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ABSTRACT
Background  Technical issues in free flap transfer, 
such as the selection of recipient vessels and the 
positioning and method of anastomosis of the vascular 
pedicle, have been the subject of vigorous debate. 
Recent developments in computational fluid dynamics 
(CFD) have enabled the analysis of blood flow within 
microvessels. In this study, CFD was used to analyze 
hemodynamics in a microanastomosis.
Methods  In the fluid calculation process, the fluid do-
main modelizes microvessels with anastomosis. The in-
let flow conditions were measured as venous waveform, 
and the fluid is simulated as blood. Streamlines (SL), 
wall shear stress (WSS), and oscillatory shear index 
(OSI) at the anastomosis were visualized and analyzed 
for observing effects from the flow field.
Results  Some flow disruption was evident as the SL 
passed over the sutures. The maximum recorded WSS 
was 13.37 Pa where the peak of a suture was exposed 
in the lumen. The local maximum value of the OSI was 
0.182, recorded at the base of the anastomosis on the 
outflow side.
Conclusion  In the ideal anastomosis, the SL is 
disrupted as little as possible by the sutures. The WSS 
indicated that thrombus formation is unlikely to occur 
at suture peaks, but more likely to occur at the base of 
sutures, where the OSI is high. Tight suture knots are 
important in microanastomosis.

Key words  computational fluid dynamics; computa-
tional modeling; microsurgery; reconstruction; sutured

Advances in the surgical instruments, suture threads, 
and microscopes used in microanastomosis formation 

and developments in anastomosis techniques means that 
free flap transfer has now been established as a com-
paratively safe surgical procedure. However, many stud-
ies have found that the free flaps used for reconstruction 
in the head and neck region have a vascular patency rate 
of almost 100%,1–3 while most studies of free skin flap 
transfer to treat injuries in the limbs report a rate of only 
around 95%.4, 5 This may be because limb vessels often 
suffer degeneration due to arteriosclerosis, making the 
endovascular walls susceptible to damage, or because 
the choices of recipient vessels are limited, meaning 
that it is often necessary to join the vascular pedicle of 
the skin flap with vessels of very different diameters. 
Although modifying the method of anastomosis can 
enable anastomosis formation between vessels of dif-
ferent diameters, this has the problem of requiring that 
the sutures used for anastomosis to be tied off more 
often. Though it is certainly necessary to fit both intima 
exactly, exposed sutures within the vascular lumen 
affect hemodynamics, and they may contribute to post-
anastomosis thrombus formation. There have been no 
reports evaluating what kind of influence threads in the 
lumen give to blood flow. In this study, computational 
fluid dynamics (CFD) was used to analyze the fluid 
dynamics in a microanastomosis and investigate the 
effect of sutures on blood f low passing through a 
microanastomosis.

MATERIALS AND METHODS
To increase the effect of the sutures on blood flow, this 
anastomosis simulated the tapering technique.6 A model 
vascular anastomosis 2 mm in diameter was used. 
Computational meshes were created using commercial 
meshing software (ANSYS ICEM16.0, ANSYS Japan, 
Tokyo, Japan). The mesh has 700,890 elements and 
198,467 nodes (Fig. 1).

The suture thread used had a diameter of 0.03 mm 
(equivalent to 10–0 nylon). Ten stitches were inserted 
around the circumference of the vessel, with the thread 
extending into the lumen at a height of 0.025 mm and 
length of 0.115 mm. On the outflow side, three sutures 
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were placed in a single row. In the part corresponding to 
the three-point suture, the sutures were aligned in paral-
lel, 0.115 mm apart. The computer-aided design (CAD) 
model was created by using commercial software 
(Fusion 360, Autodesk, Mill Valley, CA).

Inlet blood flow was created using an ultrasound 
f lowmeter (HT323 surgical f lowmeter, Transonic 
Systems, Ithaca, NY. Its probe size was 2.0 mm) with 
a period of 1.0 s, based on the venous waveform.7 This 
was set up so that the maximum value was 45.0 mL/
min at 0.14 s, the minimum value –19.0 mL/min at 0.84 
s, and the mean flow volume was 13.0 mL/min (Fig. 
2). The pressure gradient at the outlet was stipulated as 
zero, and the wall surface was given a no-slip condition.

The CFD analysis conditions were as follows. 
OpenFOAM v5.0 software was used for analysis. 
Turbulent pulsatile flow simulation is performed with 
reference to previous hemodynamic research as follows. 
The software solves the Navier–Stokes equations of 
incompressible transient Newtonian fluid. The time step 
size was set up at 5.0 times for 5-10 seconds to reduce 
the Courant number to the sufficient level. We also set 
5–10 seconds as the convergence criteria, where the 
residual at each time step was timed. The fluid density 
was set at 1,060 kg/m3, the coefficient of viscosity was 
set at 0.004 Pa-s to simulate blood.8, 9

Streamlines (SL), wall shear stress (WSS), and os-
cillatory shear index (OSI) are visualized and analyzed 
by using CFD postprocessing software (ParaView, 
Kitware, NY). The WSS is calculated as velocity gradi-
ent by using longitudinal velocity, distance from the 
wall, and the viscosity. In other words, it is the frictional 

force exerted by the blood on the vascular wall mea-
sured in Pa (N/m2). The OSI expresses the size of the 
changes in direction and magnitude of the WSS. It thus 
indicates the degree of reversing direction of the WSS 
within a single pulse cycle (Fig. 3).

Fig. 1.  Suture modeling process. Both the inlet and outlet vessels were 2 mm in diameter. The sutures were aligned at a 36º angle, and 
stitches were inserted in 10 places. At the site simulating the three-point anastomosis, however, two sutures were inserted parallel to 
each other (arrow).

Fig. 2.  Model venous waveform. It was set up so that the period 
was 1 s, maximum flow was 45.0 mL/min, minimum flow was 
–19.0 mL/min, and mean flow was 13.0 mL/min.

Fig. 3.  Formula for calculating the oscillatory shear index (OSI).
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RESULTS
Some flow disruption was evident as the SL passed 
over the line of three sutures on the distal side. Overall, 
however, the SL was flowing in almost a straight line 
at all time points (maximum flow at 0.14 s, second flow 
peak at 0.52 s, and minimum flow at 0.84 s) (Fig. 4). The 
maximum WSS is measured on the top of the suture at 
0.14 s, when the inflow velocity is the peak. (Fig. 5). The 
local maximum value of the OSI was 0.182, recorded at 
the base of the anastomosis on the outlet side. However, 
overall, there were no major differences between the 
values at different times (Fig. 6).

DISCUSSION
Free flap transfer using microsurgery has become an es-
sential surgical procedure for reconstruction at various 
sites, such as the head and neck region and the limbs.1–5 
Almost all studies have reported flap survival rates 
exceeding 95%, and this is regarded as a comparatively 
safe procedure. In most cases, vessels anastomosed to 
the free skin flap are around 1–3 mm in diameter, and 
if anastomosis is performed using a microscope, this is 
not a very technically difficult procedure. However, in 
the rare event of thrombus formation at the anastomosis 
site, in case it is impossible to salvage the grafted flap, 
another skin flap transfer is required. In the case of 
reconstruction following malignant tumor resection 
in particular, delay in starting postoperative adjuvant 
therapy is extremely detrimental to patients. Since the 
success or failure of vascular anastomosis has a major 
effect on patient prognosis, a 100% success rate must be 
the goal.

One factor that increases the difficulty of micro-
anastomosis is the size discrepancy between the anasto-
mosed vessels. The tapering technique6 is one method 

of anastomosing vessels with significantly different 
diameters. This involves cutting the resection margin of 
the larger vessel at an angle and suturing it into a funnel 
shape to reduce its diameter. Although this is an effec-
tive technique for use in the microanastomosis of ves-
sels of different sizes, it creates a three-point suture site. 
In addition, a larger excess of the suture thread used to 
suture the angled part is required than in a normal end-
to-end anastomosis. To prevent blood from leaking at 
the three-point suture site, the threads must be sewn 
close together. All of these factors may contribute to 
post-anastomosis clot formation.

Recent developments in diagnostic imaging and 
computer simulation techniques have enabled the use of 
CFD. Most reports of the use of CFD have concerned 
its use to analyze the occurrence, growth, and rupture 

Fig. 4.  Stream line (SL). Overall, there was almost no disruption of the SL, but a small amount of disruption was evident when it passed 
the three sutures (top right) lined up in a row on the distal side (arrows).

Fig. 5.  Wall shear stress (WSS). The maximum value of 13.37 Pa 
was recorded at 0.14 s.
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mechanism of cerebral aneurysms.10–12 Wain et al. used 
CFD to show that, in a case of microanastomosis 1 mm 
in diameter, the WSS was greater and SL disruption less 
when they were sutured than when a coupling device 
was used.13 Although the extent to which ST disruption 
affects clot formation is unclear, it is believed to have 
at least some effect. The results of the CFD analysis in 
the present study showed that SL disruption occurred 
close to the line of sutures on the distal side of the blood 
flow. This suggests that complex or loose knots might 
further increase SL disruption. WSS is known to sup-
press clot formation.14 Because WSS is a force that acts 
perpendicularly to the blood vessel, even if a clot were 
to form near the peak of a suture, it would immediately 
be detached by the blood flow, making clot formation 
less likely to occur.

The OSI, another important CFD parameter, was 
also analyzed. A high OSI is believed to contribute 
to the generation of oxygen free radicals.15 Vascular 
endothelial cells suffer severe oxidative stress during 
post-ischemia reperfusion,16 and it is likely that damage 
to vascular endothelial cells by oxygen free radicals 
is related to clot formation. In the present simulation, 
the OSI was highest near the base of the sutures. If a 
loose knot made the thread higher at a certain place, 
the area close to the suture base would be prone to clot 
formation. Because the flow of venous blood reverses 
with the beating of the pulse, during its return it col-
lides with the anastomosis generating eddies. This may 
be why the value was particularly high on the outlet 
side. Arterial blood basically flows in one direction, 
and the OSI should therefore be comparatively lower 
at arterial anastomosis than at venous anastomosis. 
This may be one factor in the greater likelihood of clot 
formation at venous microanastomosis than at arterial 
microanastomosis.

CFD has limitations in presenting vital phenomena, 
but it may be able to increase accuracy by measuring 
the shapes of vessels and blood flow more clearly to 
attain preferred conditions.

In conclusion, CFD analysis of blood flow through 
a microanastomosis showed that the OSI was high at 
the base of the sutures used for anastomosis, suggesting 
that this site may be susceptible to post-anastomosis clot 
formation. Tight, careful knots are required to prevent 
post-anastomosis clots.
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