor development.

In order to explain the process of cancer cell expan-
sion, two major models have been proposed, namely, the 
stochastic (or clonal evolution) model and the hierarchy 
(or CSC) model.11 The former proposes that cancer cells 
with CSC-like properties are randomly produced via the 
gain and loss of a wide variety of cellular traits. Thus, 
all cancer cells could have the potential to be CSCs, and 
the proportion of CSCs would be varied. However, an 
autologous transplantation of leukemia cells demon-
strated that the frequency of tumor-initiating cells was 
constant at approximately 1:100.12 A similar result was 
also observed by an in vitro colony formation assay.13 
Hence, these observations better fit the hierarchy model 
that has been originally established in stem cell biology. 
In this model, it is proposed that a subpopulation of 
cells undergoing self-renewal and differentiation would 
exist at a certain proportion in a tumor tissue. However, 
following the long-term culture of isolated CSC marker-
negative cancer cells, it was demonstrated that CSC 
marker-positive cells appeared at a proportion similar 
to that observed before the isolation.14 This is not the 
case for normal stem cells that, once differentiated, can-
not revert to original cells without specific conditions 
and better suits the stochastic model rather than the 
hierarchy model. Since these observations are difficult 
to be elaborated by either one model, the heterogeneity 
of tumor tissues has been attempted to be expounded 
by constructing a hybrid model of both.15 The precise 
molecular mechanisms of tumor initiation by CSCs 
will provide novel insights for the understanding of the 
process of tumor development and will thus be potential 
therapeutic targets for the prevention and treatment of 
tumors.

CSC MARKERS IN HCC
Side-population cells
As described above, CSCs have been determined as 
a subpopulation of cancer cells that can initiate tumor 
tissues in immunocompromised mice.10 However, 
CSC and non-CSC should be separated from a mixed 
cellular population in order to understand their detailed 
functions. As such, side-population (SP) cells have 
been taken advantage of since before CSC markers 
have been sufficiently elucidated.16 CSCs and normal 
stem cells are known to strongly express ATP-binding 
cassette (ABC) transporters that are involved in drug 
efflux and resistance to chemotherapy. Following stain-
ing with Hoechst 33342, which is a substrate for ABC 
transporters, dim cells, that is, SP cells, were isolated by 
a flow cytometer. This method was originally adopted 
to isolate hematopoietic stem cells and also oval cells, 
which are considered as hepatic progenitor cells.17, 18 
SP cells derived from HCC cell lines have been demon-
strated to be enriched with cancer cells with stemness 
and a high tumor-initiating potential. Chiba et al., for 
instance, found that two of four HCC cell lines contain 
SP cells with a high expression level of ABCB1 but at 
a quite low frequency of less than one percent of total 
cells and that these SP cells exhibited both hepatocytic 
and cholangiocytic features as observed in hepatic 
progenitor cells.16 Furthermore, SP cells from HCC 
cell lines showed more malignant characteristics than 
did non-SP cells and efficiently initiated tumor tissues 
in immunocompromised mice.16 Further investigation 
by the same research group also revealed that the poly-
comb protein, BMI1, was upregulated in liver SP cells, 
compared with that in non-SP cells and played a critical 
role in self-renewal and tumor-initiating property of SP 
cells.19 Another group also demonstrated the presence 
of SP cells with a high metastatic potential in HCC 
cell lines.20 It was suggested through a comparative 
proteomics approach that the AKT and nuclear factor 
kappa B (NFκB) pathways are involved in the regula-
tion of liver SP cells.20

Further studies have thus far elucidated that CSCs 
and SP cells express several specific cell surface pro-
teins that are not expressed in non-CSCs and non-SP 
cells and that there exist cells that express different CSC 
markers even in the same tumor tissue. Intriguingly, the 
functions of CSCs are slightly different from each other 
depending on the cell surface markers, although they 
share common properties, such as the tumor-initiating 
property. In HCC, as described below, several CSC 
markers, including CD133,21 CD44,22, 23 CD24,24 epi-
thelial cell adhesion molecule (EPCAM),25 CD90,26, 27 
CD13,28 OV6,29 and aldehyde dehydrogenase (ALDH), 



3

Liver CSCs

© 2021 Tottori University Medical Press

have been reported (Fig. 1).30 In addition, a huge num-
ber of long non-coding RNAs (lncRNAs) are expressed 
in cells and involved in a variety of cellular functions, 
including carcinogenesis. Recently, we demonstrated 
that nuclear paraspeckle assembly transcript 1 (NEAT1), 
a lncRNA, is involved in the enhancement and mainte-
nance of CSC-like properties and is required for CD44 
expression in HCC.31

It has been demonstrated that the knockdown or 
knockout of these CSC markers in cancer cells result in 
the impairment of CSC-like properties, which suggests 
that these molecules and their downstream signaling 
pathways play crucial roles in the regulation of CSC-like 
properties. Accordingly, these CSC-specific molecules 
not only attract interest in terms of molecular cancer bi-
ology but also are expected as novel therapeutic targets 
for HCC treatment. This section will briefly describe the 
pathological implications of each CSC marker in HCC.

CD133
CD133 encoded by the PROM1 gene is expressed as a 
membrane glycoprotein mainly in neurons and bone 
marrow progenitor cells and is suggested to have func-
tions required for the maintenance of undifferentiated 
status.32, 33 It was demonstrated that CD133-positive 
HCC cells exhibited strong expression of a liver progen-
itor marker, α-fetoprotein (AFP), and weak expression 
of mature hepatocyte markers, glutamine synthetase, 
and cytochrome P450 family 3 subfamily A member 4.21 
These findings suggest that CD133 also plays a regula-
tory role in the maintenance of the undifferentiated 
status of CSCs in HCC. In addition, it was shown that 
CD133 induced the activation of the mitogen-activated 
protein kinase cascade through interleukin-8 (IL-8) 
and neurotrophine.34 Moreover, CD133 expression in 
HCC was correlated with the activation of AKT35 and 
NFκB,36 both of which are crucial regulators of liver 
CSCs and SP cells.20 Conversely, the suppression of 

Fig. 1.  Factors defining liver CSCs. To maintain their properties in HCC, CSCs express the factors including specific cell surface 
proteins as well as intracellular proteins and lncRNAs. The proposed regulators of the factors are shown in open squares. Their target 
signaling pathways and phenotypes are shown in gray squares. Details are discussed in the main text.
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CD133 attenuated CSC-like properties and tumorigenic 
and metastatic potential, which suggests that CD133 
would be a promising target for HCC treatment in a 
study in which mice are used.35, 36

CD44
CD44 is expressed as a variant isoform (CD44v) 
incorporating variant exons, as well as standard isoform 
(CD44s).22, 23 Reportedly, CD44v is expressed in 
CSCs derived from a wide variety of tumor tissues and 
potentiates cellular antioxidant capacity by enhancing 
the synthesis of glutathione.37, 38 However, CSCs in 
HCC mainly express CD44s. This fact prompted us to 
examine the function of CD44s in HCC by construct-
ing CD44-knocked out HCC cells.23 In our previous 
report, CD44s has been demonstrated to be involved in 
the induction of antioxidant enzyme genes expression 
and the maintenance of CSC-like properties in an HCC 
cell line, possibly via NOTCH3.23 Meanwhile, another 
research group reported that CD44 expression in HCC 
was induced by IL-6 secreted by tumor-associated 
macrophages (TAMs), which results in the enhance-
ment of CSC-like properties.39 In addition, CD44s was 
suggested to enhance the metastatic potential of HCC 
cells rather than the maintenance of stemness, under the 
control of transforming growth factor-β (TGF-β).22

CD24
Lee et al. analyzed the gene expression profile of tumor 
tissues that survived after treatment with cisplatin in 
mice transplanted with HCC cells and found that CD24 
was significantly upregulated in the survived cancer 
cells.24 CD24 is known as a tumor-related gene highly 
expressed in various tumor tissues and is suggested 
to regulate CSC-like properties by inducing NANOG 
expression via signal transducer and activator of 
transcription 3 (STAT3) in HCC.24 Moreover, it was 
proven that TWIST2, a transcription factor involved in 
epithelial–mesenchymal transition (EMT), enhances 
CSC-like properties by inducing CD24,40 suggesting the 
TSWIST2-CD24-STAT3-NANOG pathway as a novel 
regulatory mechanism for CSC regulation in HCC.

EPCAM
In a healthy liver, EPCAM is expressed in bile duct 
epithelial cells. Liver progenitor cells also express 
EPCAM, but its expression is diminished as hepatocyte 
differentiation progresses and thus is absent in mature 
hepatocytes. CSCs in HCC also exhibit the high 
expression levels of EPCAM under the control of the 
WNT signaling pathway.41 The expression of EPCAM 
and AFP has been demonstrated to be possibly used 

to discriminate between malignant HCC and bile duct 
epithelial cells.25, 42 In HCC cells double-positive for 
EPCAM and AFP, the expressions of CD133, liver 
progenitor markers, and WNT target genes were 
concomitantly upregulated, whereas those of mature 
hepatocyte markers were downregulated.42 Moreover, 
the knockdown of EPCAM in HCC cells impaired CSC-
like properties.42 In addition to its regulatory function 
of stemness, the co-culture of HCC cells with major 
histocompatibility complex (MHC)-independent γδT 
cells in the presence of a bi-specific antibody recogniz-
ing EPCAM and CD3 resulted in the increased cell lysis 
of HCC cells,43 which suggests that EPCAM can be ap-
plied as a target for HCC immunotherapy. Nevertheless, 
to distinguish between HCC and bile duct epithelial 
cells, further studies are required for the development 
and clinical application of EPCAM-targeting drugs.

CD90
Using six human HCC cell lines and an immortalized 
hepatocyte line, Yang et al. investigated the relationship 
between several liver progenitor markers and tumor-
initiating potential.26, 27 Consequently, they identified 
CD90 as an HCC-specific protein whose expression was 
correlated with tumor-initiating potential.26, 27 CD90 
expression in HCC has been suggested to be regulated 
by exosomes secreted from TAMs.44 Intriguingly, most 
CD90-positive cells are also positive for CD44 whose 
expression is also regulated by TAMs.39 Consistently, 
the metastatic potential of CD90-positive cells has been 
shown to be suppressed by an anti-CD44 antibody.26 
Moreover, it has been observed that, whereas EPCAM 
and CD133 are co-expressed with immature hepatocyte 
markers, CD44 and CD90 are co-expressed with mes-
enchymal markers that are indicative of high metastatic 
potential.45 These results suggest that CD90 mainly 
regulates the metastatic potential of HCC cells via 
CD44.

CD13
CD13, also known as aminopeptidase N, was identified 
via gene expression profiling, as a cell surface protein 
that is highly expressed in SP cells of HCC.28 Notably, 
unlike other CSC markers, cells highly expressing CD13 
are mostly in the G0/G1 phase,28 and thus, CD13 is 
considered as a marker of quiescent CSCs. Cancer cells 
in a quiescent state are generally known to be relatively 
resistant against various anti-cancer drugs because 
most of those drugs target cellular machineries required 
for cell proliferation. However, ubenimex, a protease 
inhibitor, which also inhibits the aminopeptidase activ-
ity of CD13, has been shown to have potentiated the 
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sensitivity of HCC cell lines to 5-fluorouracile.28 It has 
also been demonstrated that CD13 was co-expressed 
with N-cadherin, a mesenchymal marker, and moder-
ately alleviated oxidative stress during the induction 
of mesenchymal phenotype in HCC cells.46 Thus, it is 
suggested that CD13 contributes to the efficient induc-
tion of EMT by protecting HCC cells from the oxidative 
stress associated with EMT and thereby promotes the 
acquisition of metastatic potential. However, how this 
aminopeptidase activity regulates CSC-like properties 
in HCC remains to be elucidated.

OV6
OV6 is a monoclonal antibody reacting with oval cells 
that appear in the canals of Hering after severe liver 
damage of rats. This antibody was produced by using 
neoplastic nodules in the rat liver as an antigen.47 The 
target protein has not been fully specified, although it 
was shown that a cytoskeletal protein with a molecular 
weight of 56 kDa was reacted with OV6.47 The oval 
cells are considered as hepatic progenitor cells found in 
the rat livers, as described above. However, it is known 
that oval-like cells that are reacted with OV6 also appear 
in damaged liver and HCC of humans. Consistently, it 
was demonstrated that OV6-positive cells isolated from 
HCC also expressed other CSC markers and had high 
tumor-initiating potential.29 WNT/β-catenin signal-
ing increased the number of OV6-positive cells and 
contributed to cisplatin resistance in HCC.29 Moreover, 
the frequency of OV6-positive cells was significantly 
correlated with poor prognosis of patients with HCC.48 
Intriguingly, OV6-positive cells were mainly found 
in the invasion front of HCC tumor tissues, and an in 
vitro assay revealed that these OV6-positive cells have 
a high-migrating and invasive potential.48 Additionally, 
the same group also demonstrated that stromal cell-
derived factor 1 induced the expression of OV6 antigen 
through C-X-C motif chemokine receptor 4 and thereby 
promoted metastasis of HCC cells.48

ALDH
A proteome analysis of HCC cell lines identified ALDH 
as a protein highly expressed in CD133-positive cells.30 
It has been shown that ALDH and CD133 double-
positive cells had higher CSC-like properties than 
those of ALDH-negative and CD133-positive cells.30 
Additionally, ALDH has been suggested to enhance the 
survival of cancer cells via the detoxification of endog-
enous and exogenous aldehydes, and the scavenging of 
reactive oxygen species.49 Conversely, ALDH is also 
known to be a critical enzyme for the synthesis of reti-
noic acid, which has an antitumor activity, in general. 

How ALDH activity in CSCs affects retinoid signaling 
remains to be elucidated. Notably, a CSC-targeted 
therapy using retinoic acid was proposed because the 
retinoic acid lowered the ALDH activity in lung cancer 
cell lines in a negative feedback manner.50, 51

LncRNA
The lncRNA, NEAT1, is expressed as short variant 1 (3.8 
kb; NEAT1v1) and long variant 2 (22.7 kb; NEAT1v2). 
Although the expression of NEAT1 was induced by 
tumor protein p53 (TP53), it was demonstrated that 
NEAT1 promoted carcinogenesis by activating DNA 
repair and cell proliferation signals.52, 53 We recently 
elucidated that the knockout of the NEAT1 gene resulted 
in decreased CSC-like properties of HCC cell lines, 
which were concomitant with the abolishment of CD44 
expression.31 Rescue experiments supported the notion 
that CD44 expression in HCC was highly dependent on 
NEAT1 expression. As described above, since CD44 
regulates CSCs, it was postulated that NEAT1 might 
maintain CSC-like properties via CD44. However, we 
found that NEAT1 overexpression restored the CSC-
like properties even in CD44-deficient HCC cells.31 
These findings suggested that NEAT1 maintained the 
CSC-like properties of HCC cell lines in both CD44-
independent and CD44-dependent manners.

In addition to NEAT1, several lncRNAs have been 
reported to be involved in the maintenance of CSC-like 
properties, including highly upregulated in liver cancer 
(HULC),54 metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1),55 and LINC00324.56 HULC 
is a target gene of a lncRNA, cancer upregulated drug 
resistant (CUDR), which induced hepatocytic dif-
ferentiation of embryonic stem cells and promoted the 
malignant growth of the hepatocyte-like cells.57 In liver 
CSCs, HULC enhanced autophagy by inducing the ex-
pression of sirtuin 1 and thereby promoted the cell cycle 
in a cyclin D1-dependent manner.54 MALAT1 has been 
shown to be upregulated in HCC.55 The knockdown 
of MALAT1 led to a decrease in CD133 and CD90 
double-positive CSC populations in association with 
the suppression of WNT/β-catenin signaling, although 
its detailed mechanism is unclear.55 LINC00324 was 
also identified as a lncRNA highly expressed in HCC, 
and, interestingly, its expression was significantly as-
sociated with FAS ligand (FASL).56 Mechanistically, 
LINC00324 has been shown to have an interaction with 
PU box binding protein, which is a transcription factor 
that directly regulates FASL expression.56 Moreover, 
the knockdown of LINC00324 or FASL decreased the 
expression of stemness-related genes.56 However, it is 
known that FASL induces apoptosis in cells that express 
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FAS. How LINC00324 regulates CSC-like properties 
via FASL remains unclear. These lncRNAs provide 
more insights into the regulatory mechanisms of CSC 
by identifying their target genes, although, unlike 
surface protein markers, they cannot be used for the 
isolation of CSCs.

MALIGNANT FUNCTIONS OF CSCS IN HCC
As described above, CSCs exhibit not only tumor 
initiation but also other malignant features, including 
resistance to conventional therapies, EMT phenotype, 
and immunomodulatory property. Sorafenib is a stan-
dard molecular-targeted drug used for the treatment of 
advanced HCC. Liver CSCs are frequently endowed 
with sorafenib resistance through several pathways. 
The downregulation of angiopoietin-like protein 1 
(ANGPTL1) in HCC has been shown to be associated 
with sorafenib resistance.58 Conversely, the overexpres-
sion of ANGPTL1 suppressed sorafenib resistance, 
and CSC-like properties, in association with decreased 
EMT phenotype through the downregulation of an 
EMT factor SLUG.58 Metformin, a type 2 diabetes 
drug, inhibited the EMT process and reduced CSC-
like properties and sorafenib resistance in an HCC cell 
line.59 Conversely, microrchidia family CW-type zinc 
finger 2 (MORC2) also enhanced CSC-like properties 
and sorafenib resistance.60 Mechanistically, MORC2 
induced DNA methylation of neurofibromatosis 2 
and kidney and brain protein genes by DNA methyl-
transferase 3A, leading to the suppression of the anti-
tumorigenic Hippo signaling pathway.

The induction of EMT is suggested to be an 
important process to acquire CSC-like properties. The 
EMT factor TWIST2, which is overexpressed in HCC, 
induced liver CSCs by directly augmenting CD24 
transcription as well as increased migration and inva-
sion abilities.40 SLUG is also a well-known EMT factor 
and plays an essential role in the induction of EMT by 
hypoxia-inducing factor 1α (HIF1α).61 SLUG induced 
by HIF1α further enhanced the CSC-like properties in 
HCC through NOTCH1 signaling.61 The cancer stem-
ness of leukemia cells has been demonstrated to be sup-
pressed by the retinoic acid-inducible gene I (RIG-I).62 
The knockdown of RIG-I in HCC induced CSCs and 
upregulated TGF-β expression in the HCC cells.63 
TGF-β is a multi-functional cytokine that induces not 
only EMT phenotype but also CSC-like properties in 
HCC.64 Consistently, TGF-β secreted from the cells 
knocking down RIG-I expression directly suppressed 
the maturation of dendritic cells (DCs), which leads to 
the evasion of tumor immunity.63

In tumor tissues, vascular endothelial cells and 

immune cells also exist. Drugs that target these non-
tumor cells have already been developed, for instance, 
vascular endothelial cell growth factor receptor inhibi-
tors and programmed cell death-1 (PD-1)/PD-1 ligand-1 
(PD-L1) inhibitors.7 In addition, non-tumor cells with 
tumor-specific functions, including cancer-associated 
fibroblasts (CAFs),65 tissue-associated myeloid cells,66 
and pericytes,67 have been recently found in tumor 
tissues, and it is revealed that these cells promote the 
growth and metastasis by interacting with tumor cells.68 
Moreover, these non-tumor cells resident in tumor 
tissues also provide a niche for the induction and main-
tenance of CSCs. For instance, TAMs induced CSCs in 
HCC by secreting TGF-β69 or IL-6.39 These factors also 
induced EMT, drug resistance, and further recruited 
myeloid-derived suppressor cells (MDSCs) that sup-
press tumor immunity.39, 69, 70 The stem cell factor (SCF)/
c-KIT axis plays an essential role in maintaining CSCs 
in ovarian and lung cancers and leukemia.71–73 It was 
demonstrated that SCF produced by cancer cells, such 
as in HCC as well as breast, lung, ovarian, and gastroin-
testinal cancers, induced the tumor infiltration and ac-
tivation of mast cells.74 The tumor-infiltrated mast cells 
suppressed tumor immunity by recruiting regulatory T 
(Treg) cells and releasing adenosine.74 The mast cells 
also produced C-C motif chemokine ligand 2, which 
further recruited MDSCs to HCC tissues, and promoted 
IL-17 production by MDSCs.74, 75 IL-17 sequentially ac-
tivated the immunosuppressive function of Treg cells.75 
These results suggest that SCF produced by HCC cells 
creates an immune-suppressive tumor microenviron-
ment, possibly in association with the induction and 
maintenance of liver CSCs. CD206, a mannose receptor, 
is expressed in immature DCs and immunosuppressive 
M2-macrophages and is suggested to be involved in 
immunosuppression.76, 77 Moreover, CD206 expression 
was found in HCC and was correlated with tumor size, 
metastasis, and poor prognosis.78 CSCs in HCC cells 
exhibited a higher expression of CD206 than did non-
CSCs, and the knockdown of CD206 suppressed their 
metastatic potential.78 This result suggests that CD206 
regulates multiple aspects of liver CSCs.

CSC AS A THERAPEUTIC TARGET FOR HCC
Cyclooxygenase 2 (COX2) and its products, prostaglan-
dins, are also essential regulatory factors for CSCs. It 
was demonstrated that the expression level of COX2 
was correlated with the presence of CSCs in not only 
HCC but also in other types of cancers.79–81 Celecoxib, a 
COX2 inhibitor, decreased CD44+/CD133+ and SP cells 
in HCC cells.82 Mechanistically, celecoxib inhibited the 
production of prostaglandin E2 (PGE2) and suppressed 
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the PGE2-induced activation of AKT signaling by 
the upregulation of PTEN.79, 82 Moreover, celecoxib 
sensitized liver CSCs to epirubicin by downregulating 
multi-drug resistance protein 1 (ABCB1) besides the 
downregulation of CD44 and CD133.83 Celecoxib, 
combined with epirubicin, increased tumor-infiltrating 
CD8+ T cells, decreased Treg cells, and downregulated 
PD-L1 expression in HCC tissues.83

Extracellular matrix provides stem cells with a 
niche, which maintains their stemness, and supports 
stable self-renewal and asymmetric cell division. 
Hyaluronan has been demonstrated to be an essential 
extracellular matrix for breast and liver CSCs.84, 85 
Breast CSCs interacted with TAMs via hyaluronan pro-
duced by CSCs and thereby promoted the production of 
platelet-derived growth factor-BB by TAMs to activate 
CAFs.84 The activated CAFs, sequentially, secreted 
fibroblast growth factor (FGF) 7 and FGF9, which 
enhanced CSC-like properties in breast cancer.84 This 
vicious cycle was blocked by 4-methylumbeliferone 
(4Mu), an inhibitor of hyaluronan synthase 2, which 
is upregulated in breast CSCs.84 4Mu also suppressed 
HCC growth, concomitant with the downregulation 
of CSC markers, including CD133, CD90, EPCAM, 
CD44, and CD13 as well as CD47, which acts as a “don’t 
eat me” signal to protect cancer cells from phagocytosis 
by macrophages.85 Consistently, 4Mu combined with 
adenovirus expressing IL-12 significantly potentiated 
phagocytosis by macrophages and antitumor CD8+ 
cytotoxic T cell response.85

Immunotherapy that targets liver CSCs is cur-
rently investigated. Kiatomab is a specific monoclonal 
antibody against KIAA1114, which is a recently identi-
fied cell surface marker of liver CSCs with unknown 
function.86 The inhibitory effect of kiatomab on HCC 
tumor growth and metastasis was demonstrated in a 
murine syngeneic tumor transplantation model and 
was suggested to involve antibody-dependent cellular 
cytotoxicity and complement-dependent cytotoxicity.87

DCs are potent immune adjuvant by presenting 
antigens to naïve T cells and releasing cytokines. DCs 
fused with CD90+ CSCs of HepG2 hepatoma cell line 
showed the increased expression of co-stimulatory 
molecules, such as CD80, CD83, and CD86, and MHC 
class I and II molecules (human leukocyte antigen-A, 
-B, -C, and -DR).88 Moreover, the fusion with CSCs 
induced more potent activation of DCs, including higher 
expression of inflammatory cytokines, than that with 
bulk HepG2 cells.88 Interestingly, DCs fused with CSCs 
activated cytotoxic T lymphocytes (CTL) against both 
HepG2 CSCs and bulk cells.88 However, DCs fused 
with bulk cells induced less activation of CTL against 

bulk cells than did CSCs-fused DC and failed to induce 
CSCs-specific CTL response.88

Cytokine-induced killer cells (CIKs) are a popula-
tion of cytotoxic effector cells generated by treating 
peripheral blood mononuclear cells with specific 
cytokines, such as IL-2 and interferon-γ, and contain 
CD3-/CD56+ natural killer (NK) cells, CD3+/CD56- T 
cells, and CD3+/CD56+ CIKs.89 These “bona fide” CIKs 
are also positive for NK-activating receptor NKG2D 
and exhibit NK-like MHC-unrestricted cytotoxicity 
against a wide variety of malignant cells possibly 
through NKG2D but not toward normal cells.89 Since 
antigen-pulsed DCs directly or indirectly activate 
the killer activity of CIKs, it was demonstrated that 
autologous CIKs co-cultured with autologous DCs from 
patients with HCC efficiently suppressed liver CSCs-
derived tumor growth in vivo.90 Notably, when DCs 
were pulsed with liver CSCs, the suppression effect was 
more prominent than when DCs were pulsed with bulk 
HCC cells.90 These results indicate that liver CSCs are 
promising therapeutic antigens for the establishment of 
immunotherapy for HCC.

CONCLUSIONS
A large part of the regulatory mechanisms of CSCs 
remains unclear although enormous attempts have been 
made to understand CSCs, and the existence of CSC 
itself remains debated. The CSC markers and functions 
depicted in the present review are just a part of those 
identified so far. Some of these CSC markers solely 
regulate CSC-like properties whereas others cooperate 
with each other to promote CSC-like properties. By 
contrast, some CSC markers are mutually exclusively 
expressed in cancer cells even those of the same HCC 
tissue. To develop innovative medicines to combat HCC, 
the complex functions of these CSC-related molecules 
in the maintenance of CSC-like properties should be 
urgently elucidated.

Clinical needs for HCC treatment are being met 
owing to the recent approval of several molecular-
targeted drugs.7 Moreover, with the advancement of 
surgical treatments, the prognosis of HCC patients is 
slowly but steadily being improved. However, in line 
with the prolonged prognosis by those recent advances, 
recurrence risk appears to be slightly increased. Because 
CSCs are involved in recurrence as well as de novo 
tumor occurrence, CSC-targeted therapy will also be a 
good option for the prevention of cancer recurrence in 
the future. We believe that deepening our understanding 
of CSCs will provide a great advance toward achieving 
the complete eradication of HCC.
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