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Studies on a Ca?*- and Cyclic Nucleotide-Independent H1 Histone Kinase
Purified from Rabbit Skeletal Muscle
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In an attempt to elucidate the regulatory mechanism of microsomal function by protein
phosphorylation, one of the major protein kinases obtained during the preparation of
the microsomal fraction of rabbit skeletal musclewas partially purified and char acterized.
Thisenzymewasa protein serine/threoninekinase and showed similar, but not complete-
ly same properties as those of Ca?*-phospholipid-dependent protein kinase (protein
kinase C), judging from its elution profile from an anion-exchange column, molecular
mass, responses to protein kinase activatorsor inhibitorsand the substr ate specificity.
These results suggest a possible implication of this Ca?*- and cyclic nucleotide-
independent H1 histone kinase in protein phosphorylation of microsomal protein(s),
although the exact role and the mechanism of regulation of thisenzyme are not clear at
thistime.
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It has been well established that protein serine/
threonine kinases play important roles in vari-
ous cellular functions such as cell growth and
differentiation or various metabolic and cell
structural regulations (Edelman et al., 1987).
For each protein kinase, a specific or multiple
substrate proteins have been assigned according
to its manner of substrate recognition as well as
the topological arrangement of substrate and
enzyme (Edelman et al., 1987). Judging from
the universality of cellular regulation by protein
phosphorylation and dephosphorylation reac-
tions, this type of reactions must be detected in
subcellar fractions such as microsome and
mitochondria.

Previous reports indicate that afew protein
kinase activities were detected in microsomal

fraction (Edelman et al., 1987). On the other
hand, Ca®*-phospholipid-dependent protein
kinase (protein kinase C) has been shown to be
implicated in various cellular phenomena
reflecting multiple subspecies of this class of
enzyme (Nishizuka, 1995). In order to eluci-
date the protein kinase involved in the protein
phosphorylation in microsomal fraction, a pro-
tein kinase havs been isolated during the prep-
aration of this organelle from rabbit skeletal
muscle in thisreport. After partial purification
and characterization, this enzyme has been
shown to possess similar properties as those of
the catalytic fragment of protein kinase C (Takai
et a., 1977; Hashimoto and Y amamura 1989).
These results suggest that the protein kinase C
or its related enzyme may have some target in

Abbreviations: BSA, bovine serum albumin; cdc2, cell division cycle 2; cAMP, cyclic AMP; CKI, casein
kinase I; CKII, casein kinase Il; CKI-7, N-(2-aminoethyl)-5-chloroisoquinoline-8-sulfonamide; CNBr,
cyanogen bromide; MBP, myelin basic protein; M,, relative molecular mass; protein kinase A, cyclic AMP-
dependent protein kinase; protein kinase C, Ca’*-phospholipid-dependent protein kinase; SDS-PAGE, SDS-
polyacrylamide gel electrophoresis; TLC, thin layer chromatography; TPA, 12-O-tetradecanoylphorbol 13-
acetate; TPCK, L-1-tosylamido-2-phenylethyl chloromethyl ketone
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microsome although the physiological
significance of the existence of this Ca?*- and
cyclic nucleotide-independent histone kinaseis
not well-established at thistime.

Materials and Methods

Materials and chemicals

Rabbits, weighing 3 to 4 kg, were purchased
from Kgjitani Rabbit Farm (Shimane, Japan).
Excised rabbit skeletal muscle was stored at
—80°C until use. DEAE-Sephacel, cyanogen
bromide (CNBr)-activated Sepharose 4B,
Sephacryl S-100, Sephacryl S-200, molecular
mass markers for SDS-polyacrylamide gel
electrophoresis (SDS-PAGE) and gel filtration,
Blue Dextran and CleanGel electrode strips (No.
18-1035-33) were obtained from Pharmacia
Biotech (Uppsala, Sweden). H1 histone-
Sepharose was prepared according to the manu-
facturer’s instructions (Pharmacia Biotech).
Hydroxyapatite (Bio-Gel HTP) was purchased
from Bio-Rad Laboratories (Richmond, CA).
Silica gel 60 thin layer chromatography (TLC)
plates (No. 5626) and cellulose TLC plates (No.
5716) were obtained from E. Merck (Darmstad,
Germany). Cyclic AMP (cAMP)-dependent
protein kinase (protein kinase A) was purified
from bovine cardiac muscle as described
previously (Rubin et al., 1974). Protein kinase
Ctypel and type Il was purified from rat brain
as described previously (Sekiguchi et al.,
1988). Casein kinase | (CKl) purified as
described earlier (Liu et al., 1996) was a kind
gift from Mrs. Y. Liu and Dr. H. Koharain our
laboratory. Casein kinase Il (CKII) was
purified as described previously (Hashimoto et
al., 1995). Synthetic peptides, TTYADFIAS
GRTGRRNAIHD [protein kinase A inhibitor
peptide (Cheng et al., 1986)], RFARKGALR
QKNYV [protein kinase C inhibitor peptide (House
and Kemp, 1987)], RRLSSL RASTSKA [S6
peptide analogue (Wettenhall et al., 1984)], and
LRR ASLG [Kemptide] were prepared as
described previously (Hashimoto et al., 1990a,
1995). The peptide which contains a phos-
phorylation site in the Na" channel a subunit
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(Trimmer et al., 1989), KKLGSKKPQK [Na"
channel peptide], was synthesized by Tana L ab-
ratories, L.C. (Houston, TX). The preparation
of H1 and H2B histones from calf thymus was
performed as described earlier (Hashimoto et
al., 1976). N-(2-Aminoethyl)-5-chloroisoquin-
oline-8-sulfonamide (CKI-7), a selective casein
kinase | inhibitor, and cell division cycle 2 (cdc2)
kinase were purchased from Seikagaku Kogyo,
Tokyo, Japan. [y-*?P]JATP (> 185 TBg/mmol)
was obtained from Amersham (Amersham,
Bucks, United Kingdom). L-1-Tosylamido-2-
phenylethyl chloromethyl ketone (TPCK)-
treated trypsin, bovine brain calmodulin, bo-
vine serum abumin (BSA; fatty acid-free), my-
elin basic protein (MBP), phosphoserine, phos-
phothreonine, phosphotyrosine and a-casein
were obtained from Sigma (St. Louis, MO) .
Phosphatidylserine (bovine brain) and diolein
were purchased from Serdary Research Labora-
tories (London, ON, Canada). N-Bromo-
succinimide and leupeptin were obtained from
Wako Pure Chemical and the Peptide Institute,
Osaka, Japan, respectively. P-81 Phospho-
cellulose paper and 3MM filter paper were pur-
chased from Whatman (Kent, United Kingdom).
Membranefilters (pore size, 0.45 pm) and PVDF
membranes were obtained from Advantec Toyo
(Tokyo) and Millipore (Bedford, MA), respec-
tively.

Purification of H1 histone kinase

The H1 histone kinase was purified from rabbit
skeletal muscle as described below. The majo-
rity of manipulations were carried out at 4°C or
onice.

Step 1

Frozen rabbit skeletal muscle, a mixture of
muscles isolated from the back, buttocks and
limbs, (160 g) was cut into small blocks and
ground in ameat grinder. The ground muscle
was subsequently homogenized in 800 mL of
buffer containing 5 mM imidazole-HCI (pH
7.4), 0.3 M sucrose, 1 mM phenylmethyl-
sulfonyl fluoride and 5 pg/mL leupeptin using a
Polytron homogenizer (Model K) at speed 6 for
20 x 30 s bursts with 30 s intervals between
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bursts. The homogenate was centrifuged at
7,000 x g for 10 min in an RF2A rotor (Himac
CR21, Hitachi, Tokyo). The resulting pellets
were re-homogenized in 800 mL of the same
homogenizing buffer containing 0.5 mM Mg?*-
ATP at the same speed for 10 x 30 s bursts with
30 sintervals between bursts and re-centrifuged
at 7,000 x g for 20 min. The supernatant was
filtered though 4 layers of cheesecloth and
centrifuged at 19,000 x g for 2 h in a JA-20
rotor (J2-21 M/E, Beckman, Palo Alto, CA).
The resultant supernatant was re-filtered though
another 4 layers of cheesecloth. This final
supernatant was named Sup 3 and used for fur-
ther purification. The precipitate obtained by
this centrifugation corresponded to the micro-
some fraction reported by Inui and coworkers
(1987). Itisnot clear at thistime whether the
proteinsin Sup 3 were originally located on the
surface of the microsome or released from this
organelle.

Step 2

Sup 3 (670 mL) was adjusted to pH 7.5 with 0.5
M Tris-HCI (pH 7.5) and was loaded onto a
DEAE-Sephacel column (2.5 x 4.5 cm) equilib-
rated with Buffer A [20 mM Tris-HCI (pH 7.5),
0.3 M sucrose and 10 mM 2-mercaptoethanol]
containing 20 mM NaCl. The column was
washed with the same buffer until the absorb-
ance at 280 nm fell to zero. Proteins were
eluted with 320 mL of Buffer A containing 100
mM NaCl at aflow rate of 45 mL/h, and 5 mL
of each fraction was collected. When an aliquot
of each fraction (20 pL) was assayed for H1
histone kinase activity, 2 active peaks were
detected. The 2nd peak (120 mL) was dialyzed
against 2 changes of Buffer A (5L) containing
20 mM NaCl for 8 h. The 1st peak was not
analyzed further.

Step 3

The dialyzed sample was applied to an H1
histone-Sepharose column (1.5 x 4.5 cm) equil-
ibrated with Buffer A containing 20 mM NaCl.
The column was washed with 150 mL of the
same buffer and eluted stepwise with 100 mL
each of Buffer A containing 100 mM, 250 mM
and 500 mM NaCl, respectively. The flow rate
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was 25-35 mL/h and 5 mL fractions were col-
lected. One major peak of enzyme activity was
recovered in the fractions eluted with buffer
containing 100 mM NaCl. The active fractions
(41.3 mL) were pooled and dialyzed overnight
against 5 L of Buffer B [5 mM potassium phos-
phate buffer (pH 7.5), 0.3 M sucrose and 10
mM 2-mercaptoethanol].

Step 4

The dialyzed one was applied to a hydroxyapatite
column (0.9 x 1.3 cm) equilibrated with Buffer
B. After washing the column with the same
buffer, the enzyme was eluted stepwise with 20
mL each of Buffer B containing 100 mM and
300 mM potassium phosphate buffer (pH 7.5)
in place of the 5 mM buffer. The flow rate was
17 mL/h and 1 mL fractions were collected.
The active fractions (8.6 mL) were pooled and
used for the present studies as a partially
purified enzyme preparation.

Molecular mass analysis by gel filtration

An aliquot (0.5 mL, 100 pg protein) of the en-
zyme obtained from the hydroxyapatite column
was applied to a Sephacryl S-200 column (0.8 x
45 cm) equilibrated with buffer A containing
400 mM NaCl. Proteins were eluted with the
same buffer at aflow rate of 1 mL/h, and 0.5 mL
fractions were collected into tubes in which
ovalbumin had been added as a stabilizer at a
final concentration of 0.1 mg/mL. After
dialysis against Buffer A containing 20 mM
NaCl, each fraction was assayed for the kinase
activity. The elution positions of marker pro-
teins were checked by SDS-PAGE. Molecular
mass standards were as follows; Blue Dextran,
void volume; human y-globulin, 130,000 Da;
BSA, 67,000 Da; ovalbumin, 43,000 Da; cyto-
chrome ¢, 13,500 Da.

In-gel kinase assay

An aliquot of the purified enzyme (1.5 mU, 30
pL) from the hydroxyapatite column peak frac-
tion was loaded on an SDS-PAGE slab gel. Ei-
ther 150 pg/mL H1 histone or 150 pg/mL BSA
(control protein) was included in the separation
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gel just prior to the polymerization. After
electrophoresis, the gel was treated as described
by Kameshita and Fujisawa (1989) with slight
modifications as indicated below. After re-
naturation, the gel was preincubated with 2 mL
of incubation buffer [20 mM Tris-HCI (pH 7.5)
containing 10 mM MgCl,] at room temperature
for 30 min. Phosphorylation of H1 histone
within the gel was carried out by incubation of
the gel at room temperature for 2 h with 2 mL of
the incubation buffer in the presence of 50 pM
non-radioactive ATP and 50 pCi [y->?P]ATP.
After incubation, the gel was washed with 5%
(w/v) trichloroacetic acid containing 1% (w/v)
sodium pyrophosphate until the radioactivity of
the washing solution became negligible. The
washed gel was dried on Whatman 3MM filter
paper and exposed to X ray film (New RX, Fuji
Photo Film Co., Kanagawa, Japan) at —-80°C for
24 h or longer time. After the renaturing treat-
ment, the lane of molecular mass markers was
cut from the gel and stained with Coomassie
Brilliant Blue.

In vitro kinase assay

H1 histone kinase activity was measured in a
reaction mixture (50 pL) comprising 20 mM
Tris-HCI (pH 7.5), 10 mM MgCl,, 60 pg/mL
H1 histone, 10 mM [y-*?P]JATP (5.0-7.0 x 10°
cpm/nmol) and 20 pL of enzyme preparation.
The differencesin ionic strength due to sodium
chloride or potassium phosphate at the different
purification steps was not corrected for. In
assay's (except large scal e incubation mixtures),
40 mM potassium phosphate derived from the
enzyme source was constantly included in the
reaction mixture. Phosphorylation reactions
wereinitiated by the addition of [y-*2PJATP and
incubation was usually performed for 30 min at
30°C. The reaction was terminated by the addi-
tion of 25 pL of 5% (w/v) trichloroacetic acid.
The mixture was centrifuged at 3,000 x g for 10
min and 50 pL of the supernatant was spotted
on to P-81 phosphocellulose paper (2 x 2 cm).
These papers were then washed 4 times with 10
mL of 75 mM phosphoric acid per each paper
for 2 min each wash. The incorporated radio-
activity was determined with a Beckman-LS

5801 liquid scintillation counter by Cerenkov
radiation. Control assays were performed in
parallel where the substrate protein was omitted
and these values were subtracted from those of
the compl ete reaction system. One unit (1 U) of
the protein kinase activity was defined as the
amount of enzyme that catalyzed the transfer of
1 nmol phosphate into H1 histone under the
standard assay conditions described above.
This definition of enzyme activity unit was also
applied to other protein kinases used in this
study.

When the substrate specificity of H1 histone
kinase was investigated, as well asthe effects of
Mg?*, ionic strength and protein kinase modul a-
tors, assays were performed as described above,
with individual modifications as indicated for
each experiment. The concentrations of pro-
teins and peptides used as substrates in this
study were as follows: H2B histone, 60 pg/mL;
MBP, 53 pg/mL; a-casein, 1 mg/mL; S6 peptide
anaogue, 0.1 mg/mL; Kemptide, 0.1 mg/mL; Na*
channel peptide, 0.1 mg/mL. Thereactionwith a-
casein was stopped by the addition of 2 mL of
10% (w/v) trichloroacetic acid. Acid-precipitates
were collected on amembrane filter and washed
with the same trichloroacetic acid solution. Ra-
dioactivity was measured as described above.
For the determination of kinetic parameters
with H1 histone, the kinase activities were de-
termined as described above except that a) H1
histone concentrations were raised between
0.27 and 2.73 pM; b) 1.0 mU of the enzyme was
employed; c) the incubation was carried out for
15 min.

For comparative experiments, the substrate
specificity and the effects of protein kinase
modulators were also examined with other rep-
resentative protein kinases (protein kinase A,
protein kinase C, cdc2 kinase, CKI and CKII).
Protein kinase A, protein kinase C, CKI and
CKII were assayed under the respective con-
ditions described previously (Hashimoto et al.,
1985, 1990b, 1995). cdc2 Kinase was assayed
30 min at 30°C in a reaction mixture (50 pL)
containing 20 mM Tris-HCI (pH 7.5), 10 mM
magnesium acetate, 10 pM [y->?P]ATP, 1 mg/
mL H21 histone or other substrates as indicated
above.
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(Beemon and Hunter, 1978) with slight modifi-
cations. After freeze-drying, the tryptic pep-
tides were dissolved in electrophoresis buffer
H1 histone (36.g) was phosphorylated by the (formic acid:acetic acid:0 = 5:15:80, v/v)
purified H1 histone kinase (1.0 mU) or otherand spotted on Silica gel 60 TLC plates. High
protein kinases; protein kinase A (3.0 mU)yvoltage electrophoresis was performed at 1000
protein kinase C (0.96 mU) or cdc2 kinase (2/ for 50-60 min at 4°C (Pharmacia Multiphor
mU) under the respective reaction conditions$l flatbed electrophoresis apparatus) as de-
described above except that a) the specific acteribed by Naka and coworkers (1983). For one-
vity of [y-3P]ATP was increased to 2.4-30 dimensionalmapping, the dried plate was
10° cpm/nmol, b) the reaction mixture wasexposed to an X ray film for an appropriate time
scaled up by 3-fold (150L), c) the incubation at —80°C. For two-dimensional mapping,
time was 3—4 times longer. The reaction waascending chromatography was carried out at
stopped by the addition of Laemmli buffer, andoom temperature on the TLC plate with the
the reaction mixtures were separated by SD®wuffer (n-butanol:acetic acid:pyridine;B =
PAGE (Laemmli, 1970). From an estimate 0f32.5:25:5: 20, v/v) as a solvent system. After
the radioactivity, 50-12pnmol of phosphate chromatography, plates were exposed to X ray
was incorporated per mol of H1 histone by eacfilms as before.
protein kinase. The radioactive H1 histone was
extracted from the gel and digested overnight al!’hosp hoamino acid analysis
37°C with TPCK-treated trypsin (final concen-
tration 50ug/mL) as described previously Phosphorylation of H1 histone by the purified
kinase and the separation by SDS-PAGE was
| Il performed as described under the previous
(<20 cpm) | p—rof section. The labeled H1 histone was extracted
e o from the gel and precipitated with trichloro-
acetic acid as described by Beemon and Hunter
o4 (1978). The precipitate was washed and hydro-
lyzed in 6 N HClI for 2 h at 110°C. The hydroly-
sate was lyophilized and resuspended in distill-
ed water. An aliquot of this solution was spott-
ed on a cellulose TLC plate together with 3
phosphoamino acids (50 nmol each). Electro-
phoresis was carried out at 1000 V for 1 h at
16°C with the buffer (pyridine:acetic acid:®
0.1 = 1:10:189, v/v) on a Pharmacia Multiphor Il
flatbed apparatus as described by Mahoney and
colleagues (1996). Positions of phosphoamino
0.0 — 0 0.0 acids were visualized by ninhydrin spray and
Fracti radioactive phosphoamino acids were detected
raction number .
by autoradiography.

Tryptic peptide mapping

2.0

15 L 0.3
(mM)

— 100

1.0 - 80 = 0.2

OD at 280 nm

0.5

H1 Histone kinase activity

Fig. 1. Purification of H1 histone kinase by DEAE-
Sephacel chromatography. Sup 3 fraction wag\nalysis of the phosphorylated domain

chromatographed on a DEAE-Sephacel column angd¢ 11 phistone by N-bromosuccinimide
measurements of H1 histone kinase activity were

performed as described under Materials ana:leavage
Meéhg(éi.\ETnerz e'”t”t‘.g pleal‘s L"frﬁ. ”tar:edk.r?EAE“’he phosphorylation and subsequent purifica-
an "Il 1eSpecively 9, Istone Kinase ntion of H1 histone were performed as indicated

activity;— , absorbance at 280 nm; ---, NaCl concen- . ) .
tration. in the previous section. The extracted histone
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Fig. 2. Purification of H1 histone kinase by H1 Fig. 3. Purification of H1 histone kinase by hydroxy-
histone-Sepharose chromatography. Purifi-apatite chromatography. Purification on a hydroxy-
cation of the DEAE-II fraction on a H1 histone- apatite column of the active enzyme fraction obtained
Sepharose column and measurements of H1 hisfrom the previous step (Fig. 2) and measurements of H1
tone kinase activity were performed as describ-histone kinase activity were performed as described
ed under Materials and Methode, H1 histone  under Materials and Methodse, H1 histone kinase
kinase activity;— , absorbance at 280 nm; ---,activity;— , absorbance at 280 nm; ---, concentration of
NaCl concentration. potassium phosphate buffer (KPB).

was freeze-dried and resuspended in 0.8 mL of@1 cm) with 12.5% separating gel and 4.5%
N acetic acid with 2 mg of non-phosphorylatedstacking gel by the method of Laemmli (1970).
H1 histone as a carrieN-Bromosuccinimide Electrophoresis was usually performed at 30
cleavage of the H1 histone was performed as deiA for 1 h. Protein was determined according
scribed by Bustin and Cole (1969). The cleaveth the method of Bradford (1976) using Bio-Rad
fragments were applied to a Sephacryl S-10feagent with BSA as a standard. Each experi-
column (1.5< 115 cm) equilibrated with 0.02 N ment had been repeated at least 2 or 3 times and
HCI and eluted with the same solution at roona representative result was presented.
temperature.The flow rate was 8.5 mL/h and
2 mL fractions were collected. The radioactiv-
ity of each fraction was monitored using a Results
Beckman liquid scintillation counter in the
Cerenkov mode and the absorbance at 230 nm ... . . . .
. : . ; urification of H1 histone kinase activity
of each fraction was measured with Hitachi 185I om rabbit skeletal muscle
UV-VIS spectrophotometer. The amino-termi-
nal and the carboxyl-terminal domains of H1Sup 3 fraction (670 mL, 502.5 mg protein) was
histone were confirmed by SDS-PAGE (15%used as the starting point for purification. It was
polyacrylamide separating gel) and proteiradsorbed onto a DEAE-Sephacel column and
staining. proteins were eluted as broad 2 peaks with buf-
fer containing 100 mM NacCl as shown in Fig. 1.
They were named DEAE-I (fractions 8-25,
91.5 mL, 23.4 mg protein) and DEAE-II (frac-
Unless otherwise indicated SDS-PAGE wasions 26-48, 120.0 mL, 7.6 mg protein), respec-
performed in a mini-slab gel (8.5 cv6.5 cmx  tively. The specific activity of the H1 histone

Other procedures and determinations
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Table 1. Purification of H1 histone kinase from rabbit skeletal muscle

Step Volume  Protein Total activity  Specific activity  Yield Purification
(mL) (mg) (mu) (mU/mg) (%) (-fold)

1. Sup 3 fraction 670 502.5 367 0.73 100.0 1.00
2. DEAE-Sephacel

| 91.5 23.4 624 26.5 185 36

Il 120.0 7.6 734 96.9 200 133

I+ 1l 211.5 31.0 1358 43.9 385 60
3. H1 histone-Sepharose  41.3 1.95 440 225.5 120 309
4. Hydroxyapatite 8.6 0.75 297 396.6 81 543

Purification of H1 histone kinase and determination of enzyme activity and protein concentration were
performed as described under Materials and Methods. Purification was repeated on several occasions and
typical data are presented.

kinase in DEAE-II was 3.5 times higher thanFig. 2. The active peak fractions (fractions 23—
that of DEAE-I, and was therefore used for thg0; 41.3 mL, 1.95 mg protein) were dialyzed
next step in the purification. After decreasingand loaded to a hydroxyapatite column. The
the NaCl concentration to approximately 2Ginase activity this time was eluted with a buf-
mM by dialysis, DEAE-II was applied to a H1 fer containing 100 mM potassium phosphate as
histone-Sepharose column. H1 histone kinasadicated in Fig. 3. Further purification was
activity was eluted as a single peak with theittempted by several methods (gel filtration and
buffer containing 250 mM NacCl as depicted incation exchange chromatography, affinity

(x 1072 cpm)
0 — (Da)
94,000-
>
= 67,000-
g
o 43,000- =1
@
£
= 30,100-
(0]
c
(@)
@
T 20,000-
—
I
A B

Fig. 5. Detection of H1 histone kinase activity
by an in-gel assay method. The H1 histone
Eraction number kinas_e _prep_aration was separated on SDS-PAGE
. . . . containing either H1 histon&] or BSA, as a con-
Fig. 4. Molecular mass anaIyS|s of H1 histone kinase _bYroI (B) and then the H1 histone kinase activity
Sephacryl S-200 gel filtration chromatography. Gel filyy a5 detected as described under Materials and
tration of the enzyme was performed and H1 histongiethods. The position of the radioactive band
kinase activity #) was assayed as described undey;ip M, 45,000 is indicated by arrow head.
Materials and Methods. Black bar indicates the pea,mbers on the left side of the figure show the
fractions. The elution position of each molecular Masgositions of molecular mass markers: phos-
standard is pointed by @mrow. Vo, void volume deter- phorylaseb (94,000 Da), BSA (67,000 Da), oval-
mined using Blue Dextram;, humany-globulin; b, BSA; bumin (43,000 Da), carbonic anhydrase (30,100

¢, ovalbumin;d, cytochromec. Da) and soybean trypsin inhibitor (20,000 Da).

0 20 . 40 60 80

37



N. Kubota et al.

chromatography on a heparin-
Sepharose or a polylysine-agarose),
but did not result in a significant in-
crease in the specific activity of the
enzyme (data not shown). Although
the enzyme preparation was still con-
taminated with other proteins, the
active fractions recovered from the
hydroxyapatite column (fractions 4—
12; 8.6 mL, 0.75 mg protein) was
used for further analyses of this H1
histonekinase. A summary of the puri-
fication procedure is given in Table
1, indicating an approximately 540-
fold purification from the Sup 3 frac-
tion with an 81% overall recovery.
Although the reason is not clear at
present, the high recovery of enzyme activity
may be due to the presence of an endogenous
inhibitor in the starting Sup 3 fraction. The re-
sult shown in Fig. 4 depicts the elution profile
of kinase activity from a Sephacryl S-200 gel
filtration column. The molecular mass of the
enzyme was estimated to be approximate
50,000 Da by comparison with the eluting posi-
tions of marker proteins. An SDS-PAGE analyses
of the active fractions (fractions 29-35; black
bar, Fig. 4) showed very faint protein band(s)

8.0

6.0

4.0

2.0

H1 Histone kinase activity

0.0

(pmol phosphate/min)™

1/Kinase activity

2

1/[H1 Histone]

Fig. 7. Double-reciprocal plot of phosphorylation of
H1 histone by H1 histone kinase. Protein kinase
activities were measured using 1.0 mU of H1 histone
kinase as described under Materials and Methods ex-
cept that the incubation was performed under vari-
ous concentrations (from 0.27 to 2.73 uM) of H1 his-
tone for 15 min. The results are presented as a
double-reciprocal plot.
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Fig. 6. Optimum concentration of Mg?* and the effect of ionic
strength on H1 histone kinase activity. Protein kinase activi-
ties were measured using 0.25 mU of H1 histone kinase as de-
scribed under Materials and Methods except that the concen-
trations of Mg?* (A) or NaCl (B) were changed as indicated.

around M, 50,000 after staining with Coomassie
Brilliant Blue (data not shown). However,
radioactive H1 histone bands were detected on
the autoradiogram of the gel after the active
enzyme fractions were incubated with H1
histone and [y->?P]ATP and the reaction mix-
tures subsequently separated by SDS-PAGE
(datanot shown). In an attempt to obtain further
information on the molecular mass of the H1
histone kinase, an in-gel assay method was
employed, and Fig. 5 shows the existence of a
radioactive protein band M, ~45,000 in the gel
containing H1 histone; this radioactive protein
band does not appear to be due to autophos-

Table 2. Effects of protein kinase activators
and inhibitor on H1 histone kinase activity

Addition Relative kinase
activity (%)
None 100
cAMP (0.4 mM) 115
CaCl, (0.2 mM)
+ Calmodulin (10 pg/mL) 90
Heparin (0.25 pg/mL) 107

CAMP, cyclic AMP.

H1 histone kinase activities were measured as de-
scribed under Materials and Methods except that 0.3
mU of the enzyme was employed and protein kinase
activators or inhibitor were added as indicated
below. Results are presented as % activities taking
that obtained in the absence of the modulator as 100.
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phorylation. In contrast, no radioactive band
was detected in the control gel. These results
suggest that the purified H1 histone kinase is
probably a monomeric protein with amolecular
mass of 45,000-50,000 Da.

Enzymatic properties of the purified H1
histone kinase

The effect of Mg?* on kinase activity was exa-
mined and the datain Fig. 6A indicate that the
optimum concentration of Mg?* was appro-
ximate 10 mM. Figure 6B depicts the effect of
ionic strength on kinase activity. A small effect
was observed at NaCl concentrations below 75
mM, but enzyme activity decreased rapidly
above 100 mM NaCl.

A Kinetic analysis of H1 histone phosphory-

Table 3. Ca?" and phospholipid requirement
of H1 histone kinase and protein kinase C
activities

Effector Relative activity (%)

H1 Protein

histone kinase
kinase C
+ CaZ* + Phospholipid 100 100
+ Ca?* — Phospholipid 73 9
+ EGTA + Phospholipid 108 71
+ EGTA — Phospholipid 97 11

Protein kinase C, Ca?*-phospholipid-dependent
protein kinase.

Protein kinase activities were measured as de-
scribed under Materials and Methods except that i)
0.25 mU of the H1 histone kinase and 0.96 mU of
protein kinase C were incubated for 30 and 10 min,
respectively; ii) the final concentrations of Ca®*,
EGTA and phospholipid are 0.4 mM, 0.5 mM and 8

pg/mL phosphatidylserine plus 0.8 pg/mL diolein,
respectively. Results are presented as % activities tek-
ing that obtained in the presence of Ca?* and phos-
pholipid as 100 for the respective protein kinases.

lation was shown in Fig. 7. From the double-
reciprocal plot, K,,, and apparent Vmax values
were calculated to be 0.51 pM and 1.36 pmol/
min, respectively.

o
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10® 5x10°10* (M)

1078 107 1076 10°° 1074(M) 0
CKI-7 concentration

0 10°107 1010 10{M) 6
Inhibitor concentration Inhibitor concentration

Fig. 8. Effectsof various protein kinase inhibitors on H1 histone kinase activity. A: Effect of protein kinase
A inhibitor peptide. H1 histone (60 mg/mL) was phosphorylated by H1 histone kinase (0.25 mU) or protein
kinase A (1.2 mU) under the respective standard assay conditions described under Materials and Methods
except that the inhibitor peptide was added at the indicated concentrations and 0.4 mM cAMP was included as
indicated below. Results are presented as % activities taking that obtained in the absence of the inhibitor as
100. @ and (, activities of H1 histone kinase in the presence and absence of CAMP, respectively; [, activity
of protein kinase A. B: Effect of protein kinase C inhibitor peptide. S6 peptide analogue (0.1 mg/mL) was
phosphorylated by H1 histone kinase (0.35 mU) or protein kinase C (0.96 mU) under the respective standard
assay conditions described under Materials and Methods except that the inhibitor peptide was added at the
indicated concentrations and Ca?* (0.4 mM) plus phospholipid (8 pg/mL phosphatidylserine plus 0.8 ug/mL
diolein) or EGTA (0.5 mM) plus phospholipid suspension buffer were included as indicated below. Other
conditions were same asindicated in (A). @ and @, activities of H1 histone kinase in the presence of Ca?* plus
phospholipid and EGTA plus phospholipid suspension buffer, respectively; —, activity of protein kinase C.
C: Effect of CKI-7 (inhibitor of CKIl). H1 histone was phosphorylated by H1 histone kinase (0.25 mU) or
protein kinase C (0.48 mU) and a-casein was phosphorylated by CKI (0.7 mU) under the respective standard
assay condition described under Materials and Methods except that the inhibitor was added at the indicated con-
centrations. Other conditions were same asindicated in (A). @, © and [: activities with H1 histone kinase,
protein kinase C and CKI, respectively.
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Table 4. Substrate specificity of H1 histone kinase and its comparison with other protein kinases

Substrate Relative kinase activity (%)
H1 histone Protein Protein cdc2 CKI CKIlI
kinase kinase C kinase A Kinase
H1 histone 100 100 100 100 1 6
H2B histone 35 44 391 14 1 4
Myelin basin protein 153 110 19 ND 0 3
a-Casein 0 ND ND ND 100 100
S6 peptide analogue 310 271 530 6 1 1
Kemptide 30 13 680 0 8 3
Na" channel peptide 22 67 9 1 0 2

cdc2, cell division cycle 2; CKI, casein kinase |; CKII, casein kinase I1; ND, not determined; protein kinase
A, cyclic AMP-dependent protein kinase; protein kinase C, Ca?*-phospholipid-dependent protein kinase.

Each protein kinase activity was measured as described under Materials and Methods except that the
amount of enzyme and the incubation time were changed with respective enzymes as follows: H1 histone
kinase, (0.3 mU, 30 min); protein kinase C, (0.96 mU, 10 min); protein kinase A, (2 mU, 5 min); cdc2 kinase,
(0.3 mU, 30 min); CKI, (1.7 mU, 20 min); CKII, (0.8 mU, 20 min). Results are presented as % activities
taking that obtained using H1 histone as 100 for H1 histone kinase, protein kinase C, protein kinase A and

cdc2 kinase or using a-casein as 100 for CK1 and CKII.

The effects of various modulators on protein
kinase activities are shown in Tables 2 and 3,
and Fig. 8. The H1 histone kinase activity was
not significantly influenced by the addition of
cAMP, CaCl, plus calmodulin or heparin
(Table 2). Thedatain Table 3 indicate that the
phosphorylation by the purified H1 histone
kinase proceeded in Ca?* and phospholipid-
independent manner, in contrast to phosphory-
lation by protein kinase C. The kinase activity

_I_ —
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B #
>
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B

angin
Fig. 9. One-dimensional peptide mapping of tryptic
phosphopeptides derived from radioactive H1 his-
tone. The sample phosphorylated each with cdc2
kinase (A); purified H1 histone kinase (B); protein
kinase C (C); protein kinase A (D) was analyzed as
described under Materials and Methods.

was not significantly influenced by the addition
of protein kinase A inhibitor peptide irrespec-
tive of the presence or absence of CAMP (Fig.
8A). Thereaction was strongly inhibited by the
addition of protein kinase C inhibitor peptide
although at concentrations one order of magni-
tude higher than those for protein kinase C itself
(Fig. 8B). Thisinhibitory effect was equally
observed irrespective of either the presence or
absence of Ca?* and phospholipid. The H1 his-
tone kinase activity was moderately inhibited
by CKI-7 (Fig. 8C), arelatively specific inhib-
itor of CKI. In comparison, CKI-7 only weakly
inhibited protein kinase C (Chijiwa et al.,
1989).

The substrate specificity of the purified H1
histone kinase was studied with various protein
or peptide substrates and compared with that of
other protein kinases (e.g., protein kinase A,
protein kinase C, cdc2 kinase, CKI and CKII)
(Table 4). MBP and S6 peptide analogue were
phosphorylated more efficiently than H1 his-
tone by our purified H1 histone kinase under the
reaction conditions employed. In contrast, H2B
histone, Kemptide (a peptide substrate for pro-
tein kinase A) and a Na* channel peptide were
not such effective substrates for the H1 histone
kinase, because the efficiencies in phosphoryla-
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tion decreased to 22—35% compared
with that of H1 histone. a-Casein (a
standard substrate for casein kinase)
was not phosphorylated by our ki-
nase. Fromtheresultsin Table 4, the
substrate specificity of the purified
H1 histone kinase was clearly dif-
ferent from that of protein kinase A,
cdc2 kinase and CKI and CKIlI, but
similar to that of protein kinase C.
To clarify the catalytic specifi-
city of the H1 histone kinase, peptide
mapping of the *P-labeled H1 histone
was performed. At first, one-dimen-
sional peptide mapping was examin-
ed using H1 histone preparations
partially phosphorylated by the H1
histone kinase, protein kinase A,
protein kinase C and cdc2 kinase, re-
spectively, for comparative studies.
The autoradiogram of the tryptic
phosphopeptide maps is shown in
Fig. 9. The pattern of the radioactive peptides
obtained using the H1 histone kinase was
different from those obtained by using protein
kinase A and cdc2 kinase, but was similar to
that obtained by using protein kinase C. In
order to compare each functional specificity
more precisely, the tryptic phosphopeptides

-

fhus

} «— Pi

«— P-Ser
«— P-Thr

€ P-Tyr

Fig. 11. Analysis of phos-
phorylated amino acid of
H1 histone. H1 histone was
phosphorylated by H1 his-
tone kinase and phos-
phorylated amino acids of
the modified histone were
analyzed as described under
Materialsand Methods. The
| positions of phosphoamino
acids are indicated on the
right side of the figure. Pi,
inorganic phosphate; P-Ser,
phosphoserine; P-Thr,
phosphothreonine; P-Tyr,
phosphotyrosine.
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Fig. 10. Two-dimensional peptide mapping of tryptic phospho-
peptides of radioactive H1 histone. Each H1 histone phospho-
rylated separately with either H1 histone kinase or protein
kinase C was analyzed as described under Materials and
Methods. Direction 1, high-voltage electrophoresis; Direction 2,
ascending thin layer chromatography. A: H1 histone kinase; B:
protein kinase C; C: co-chromatography of H1 histone kinase
and protein kinase C.

obtained using H1 histone kinase and protein
kinase C were examined using the two-dimen-
sional peptide mapping. Both autoradiograms
showed one mgjor and several minor spots (Figs.
10A and B) and co-chromatography (Fig. 10C)
indicates that the major spots are identical.

Phosphoamino acid analysis of H1 histone
indicated that radioactive phosphate was pri-
marily incorporated into serine residue(s) (Fig.
11). When the radioactive H1 histone was
chemically cleaved at Tyr-74 with N-bromo-
succinimide, most of the radioactivity was re-
covered in a 15 kDa polypeptide derived from
the carboxy! terminus (Fig. 12). Negligible ra-
dioactivity was detected on the 6 kDa polypep-
tide derived from the amino terminus. These
results clearly indicate that the serine residue(s)
in the carboxyl-terminal domain of H1 histone
are phosphorylated by the purified H1 histone
kinase. The high absorbance at 230 nm detect-
ed around the low molecular mass region is
most likely due to unreacted reagent and acetic
acid used as a solvent.
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Fig. 12. Analysis of
phosphorylated domain
of H1 histone by N-
bromosuccinimide treat-
ment. Phosphorylated
H1 histone was analyzed
as described under Ma-
terials and Methods.
The elution positions of
carboxyl-terminal (C-
term) and amino-termi-
nal (N-term) domains
are indicated by arrows.
I, total radioactivity in
each fraction; —, absorb-
ance at 230 nm.
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Discussion

In this paper, we reported the partial purifi-
cation procedure and properties of one of the
major H1 histone kinases recovered when the
proteins obtained during the preparation of the
microsomal fraction of rabbit skeletal muscle
were separated on the DEAE-Sephacel column
(Fig. 1). After the anion-exchange column, the
enzyme was further purified by the column
chromatographies on H1 histone-Sepharose and
hydroxyapatite (Figs. 2 and 3). Finally, this
kinase was purified by about 540-fold with an
approximate yield of 80% (Table 1), although
the final preparation did not seem to be homo-
geneous. The molecular mass of the purified
H1 histone kinase was estimated to be 45,000—
50,000 Da by gel-filtration and in-gel assay
methods. Consistent with this results, the
molecular mass of 47,700 Da was also calcu-
lated with its Stokes radius and sedimentation
coefficient (Siegel and Monty, 1966) (data not
shown).
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In order to obtain further information on the
enzymatic properties of this H1 histone kinase,
the effects of various types of protein kinase
modulators (Tables 2 and 3, and Fig. 8), the
substrate specificity (Table 4) and the catalytic
specificity (Figs. 9-11) were examined and
compared with those of the representative pro-
tein serine/threonine kinases. The results obtain-
ed in these experiments revealed that the features
of the purified H1 histone kinase were clearly
different from those of protein kinase A, cdc2
kinase, CKI, CKII and calmodulin-dependent
protein kinase, but similar to those of protein
kinase C except for the requirement for Ca®*
and phospholipid on this kinase activity. The
K, value for H1 histone by the histone kinase
was dightly lower than that by protein kinase C
(Hashimoto et al., 1996). The analyses on the
phosphopeptides and the phosphoamino acid
demonstrated that the H1 histone kinase phos-
phorylated serine residue(s) of the carboxyl-
terminal region generated by N-bromosuc-
cinimide treatment as well as protein kinase C
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(Jakes et al., 1988). These results suggest a
possibility that the purified enzyme may be a
proteolyzed product of protein kinase C (Takai
et al., 1977; Hashimoto and Y amamura, 1989).
However, some properties of this kinase were
distinguishable from those of the proteolyzed
protein kinase C. For example, the H1 histone
kinase was recovered from the DEA E-Sephacel
column by the buffer at pH 7.5 containing 100
mM NaCl, whereas the catalytic fragment of
protein kinase C isusually eluted from the same
anion-exchange column by the buffer contain-
ing higher salt concentrations (Takai et al.,
1977).

The catalytic fragment of protein kinase C
was usually produced by the limited proteolysis
of thisenzyme by some protease such as calpain
(Kishimoto et al., 1983) or trypsin (Huang et al .,
1989) iniin vitro reaction systems aswell as cellu-
lar systems stimulated with tumor-promoting
phorbol ester such as 12-O-tetradecanoyl-
phorbol 13-acetate (TPA) (Nishizuka, 1989).
Although the physiological significance on the
generation of the catalytic fragment of protein
kinase C has not been well confirmed, it has
been assumed to be temporarily-produced inter-
mediate during the process of down-regulation
(Nishizuka, 1989) or an active kinase with a
special role for recognizing specific protein(s)
for cellular regulation (Pontremoli et al., 1987).
In the case of protein kinase C, the translocation
from cytosol to membrane or other organelle
has been demonstrated after stimulation with
various effectors (Disatnik et al., 1994). It
seems to be plausible to assume that the trans-
located kinase may be subjected to limited
proteolysis by endogenous protease.

It has been well known that protein kinase C
plays important roles in signal transduction
pathways through phosphorylation of various
intracellular and membrane-bound proteins as
well as protein kinase A (Nishizuka, 1989). Al-
though the relation between the H1 histone
kinase and protein kinase C is not clear at this
time, we expect that the histone kinase may par-
ticipate in the regulation of some microsomal
functions. Further purification and structural
analysis aswell asthe studies on the mechanism
of activation and the survey for its physiologi-
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cal target(s) seem to be important for more de-
tailed understanding of this H1 histone kinase.
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