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Recent papers argue that major increases in the isolation of multidrug-resistant Gram-
negative bacteria have been of some concern in clinical practice.  Among these bacteria,
Stenotrophomonas maltophilia is an intrinsic producer of β-lactamases, and has been
recognized as a nosocomial pathogen.  But few reports are available on the impact of the
potential risk of mixed infections.  The goal of this review is to explore that impact.  S.
maltophilia is often isolated from the respiratory tract together with other Gram-negative
species, and yields at least two β-lactamases.  The enzymes show the capacity to hydrolyze
a large amount of imipenem and ceftazidime, and exhibit a susceptibility to aztreonam in
combination with cefozopran.  The last section elaborates on the idea that S. maltophilia
can assist in the survival of other imipenem-susceptible bacteria such as Serratia marcescens
and Pseudomonas aeruginosa.  This theory is also valid for ceftazidime-susceptible P.
aeruginosa.  The present review confirms the potential threat of S. maltophilia as an indirect
pathogen, and brings an often ignored fact to light:  even originally fragile bacteria can
live through a strong antimicrobial attack in the presence of a helper bacteria such as S.
maltophilia.  Although it is sometimes difficult to attribute a causative role to this bacterium,
in fact, the existence of S. maltophilia is worthy of attention.
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Gram-negative bacilli as a cause of hospital-
acquired infection has recently been receiving in-
creasing attention, and its resistance to multidrug
therapy baffles medical workers (Avison et al.,
2001; Livermore, 2002).  Hanberger et al. (2001)
reported that immunodeficiency is the most im-
portant factor in infections by multidrug-resistant
strains, and in addition, improper usage of broad-
spectrum antimicrobial agents accompanied with
prolonged hospital stays may contribute to this
phenomenon (Denton and Kerr, 1998; Geiger et al.,
2001).  Among Gram-negative bacilli, multidrug-
resistant Pseudomonas aeruginosa has been solely

designated as a notifiable organism in Japan since
1999. Nonetheless, this step is apparently incom-
plete because the resistant mechanism differs from
species to species (Kataoka et al., 2001).  Clinicians
need to recognize Stenotrophomonas maltophilia as
an important nosocomial pathogen because this
bacterium retains a noticeable resistance to multi-
drug treatment and disinfectants.  This review
focuses on studies about the clinical aspects of β-
lactam-resistant S. maltophilia.

The plan of the review is as follows:  Section I
outlines the significance of S. maltophilia among
Gram-negative bacilli; Section II considers clinical
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Fig. 1.  Schema of bacteriological classification.  Solid lines, grouping by Gram stain. Dotted lines, grouping by
metabolism.  Ellipse, typical genus.

properties including habitat and antimicrobial
resistance.  In Section III, we present differential
activities of β-lactamases, such as hydrolytic activi-
ty and susceptibility to aztreonam as an inhibitor.
Section IV describes indirect pathogenicity, that is,
hidden risks in mixed infections.

I.  Significance of S. maltophilia among
Gram-Negative Bacilli

The emergence of β-lactam-resistant Gram-nega-
tive bacilli has increasingly been recognized on the
grounds that β-lactam agents came to be used ex-
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Table 1.  Number (%) of broad-spectrum β-lactam-
resistant* strains for bacterial species

Number of strains 176 (100.0)
Bacterial species
   Stenotrophomonas maltophilia† 96 (54.5)
   Pseudomonas aeruginosa† 34 (19.3)
   Chryseobacterium indologenes† 10 (5.7)
   Chryseobacterium meningosepticum† 7 (4.0)
   Serratia marcescens‡ 6 (3.4)
   Acinetobacter spp.† 4 (2.3)
   Other species 19 (10.8)

* Resistant to imipenem, ceftazidime and aztreonam.
† Glucose-nonfermentative bacteria.
‡ Enterobacteria.

Table 2.   Classification of β-lactamases

Molecular class Main bacterial species

Serine-β-lactamase A (penicillinase) Haemophilus influenzae
Klebsiella oxytoca
Klebsiella pneumoniae
Proteus mirabilis
Stenotrophomonas maltophilia

C (cephalosporinase) Citrobacter freundii
Enterobacter cloacae
Morganella morganii
Pseudomonas aeruginosa
Serratia marcescens

D (oxacillinase) Pseudomonas aeruginosa

Metallo-β-lactamase B (carbapenemase) Aeromonas hydrophila
Bacillus cereus
Bacteroides fragilis
Burkholderia cepacia
Stenotrophomonas maltophilia

From Kuga and Inoue, 2002 with some modifications.

tensively in wards (Livermore, 1995).  β-Lactam
agents are classified into several groups according
to chemical structure.  In general, penicillins are
still effective against Gram-positive cocci, while
they are weak in fighting Gram-negative bacilli.
The newer the cephalosporins and cephamycins,
the wider the antimicrobial spectrum.  On one hand,
the antimicrobial spectrum of monobactams is lim-
ited to Gram-negative bacilli in contrast to peni-
cillins.  On the other hand, the spectrum of carba-
penems covers almost all Gram-negative bacteria
(Kataoka et al., 2002a).

The antimicrobial susceptibilities of Gram-
negative bacilli were surveyed at Tottori University
Hospital in 2001.  As a matter of course, Gram-
negative cocci and Gram-positive bacteria includ-
ing Staphylococcus spp., Streptococcus spp., Entero-
coccus spp. and Bacillus spp. are not intended infec-
tions (Fig. 1).  The survey showed that 176 strains
(6.3%) out of 2785 were resistant to all 3 broad-
spectrum β-lactam agents, that is, imipenem,
ceftazidime and aztreonam.  Most of the 176 strains
are not enterobacteria but glucose-nonfermentative
and aerobic bacteria such as P. aeruginosa, Chryseo-
bacterium spp. and S. maltophilia in particular

(Table 1).  These bacteria occupy ecological niches
both inside and outside hospitals, and cause oppor-
tunistic infection or iatrogenic transmission.  The
growth of these bacteria is slower than that of
enterobacteria; however, glucose-nonfermentative
bacteria are often of resistant to multidrug treatment
and disinfectants (Mori, 2000).  Classical resistance
to β-lactam agents in these bacterial species is usu-
ally due to an alternation of penicillin-binding
proteins, changes in outer membrane permeability

to β-lactams and most fre-
quently, intrinsic β-lactamase
production (Gál et al., 2000;
Fang et al., 2002).  There is a
likelihood of invalidity with
standard chemotherapy be-
cause of hydrolysis by the β-
lactamases.

The exact opposite of
glucose-nonfermentative bac-
teria, most enterobacteria are
naturally susceptible to β-lac-
tams (Kataoka et al., 2002a).
However, an overdose of β-
lactams during hospitalization
causes an emergence of AmpC
β-lactamase, whose gene is
commonly found on the chro-
mosomes of several entero-
bacteria species and is typically
induced by ceftazidime or imi-
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Table 3.  Acid production from sugars

Bacterial species
Sugar S. maltophilia S. marcescens P. aeruginosa

Glucose – F O
Lactose – – –
Maltose O F –

F, fermentation; O, oxidation; –, negative of acid pro-
duction.  From Kataoka et al., 2003b with some modifi-
cations.

Fig. 2.  Acidity of bacterial colony.  Both media contain glucose and
bromothymol blue (BTB), which is a pH-indicator.  On the left plate,
colorless colonies (S. maltophilia) are observed because it does not pro-
duce any acid from glucose.  S. maltophilia needed to metabolize pep-
tone for growth, and some alkalis made from peptone have turned the
appearance of colonies bluish.  On the right plate, yellow colonies (S.
marcescens) are grown with a fair amount of acidity by fermentation of
glucose.

penem (Coudron et al., 2000; Kataoka
et al., 2002b).  Therefore, the treatment
against enterobacteria should be con-
sidered carefully. In passing, AmpC is
grouped into class C (cephalospori-
nase) of Ambler’s prestigious classi-
fication (Table 2) (Ambler, 1980).
AmpC β-lactamase of Serratia mar-
cescens is presented in Section IV
once again.

II.  Clinical Properties

Although S. maltophilia is a little-
known microbe, it was the 5th Gram-
negative species according to the
number of isolates found at Tottori
University Hospital in 2001, after P.
aeruginosa, Escherichia coli, Klebsi-
ella pneumoniae and S. marcescens
(Kataoka et al., 2002a).  S. maltophilia
is a Gram-negative aerobic bacillus
(Fig. 1), having a strictly respiratory type of
metabolism with oxygen as the terminal electron
acceptor (Park, 1967; Snell and Lapage, 1971).  As
Hugh and Ryschenkow (1961) noted, a key
distinguishing feature of S. maltophilia is acid
production not from glucose but from maltose (Fig.
2 and Table 3).  The term “maltophilia” seems to
come from the bacterium’s preference for maltose.
It goes without saying that all enterobacteria
including S. marcescens ferment glucose, and
produce some acid and/or gas (Sakazaki, 1992).

S. maltophilia is found in a wide variety of en-
vironments, and has been recovered from nosoco-
mial water sources including ice-making machines,
sink traps and nebulizers (Sattler, 2000; Rogues et
al., 2001).  Despite the fact that almost all strains of
S. maltophilia are isolated from inpatients, Denton
et al. (1998) maintain that person-to-person trans-
mission is an infrequent occurrence in the nosoco-
mial setting.  Epidemiological research of S. malto-
philia also highlights that babies and elderly people
are more likely to get this bacterium than those in
the generations in between.  As to the sources, they
are also usually isolated from the respiratory tract
such as sputum and the broncho-alveolar lavage.

The respiratory tract is the most common site
of S. maltophilia’s isolation in hospitalized pa-
tients; however, most patients are colonized rather
than infected at this site (Geiger et al., 2001).  As
Rogues et al. (2001) have stated: A ventilator can be
colonized with the patient’s endogenous flora and
becomes a hotbed of secondary infections.  In our
investigation, more than 10 strains of S. maltophilia
were actually separated from superinfections of
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Table 4.  Antimicrobial susceptibility (%) of S.
maltophilia

Antimicrobial S. maltophilia [n = 155]
      agent Susceptible* Intermediate* Resistant*

Piperacillin† 11 (7.1) 0 (0.0) 143 (92.9)
Cefsulodin† 3 (1.9) 9 (5.8) 142 (92.2)
Ceftazidime 35 (22.6) 24 (15.5) 96 (61.9)
Sulbactam/
   Cefoperazone 105 (67.7) 41 (26.5) 9 (5.8)
Aztreonam 4 (2.6) 0 (0.0) 151 (97.4)
Imipenem 0 (0.0) 0 (0.0) 155 (100.0)

* Categories are recommended by the National Commit-
tee for Clinical Laboratory Standards (2000).

† No data with 1 isolate.

pneumonia, bacteremia or cholangitis (Kataoka et
al., 2003b).  S. maltophilia has been associated with
an expansive spectrum of clinical syndromes:
endocarditis, conjunctivitis, keratitis, urethritis,
ulcerative colitis and Crohn’s disease (Denton and
Kerr, 1998).

S. maltophilia has been reported to be resistant
to extended-spectrum cephalosporins, carbapenems
and aminoglycosides (Denton et al., 1999; Barbier-
Frebourg et al., 2000).  The medical community has
increasingly become dependent on carbapenems,
because of their high affinity for penicillin-binding
proteins, excellent penetration across bacterial out-
er membranes, and resistance to hydrolysis by the
majority of serine-based β-lactamases (Payne et al.,
1997; Rasmussen and Bush, 1997; Yin et al., 2003).
Therefore, carbapenems are so-called the final
trumps.  But all strains really revealed resistance to
imipenem grouped into carbapenems (Table 4), and
this peculiarity coincides with former documents
(Hanberger et al., 2001; Simm et al., 2002).  Cefta-
zidime appeared to possess reasonable activity
against some strains (Table 4), but as resistance is
highly variable, ceftazidime cannot be used in
empiric chemotherapy (Geiger et al., 2001).  β-
Lactamase inhibitor such as sulbactam was excep-
tionally effective, so inhibition of β-lactamases
could be a key to the problem.  This hypothesis
leads to the Discussion in the next Section.

This Section argues that S. maltophilia can
live through the selective pressure of standard
chemotherapy using β-lactams, and get its chance
in the limelight.  For this reason, clinicians should
attach more importance on information from the
clinical laboratory in order not to overlook this so-
called “reserved” organism.

III.  Differential Activities of β-Lactamases

The most common theory is that S. maltophilia
chromosomally yields at least 2 inducible β-lac-
tamases, a class B metallo-β-lactamase (carbapene-
mase) L1 and a class A active-site serine-β-lac-
tamase (penicillinase) L2 (Table 2) (Ambler, 1980).
Both enzymes mediate an essential resistance to β-
lactam agents as a result of cutting the carbon-
nitrogen bond of β-lactam rings off (Ullah et al.,
1998; Avison et al., 2001; Spencer et al., 2001).  There
are still no clinically useful inhibitors of metallo-β-
lactamases in contrast with serine-β-lactamases
(Simm et al., 2002).  The expression of L1 and L2
has been shown by coinducibility under the exis-
tence of a single β-lactam agent as an inducer, and
also by some single site mutations resulting in over-
expression of both genes (Avison et al., 2002).

In recent years, the sodium mercaptoacetic
acid (SMA) disk was developed for the screening of
metallo-β-lactamase-producing Gram-negative
bacilli (Arakawa et al., 2000).  Though the main
target of this thiol compound is originally IMP-1-
producing P. aeruginosa or S. marcescens, this con-
venient test can be applied to L1-producing S. malt-
ophilia.  Even the imipenem-resistant P. aerugino-
sa strain indicated no reaction, whereas S. malto-
philia showed good susceptibility to SMA (Fig. 3).
The resistance to imipenem of that P. aeruginosa
strain is not due to production of carbapenemase,
but to mutational impermeability of up-regulated
MexEF-OprN and reduced OprD (Livermore,
2002).

The hydrolytic activities of L1 and L2 β-lac-
tamases have already been measured (Kataoka et
al., 2003a).  Decrease in UV absorption at an appro-
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Fig. 4.  Hydrolysis of β-lactam agents by S. maltophilia.
The absorbances of the β-lactam rings were measured by
UV spectrophotometry.  Closed circle, imipenem; closed
square, ceftazidime.

Fig. 3.  Inhibition by sodium mercaptoacetic acid (SMA).  On the left
plate (S. maltophilia), a considerable expansion in zone size around an
imipenem (IPM) disk close to SMA is revealed, in contrast to IPM
without SMA.  That means positive of carbapenemase.  On the right
plate (P. aeruginosa, which is yellow-green due to the fluorescent pig-
ment), no expansions between the two IPM disks are shown.  That
naturally means negative of carbapenemase despite resistance to IPM.
From Kataoka et al., 2003b.

priate wavelength means hydrolysis of the β-lactam
ring (Samuni, 1975).  By inactivation for 4 h, an av-
erage reduction of approximately 20% was shown
in both absorbances of imipenem and ceftazidime
(Fig. 4).  Taking into consideration the affinity, the
hydrolysis of imipenem is performed by L1, and
that of ceftazidime is largely related to L2.  It ap-
pears that the hydrolytic function of L2 is equiva-
lent to that of an extended-spectrum β-lactamase.

The notion of coordinated expression allowed
Krueger et al. (2001) to point out that the bacterial
primary resistance to β-lactams is not overcome
until both β-lactamases are inhibited.  Although β-
lactam agents are thought to be unrealistic tools
against infections with S. maltophilia, this bacte-
rium is useful as an extreme model of a β-lactamase
producer.  Our inhibition test notes that imipenem
and cefpirome are predominantly hydrolyzed by
L1, whereas ceftazidime is predominantly hydro-
lyzed by L2 (Kataoka et al., 2003a).  Incidentally,
aztreonam grouped into monobactams has been
reported as an inhibitor of extracellular β-lactamase

(Lister et al., 1998; Song et al., 2003).
These reports are in harmony with the
proposal of Nishida et al. (1999) that a
monobactam derivative can indicate
considerable synergy with cefpirome.
Upon further examination, no synergy
of aztreonam with imipenem is
exhibited.  These results also explain
that aztreonam tends not to inhibit
carbapenemases, because imipenem
should be broken down only by
carbapenemase L1.  Therefore, the
synergy of aztreonam with cefpirome
was probably due to the aztreonam’s
inhibition of penicillinase L2.

The inhibitory activity of aztre-
onam against the penicillinases of S.
maltophilia has been explored (Kataoka
and Tanaka, in press).  All 5 strains of
S. maltophilia had already been con-
firmed susceptible to clavulanic acid
so they were identified possessors of
L2 β-lactamase (Fang et al., 2002;

Coudron et al., 2003).  In spite of little synergy of
imipenem to all 5 strains, a considerable synergy of
aztreonam with cefozopran was found in 4 strains
out of 5 (Table 5).  Sulbactam is definitely known as
a potent inhibitor of penicillinases (Mahgoub and
Aly, 1998), and actually showed an excellent
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Table 5.  MICs against S. maltophilia

MIC (µg/mL)
           Strain Aztreonam Imipenem Aztreonam/ Cefozopran Aztreonam/

Imipenem Cefozopran

S. maltophilia TOT8 256 512 512/512 256 256/256
S. maltophilia TOT16 1024 512 512/512 256 128/128
S. maltophilia TOT19 1024 256 256/256 256 128/128
S. maltophilia TOT43 256 256 256/256 128 64/64
S. maltophilia TOT57 512 256 256/256 128 64/64

MIC, minimum inhibitory concentration.  From Kataoka and Tanaka, in press with
some modifications.
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Fig. 5.  Colony forming unit (CFU) count of S. malto-
philia in culture treated with antimicrobial agents as fol-
lows:  Cross, antimicrobial-agent free; closed circle,
aztreonam; open square, cefozopran; closed square,
aztreonam and cefozopran.  From Kataoka and Tanaka,
in press with some modifications.

synergy with cefoperazone (not cefozopran) against
S. maltophilia (Table 4).  These findings support the
idea that aztreonam as well as sulbactam inhibits
penicillinases instead of performing aztreonam’s
own antimicrobial activity.  This account is
defended by both the high resistant frequency of
aztreonam and the high MICs of aztreonam alone
against S. maltophilia (Tables 4 and 5).  Figure 5

presents the antimicrobial effect of the combination
of aztreonam and cefozopran.  The colony forming
unit (CFU) counts at 6 h in cultures treated with
aztreonam-cefozopran were approximately 1 log
lower than those in cultures treated with cefozopran
alone, and 2 logs lower than those treated with
aztreonam alone.

Aztreonam is additionally suitable in combi-
nation chemotherapy for Gram-negative infections.
One reason is that monobactams have no antimicro-
bial activity against Gram-positive bacteria:  The
risk of superinfection by Gram-positive bacteria,
for instance enteritis caused by Staphylococcus
aureus, is estimated to be low.  Improper usage of
broad-spectrum antimicrobial agents might prepare
a hotbed of multidrug-resistant strains; therefore,
the minimum usage of narrow-spectrum ones has
recently been recommended for the control of
hospital-acquired infections.  We hope that a reduc-
tion in the dosage of cefozopran by employing
aztreonam comes to not only obtain antimicrobial
synergy and minimize toxicity but also to prevent
the emergence of penicillinase producers.

IV.  Indirect Pathogenicity

A popular idea exists nowadays that S. maltophilia
is of strictly limited pathogenicity (Denton and Kerr,
1998), while this organism has the capacity to hy-
drolyze a variety of β-lactam antimicrobial agents
and the possibility of assisting the survival of other
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susceptible pathogens.  S. maltophilia is apparently
a β-lactamase supplier rather than a direct cause of
disease where it is confronted with β-lactam agents.
It is generally isolated from severely immuno-
suppressed hosts because of its weak virulence, and
has frequently been isolated together with other
Gram-negative species in our observations (Kataoka
et al., 2003b).  It looks like broad-spectrum anti-
microbial therapy takes aim at the major opportu-
nistic pathogens such as P. aeruginosa and S. mar-

cescens in most cases of Gram-negative infection.
As it turns out, the existence of S. maltophilia is apt
to be less reflected in the choice of antimicrobial
agents.  However, broad-spectrum β-lactam agents
could act as a sieve of multidrug-resistant strains
such as S. maltophilia and serve to induce their
own β-lactamases (Kataoka et al., 2001, 2002b).
That is why we propose the concept of indirect
pathogenicity (Fig. 6):  A chain of the preceding
processes can result in the encouragement of mixed
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Fig. 7.  Mixed culture of S. marcescens and S. maltophilia. On the top
left plate, an extremely large number of yellow colonies (S.
marcescens) are seen (none for imipenem was supplemented). On the
top right plate, the number of yellow colonies is obviously decreased
because of 16 µg/mL of imipenem in the medium. On the bottom plate,
however, a fairly large number of yellow colonies and colorless colo-
nies (S. maltophilia) are indicated even under exposure to 16 µg/mL
imipenem (from Kataoka et al., 2003b).
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Fig. 8.  Colony forming unit (CFU) count of S. marces-
cens in culture which contains imipenem.  Pale bar, pure
culture of S. marcescens; dark bar, mixed culture of S.
marcescens with S. maltophilia.  **P < 0.01 with t-test.
The bars represent means plus SD.  From Kataoka et al.
(2003b) with some modifications.

infections caused by another pathogen, even if S.
maltophilia originally colonizes in the patient’s res-
piratory tract.

The indirect pathogenicity of S. maltophilia
has already been confirmed (Kataoka et al., 2003b).
The CFU of the yellow colonies (S. marcescens and
P. aeruginosa) was counted for each plate, because
both S. marcescens and P. aeruginosa form yellow
colonies by acid production from glucose in
contrast with colorless colonies of S. maltophilia
(Figs. 2 and 7).

Figure 8 demonstrates that S. marcescens ex-
posed to imipenem increased in the existence of S.
maltophilia.  This concept is also applicable to a
mixed culture of P. aeruginosa with S. maltophilia
(Kataoka et al., 2003b).  On the other hand, the CFU
count of S. marcescens seemed not to be influenced
in cases when it was faced to ceftazidime instead of
imipenem (Kataoka et al., 2003b), because S.
marcescens is a potential owner of AmpC β-
lactamase (Coudron et al., 2000).  An induction of
AmpC makes the strain highly resistant to

ceftazidime (Raimondi et al., 2001).
We consider that both β-lactamases of
L2 and AmpC were yielded during
exposure to ceftazidime in mixed
culture, and have assumed that L2
leaking from S. maltophilia hid itself
behind S. marcescens’ own AmpC.  As
proof of the output of L2, P. aerugi-
nosa confronted with a large quantity
of ceftazidime could grow under the
support of S. maltophilia (Kataoka et
al., 2003b).  As Livermore (2002) has
demonstrated, P. aeruginosa also har-
bors AmpC β-lactamase, but unlike S.
marcescens the level of resistance de-
pends on the degree of depression.
Following this thesis, the P. aerugino-
sa strain does not seem to have pro-
duced enough β-lactamases to protect
itself from ceftazidime.

Though a multidrug-resistant
strain is not always relevant to indirect
pathogenicity, at least our positive
findings can be thought of as a formal

explanation for some potential threat: Even an
ordinary bacterium can endure antimicrobial attack



100

D. Kataoka and Y. Tanaka

by the assistance of β-lactamases from an indirect
pathogen, namely S. maltophilia.

Conclusion

Carbapenems and cephalosporins are among the
most frequently administered antimicrobial agents
due to their excellent antimicrobial activity and low
toxicity; therefore, these compounds are often
prescribed for severe Gram-negative infections
(Coudron et al., 2003; Yin et al., 2003).  The present
study upholds the theory that overuse of these anti-
microbial trumps has a profound effect on a selec-
tion pressure on account of the induction of β-
lactamases, and results in the appearance of an
antibiotic-free area around S. maltophilia.  In other
words, sulbactam, minocycline and trimethoprim-
sulfamethoxazole, relatively unpopular but effec-
tive drugs, should be selected more in a case where
mixed infection occurs (Kataoka et al., 2002a).
Although it is sometimes difficult to attribute a
causative role to S. maltophilia when the organism
is isolated from respiratory secretions alone
(Sattler, 2000), throughout the course of this essay
we establish that S. maltophilia is worthy of atten-
tion.  Thus, a full understanding of the indirect patho-
genicity in vivo awaits future study.
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