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ABSTRACT

Accurate software reliability assessment is one of the current issues to assess software qual-
ity of software systems of which the size, complexity, and diversification have grown drasti-
cally. This doctoral dissertation discusses several methods of improved estimation/prediction
accuracy for software quality/reliability assessment. Especially, stochastic software reliability
modeling which enables us to assess software reliability more accurately is discussed. This
dissertation consists of the four main parts.

In the first part discretized software reliability modeling and its application to optimal
software release problems are discussed. This part focuses on accuracy improvement of conven-
tional continuous-time software reliability models by discretizing techniques such as integrable
difference methods. The discretized software reliability models proposed in this part have bet-
ter performance than the continuous-time ones in terms of the effort of parameter estimation,
goodness-of-fit to actual data, and predictability. The second part discusses software reliability
growth modeling with several key factors related to the software reliability growth process, such
as testing-coverage and testing-effort expenditures, based on a nonhomogeneous Poisson pro-
cess and stochastic differential equations, respectively. Taking these factors into consideration
in software reliability modeling is effective to develop plausible software reliability growth mod-
els. In the third part generalized software reliability modeling techniques based on an infinite
server queueing and order-statistics theories are discussed. These generalization approaches are
expected to be plausible software reliability modeling since these generalized software reliability
models proposed in the third part describe the software failure-occurrence phenomenon or the
fault-detection phenomenon comprehensively. The forth part treats software reliability model-
ing under imperfect debugging environment which is assumed that debugging activities can not
always correct and detect faults perfectly in the testing-phase during software development.

Each chapter shows numerical examples of software reliability analysis based on the software
reliability models proposed in this dissertation by using actual fault data. The final chapter
summarizes the results obtained in this dissertation and refers to the future researches on
plausible software reliability modeling and its applications to project management problems.
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Chapter 1

Introduction

1.1 Software Quality /Reliability

Computer systems play an important role in our modern information society. They are
used in diverse area, for example, seat reservation systems, online transaction systems, hospital
patient monitoring systems, air traffic control systems, and so on. If the computer systems once
cause failures, it is possible that inconvenience to our social life is caused, our property is dam-
aged, and people are injured or killed as the most critical case. The computer systems consist of
the hardware and software subsystems. It is said that the hardware has attained high produc-
tivity, quality, and reliability by progress of production technologies and redundancy techniques.
Accordingly, the main concern about productivity, quality, and reliability of computer systems
has been changing from the hardware into the software systems. Software engineering [3,20] is
an academic field treating these issues about the software systems. The main issue of software
engineering is to improve the productivity and quality of software systems by using scientific
approaches. The software development technologies discussed in software engineering can be
classified into the inherent and management technologies. The inherent technologies, such as
specification, design, coding/programming, testing/validation, maintenance techniques, aid the
software development directly. And the management technologies, such as quality/reliability,
performance/economic assessment, and project management techniques, support the software
development process indirectly. This dissertation discusses the management technologies in
terms of software quality/reliability and project management.

Software quality is defined as the attribute measuring how well the software product meets
stated user functions and requirements [3]. Therefore, it is very important to transform the
user’s requirements (external quality characteristics) into the quality characteristics of the soft-

ware system developers (internal quality characteristics). The external quality characteristics

1
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Fig. 1.1 : Software quality characteristics and sub-characteristics (ISO/IEC 9126).

have been standardized as the following six characteristics by ISO/TEC: Functionality, reliabil-
ity, usability, efficiency, maintainability, and portability [52,55] (see Fig. 1.1). In the software
quality characteristics standardized by ISO/IEC, software reliability is defined as the attribute
that a software system will perform without causing a software failure over a given time period,
under specified operational environment [51,52,56]. Accordingly, the software quality charac-
teristic of software reliability has been considered to be a “must-be quality” of software products.
And software reliability characteristics are different from hardware ones since a software system

never deteriorates.

A software system is a product which consists of the programs and documents produced
through the software development process, and are produced along with the following software

development process: Requirement specification, design, coding, and testing. Fig. 1.2 shows a
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Fig. 1.2 : A general software development process (water-fall paradigm).

general software development process called a water-fall paradigm [57]. Therefore, the software
development managers has to control the software development process systematically to satisfy
the software quality. Then, total quality management (abbreviated as TQM) is considered to be
one of the key technologies to produce more high quality software products [64]. The concept
of the TQM for software development means to assure the quality of software products in each
phase to the next phase, such as preventing software faults from causing software failures as
much as possible and detecting introduced faults in the software system as early as possible.
In practical software development, the software quality is evaluated and assured in the testing-
phase which is the final phase of the software development. That is, a lot of software faults
introduced in the software system through the first three phases of the software development
process by human activities are detected finally. Therefore, we can see that continual software
process improvement is very important to eliminate faults introduced during software devel-
opment process to reduce maintenance cost during operation phase. The present concept of a
software quality control is that good software process makes good software products. In recent
years, capability maturity model (abbreviated as CMM) [16] has been proposed as one of the

key technologies for software process improvement.

1.2 Software Reliability Engineering

There is now a general agreement on the need to increase software reliability by eliminating

faults introduced during software development. It needs measurement/assessment technologies
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—— Fault Avoidance Technique

Production -— Fault Tolerance Technique
Technology —— Systematic Specification Technique
~—— Failure Mode and Effect Analysis
Software Reliability |
Technology
—— Measurement and Assessment
Management Techniques
Technology —— Reliability Modeling

“— Data Collection Procedure

Fig. 1.3 : Software reliability technologies [52].

of software reliability in the software development process to produce software products keep-
ing high degree of reliability. Up to now, a lot of software reliability technologies have been
discussed, and are roughly classified into production technology and management technology.
Fig. 1.3 shows such software reliability technologies briefly [52]. The production technology is
defined as techniques related to improving and maintaining software reliability directly. The
management technology is defined as techniques related to managing software reliability, such
as assessing and predicting software reliability.

Software reliability engineering [7,10,38,51,52,55,56] (abbreviated as SRE) is a discipline
of applying engineering principles and quantitative techniques to assure and enhance software
reliability, and known as a subdispline of software engineering. Research on the SRE has been
conducting during the past 25 years to grapple with the problems mentioned above. The main
purposes on the SRE are measuring, predicting, and controlling reliability of a software system.
Fig. 1.4 shows SRE activities along with the software development process [10,52].

Now, we define the following terminologies related to the SRE as follows [38,51,52, 54-56]:

o Software failure

An unacceptable departure of program operation from the program requirements.

o Software fault

A defect in the program which causes a software failure. The software fault is usually

called a software bug.

o Software error

Human action that results in a software system containing a software fault.

Thus, the software fault is considered to be a manifestation of a software error. The severity of
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Fig. 1.4 : SRE activities over the software product life-cycle phases.

the level of software failures may be able to classify into several categories, such as catastrophic,

critical, major, and minor,

depending on their impact on our social life [38].

1.3 Software Reliability Models

Software reliability models are mathematical tools based on stochastic and statistical prin-

ciples to assess software re

liability quantitatively. Fig. 1.5 shows the hierarchical classification

of software reliability models [52,55]. The software reliability models are roughly classified

into analytical models and

empirical models. The role of the analytical model is to derive and

analyze several software reliability measures, such as the fault content in the software system,
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Fig. 1.5 : A hierarchical classification of software reliability models [55].

software failure rate, software reliability, and mean time between software failures, by develop-
ing a model under suitable assumptions about reliability factors in the testing and operational
phases. The purpose of the empirical model is to analyze characteristic factors of software
development process and software complexity by using empirical data. For examples, a Mc-
Cabe complexity measure [38,57] is a well-known model as one of the empirical models, which
assesses the complexity of control flow graph of a program by using the cyclomatic number.

Additionally, the analytical model is also classified into dynamic model and static model. The
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dynamic model is often called a software reliability growth model (abbreviated as SRGM). This
model describes the software fault-detection or software failure-occurrence phenomenon during
the testing and operational phases as the software reliability growth process by executing a
implemented software [29,51, 52, 56].

Many software reliability growth models have been developed over the past three decades.
The existing models are classified from various view points by several researchers. Specifically,
Yamada [52, 56] has classified the software reliability growth models into the following three

categories:

o Software failure-occurrence time model :

The stochastic model taking notice of the time-interval between software failure-occurrences.

o Software fault-detection count model :
The stochastic model taking notice of the cumulative number of faults detected or software

failures occurring over a specified time period.

o Software availability model :
The stochastic model describing the time-dependent behavior of a software system which

alternates up and down states.

Especially, the software fault-detection count model based on a nonhomogeneous Poisson
process (abbreviated as NHPP) is one of the well-known stochastic software reliability growth
models. Several NHPP models have been practically utilized for assessing software reliability in
many computer manufacturers and software houses in terms of the simplicity and applicability
of the NHPP models. The main issue in the NHPP model is to estimate the mean value
function indicating the expected cumulative number of faults detected up to a certain time point
[38]. The NHPP models can be applied to several interesting issues, such as optimal software
release [11,22,35,59], optimal testing-resource allocation [63], and software maintenance service

contract problems [40].

1.4 Software Reliability Growth Modeling

This dissertation treats software reliability growth modeling which enables us to assess
software reliability quantitatively. Then, we here discuss the concepts and some quantities for

software reliability growth modeling.
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Fig. 1.6 : The stochastic quantities related to the software fault-detection and software-failure
occurrence phenomena.

Through the testing-phase in the software development process, software faults are detected
and removed with a lot of testing-effort expenditures. Then, the number of faults remaining in
the software system is decreasing as the testing-time goes on. This means that the probability
of software fault-detection or software failure-occurrence is decreasing so that the software
reliability is increasing and the time-interval between software failures becomes longer with the
testing-time. These phenomena can be modeled by using probability and statistical theories.
That is, we can define the following random variables on the number of detected faults and the
software failure-occurrence time (see Fig. 1.6):

N(t) = the cumulative number of faults detected up to time ¢ (or the cumulative number
of software failures observed up to time t),

Sy = the k-th software failure-occurrence time (k =1,2,--- ;S = 0),

X = the time-interval between (k — 1)-st and k-th software failures
(k = 1,2,-'- ;Xg :0)

Fig. 1.6 shows the occurrence of event { N(t) = k} since k faults have been detected up to time

t. By using these definitions, we have the relationships as

k
Sk=Y Xy  Xp=Sk— Sk (1.1)
i=1

Based on these quantities, we can derive several software reliability assessment measures by
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considering the probability distributions of N(t), X}, and S;. The fault count data (¢;,y;)(¢ =
1,2,--+; 0 <t; <ty <---) which mean that the number of faults, y;, during the time-interval
(0,¢;] is the realization of the stochastic quantity N(¢). And the failure-occurrence time data
si(t=1,2,--+; 0 < s < sy <---) are the realizations of stochactic quantities S;.

As to software reliability measurement and assessment, the testing-time and operation time

are based on the following units:
(1) the calender time,
(2) the execution time or CPU time,
(3) the testing-effort expenditures,
(4) the number of test runs or executed test cases,
(5) the ratio of testing-progress.

Ordinally, the continuous-time models assess software reliability measured on the basis of the
units taking continuous values such as the execution/CPU time. On the other hands. the
discrete-time models is based on the basis of the units taking discrete values such as the number

of test runs.

1.5 Purposes and Organization of This Study

Measuring and assessing software reliability quantitatively and accurately in the testing-
phase or operation phase are one of the important activities of project management to develop
highly reliable software products. In the testing-phase software development managemers can
get the situation of software reliability growth process by analyzing the observed data, such
as the fault count data and software failure-occurrence time data. Applying an SRGM for
assessing software reliability can also enable the software development managers to discuss
several issues related to project management, such as optimal software release (or shipping)
problems, optimal testing-resource allocation problems, and statistical software testing-progress
control. Accordingly, SRGM’s have been utilized in many actual software project as one of the
fundamental technologies for quantitative assessment of software reliability.

During three decades, many SRGM'’s have been proposed in transactions and conferences

on software engineering. However, unfortunately, very few of the SRGM’s propopsed mainly
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in 1980’s have been used in practical software reliability assessment. In recent years, as a role
of computer systems is expanding rapidly, the size, complexity, and diversification of software
systems are growing drastically. Furthermore, software development technologies have been
also changing recently. Under the background above, many researchers on software reliability
engineering have pointed out that there are limitations on the accuracy of assessment and esti-
mation of software reliability. For the purpose of solving these problems above, this dissertation
discusses several methods of improved estimation/prediction accuracy for software reliability
assessment. HEspecially, several kinds of stochastic software reliability modelings, such as dis-
cretized software reliability modeling, software reliability modeling with serveral factors related
to the software reliability growth process, generalized software reliability modeling, and software
reliability modeling under imperfect debugging activities, which enable us to assess software
reliability more accurately, are discussed. This dissertation is composed of the following four
main parts.

In the first part consisted of Chapters 2 and 3 discretized software reliability modeling and
its application to optimal software release problems are discussed. This part focuses on accuracy
improvement of conventional continuous-time software reliability growth models by discretiz-
ing techniques called integrable difference methods and by transforming discrete deterministic
models into stochastic models, respectively. Each content of these chapters in the first part is

as follows:

e Chapter 2: Software Reliability Modeling Based on Integrable Difference Equations

Chapter 2 discusses software reliability growth modeling based on integrable difference
equations. FEspecially, discrete exponential and inflection S-shaped SRGM’s which are
derived from the original NHPP models by using Hirota’s bilinearization methods are
proposed, respectively. After that, goodness-of-fit comparisons of our discrete models with
existing deterministic discrete models are performed by using actual data sets. Further,
optimal software release problems under simultaneous cost and reliability requirements

based on the proposed discrete SRGM’s are discussed.

e Chapter 3: Stochastic Software Reliability Modeling Based on Discretized SDA Models

Chapter 3 proposes stochastic discrete software reliability growth models by modifying
discrete statistical data analysis (abbreviated as SDA) models which are deterministic
models, such as discrete logistic, Gompertz, and modified exponential curve models. And

we test whether proposed stochastic models have better performance than the ordinary
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discrete SDA models. Additionally, several software reliability assessment measures are

derived based on the stochastic properties.

The second part discusses software reliability growth modeling with several factors related to
the software reliability growth process in the testing-phase, such as testing-coverage and testing-
effort expenditures. Taking these factors related to the software reliability growth process into
consideration in software reliability modeling is very important to aim at accuracy improvement
of quantitative software reliability assessment. The second part consists of Chapters 4 and 5

in the following:
e Chapter 4: Software Reliability Modeling with Testing-Coverage

Chapter 4 discusses software reliability growth modeling with testing-coverage. The
testing-coverage is one of the important metrics related to the software reliability growth
process. Our testing-coverage dependent SRGM is developed by formulating the relation-
ship between the testing-coverage maturity process and the software reliability growth
process described by an NHPP. Based on our model, several testing-coverage dependent

software reliability assessment measures are derived.

e Chapter 5: Lognormal Process Software Reliability Modeling with Testing-Effort

Chapter 5 discusses a continuous-state space software reliability growth modeling with a
testing-effort factor by applying a mathematical technique of stochastic differential equa-
tions of It0 type and its parameters estimation. And we show goodness-of-fit comparisons

among our model and existing lognormal processes SRGM’s by using actual data sets.

The third part discusses generalized software reliability growth modeling techniques. Gen-
eralization or unification frameworks of software reliability modeling are expected to enable
software development managers to develop a plausible SRGM. The generalization frameworks
in this dissertation mean the modeling frameworks which can develop several types of software
reliability models according to the software failure-occurrence patterns in the actual testing-
phase. In recent years, many researchers attempt to generalize or unify various SRGM’s. In this
part generalization approaches for continuous and discrete SRGM’s are proposed, respectively.

The third part consists of Chapters 6 and 7 which have the following contents:

e Chapter 6: Generalized Discrete Software Reliability Modeling with Program Size

Chapter 6 discusses generalized discrete software reliability growth modeling in which

the software failure-occurrence times obey a discrete probability distribution. Especially,
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our generalized discrete software reliability growth models enable us to assess software
reliability in consideration of the effect of the program size. And several software reliabil-
ity assessment measures based on the unified framework for discrete software reliability
growth modeling are derived. Additionally, optimal software release problems based on

our generalized discrete SRGM are also discusssed.

e Chapter 7: Infinite Server Queueing Modeling for Software Reliability Assessment

Chapter 7 proposes an generalization framework for software reliability growth model-
ing by infinite server queueing theory. Our infinite server queueing model for software
reliability assessment is developed by using the basic concept of the well-known delayed
S-shaped software reliability growth modeling. Finally, the ralationship between our in-
finite server queueing model and existing NHPP models is discussed with the physical

interpretation for the fault-detection phenomenon.

The fourth part treats imperfect debugging modeling for software reliability assessment.
The imperfect debugging model is developed by assuming an imperfect debugging environ-
ment where latent faults are not always detected and corrected perfectly and the debugging
activities may have a possibility that new faults are introduced. The imperfect debugging en-
vironment can be considered as a suitable assumption for an actual testing-phase. The fourth

part discussed as Chapter 8 treats the following content:

e Chapter 8: Software Reliability Modeling with Imperfect Debugging Activities

Chapter 8 proposes software reliability growth models which incorporate 2-types of imper-
fect debugging activities, such as the activities introducing new faults and the imperfect
fault correction activities, simultaneously. Then, several software reliability assessment
measures based on our models are derived. Further, the estimation methods of model

parameters are discussed.

Each chapter provides numerical examples of software reliability analysis based on the soft-
ware reliability models proposed in this dissertation by using actual fault data. The final
chapter summarizes the results obtained in this dissertation and refers to the future researches
on plausible software reliability modeling and its applications to software project management

problems.
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Chapter 2

Software Reliability Modeling Based
on Integrable Difference Equations

2.1 Introduction

An SRGM is one of the fundamental techniques to assess software reliability quantita-
tively. In particular, the SRGM based on an NHPP is known as a useful tool for assessing
and predicting software reliability of the developed software system. At present, the NHPP
models contribute to software reliability assessment in many computer manufactures and soft-
ware houses. However, because the size, complexity, and diversification of software systems
have grown drastically in recent years, software development managers require SRGM’s which
enable us to assess software reliability more accurately than conventional SRGM’s proposed so
far. As one of the efficient techniques to improve the performance of the SRGM’s, discretized
software reliability growth modeling techniques have been proposed. The discrete SRGM’s
can be derived by discretizing the original continuous-time SRGM’s via using Hirota’s bilin-
earization methods [14,31]. Satoh [44] and Satoh and Yamada [47] have proposed a discrete
Gompertz curve model and a software reliability assessment method for discrete logisitc curve
models, respectively. They have performed goodness-of-fit comparisons among these discrete
SDA models by using a new goodness-of-fit evaluation criterion [46].

In this chapter, discretized NHPP models, such as a discrete exponential SRGM and a
discrete inflection S-shaped SRGM, derived by discretizing the original continuous-time NHPP
models are discussed. Our discrete NHPP models discussed in this chapter are derived by special
difference methods applying the Hirota’s bilinearization methods to the basic assumptions
of conventional continuous-time NHPP models. Generally, the ordinary forward or central

difference equations do not have exact solutions, i.e., the difference equations do not conserve

15
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the properties of the continuous-time NHPP models. However, the discretization methods
by using the Hirota’s bilinearization methods can overcome the problems above. And, our
discretized NHPP models can easily obtain the parameter estimates by using the method of

least-squares.

2.2 Continuous-Time NHPP Models

In this section we discuss conventional continuous-time NHPP models, such as an exponen-

tial SRGM and an inflection S-shaped SRGM, which are treated in this chapter.

2.2.1 Exponential SRGM

An exponential SRGM [13] is based on the assumption that the number of faults detected at
testing-time ¢ is proportional to the current number of faults in a program. Let H(t) denote the
expected cumulative number of software faults detected up to arbitrary testing-time ¢ from the
test beginning. Then, we can obtain the following differential equation from the assumptions
of the exponential SRGM:

dH (t
—dt(—):b[a—H(t)] (a>0,b>0), (2.1)
where a represents the expected total number of potential faults detected in an infinitely long
duration or the expected initial fault content, and b the fault-detection rate per fault. Solving

the differential equation in Eq. (2.1) with respect to H(t), we can obtain the solution as
H(t) =a(l —e™™). (2.2)

This model is also known as the Goel-Okumoto model.

2.2.2 Inflection S-shaped SRGM

An inflection S-shaped SRGM [33] is based on the dependency of faults in terms of the
software architecture and program path. Let I(t) denote the expected cumulative number of
software faults detected up to testing-time ¢ from the test beginning. Then, we can obtain the
following differential equation based on the assumptions of the inflection S-shaped SRGM:

dI(2)

= DU la—1()], (2.3)
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where D(I(t)) represents the fault-detection rate per fault considering with fault-detection skill
of the testing-team, which is formulated as

DUU»:bP+O—D%?} @>0,6>0,¢>0, 0<I<1). (2.4)

In Egs. (2.3) and (2.4), a represents the expected initial fault content, b the fault-detection
rate per fault, and [ the inflection rate which indicates the ratio of the number of detectable
faults to the total number of faults in the program. Substituting Eq. (2.4) into Eq. (2.3), we
can obtain the following solution by solving the differential equation with respect to I(t):

a(l—e™)

It = 14+c-e ¥

(c>0), (2.5)

where c represents the inflection parameter defined by ¢ = (1 —{)/l. The inflection point of the
growth curve of the inflection S-shaped SRGM is derived as

¢ = %5. (2.6)

) = (1 - 1) . 2.7)

c

We can understand that the inflection point of the inflection S-shaped SRGM is depend on
the inflection parameter c or [ from Eq. (2.6). And, we can see that the inflection point does
not exist when [ = 1. That is, this model is a flexible SRGM which means the shape of the
growth curve can be changed from an exponential curve into an S-shaped one as the value of

the inflection parameter [ takes 1 — 0.

2.3 Discrete NHPP Modeling

Now we assume that a discrete counting process {N,,n > 0}(n = 0,1,2,---) representing
the cumulative number of faults detected up to n-th testing-period has the following properties

based on a continuous-time NHPP [36]:

Pr{N,=z | Ny =0} = {/t:‘}m exp[—Ay) (n,z=0,1,2,--+), (2.8)

where Pr{A} means the probability of event A. A, in Eq. (2.8) is a mean value function of the
discrete counting process, which represents the expected cumulative number of faults detected

up to n-th testing-period. The discrete counting process {N,,n > 0}(n = 0,1,2,---) obeying
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the above stochastic properties is called a discrete NHPP in this chapter. In this section
we develop two types of mean value functions of discrete NHPP’s, i.e., we develop discrete
exponential and inflection S-shaped SRGM'’s, respectively. And we also discuss parameter

estimation methods for these discrete SRGM’s, respectively.

2.3.1 Discrete exponential SRGM

We propose a discrete analog of the original exponential SRGM which is the simplest form
among the SRGM’s. Let H,, denote the expected cumulative number of faults detected up to

n-th testing-period from the test beginning. Then, we derive a discrete exponential SRGM as
Hyyy— H,=6b(a— H,), (2.9)

from the assumptions of the continuous-time NHPP model in Eq. (2.1) by discretization meth-
ods based on the Hirota’s bilinearization methods. Solving the above integrable difference

equation, we can obtain an exact solution H, in Eq. (2.9) as
H,=all—(1-6b)"] (a>0,b>0), (2.10)

where 0 represents the constant time-interval, a the expected total number of potential faults
to be detected in an infinitely long duration or the expected initial fault content, and b the fault
detection rate per fault. As § — 0, Eq. (2.10) converges to an exact solution of the original
exponential SRGM which is described by the differential equation as Eq. (2.1).

The discrete exponential SRGM in Eq. (2.10) has two parameters, a and b, which have to
be estimated the values by using an actual data. The parameter estimates @ and b which are
the estimated values of ¢ and b can be obtained by the following procedure using the method

of least-squares. First, we derive the following regression equation from Eq. (2.9):

Y, =A+ BH,, (2.11)
where
Y, = Hn+1 - H,
A = bab (2.12)
B = —6b.

Based on regression analysis, we can estimate A and B which are the estimates of A and B in

Eq. (2.11). Then, the parameter estimates @ and b can be obtained as

a=-A/B
-7 o
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Y, in Eq. (2.11) is independent of & because ¢ is not used in calculating Y, in Eq. (2.12).
Hence, we can obtain the same parameter estimates @ and 3, respectively, when we choose any

value of ¢.

2.3.2 Discrete inflection S-shaped SRGM

We also propose a discrete analog of the original inflection S-shaped SRGM. Let I,, denote
the expected cumulative number of faults detected up to n-th testing-period from the test

beginning. Then, we can derive a discrete inflection S-shaped SRGM as

8b(1 — 21) 8b(1 — 1)

In+1 - In = dabl + [In -+ In+1] - Inln+1, (214)

from the assumptions of the continuous-time NHPP model in Eq. (2.3) by using the Hirota’s
bilinearization methods. Solving the above integrable difference equation in Eq. (2.14) with

respect to I, we can obtain an exact solution [, as

1 -1\ "
o1- (553) |
I, = AT (@>0,b>0,¢>0,0<1<1), (2.15)

where § represents the constant time-interval, a the expected total number of potential faults

to be detected in an infinitely long duration or the expected initial fault content, b the fault
detection rate per fault, and ¢ the inflection parameter. The inflection parameter is defined as
¢ = (1 — 1)/l where [ is the inflection rate which indicates the ratio of the number of detectable
faults to the total number of faults in the software system. As § — 0, Eq. (2.15) converges to
an exact solution of the original inflection S-shaped SRGM which is described by the differential
equation as Eq. (2.3).

The inflection point can be derived as the following. Defining the difference operator as

I —
Al, —"+—15~—f-’1 (2.16)

Il

we show that the inflection point occurs when

n if Al > Al
= [n'] ( (n] 2 Al 1) (2.17)
[n']+1 (otherwise),
where [ z | represents the Gaussian symbol for any real number z, and
1
n o= 8¢ 1 (2.18)

1-16b
2
log (1+§6b)
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Moreover, we define t** as
™ =n'é. (2.19)

When n' is an integer, we can show that t** converges the inflection point of the original

inflection S-shaped SRGM as § — 0 as follows:
logc 5 logc

—— — —
1—16b b
o8 174z

By the way, the inflection S-shaped SRGM is regarded as a Riccati equation. Hirota [14]

£ =—6 s 86— 0. (2.20)

has proposed a discrete Riccati equation which has an exact solution. A Bass model [2] which
forecasts the innovation diffusion of products is also a Riccati equation. Satoh [45] has pro-
posed a discrete Bass model which can overcome the shortcomings of the ordinary least-square
procedures in the continuous-time Bass model.

The discrete inflection S-shaped SRGM has the three parameters, a, b, and [. These pa-
rameter can be estimated by the following estimation procedure. First, we derive a regression

equation to estimate the model parameters from Eq. (2.14). The regression equation is obtained

as
Y,=A+BK,+CL,, (2.21)
where
( Yn = Ip41 '[n
K, =1I,+ In-l—l
Ly, =11,
2.22
) A = dabl ( )
B =4b(1—2l)/2
L C =-6b(1-1)/a.

Based on regression analysis, we can obtain 121\, B , and C which are the estimates of A, B, and
C, respectively. Therefore, we can obtain a, /l;, and [ which are the parameter estimates of a, b,
and [ from Eq. (2.22), respectively, as follows:
=4/ (VB?-AC-B)
b=2VEB2— AC/s (2.23)
I=(1-B/VB-4C) 2.
Y,, K., and L, in Eq. (2.21) are independent of § because ¢ is not used in calculating Y,
K,, and L, in Eq. (2.21). Hence, we can obtain the same parameter estimates @, Z, and lA,

respectively, when we choose any value of 6.
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2.4 Model Comparisons

We perform goodness-of-fit comparisons of our discrete NHPP models with the discrete
SDA models which are logistic and Gompertz curve models [44,46,47]. First, we arrange the
following four data sets used in the model comparisons:

- DS1[52] : (tk, yk)(k = 1,2,---,25; to5 = 25, Y5 = 136) where ¢, is measured on the
basis of CPU hours,

- DS2(6] : (tk,ye)(k=1,2,---,12; t12 = 12,y15 = 2657) where t; is measured on the
basis of months,

- DS3[44] : (tr,ye)(E=1,2,--+ 59 ; tsg = 59, yso = 5186) where t; is measured on the
basis of weeks,

- DS4[6] : (te,ye)(k=1,2,---,35; t35 = 35,yss = 1301) where t; is measured on the
basis of month,
where y; represents the cumulative number of faults detected up to testing-time ¢;. The data
sets of DS1 and DS2 indicate exponential growth curves, and those of DS3 and DS4 indicate

S-shaped growth curves, respectively.

2.4.1 Comparison criteria

We conduct goodness-of-fit comparisons in terms of a predicted relative error [52], a mean
square error (abbreviated as MSE) [38,52,55], and Akaike’s information criterion (abbreviated
as AIC) [1,43].

The predicted relative error is a useful criterion for indicating the relative errors between
the predicted number of faults detected up to the termination time of testing by using the part
of observed data from the test beginning and the observed number of faults detected up to the
termination time. Let R,[t.] denote the predicted relative error at arbitrary testing-time Z..
Then, the predicted relative error is given by

Rift) = Weifa) =0 (2.24)
q
where J(t.;t,) is the estimated value of the mean value function at the termination time i,
by using the observed data by the arbitrary testing-time t, (0 < ¢, < t,), and ¢ the observed
cumulative number of faults detected by the termination time.

The value of MSE is calculated by dividing the sum of squared vertical distance between

the observed and estimated cumulative numbers of faults, y, and 7 (¢;), detected during the

time-interval (0, ], respectively, by the number of observed data pairs. That is, supposing
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that K data pairs (tg,vx) (k= 1,2,---, K) are observed, we can formulate the MSE as

MSE = ;1(—2 i — 7)1, (2.25)

where 7 (tx) denotes the estimated value of the expected cumulative number of faults by using
exact solutions of each model by arbitrary testing-time tx(k = 1,2,---, K). The model having
the smallest value of the MSE fits best to the observed data set.

And, the AIC enables us to select the optimal model among ones estimated by the method
of maximum-likelohood. The AIC is known as a goodness-of-fit evaluation criterion considering

with the number of model parameters. The value of AIC is calculated by

AIC = —2 x (the logarithmic maximum-likelihood)

+2 x (the number of free model parameters). (2.26)

Note that the value of AIC themselves are not significant. The absolute value of difference
among their values are significant. We can judge that the model having the smallest value of
AIC fits best to the actual data set when their differences are greater than or equal to 1. When

their differences are less than 1, there are no significant.

2.4.2 Results of model comparison

First, Figs. 2.1-2.5 shows the results of model comparisons based on the predicted relative
error for DS1, DS2, DS3, and DS4, respectively. From Figs. 2.1 and 2.2, we can see that the
discrete exponential SRGM can accurately predict the cumulative number of faults detected up
to the termination time throughout all the testing-time. And, from Figs. 2.3 and 2.4, we can see
that the discrete inflection S-shaped SRGM does not always predict accurately the cumulative
number of faults detected up to the termination time in the early testing-time. However, the
discrete inflection S-shaped SRGM can predict more accurately than any other SRGM used in
these model comparisons as the testing-time goes on. Considering that practical activities on
software reliability assessment is started after 60% of the testing progress [17], we can say that
the discrete inflection S-shaped SRGM is superior in the prediction of faults detected up to the
termination time of the testing after 60% of the testing-progress.

Table 2.1 shows the result of model comparisons based on the MSE for the each model.
From Table 2.1, we can see that the discrete inflection S-shaped SRGM fits better to all data
sets except for DS2. In these model comparisons based on the MSE, the results depend on the
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flection S-shaped SRGM based on the predicted relative error for DS3.

Table 2.1 : The result of model comparisons based on the MSE.

Data discrete exponential  discrete inflection discrete logistic discrete Gompertz
Set SRGM S-shaped SRGM curve model curve model

DS1 39.643 12.141 101.92 72.854

DS2 1762.5 2484.0 27961 13899

DS3 25631 9598.1 149441 19579

DS54 11722 438.59 49741 27312

(SRGM : Software Reliability Growth Model)

Table 2.2 : The result of model comparisons between the discrete exponential and the discrete
inflection S-shaped SRGM'’s based on the AIC.

Data  discrete exponential  discrete inflection absolute value
Set SRGM S-shaped SRGM of difference
DS1 110.031 109.195 0.836

DS2 115.735 118.752 3.017

DS3 617.434 606.132 11.30

DS4 315.069 274.818 40.25

number of model parameters of each model. Accordingly, we provide Table 2.2 which shows

the result of model comparisons based on the AIC for the discrete exponential having two
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Table 2.3 : The estimated parameters of I/:[; for DS1 and f,\m for DS3.

a b(0=1) ¢ o [n] =
H, 139.956 0.113 — — — .__
I, 521788 00906 2350 8383 8 9

parameters and inflection S-shaped SRGM’s having three parameters which fit better to the
actual data sets than the others. From Table 2.2, the model comparison based on the MSE can
be validated.

From these three results of goodness-of-fit comparisons, we can conclude that the discrete
exponential SRGM is more useful model for software reliability assessment for the observed
data which indicates an exponential growth curve, and the discrete inflection S-shaped SRGM
is more useful one for the assessment after 60% of the testing-progress ratio for the observed

data which indicates an S-shaped growth curve.

2.5 Software Reliability Assessment Measures

In this section we derive several software reliability measures for our proposed models, such
as expected number of remaining faults, fault detection rates, software reliability functions, and
reliability growth rates, which are useful for assessing software reliability quantitatively. We
adopt DS1 and DS3 for the discrete exponential SRGM and the discrete inflection S-shaped
SRGM, respectively. First, Table 2.3 shows the obtained parameter estimates and the related
quantities of these models. By using these parameter estimates, Figs. 2.6 and 2.7 depict the

estimated mean value functions of H,, in Eq. (2.10) and I,, in Eq. (2.15), respectively.

2.5.1 Expected number of remaining faults

The expected number of remaining faults indicate the expected number of undetected faults
in the software system by arbitrary testing-period from the test beginning. Then, the expected

number of remaining faults at n-th testing-period, M, is formulated as

M, = E [N,]
— B[Ny — N,
—a— A, (2.27)
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where E[ -] means the expectation. Figs. 2.8 and 2.9 show the estimated expected number of
remaining faults based on the discrete exponential and the discrete inflection S-shaped SRGM’s,
]/\/[\ﬁ and ]/\/f\fl, for DS1 and DS3, respectively. From Figs. 2.8 and 2.9, we can estimate the
expected number of remaining faults ]\//754 for DS1 to be about 8 faults, and ]\/J\gs for DS3 to be
about 90 faults.

2.5.2 Fault detection rate

We discuss fault detection rates as new simple measures for quantitative software reliability
assessment. The expected number of faults detected during each period is derived by differing
the discrete mean value function as 6 = 1, which is substitute for the intensity function of
the continuous-time NHPP model. However, this is not enough to use as a useful assessment
measure because it gives only the number of faults detected during each testing-period to the
software development managers. It is important, to know how much faults are detected during
each testing-period for the initial fault content. Accordingly, we introduce a new reliability
assessment measure which represents the ratio of the number of faults detected during each

period to the estimated expected initial fault content as follows:
D, = (A, — Any)/a. (2.28)

Figs. 2.10 and 2.11 show the estimated fault detection rate for DS1 and DS3, respectively. From
these figures, we can estimate the fault detection rate Dys for DS1 to be about 6 - 321 x 1073,
And we can also estimate Dsq for DS3 to be about 1 - 477 x 1073,

2.5.3 Software reliability function

We derive software reliability functions which are also ones of the useful software reliability

assessment measures. The software reliability function is derived as

R(n,h) = Pr{Nuyn — Np = 0|N, =z}
= exp[—{Anin — An}]. (2.29)

by using the properties of the discrete NHPP in Eq. (2.8). Now we suppose 6 = 1. Then, the
estimated software reliability functions for H,, after the testing termination time n = 25 (CPU),
§6(25, h), and for I, after the testing termination time n = 59 (weeks), R;(25, h), are shown
in Figs. 2.12 and 2.13, respectively. Assuming that the software users operate these software

under the same environment as the software testing, we can estimate the software reliability
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§6(25, 1.0) for the discrete exponential SRGM to be about 0-46. And we can also estimate one
R;(59,0.1) for the inflection S-shaped SRGM to be about 0-48. ’
2.5.4 Reliability growth rate

In addition to the software reliability function in Eq. (2.29), we consider software reliability
growth rates which can reflect the influence of debugging-effort on software reliability during

each testing-period. The software reliability growth rate is formulated as
r(n,h) = R(n,h) — R(n — 1, h). (2.30)

by using Eq. (2.29). Suppose that h = 1. Then, the estimated software reliability growth
rates for H, (DS1) and for I, (DS3), 7.(n,1) and r;(n,1), are shown in Figs. 2.14 and 2.15,
respectively.

In Fig. 2.14, for given h = 1, we can see that the software reliability growth rate per
period increases by around n = 25. We can estimate the software reliability growth rate at the
testing termination time of DS1 to be about 7(25,1) =~ 4-353 x 1072, i.e., it is gained software
reliability, 7(25,1) =~ 4 - 353 x 1072, during the period between 24-th and 25-th testing. In Fig.
2.15, we can also see that the testing by about 40-th period does not contribute to the software

reliability growth. Therefore, we can say that it is neccessary to test more after around 40-th
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Fig. 2.15: The estimated software reliability growth rate, 7;(n, 1), for DS3.

testing-period. We can also estimate it at the termination time of the testing of DS3 to be

about 7(59,1) ~ 2 - 155 x 1072

2.6 Optimal Software Release Problems

The costs of developing a software system entail on great expenses. Especially, it is reported
that the cost of the testing-phase is expended more than 40% of software developing costs [5].
Accordingly, software developing managers have a great interest how to develop a reliable
software system economically. Generally, the longer testing is expected to attain a more reliable
software system. However, the total cost of testing-phase is expected to be more increasing,
and the testing is not always finished by the specified day of delivery. On the other hand, if the
total testing-time is too short, the testing cost is reduced, but the customers’ risk is caused by
operating the unreliable software system. That is, there is the trade-off relationship to derive
the optimal time to release the software from the testing-phase to the operational phase.

Problems determining when to stop the testing or release to the user in consideration of
the software reliability, the related costs, and the delivery have been called optimal sofware
release problems. Up to now, based on several SRGM’s, optimal software release policies based

on the total software cost have been discussed by Foreman and Singpurwalla [11], Okumoto
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and Goel [35], Yamada and Osaki [59], and other many researchers. Additionally, in recent
years, Kimura et al. [22] have discussed optimal software release policies which consider both
the present value of the total software cost and the warranty period in which the developer has
to pay the cost for fixing any detected faults.

In this section we discuss discrete optimal software release policies based on the discrete
NHPP models proposed in this chapter. That is, we derive the optimal policies to estimate
a termination time of testing which minimizes the total expected software cost. And then,
we also discuss discrete optimal software release policies with simultaneous cost and reliability
requirements from the software quality control point of view. Finally, applying fault count
data observed in practical testing-phases, we show numerical examples for the derived optimal

software release policies.

2.6.1 Cost-optimal software release policies

We discuss cost-optimal software release policies based on the discrete NHPP models which
have the discrete mean value functions denoted by A, generally. The following notations are

defined:

¢, : debugging cost per one fault in the testing-phase,
¢y : debugging cost per one fualt in the operational phase, where ¢; < o,

c3 : testing cost per constant period.

First, let Z be the software release period. Then, the expected cost for debugging faults
detected in the testing-phase is derived as ¢; Az, the expected cost for debugging faults detected
in the operational phase as ca(a— Az), and the testing cost by Z-th period as c3Z. Accordingly,
the expected total software cost Cz which indicates the expected total cost during the testing-

phase and the operational phase can be formulated as
CZ = CIAZ + Cg(a - Az) -+ C3Z. (231)

The cost-optimal software release period is the testing-period which minimizes the total

expected software cost Cz in Eq. (2.31). From Eq. (2.31), we can derive the following equation:

Czyy—Cy _ Ca — (1 C3
) ) Co — C1

- WZ:| , (2.32)

where W represents the expected number of faults detected during a Z-th period. Additionally,
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we define the following notation:

<n> = {{n] (if C[n] < C[n]+1)

- (2.33)
n]+1 (otherwise),

where [ n ] represents the Gaussian symbol for any real number 7.
When the discrete exponential SRGM in Eq. (2.10) is applied to Eq. (2.31), W§ which
represents Wz in Eq. (2.32) for the discrete exponential SRGM is derived as

WE = Sab(1 — 6b)%. (2.34)
From Eq. (2.34), we can confirm the following properties:

We,, <Wg, — W¢=dab, W =0 (2.35)

o]

That is, W§ in Eq. (2.34) is a monotonically decreasing function in terms of the testing-period

Z. Therefore, we obtain cost-optimal release policies as follows:

Optimal Release Policy 1-1
Suppose that co > ¢; > 0 and ¢3 > 0.

(1) Ifwg< —%, then the optimal software release period is Z* = 0.

ca—cy?

(2) IfWs> ;%-, then we have the following an only solution Z = Z, minimizing Eq.
(2.31):
In [-————3———0 —i e ]
Zo = _ Llezmer)dab | (2.36)

In(1 — 6b)

Thus, the optimal software release period is Z* =< Z; >.

Next, we discuss optimal software release policies based on the discrete inflection S-shaped
SRGM in Eq. (2.15). From Eq. (2.15), the expected number of faults detected during a Z-th
testing-period W} in Eq. (2.32) has a maximum value at the following inflection point Z for

the discrete inflection S-shaped SRGM:

_ / 1 > 1
7 {[Z ] (if ALz > Al z0y41) (2.37)

N [Z']+1 (otherwise),

where

1
Z = - % 1 (2.38)

1—1db
lo (———2 )
&\ T+ ie
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AW/ representing the forward difference of W} is confirmed that AW{ > 0 and AW < 0.
Therefore, we obtain the optimal release policies based on the discrete inflection S-shaped

SRGM as follows:

Optimal Release Policy 1-2
Suppose that ¢co > ¢; > 0 and ¢3 > 0.
(1) If Wé < ac—_@a, then the optimal software release period Z* is Z* = 0.

(2) W] >-2—>TW{], then we have an only solution Z, satisfying W} > —%— and

c2—C1 c2—C1

Wi, < Ef—% When the Cj is Cy < C.z,>, the optimal software release period Z*
is Z* = 0. When the Cy is Cy > Ccz,>, 2% is 2% =< Zj >.

(3) If W§ > %, then we have an only solution Z satisfying W} > ~%— and W7, <

- C2—Ci1

-6-59_30—1. Thus, the optimal software release period Z* is Z2* =< Z >.

2.6.2 Cost-reliability-optimal software release policies

Additionally, we discuss optimal software release problems which take both total software
cost and reliability criteria into consideration simultaneously. In an actual software develop-
ment, the software developing manager has to spend and control the testing resources minimiz-
ing the total software cost and satisfying the software reliability requirement rather than only
minimizing the cost.

Now, let Ry (0 < Ry < 1) be a software reliability objective. Using the software reliability
function in Eq. (2.29), we can derive optimal software release policies which minimize the
expected total software cost in Eq. (2.31) with satisfying the software reliability objective Ry.

Thus, the optimal software release problem can be formulated as follows:

Minimize C(Z) } ' (2.39)

subject to R(Z,h) > Ry, Z >0
Supposing h is a constant value, we can obtain the following properties as to the discrete

software reliability function in Eq. (2.29):
R(Z +1,h) > R(Z,h), R(0, h) = exp[—Ap], R(o0, h) = 1. (2.40)

Therefore, we can see that the discrete software reliability function, R(Z, h), is a monotonically
increasing function in terms of the testing-period Z when we suppose that A is a constant value.
Accordingly, if R(0,h) < Ry, then we have only finite solution Z; satisfying R(Z, h) < Ry and
R(Z+1,h) > Ry. Furthermore, if R(0, k) > Ry, then R(Z, h) > Ry for any nonnegative integer.
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Therefore, in this case, we discuss an optimal software release period based on only the cost
criterion.
From the discussion above, cost-reliability-optimal software release policies based on the

discrete exponential SRGM in Eq. (2.10) can be obtained as follows:

Optimal Release Policy 2-1
Suppose that ¢ >¢; >0,¢3>0,0< By <1,and h > 0.
(1) IWwW§< =2~ and R(0,h) < Ry, then the optimal software release period is Z* = Z;.
(2) W5 < ;%-and R(0,h) > Ry, then the optimal software release period is Z* = 0.
(3) U WS> —=2-and R(0,h) < Ry, then the optimal software release period is Z* =

C2—C1

max{< Zy >, Zl}

(4) IEWg> _2- and R(0,h) > Rp, then the optimal software release period is Z* =
< Zp >.

And also, based on the discrete inflection S-shaped SRGM in Eq. (2.15), optimal software

release policies can be obtained as follows:

Optimal Release Policy 2-2
Suppose that co >¢; >0,¢3>0,0< Ry <1,and h > 0.
(1) If W} < =%— and R(0,h) < Ry, then the optimal software release period Z* is

— ¢a—C1
(2) twi< 52 and R(0,h) > Ry, then the optimal software release period Z* is

(3) wi> 2> W{ and R(0,h) < Ry, then the optimal software release period Z*
is Z* = Z; when Cy < Ccz,>, and Z* = max{< Zy >, Z;} when Cy > Ccz,>.

4) IfWL> - >W{ and R(0,h) > Ry, then the optimal software release period Z*
VA co—C1 0
is Z* = 0 when Cy < Ccz,s, and Z* =< Zy > when Cy > Cz,»-

(5) If Wy > %~ and R(0,h) < Ry, then the optimal software release period Z* is
Z* = max{< Zy >, Z1}.

6) IW{ > —=_and R(0,h) > Ry, then the optimal software release Z* is Z* =< Z >.
0 co—C1

2.6.3 Numerical examples

We show numerical examples for the derived optimal software release policies discussed in

this section by using fault count data observed in actual testing-phases. We use DS1 and DS3



38 Chapter 2. Software Reliability Modeling Based on Integrable Difference Equations

Table 2.4 : Numerical examples of cost-optimal software release policies for the discrete expo-
nential SRGM.

Ci Co2 C3 z* Wz* 03/(02 - Cl) Cz* (X 102)
1 2 30 0 1.586x10 30 2.799
1 2 20 0 1.586x10 20 2.799
1 2 10 4 9.803 10 3.579
1 4 10 13 3.321 3.333 3.579
1 8 10 20 1.431 1.429 4.284
1 16 10 26 6.955x107' 6.667x1071 4.920
1 32 10 32 3.380x107! 3.226x107! 5.524

Table 2.5 : Numerical examples of cost-optimal software release policies for the discrete inflec-
tion S-shaped SRGM.

co 3 Z* Wz (x10%) c3/(ca—c1) Cg-(x10%)

a1

1 2 180 O 1.437 180 104.4
1 2 150 17 1.479 150 102.6
1 2 100 26 0.975 100 91.72
1 4 100 41 0.331 0.333x 10 105.2
1 8 100 51 0.142 0.143x10? 114.9
1 16 100 60 0.065 0.067x10? 123.5
1 32 100 68 0.032 0.032x10? 131.5

for the discrete exponential SRGM and the discrete inflection S-shaped SRGM, respectively,
which are the same data sets used in Section 2.5. In this section, we suppose that ¢; = 1 to

consider the relative software costs.

First, we show numerical examples for the cost-optimal software release policies discussed
in Subsection 2.6.1. Tables 2.4 and 2.5 show the cost-optimal software release periods derived
from the Optimal Release Policy 1-1 and the Optimal Release Policy 1;2, respectively.
From Tables 2.4 and 2.5, we can say that the cost-optimal software release period, Z*, becomes
large as the debugging cost per one fault in the operational phase increases. That is, it is
necessary to conduct the testing more as the maintenance cost increases. Fig. 2.16 depicts the
behaviors of Cz and W, where ¢; = 1, ¢; = 4, and ¢3 = 10. Additionally, Fig. 2.17 shows the
behaviors of Cy and W}, where ¢, = 1, ¢; = 4, and ¢3 = 100.

Next, we show numerical examples for the cost-reliability-optimal software release policies

discussed in Subsection 2.6.2. For the specified operational period A = 1 and the reliability
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objective Ry = 0 - 8, the cost-reliability-optimal software release problem can be formulated as

Minimize C(Z) } ‘ (2.41)

subject to R(Z,1) > 0.8, Z >0
Suppose that the cost-optimal software release policies have been discussed a case of ¢; = 1,
¢o = 4, and c3 = 10 for the discrete exponential SRGM and that of ¢; =1, co = 4, and ¢3 = 100
for the discrete inflection S-shaped SRGM, respectively. Then, for the discrete exponential
SRGM, we can estimate Z; = 36 because R(35,1) < Ry and R(36,1) > Ry. And then, because
W¢ > c3/(c; — ¢1) and R(0,1) = 1-296 x 1077 < Ry, the cost-reliability-optimal software
release period is estimated Z* = max{< Zy >, Z;} = max{13,36} = 36 by using the Optimal
Release Policy 2-1 (3) (see Fig. 2.18). For the inflection S-shaped SRGM, we can estimate
Z, = 84 because R(83,1) < Ry and R(84,1) > Ry. Then, because W{ > c3/(cp — ¢1) and
R(0,1) = 2-364 x 107% < Ry, Z* is estimated as Z* = max{< Zy >, Z} = max{41,84} = 84
by using the Optimal Release Policy 2-2 (5) (see Fig. 2.19). In Figs. 2.18 and 2.19, we
can understand the importance that the software development managers need to estimate an
optimal software release period by considering not only minimizing the total expected software
cost but also satisfying the reliability objective. For example, in Fig. 2.18, if the software
development managers employ < Zy >= 13 minimizing the expected total software cost as
the optimal software release period, the reliability objective Ry = 0.8 is not satisfied because
R(13,1) = 3.611 x 1072, However, by considering the reliability objective Ry = 0.8, the software
testing has to be gone on to satisfy the reliability objective Rj.

2.7 Concluding Remarks

We have proposed discrete NHPP models which have exact solutions derived from the con-
tinuous exponential SRGM and inflection S-shaped SRGM, respectively. And we have discussed
that the proposed discrete NHPP models have better performance for software reliability as-
sessment in terms of the predicted relative error and the MSE than the discrete SDA models.
And, we have derived several software reliability assessment measures, such as the number of
remaining faults, the fault detection rates, the software reliability functions, and the reliability
growth rates, for the discrete NHPP models. Additionally, we have discussed the cost-optimal
and cost-reliability-optimal software release problems based on the discrete NHPP models. In
an actual software development, the software developing manager has to spend and control the

testing resources with minimizing the total software cost and satisfying the software reliabil-
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ity requirements. Finally, we have shown numerical examples for our discrete NHPP models
and the derived optimal software release policies by using fault count data collected in actual

software development projects.



Chapter 3

Stochastic Software Reliability
Modeling Based on Discretized SDA
Models

3.1 Introduction

Software reliability assessment is one of the important issues to provide reliabile computer
systems of which the size, complexity, and diversification are growing up drastically in recent
years. An SRGM is known as one of the fundamental techniques to assess and predict software
reliability quantitatively. The SRGM’s have been modeled by using any stochastic processes to
describe a software failure-detection phenomenon or a software failure-occurrence phenomenon
in the testing or operational phases. Especially, the SRGM based on an NHPP, so-called an
NHPP model, can describe software reliability growth process easily in the testing-phase by
assuming a mean value function of the NHPP. Accordingly, the NHPP models have been utilized
in actual software development projects.

On the other hand, deterministic SRGM’s, such as logistic and Gompertz curve models, also
have been practically utilized for software reliability assessment. The determinisitc SRGM’s are
called SDA models. These models are useful to predict the initial fault content and to describe
software reliability growth process in the developed software system by regression analysis.
In recent years, discretized SDA models have been proposed to assess software reliability more
precisely than the continuous-time SDA models. Especially, Satoh [44] have proposed a discrete
Gompertz curve model and its application to an SRGM. And, Satoh and Yamada [47] have
discussed software reliability assessment methods using discrete logisitc curve models. And they
have performed goodness-of-fit comparisons among these discretized SDA models by using a

new goodness-of-fit evaluation criterion [46]. However, the continuous-time and the discrete-
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time SDA models can not provide several software reliability assessment measures, such as a
software reliability function, an instantaneous MTBF, which are useful quantitative metrics for
software reliability assessment.

In this chapter we discretize a modified exponential curve model, which is one of the typical
SDA models, and discuss its parameter estimation method first. And, we propose stochastic
software reliability growth models based on the discretized SDA models including the discrete
modified exponential curve model by revising unsuitable properties of the discretized SDA
models for practical application. Additionally, we perform goodness-of-fit comparisons of the
proposed models with the discretized SDA models by using data sets collected in actual testing-
phases. And several software reliability assessment measures derived from the proposed models

are also discussed in this chapter.

3.2 Discretized SDA Models

In this section, we discuss discretized SDA models, such as logistic and Gompertz curve
models, and their parameter estimation methods [44,46,47]. And, we derive a discrete modi-
fied exponential curve model and its parameter estimation method by discretizing the original
continuous-time one. These discrete SDA models can be derived by discretizing the original

continuous-time SDA models via using Hirota’s bilinearization methods [14].

3.2.1 Discrete logistic curve model

Let L, be the cumulative number of faults detected up to n-th testing-period. Then, a
discrete logistic curve model [46,47] is derived as the following difference equation based on the

assumptions of the original continuous-time logistic curve model:

o
Ln+1 - Ln - 5EL7H_1(]C - Ln) (31)
The exact solution of Eq. (3.1) is derived as
= i (k>0, a>0, m>0) 3.2
" 14+ m(1 - da)n ’ ™ ’ (3-2)

where k, o, and m are the constant parameters to be estimated by regression analysis, and &
the constant time-interval. We can see that parameter k£ in Eq. (3.2) represents the initial fault

content in the software system because

L,—k a n— oo (3.3)
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There are two types of discrete logistic curve models: Morishita type [28] and Hirota type [14].
Eq. (3.1) is the discrete logistic curve model proposed by Morishita.

A regression equation to estimate the parameters k, @, and m is obtained as
Y,=A+ BL,,, (3.4)

by rewriting Eq. (3.1), where

__ Ln+1 )
Y, = I
= — 5 . (3.5)
(8
B=—-—
k(1 —da) )

By regression analysis, we can estimate A and B which are the estimates of A and B in Eq.
(3.4). Then, the parameter estimates 75, &, and m which are the estimated value of k, «, and

m can be obtained as

-~

’/; — 1 :A )
~ B 1
L
ne S
n=1\n /

3.2.2 Discrete Gompertz curve model

Satoh [44] has proposed a discrete Gompertz curve model. Let G, be the cumulative number

of faults detected up to n-th testing-period, the discrete Gompertz curve model can be derived

dlogh
Gri1 = G (%) , (3.7)

by discretizing the original continuous-time Gompertz curve model. The exact solution of Eq.

(3.7) is obtained as

as

Gp = ka1t0189" (50, 0<a<1,0<b< 1), (3.8)

by solving the integrable difference equation in Eq. (3.7) with respect to G,. In Eq. (3.8), k,
a, and b are the constant parameters which are estimated by regression analysis, ¢ the constant

time-interval. Parameter k represents the initial fault content because

G,—k as n— oo (3.9)
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A regression equation to estimate the parameters k, a, and b is obtained as
Y, = A+ BlogG,, (3.10)

by rewriting Eq. (3.7), where

Y, =logGpy1 — log G,
A = —6(logb)(log k) . (3.11)
B =4logb

The parameter estimates 75, a, and b can be given by

A\ y
B

)
f
.
"
kel
|
N

N G
l Un
Q@ = exp NZ:"ZI 8 & = , (3.12)
Y n—1(1+dlogb)™
~ B
b= —
exp 5

/

where A and B are the estimates of 4 and B in Eq. (3.10), and 75, a, and b are also the

estimated values of k, a, and b.

3.2.3 Discrete Modified Exponential Curve Model

We propose a discrete modified exponential curve model to discuss typical SDE models
exhaustively. This discrete model is derived by discretizing the original continuous-time one.
We apply the Hirota’s bilinearization method [14] to derive an integrable difference equation
for the modified exponential curve model. Then, we can obtain a difference equation which
conserves the properties of the original differential equation for the modified exponential curve

model.
Let E, be the cumulative number of faults detected up to n-th testing-period. the discrete

modified exponential curve model can be derived as
Enyi— E,=—0logr(k—E,), (3.13)

based on the assumptions of the original continuous-time one. The exact solution of Eq. (3.13)

is derived as

E,=k—q(1+dlogr)" (k>0,0<r<1,¢g>0), (3.14)
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by solving the integrable difference equation in Eq. (3.13). In Eq. (3.14), k, ¢, and r are the
constant parameters to be estimated by regression analysis, and ¢ the constant time-interval.

Parameter k indicates the initial fault content in the software system because
E,—k a n— . (3.15)

We can see that Eq. (3.14) converges to an exact solution of the continuous-time modified

exponential curve model as § — 0. That is,
J— 3 - n
llsl—rf(l)E = (151_13(1)[]{3 g(1+dlogr)"]
= k—grt (3.16)

A regression equation to estimate the parameters k, 7, and ¢ is obtained as

Y, = A+ BE,;, (3.17)
by rewriting Eq. (3.13), where
Y, = En-l—l - E,
A= —bklogr . (3.18)
B =4dlogr

By regression analysis, we can estimate A and B which are the estimates of 4 and B in Eq.
(3.17). Then, the parameter estimates 75, 7, and g which are the estimated values of k, r, and

g, respectively, can be obtained as follows:

-~ 3

po-4
B
T=e p( ) . (3.19)
NG
7= =
Zn=1(1+5logr) )

Y, in Eq. (3.17) is independent of § because ¢ is not used in calculating Y, in Eq. (3.18). Hence,
we can obtain the same parameter estimates of /15, 7, and @, respectively, when we choose any

value of 4.

3.3 NHPP Modeling Based on Discretized SDA Models

The discretized SDA models discussed in Section 3.2 are deterministic models which do not
assume stochastic properties for the fault-detection phenomenon in the testing-phase. There-
fore, we can not derive typical software reliability assessment measures which are useful quanti-

tative metrics for software reliability assessment. In this chapter, we develop stochastic SRGM’s
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based on the discretized SDA models by incorporating discrete counting processes, which can
be more widely used than the ordinary discretized SDA models. That is, we describe behavior
of the expected cumulative number of faults detected up to arbitrary testing-period based on
the those deterministic models.

First, we assume that the discrete counting process {N,,n > 0}(n = 0,1,2,---) repre-
senting the cumulative number of faults detected up to n-th testing-period has the following

properies based on the continuous-time NHPP:

(P-1) : Ny = 0 with probability 1.

(P-2) : The discrete counting process {N,,n > 0} (n = 0,1,2,---) has independent
increments.

(P-3) : For arbitrary testing-periods n; and n; (0 < n; < n;),

{Anj - Ani }:c

Pr{Ny, — Np, =1} = -

exp[—{Anj — Ap}]
(z=0,1,2,--+), (3.20)

where Pr{A} indicates the probability of an event A.

We can rewrite Eq. (3.20) as

{An}”

z!

Pr{N, =2 | Ny =0} = exp[—Ay] (n,z=0,1,2,--+), (3.21)

which is the same as Eq. (2.8). In Eq. (3.21), A, in Egs. (3.20) and (3.21) is a mean value
function of the discrete NHPP, which represents the expected cumulative number of faults
detected up to n-th testing-period.

We derive discrete NHPP models with the mean value functions L,, G,, and E, for the
discrete logistic, Gompertz, and modified exponential curve models to describe the behavior of

the expected cumulative number of detected faults, respectively. However, we should note that

. ‘
Ly= —— :

0= T (3.22)
Go = ka, (3.23)
Eo=k—gq, (3.24)

which imply that these discrete models do not satisfy the property of the discrete NHPP and
they have unsuitable properties for practical applications. Accordingly, we have to devise L,

Gn, and E, as
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e discrete logistic curve model based on the discrete NHPP

! ! } : (3.25)

{1+m(1—-5a)" C14m

e discrete Gompertz curve model based on the discrete NHPP

NHPP _
L, =

GNHPP _ {a(1+6logb)" _ a}, (3.26)
e discrete modified exponential curve model on the discrete NHPP
ENHPP — p 11— (14 6logr)"}, (3.27)

to derive discrete NHPP models based on the discretized SDA models, respectively. Applying
these models above as the mean value functions of the discrete NHPP’s, we can derive useful
software reliability assessment measures such as software reliability functions, instantaneous
MTBF’s.

Next, we discuss parameter estimation methods for the proposed stochastic models in Egs.
(3.25)-(3.27). We write these mean value functions as A,, generally in this section. As the
parameter estimation methods in this chapter, we use the method of maximum-likelihood [38,
52,54,55]. Now, suppose that we have observed K data pairs (ng, yx)(k =0,1,2,---, K) with
respect to the total faults, v, detected during constant time-interval (0, ng](0 < ny < ng <
-++ < ng). Then, we can derive the following likelihood function from the properties of the

discrete NHPP:
L = PI'[an :ylaN'nz =Yg, 7Nn}( :yK]

K
= HPI‘ [Nnk - N'nk-l =Yk — yk—l]
k=1

K
{An, — Ank_l}(yk—yk-l)
= exp|—A, , 3.28
where ng = 0 and yy = 0. Then, the logarithmic likelihood function is derived as
K K
InL= (yk — ye-1) 10 [An, — Aney] = Ang — > Inf(ye — v—1)!)- (3.29)
k=1 k=1

The parameter estimates of each discrete NHPP model proposed in this chapter can be obtained
by solving the simultaneous logarithmic likelihood functions which is derived by partially differ-

entiating the logarithmic likelihood funtion in Eq. (3.29) in terms of the unknown parameters.



52 Chapter 3. Stochastic Software Reliability Modeling Based on Discretized SDA Models

3.4 Model Comparisons

We perform goodness-of-fit comparisons of the proposed stochastic discretized models based
on the discrete NHPP’s in Section 3.3 with the discretized SDA models in Section 3.2 in terms
of the predicted relative error and the MSE which have been discussed in Section 2.4. First,
we arrange data sets used in model comparisons in this chapter as follows:

DS1 [56] : (nk, yx)(k = 1,2,---,21 ; t91 = 21,y21 = 46) where ny is measured on the
basis of days,

DS2 [38] : (ng, ) (k = 1,2,--- ,10 ; t10 = 10,310 = 93) where ny, is measured on the
basis of hours.

The data set called DS1 in this chapter indicates an S-shaped growth curve, and DS2 an
exponential one. Therefore, we use DS1 for the discrete NHPP models based on the logistic
and Gompertz curve models, and DS2 for the model based on the modified exponential curve
model.

We show the results of model comparisons. Figs. 3.1-3.3 show the results of the model
comparisons based on the predicted relative errors for the discrete NHPP models based on the

logistic, Gompertz, and modified exponential curve models, respectively. From these figures,

NHPP model —— J
Deterministic mode| ------

P S O S O i o et

Predicted Relative Errors

Ratio of Testing Progress (%)

Fig. 3.1 : The predicted relative errors of L, and LYH#PF for DS1.
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Fig. 3.2 : The predicted relative errors of G, and G 7 for DSL.
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Fig. 3.3 : The predicted relative errors of E, and E""F for DS2.
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Table 3.1 : The results of model comparisons based on the MSE.

Data set Model MSE
DS1 -Discrete logistic curve model 5.272
-Discrete logistic curve model based on an NHPP 1.443
DS1 -Discrete Gompertz curve model 1.862
-Discrete Gompertz curve model based on an NHPP 1.497
-Discrete modified exponential curve model 7.971
DS2 -Discrete modified exponential curve model based on an
NHPP 2.563

we can say that our each stochastic model propopsed in this chapter provides more stable and
better prediction than the discrete SDA model. And, we can also see that stable predictions
are provided after 60% of the testing-progress ratio for all models proposed in this chapter.
Additionally, Table 3.1 shows the results of model comparisons based on the MSE. From the
table, we can see that the proposed discretized stochastic models fit better to the actual data
than the discretized SDA models. From the results of goodness-of-fit comparisons, we can
say that the proposed stochastic models have better performance for the software reliability

assessment in terms of the predicted relative error and the MSE.

3.5 Software Reliability Assessment Measures

We can derive useful metrics for quantitative software reliability assessment based on the
proposed discretized stochastic SRGM’s by using the properties of the discrete NHPP’s. In this
section, several software reliability assessment measures such as software reliability functions

and instantaneous MTBF’s are derived based on the properties of the discrete NHPP.

3.5.1 Software reliability functions

We can derive software reliability functions by using the properties of the discrete NHPP.
Given that the testing has been going on up to n-th testing-period by which z software faults
have been detected, the software reliability function is defined as the propability that a software

failure does not occur in the time interval (n, n + h|(h = 0,1,2,---). Then, the software
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reliability function, R(n, h), can be formulated as

R(n,h) = Pr{N,44 — N, = 0|N,, = z}
= exp[—{Anin — An}] (n, h=0,1,2,---), (3.30)

which is the same as Eq. (2.29). Suppose § = 1 and that the software users operate these
software under the same environments as the software testing environment after releasing those

software at these testing termination time. Figs. 3.4 and 3.5 depict the estimated software

NHPP NHPP
Ly Gn

reliability function for and after the testing termination time n = 21 (days) of

DS1 and for ENEPP after the testing termination time n = 10 (hours) of DS2, respectively. As
to DS1, we can estimate the software reliability, §(21, 1), for the discrete logistic curve model
based on the discrete NHPP to be about 0 - 224, for the discrete Gompertz curve model based
on the discrete NHPP to be about 0 - 164, respectively. And we can also estimate ﬁ(lO, 1) for
the discrete modified exponential curve model based on the discrete NHPP to be about 0 - 233

by using DS2.

3.5.2 Instantaneous MTBEF’s

We also estimate instantaneous MTBF’s (mean time between software failures) which have

been used as one of the substitution of measures of MTBF. The instantaneous MTBF can be
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Fig. 3.4 : The estimated software reliability functions of LY#*” and GY#PF for DS1.
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Fig. 3.5: The estimated software reliability function of EN#PF for DS2.

obtained as

MTBF;(n) = —, (3.31)

Zn
where z, is formulated as z, = A1 — A,. Figs. 3.6 and 3.7 show the time-dependent be-
havior of the estimated instantaneous MTBF’s, respectively. We can estimate m[(21) for
the discrete logistic curve model based on the discrete NHPP to be about 0 - 669 (days), for
the discrete Gompertz curve model based on the discrete NHPP to be about 0 - 553 (days),
respectively. And also, we can estimate MTBF 1(10) for the discrete modified exponential curve
model based on the discrete NHPP to be about 0 - 686 (hours).

3.6 Concluding Remarks

In this chapter we have discretized a modified exponential curve model which is one of the
typical SDA models, and developed a discrete modified exponential curve model by using the
Hirota’s bilinearization method. Based on the discretized SDA models including the discretized
modified exponential curve model, which are the deterministic models, we have developed
discretized stochastic models by incorporating counting processes such as discrete NHPP’s. The

proposed models can describe the time-dependent behavior of software reliability growth process
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Fig. 3.6 : The estimated instantaneous MTBF’s of LY#FPP and GNHPP for DS1.
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Fig. 3.7 : The estimated instantaneous MTBF of EN#PP for DS2.
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stochastically with conserving the basic properties of the discretized SDA models. Additionally,
we have discussed that the proposed stochastic models based on the discretized SDA models
have better performance for software reliability assessment in terms of the predicted relative
error and the MSE in the goodness-of-fit comparisons in Section 3.4. Several software reliability
assessment measures which are useful metrics for quantitative software reliability assessment

have been derived.
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Chapter 4

Software Reliability Modeling with
Testing-Coverage

4.1 Introduction

Software reliability assessment is one of the important issues to produce reliable software
systems. An SRGM has been utilized as one of the fundamental techniques for quantitative as-
sessment of software reliability. The SRGM describes the software fault-detection phenomenon
or the software failure-occurrence phenomenon by applying stochastic and statistical theories.
Especially, it is well-known that NHPP model can characterize software reliability growth pro-
cess simply by supposing a suitable mean value function of the NHPP. Accordingly, the NHPP
model has been utilized for software reliability assessment in many practical software devel-
opment project from high applicability and simplicity of the model structure of the NHPP
point of view [18]. Up to now, several specific NHPP models have been proposed such as
imperfect debugging SRGM’s [19, 72], testing-domain dependent SRGM’s [68]. The testing-
domain dependent SRGM’s have been derived by considering the time-dependent behavior of
a testing-domain coverage which is a factor related to the software reliability growth process.

In this chapter we focus on testing-coverage as a key factor related to the software reliability
growth process. The testing-coverage is one of the important measures to evaluate the quality of
testing and tested software products. There are several researches on the relationship between
the testing-coverage and the software reliability. Specifically, Fujiwara and Yamada [12] and
Malaiya et al. [27] have proposed software reliability growth models with the testing-coverage,
respectively. And Pham and Zhang [39] have also proposed an NHPP model and software cost
models with the testing-coverage. However, our approach is different from these approaches

above in terms of the relationship between the testing-coverage and the software reliability
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growth process. First we propose an alternative testing-coverage function to describe time-
dependent behavior of testing-coverage maturity process. Then, we formulate the relationship
between the attained testing-coverage and the number of detected faults. Estimation methods
for unknown parameters of the alternative testing-coverage function and our SRGM are also
discussed, respectively. Finally, we derive several software reliability assessment measures which
are useful metrics for quantitative software reliability assessment, and show numerical examples

of software reliability analysis based on the proposed model by using an actual data set.

4.2 Testing-Coverage

Testing-coverage is one of the important measures to evaluate the quality of testing and
tested software products. The typical testing-coverage measures are classified into several types

in terms of control flow testing as follows:

e Statement coverage : It is measured on the basis of the statement-paths that have been
executed at least once by the test-cases. This is called CO testing-coverage measure. The

CO0 testing-coverage measure should satisfy 100% testing-coverage in actual testing.

e Branch coverage : It is measured on the basis of the branch-paths that have been executed
at least once by the test-cases. This is called C1 testing-coverage measure. It is said that
at least 85% of C1 testing-coverage should be attained from a quality assurance point of

view [64].

e Path coverage : It is measured on the basis of the all distinct program paths that have

been executed at least once by the test-cases.

Most SRGM’s are ordinally developed by characterizing the relationship between the testing-
time and the number of detected software faults. Accordingly, we need to characterize the
relationship between the testing-time and the testing-coverage to develop an SRGM considering
with testing-coverage maturity process first. In this section we discuss basic concepts to describe

time-dependent behavior of testing-coverage maturity process.

4.2.1 Formulation

First we propose a basic equation to describe time-dependent behavior of testing-coverage
maturity process, which is called an alternative testing-coverage function in this chapter. For

developing the equation, we assume that the testing-coverage maturity rate at any testing-time
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is proportional to the difference between the target value and the current one of testing-coverage.
Letting C(t) be the ratio of testing-coverage attained by arbitrary testing-time ¢, we can derive

the following differential equation from the assumption:

@%Q:ﬁmm—cw] (0 < @< 1.0, B(t) > 0), (4.1)

where o indicates the target value of testing-coverage to be attained, and [((¢) the testing-
coverage maturity ratio at arbitrary testing-time ¢. We can easily obtain the alternative testing-

coverage function by solving the above differential equation with respect to C().

4.2.2 Formulation with testing-skill

The testing-coverage helps software development managers to evaluate whether the test-
cases have been designed to detect faults effectively. Accordingly, the time-dependent behavior
of the testing-coverage depends on a testing-skill of test-case designers. In this chapter we
assume that the testing-skill of test-case designers increases as the ratio of testing-progress

goes on. Suppose that the testing-skill factor for the test-case designers is given as

bing
= Do (4.2)
Then, we extend £(¢) in Eq. (4.1) as follows:
B(t) = B(C(t)) = bso{r + (1 — 1) CC(:) } (4.3)

where b;,; represents the initial testing-skill factor of the test-case designers, by, the steady-
state one, and r the inflection coefficient. Substituting Eq. (4.3) into Eq. (4.1), we can obtain
the following equation by solving the differential equation in Eq. (4.1):

ol — e7batat)

= —————= 4.4

o = T, (44)

where z = (1—7)/r. We call Eq. (4.4) an alternative testing-coverage function with testing-skill

in this chapter. The inflection point of the alternative testing-coverage function in Eq. (4.4) is
derived as

1
oo 1082 (4.5)

bsta

Then, we have

o) = %@—1>. | (4.6)



64 Chapter 4. Software Reliability Modeling with Testing-Coverage

In Eq. (4.4), C(t) indicates an exponential growth curve when r = 1 for the case that the
internal program structure is simple, and indicates an S-shaped one called a logistic curve
as 7 — 0 for the case that the internal program structure is complex and the testing-effort

increases more and more as the testing-time goes on.

4.3 Software Reliability Modeling

4.3.1 NHPP model

Time-dependent behavior of a software fault-detection phenomenon or a failure-occurrence
phenomenon, i.e., the software reliability growth process, has been formulated by using a count-
ing process ordinarily. An NHPP which is one of the counting processes is widely used for
software reliability growth modeling. A counting process {N(t), ¢t > 0} is said to be an NHPP
with mean value function H(t) if N(t) obeys the following distribution:

Pr{N(t):n}:i{{gmexp{—H(t)} (n=0,1,2,---),
. , (4.7)
H(t) :/0 h(7)dr,

where h(7) is the intensity function representing the instantaneous fault-detection rate. The
time-dependent behavior of the fault-detection process is characterized by the mean value
function H(¢) which means the expected number of faults detected in the time-interval (0, ¢].
In this chapter we assume that the expected number of faults detected at testing-time ¢ is
proportional to the expected current fault content. Accordingly, we can obtain the following

differential equation:

dH(t)
— = bt)le— H(Y), (4.8)

where a represents the expected initial fault content in the software system, and b(t) the fault-

detection rate per fault at testing-time ¢. The mean value function can be derived as

H#t) =a <1 _ exp|— /O tb(T)dT]) , (4.9)

by solving the differential equation in Eq. (4.8). Most NHPP models can be characterized by
b(t) in Eq. (4.8) or Eq. (4.9), e.g., Eq. (4.9) is so-called a Goel-Okumoto SRGM [13] when
b(t) = b.
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4.3.2 Modeling with testing-coverage

In this section we propose a software reliability growth model considering with testing-
coverage maturity process based on the NHPP. First we formulate the relationship between the
testing-coverage maturity process and the expected number of detected faults.

Supposing that the expected number of faults detected at testing-time ¢ is proportional to
the expected current fault content and the attained testing-coverage at testing-time ¢, we can

formulate the relationship as the following equation by using Eq. (4.4):

dHc () / 400 _ 0 Hom), (4.10)

dt dt

where s is the fault-detection rate per attained testing-coverage and per fault. That is, b(¢) in
Eq. (4.8) or (4.9) is given as b(t) = bc(t) = s c(t) in which ¢(t) = dC(t)/dt. Then, we can
obtain the following solution by solving the differential equation in Eq. (4.10) with respect to
He(t):

He(t) =a[l —exp{—s-C(t)}]. (4.11)

We define the NHPP model with mean value function in Eq. (4.11) as an SRGM with the
testing-coverage. It is noted that the mean value function with the testing-coverage in Eq.

(4.11) has the following property:
tl_i}m He(t) =a(l —exp[—s-a]), (4.12)

which implies that Ho(t) in Eq. (4.11) does not converge on the initial fault content a in the
software system even if £ — oo. Therefore, {a — Hc(c0)} represents the expected total fault

content to be detected on the other testing-coverage factors.

4.4 Parameter Estimation

We discuss methods of parameter estimation for the alternative testing-coverage function
in Eq. (4.4) and the SRGM in Eq. (4.11), respectively. We suppose that K data pairs
(tk, Zw, yr)(k=0,1,2,--- , K) with respect to the total number of detected faults, y, and the
total attained testing-coverage, 7, during the time-interval (0, ¢4](0 < t; <t < --- < tg) are
observed.

We first discuss an estimation method for the alternative testing-coverage function in Eq.

(4.4). The method of least-squares is applied to Eq. (4.1) transformed into an integrable
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difference equation. Concretely speaking, first we derive the following integrable difference
equation via using the Hirota’s bilinearization methods [14] from the differential equation in
Eq. (4.1) with 8(¢) in Eq. (4.3):

6bsta(1 - 2']")

9 [Cn -+ Cn-{—l] -

CpCri1. (4.13)

Cpi1 — Cp = drabg, + ‘Sbs_ta(cll_:l)_

Solving the above difference equation yields an exact solution of C,, representing the testing-

coverage attained by n-th testing-period as

1-16b n
o[- (Fhes) |
Cp = Y (z>0,0<r<1), (4.14)
1 +Z l“gfsbsta
1+%Jbsta

where § represents the constant time-interval, that is, t = nd. We should note that Eq. (4.13)
conserves the characteristics of the differential equation in Eq. (4.1) with 8(¢) in Eq. (4.3).
That is, the difference equation in Eq. (4.13) has an exact solution, and, as § — 0, Eqgs. (4.13)
and (4.14) converge on the original differential equation in Eq. (4.1) with 8(¢) in Eq. (4.3) and
the exact solution in Eq. (4.4) of the differential equation, respectively. These properties above
are features of the integrable difference equation derived by using the Hirota’s bilinearization

methods. From Eq. (4.13), a regression equation to get parameter estimates can be derived as
Y, =A+ BK,+ ByL,, (4.15)

where
( Yn = Un41 — C’n

Kn - Cn + Cn—H
Ln - CnCn—{—l
4.16
) A =darbg, ( )

By = 6by, (1 —2r) /2
L B2 - _5bsta (1 - T) /Oé.

Using Eq. (4.15), we can estimate A, B , and B, by using the observed testing-coverage data,
which are the estimates of A, By, and Bs, respectively. Therefore, we can obtain the parameter

estimates @, by, and 7 from Eq. (4.16) as follows:
4
5 :A‘/(\/BIQ~ZTSZ—E§>
3 bota :2\/3\12—,@\2/5 (4.17)

7 :(1—7571/ EQ—ZE;)/Q.
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Yy, Kn, and L, in Eq. (4.15) are independent of § because ¢ is not used in calculating Y,
K,, and L, in Eq. (4.15). Hence, we can obtain the same parameter estimates &, b/s\ta, and 7
which are the estimated values «, bg,, and 7, respectively, when we choose any value of §. It
is said that this method can get more accurate parameter estimates than the ordinary method
of least-squares.

Second we discuss an estimation method for the mean value function in Eq. (4.11). We
use the method of maximum-likelihood to get the parameter estimates, @ and s which are the
estimated values of a and s, respectively, in the mean value function. Then, the logarithmic

likelihood function is given as

x

InL = (4 — Ys-1) - In[He(ts) — Ho(ter)] — Holtx) — > Infye — ys-1), (4.18)
k=1 k=1

from the properties of the NHPP. Furthermore, we can derive the following simultaneous equa-
tions by partially differentiating the logarithmic likelihood function, In L, with respect to pa-
rameters a and s:

alnL_alnL_
da  Os

By solving the above simultaneous equations numerically, we can estimate @ and § which are

0. (4.19)

the estimates of a and s, respectively.

4.5 Software Reliability Assessment Measures

In this section we derive several software reliability assessment measures which are useful
for quantitative assessment of software reliability and the progress of the software testing.
Specifically, we derive a software reliability function, instantaneous and cumulative mean times

between software failures (abbreviated as MTBF’s).

4.5.1 Software reliability function

Given that the testing or the user operation has been going up to time ¢, the probability

that a software failure does not occur in the time-interval (¢, ¢+ zj(z > 0, ¢ > 0) is derived as
R(z | t) = exp[-{H(t +z) — H(t)}], (4.20)

from the properties of the Eq. (4.7). R(z | ¢t) in Eq. (4.20) is called a software reliability

function. We can estimate the software reliability by using this equation.
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4.5.2 Instantaneous MTBF

We discuss an instantaneous MTBF which has been used as one of the substitution for

MTBF. An instantaneous MTBYF is approximately given by

MTBF (£) = 5615 (4.21)

4.5.3 Cumulative MTBF

A cumulative MTBF is also the substitution for the MTBF. The cumulative MTBF is

approximately derived as

MTBF¢(t) = —H—t@ (4.22)

If the instantaneous MTBF in Eq. (4.21) and the cumulative MTBF in Eq. (4.22) take on a

large value, respectively, then we decide that the software system becomes more reliable.

4.6 Numerical Examples

For evaluating the performance of our model, we show numerical examples and a result of

goodness-of-fit test for our model by using CO testing-coverage measure data recorded along

CO0 Testing Coverage

0 2 4 6 8 10 12 14 16 18 20 22 24
Testing Time (number of weeks)

Fig. 4.1 : The estimated alternative testing-coverage function (on the CO testing-coverage
' measure).
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Fig. 4.2 : The estimated mean value function with its 95% confidence limits.

with fault count data collected from a practical software development project for an embedded
software system. There are totally 296 faults detected and 90.6% of the CO testing-coverage
measure attained within 24 weeks.

Fig. 4.1 shows the estimated alternative testing-coverage function C (t) of Eq. (4.4) in which
the parameter estimates are obtained as a = 90.796, b/s; = 0.388, and Z = 52.338. From Fig.
4.1, we can see that the estimated alternative testing-coverage function fits well to the actual
CO0 testing-coverage measure data. Next, Fig. 4.2 shows the estimated mean value function
E/I\C(t) of Eq. (4.11) and its 95% confidence limits, where the parameter estimates of }/fc(t) are
obtained as @ = 919.9 and § = 0.4282. And the 100v% confidence limits for I;f\c(t) are derived

He(t) + Ko/ Holt), (4.23)

where K, indicates the 100(1 + -y)/2 percent point of the standard normal distribution. Eq.
(4.23) is derived by using the asymptotic normality of the maximum-likelihood estimates [58].
Furthermore, Fig. 4.3 depicts the estimated software reliability function at the termination
of the testing in Eq. (4.20). If we assume that the developed software system is used in the
operation phase which has the same environment as the testing-phase, we can estimate the

software reliability after 3 weeks from the termination time of the testing, R(3 | 24), to be
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Software Reliability
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Fig. 4.3 : The estimated software reliability.
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Fig. 4.4 : The estimated instantaneous MTBF.
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about 0 - 554. And Fig. 4.4 shows the estimated instantaneous MTBF. From Fig. 4.4, we can
estimate the instantaneous MTBF at the termination time of the testing, Nﬁ‘ﬁ‘;(%), to be
about 3 - 024 (weeks).

4.7 Goodness-of-Fit Test

We conduct a statistical goodness-of-fit test of our model for the observed fault count
data. That is, we compare the observed empirical (or sample) distribution with the theoretical
distribution. In the fields of software reliability growth modeling, Chi-Squared (x?) Test and
Kolmogorov-Smirnov Test have been used as the nonparametric goodness-of-fit test techniques
[4,38,51]. The x* goodness-of-fit test is applicable to both continuous-time and discrete-time
theoretical distributions, and be used when the parameters of the distribution are estimated
based on the method of maximum-likelihood. However, this test is valid only for large sample
size since this test assumes large sample normality of the observed number of data pairs. On
the other hand, the Kolmogorov-Smirnov (abbreviated as K-S) goodness-of-fit test assumes a
continuous-time theoretical distribution only, and is valid for both small and large sample size.
Therefore, we apply the K-S goodness-of-fit test as the goodness-of-fit technique in this chapter.

The K-S goodness-of-fit test is conducted along with the following procedure [38,50-52,56].
Suppose that F(z) is a continuous-time theoretical distribution function of the random variable
X and (z1,%9, -+ ,Zn; T3 < 2o < -+ < x,) are the order statistics which are the realization of

X. Then, the K-S test statistic, D, is given by
D = max D;

1<i<n | . 7 (4.24)
D; = max {|F(z;) — &|, |F(z:) — £}

T
where, F'(z;) corresponds to

H(z;)

F(.’L’z) = m,

(4.25)

in the case of the NHPP model with the mean value function H(¢) in Eq. (4.7). Thus, supposing
that we have observed n data pairs (¢;, ¥;)(i = 0,1,2,---,n) with respect to the total faults,
y;, detected during constant time-interval (0, ¢;](0 < t; < 2 < --- < t,), the K-S test statistic,

D, can be rewritten as

D = max D;

1<i<n

o H(t) _ w
D,; = max{‘H(tn) ™

(4.26)

j

H(t) _ yi-1
! H(tn) Yn
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The K-5 test statistic D is needed to compared with a critical value d,,,, where n represents
the number of data pairs and a a level of significance which is ordinally given as 0 - 01 or
0-05. That is, we judge that the applied NHPP model fits to the observed data at a level of
significance « if D < dp,,. A table of the critical values d,., are provided in the related books
(see [38,50-52,56]).

The result of the goodness-of-fit test based on the K-S goodness-of-fit test of our model for
the observed data introduced in Section 4.6 can be obtained as D = 00947 < dy4,0.05 = 0-2693.
Then, we can verify that I/{\c(t) fits to the applied observed data at the 5% level of significance
from the result of the K-S goodness-of-fit testing.

4.8 Concluding Remarks

We have discussed software reliability growth modeling with testing-coverage which is one
of the key factors related to the software reliability growth process in this chapter. And we have
also discussed parameter estimation methods of our models. Specifically, we have obtained the
parameter estimates of the alternative testing-coverage function by using the regression analysis
based on the integrable difference equation derived from the original differential equation. Then,
we have derived several software reliability assessment measures, such as the software reliability
function, the instantaneous and cumulative MTBF’s. After that, we have shown numerical
examples of the estimated alternative testing-coverage function and the estimated our SRGM
by using CO testing-coverage measure data recorded along with fault count data collected in an
actual testing-phase. Finally, we have conducted a statistical goodness-of-fit test of our model

for the actual data based on the K-S goodness-of-fit test.




Chapter 5

Lognormal Process Software Reliability
Modeling with Testing-Effort

5.1 Introduction

Quantitative software reliability assessment is one of the most important issues to produce
reliable software systems. An SRGM has been utilized to assess software reliability quantita-
tively since 1970’s. The SRGM can describe a software fault-detection phenomenon or a soft-
ware failure-occurrence phenomenon in the testing or operational phase by applying stochastic
and statistical theories. Especially, an NHPP which treats the fault-detection phenomenon as a
discrete-state space has been often applied to software reliability growth modeling. The NHPP
model enables us to characterize software reliability growth process simply by supposing an
appropriate mean value function of the NHPP.

In contrast with discrete-state space SRGM’s such as NHPP models, continuous-state space
SRGM’s to assess software reliability for large scale software systems have been proposed so far.
Specifically, Yamada et al. [71] have discussed a framework of continuous-state space software
reliability growth modeling based on stochastic differential equations of Ito type, and have com-
pared the continuous-state space SRGM with the NHPP models. Recently, Yamada et al. [65]
have proposed several SRGM’s based on stochastic differential equations of Ito type, such as
exponential, delayed S-shaped, inflection S-shaped stochastic differential equation models, of
which the fault-detection rates per unit time per one fault have been characterized by using
basic assumptions of existing exponential, delayed S-shaped, and inflection S-shaped SRGM’s,
respectively. And, Tamura et al. [49] have proposed continuous-state space SRGM for dis-
tributed development environment and its parameter estimation.

However, these continuous-state space SRGM’s have not taken the effect of testing-effort

73
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into consideration. The testing-effort, such as number of executed test-cases, attained testing-
coverage, or CPU hours expended in the testing-phase, is well-known as one of the most impor-
tant factors related to the software reliability growth process. Yamada et al. [67] has proposed
a testing-effort dependent SRGM’s based on the NHPP’s. Under the above background, there
is necessity to discuss a testing-effort dependent SRGM on a continuous-state space for the
purpose of developing a plausible continuous-state space SRGM.

This chapter proposes a continuous-state space software reliability growth model with a
testing-effort factor by applying a mathematical technique of stochastic differential equations of
It0 type, and conducts goodness-of-fit comparisons between our model and existing continuous-
state space SRGM’s. First we extend a basic differential equation describing the behavior of
the cumulative number of detected faults to stochastic differential equations of Ito type by con-
sidering with the testing-effort expenditures through the testing-phase, and derive its solution
process which represents the fault-detection process. Then, we discuss estimation methods for
unknown parameters in our models. And we then compare our model with existing continuous-
state space SRGM’s by using several goodness-of-fit evaluation criteria. Finally, we derive
software reliability assessment measures based on a probability distribution of the solution pro-
cess, and show numerical examples for derived software reliability assessment measures by using

an actual fault count data.

5.2 Framework of Modeling

In this section we discuss a framework of continuous-state space software reliability growth
modeling. Letting N(¢) be a random variable which represents the number of faults detected up
to time ¢, we can derive the following linear differential equation from the common assumptions

for software reliability growth modeling [29, 38, 54]:

f%gﬁ =bt){a—N()} (a>0,b(t) >0), (5-1)

where b(t) indicates the fault-detection rate at testing-time ¢ and is assumed to be a non-
negative function, and a the initial fault content in the software system. Eq. (5.1) describes
the behavior of the decrement of the fault content in the software system.

Especially, in large-scale software development, the fault-detection process in the actual
testing-phase is influenced by several uncertain testing-factors such as testing-skill and debug-

ging environment. Accordingly, we should take these uncertain factors into consideration in
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software reliability growth modeling. Thus, we extend Eq. (5.1) to the following equation:

W _ o0) + €@y} - N, (5.2)

where & ( ) is a noise that describes an irregular fluctuation. For the purpose of making its
solution a Markov process, we assume that £(t) in Eq. (5.2) is given as

£(t) =ov(t) (o>0), (5.3)
where ¢ indicates a positive constant representing the magnitude of the irregular fluctuation

and v a standardized Gaussian white noise.

We transform Eq. (5.2) into the following stochastic differential equation of It0 type:
1
N(t) = {b(t) — 50'2}{0, — N(t)}dt + o{a — N@)}dW(t), (5.4)

where W (t) is a one-dimensional Wiener process which is formally defined as an integration of
the white noise «(¢) with respect to time ¢. The Wiener process W (t) is a Gaussian process,

and has the following properties:
(a) PriW(0) = 0] =
(b) EW(2)] =0,
(c) EW ()W ()] = minlt, ],

t

where Pr[-] and E[ -] represent the probability and expectation, respectively. Next, we derive
a solution process N (t) by using the Ito’s formula. The solution process N(t) can be derived

as

i
N(t)=a [1 — exp {—/ b(r)dr — aW(t)H . (5.5)
0
Eq. (5.5) implies that the solution process N(¢) obeys a geometric Brownian motion or a
lognormal process [21,26,37]. And the transition probability distribution of the solution process
N(t) is derived as

o (logt - [7b(r)dr
Pr[N(t) <n|N(0) =0]=® ( i ) , (5.6)

consequently, by the properties (a)—(c) and the assumption that W (¢t) is a Gaussian process.

®(-) in Eq. (5.6) indicates a standardized normal distribution function defined as

() exp(—= dy. (5.7)

-7 L.

By assuming a specific appropriate function b(¢) in Eq. (5.5) which characterizes the software

reliability growth process, we can derive several SRGM’s.
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5.3 Lognormal Process SRGM with Testing-effort

We develop a continuous-state space SRGM with the effect of testing-effort based on stochas-
tic differential equations which obey the lognormal process in this chapter. The testing-effort,
such as the number of executed test-cases, attained testing-coverage, or CPU hours expended in
the testing-phase, is one of the important factors which influence a software reliability growth
process in an actual testing phase. Therefore, the testing-effort should be taken into consider-

ation in software reliability growth modeling.

5.3.1 Modeling

For the purpose of developing a continuous-state space SRGM with the effect of the testing-
effort, we characterize b(t) in Eq. (5.5) as

b(t) = br(t) =1 - 5(t) (0<r<1), (5.8)

where r represents the fault-detection rate per expended testing-effort at testing-time ¢ and
s(t) = dS(t)/dt in which S(¢) is the amount of testing-effort expended by arbitrary testing-
time ¢t. Then, based on the framework of continuous-state space modeling in the previous

section, we can obtain the following solution process:

N(t) = Np(t)
=a [1 — exp {—7’ /Ot s(t)dr — UW(t)H
=all —exp{-rS(t) — oW (t)}]. (5.9)

The transition probability distribution function of the solution process in Eq. (5.9) can be

derived as

(5.10)

Pr[Np(t) < n|Np(0) = 0] = @ (logﬁi - Ts(t)) .

oVt
We should specify the testing-effort function s(¢) in Eq. (5.8) to utilize the solution process
Nr(t) in Eq. (5.9) as an SRGM.

5.3.2 Testing-effort function

We need to specify a suitable function s(¢) in Eq. (5.8) to describe the time-dependent
behavior of testing-effort expenditures in the testing-phase. In this chapter we apply a Weibull
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curve to the testing-effort function s(t). The Weibull curve is formulated as
s(t) = apmt™ texp{-pt"}  (a>0, >0, m>0). (5.11)
Then,

S(t) = /0 s(1)dr = a[1 — exp{—pt™}], (5.12)

where « is the total amount of testing-effort expenditures, 3 the scale parameter, and m the
shape parameter characterizing the shape of the testing-effort function.

The Weibull curve has a useful property to describe the time-dependent behavior of the
expended testing-effort expenditures during the testing-phase approximately. We can obtain
the exponential curves when m = 1 in Egs. (5.11) and (5.12). And when m = 2, we can
derive Rayleigh curves. Accordingly, we can see that the Weibull curve is a useful function as
a testing-effort function which can describe the time-dependent behavior of the testing-effort

expenditures through the testing-phase flexibly.

5.4 Estimation Methods for Unknown Parameters

We discuss estimation methods of unknown parameters of the testing-effort function in
Eq. (5.11) and the solution process in Eq. (5.9), respectively. Suppose that K data pairs
(¢, i, )7 =0,1,2,---, K) with respect to the total number of faults, n;, detected during
the time-interval (0, ;](0 < t; < t2 < --- < tg), and the amount of testing-effort expenditures,

y;, expended at ?; are observed.

5.4.1 Testing-effort function

As to a parameter estimation method for the testing-effort function in Eq. (5.11), we apply

the method of least squares. First we take the natural logarithm of Eq. (5.11) as
log s(t) = loga + log f + logm + (m — 1) logt — Bt™. (5.13)

Then, the sum of the squares of vertical distances from the data points to the estimated values

is formulated as

K
S(a, B, m) = Z{Iogyj —log s(t;)}>. (5.14)

j=1



78 Chapter 5. Lognormal Process Software Reliability Modeling with Testing-Effort

The parameter estimates @, B, and M of the parameter «, 8, and m which minimize S(a, 8, m)

in Eq. (5.14) can be obtained by solving the following simultaneous equations:
oS 0§ 0S

22— N
da 08 Om 0 (5.15)

5.4.2 Solution process

Next we discuss a parameter estimation method for the solution process in Eq. (5.9) by
using the method of maximum-likelihood. Let us denote the joint probability distribution

function of the process Np(t) as

P(t1,n1;t9,m9; -+ s tk, NK) =

PI‘[NT(tl) S n, NT(tg) S Tlg, NT(tK) S nK]NT(O) - 0], (516)

and also denote its density as

0K P(t1,n1;ta, ma; - 5k, nK)

p(t1,n;te,ng; - stk, nK) =

Then, we can constract the likelihood function ! for the observed data pairs (¢;,n;)(J =

0,1,2,--- ,K) as

L= p(t1,n1;ta,m0; - 5k, Nk ). (5.18)
For convenience in mathematical manipulations, we need to derive the logarithmic likelihood

function by taking the natural logarithm of Eq. (5.18). The logarithmic likelihood function is
denoted by

L =logl. (5.19)

The likelihood function [/ in Eq. (5.18) can be reduced to the following equation by using

the Bayes’ formula and a Markov property [36,50]:
K

I= Hp(tjanj | tj-1,m5-1), (5.20)

j=1
where p(- | to, ng) is the conditional probability density under the condition of Nr(¢y) = ng. The
transition density p(t;,n; | tj—1,n;_1) in Eq. (5.20) can be obtained by partially differentiating
the following transition probability of Ny (t) under the condition Np(t;_1) = n,_1,

o log (a;—ff;—l) —r{S(t;) — S(tj-1)}
ol — 1 ’

Pr[Nr(t;) < nj|Nr(tj-1) = nja] =

(5.21)
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with respect to n,;. Consequently, the likelihood function [ in Eq. (5.20) can be rewritten as

" Jlog (252222 — r{515) — S(t,-)}]
R Ve e R T ’

(5.22)
and the logarithmic likelihood function is then derived as
_ilog(a——nj)—Kloga—g—log%r—;log( ti-1)
Z flog (%5222} — r{s(t) ~ 5(t,-0)3] -
20—2 t; =t ' '

From Eq. (5.23), we can obtain the following simultaneous logarithmic likilihood equations:

oL W | 1 K (nj—nj-1) [log (%_’l;;—‘) —r{S(t;) — S(tj—l)}}
‘a}{:";a_anr;i; (t; — ti-1)(a — ny)(a — ;1) =0
| (5.24)
oL 1 s oy
o~ ot {”Z{S“ﬂ Z{S R )} =0,
(5.25)

2
oL K1 & [log (52E) - r{S() - S}
b +— ; s = 0. (5.26)

Egs. (5.25) and (5.26) can be transformed into

K {S(t) ~ S(tj-1)} log (522

T: ; ik 7 (5.27)
EK: [log (522 ;7"_{*:'“]9) - S(t-))] | (5.28)

respectively. Therefore, we can eliminate the two parameters, 7 and o, in Eq. (5.24) by
substituting Eqgs. (5.27) and (5.28) into Eq. (5.24). Consequently, the maximum likelihood
esitmates @, 7, and ¢ of the parameters a, r, and ¢ by solving the nonlinear equations with one

variable, respectively.
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5.5 Software Reliability Assessment Measures

In this section we derive several software reliability assessment measures which are useful for
quantitative assessment of software reliability and the progress control of the software testing-

process. Specifically, we derive instantaneous and cumulative MTBF’s in this chapter.

5.5.1 Instantaneous MTBF

We discuss an instantaneous MTBF which has been used as one of the substitution for an

MTBF. The instantaneous MTBF is approximately given by

dt

BN (5.29)

MTBF;(t) =

We need to derive E[Nr(t)] which represents the expected number of faults detected up to
arbitrary testing-time ¢ to obtain E[dN7(¢)] in Eq. (5.29). By noting that W(t) ~ N(0, t), the

expected number of faults detected up to arbitrary testing-time £ is obtained as
1
E[Nr(t)] = a [1 — exp {—(rS(t) -~ é—azt)” : (5.30)

Since the Wiener process has the independent increment property, W(t) and dW(t) are sta-
tistically independent with each other, and E[dW (¢)] = 0, E[dNz(t)] in Eq. (5.29) is finally

derived as
B[dNp(£)] = a{rs(t)—-;—UQ}exp{—(rS(t) - -;—UQt)}dt. (5.31)

The instantaneous MTBF in Eq. (5.29) can be calculated by substituting Eq. (5.31) into Eq.
(5.29).

5.5.2 Cumulative MTBF

A cumulative MTBF is also the substitution for the MTBF. The cumulative MTBF is

approximately derived as

MTBFo(t) = = ‘ (5.32)

[Nz (8)]

If the instantaneous MTBF in Eq. (5.29) and the cumulative MTBF in Eq. (5.32) take on

large values, respectively, then we decide that the software system becomes more reliable.
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Table 5.1 : The results of model comparisons.

Proposed Exponential Delayed S-shaped Inflection S-shaped

model SDE model SDE model SDE model

MSE DS1 1367.63 22528 6018.65 6550.37
DS2 1370.8 1332.34 36549 1986.8

AIC DS1 306.15 325.32 315.98 318.57
DS2 125.51 125.18 131.65 126.47

(SDE : stochastic differential equation)

5.6 Model Comparisons

We show results of goodness-of-fit comparisons between our model and other continuous-
state space SRGM’s [65], such as exponential, delayed S-shaped, and inflection S-shaped
stochastic differential equations, in terms of the MSE and AIC introduced in Section 2.4. As
to the goodness-of-fit comparisons, we use two actual data sets [6] named as DS1 and DS2,
respectively. DS1 and DS2 indicate an S-shaped and exponential reliability growth curves,
respectively.

Table 5.1 shows the results of model comparisons based on the MSE and the AIC, respec-
tively. However the model comparisons based on the AIC is not significant only for DS2, we
can see that our model improves performance of the MSE and the AIC as compared with other

continuous-state space SRGM’s used in these goodness-of-fit comparisons in this section.

5.7 Numerical Examples

We show numerical examples by using testing-effort data recorded along with detected fault
count data collected from the actual testing. In this testing, 1301 faults are totally detected
and 1846.92 (testing-hours) are totally expended as the testing-effort within 35 months [6].

Fig. 5.1 shows the estimated testing-effort function 5(¢) in Eq. (5.11) in which the parameter
estimates are obtained as & = 2253.2, B = 4.5343 x 107*, and m = 2.2580. Fig. 5.2 shows
the estimated expected number of detected faults in Eq. (5.30) where the parameter estimates
are obtained as @ = 1435.3, 7 = 1.4122 x 1073, and & = 3.4524 x 1072, Furthermore, Fig. 5.3
shows the time-depedent behavior of the estimated instantaneous and cumulative MTBF’s in
Egs. (5.29) and (5.32), respectively. From Fig. 5.3, we can see that the software reliability

decreases in the early testing-phase, and then, it grows as the testing procedures go on. We can
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Fig. 5.1 : The estimated testing-effort function.
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Fig. 5.2 : The estimated expected number of detected faults.
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Fig. 5.3 : The estimated instantaneous and cumulative MTBEF’s.

estimate the instantaneous MTBF at the termination time of the testing, MTBF;(35), to be
about 0.1297 (about 4.5 months), and the cumulative MTBF, MTBF¢(35), to be about 0.0269
(about 0.9 months).

5.8 Concluding Remarks

In this chapter we have discussed continuous-state space software reliability growth mod-
eling based on a lognormal process with the effect of testing-effort by using a mathematical
technique of stochastic differential equations of 1t0 type and estimation methods for the pa-
rameters of the testing-effort function and the solution process, respectively. Then, we have
conducted goodness-of-fit comparisons between our model and existing continuous-state space
SRGM'’s in terms of the MSE and the AIC by using actual data sets, respectively. Finally, we
have also shown numerical illustrations for the software reliability assessment measures such
as the instantaneous and cumulative MTBF’s. We believe that software development man-
agers can grasp the relationship between the attained software reliability and the testing-effort
expenditures through the testing-phase by using our software reliability growth model, and
our model also enables software development managers to decide how much testing-effort are

expended to attain the reliability objective.
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Chapter 6

Generalized Discrete Software
Reliability Modeling with Program
Size

6.1 Introduction

Assessing software reliability in a testing-phase is one of the important issues to develop
a highly reliable software system. During the testing-phase, an implemented software system
is tested to detect and correct faults latent in the software system. We can describe the
software failure-occurrence or fault-detection phenomenon by analyzing the related actual data
collected in the testing-phase. An SRGM is known as a useful mathematical tool to describe
these phenomena above in the testing-phase, to assess software reliability quantitatively, to
decide the time to release for operational use, and to evaluate the maintenance cost for faults
undetected during the testing-phase.

As a role of software systems is expanding rapidly, the size, complexity, and diversification of
software systems are growing drastically in recent years. Accordingly, we need to develop more
plausible SRGM’s which enable us to assess software reliability more accurately. As one of the
solutions, generalized approach for software reliability growth modeling have been proposed so
far based on order-statistics [24], infinite server queueing theory [8], Markov processes [23,29,48],
and so on. Especially, Langberg and Singpurwalla [24] have proposed a generalized SRGM by
using the assumption that the fault-detection times can be regard as order-statistics. And they
have also discussed that several NHPP models can be classified by the fault-detection times
distribution. These generalized SRGM’s has a useful characteristic that we can easily obtain a
suitable SRGM by reflecting the software failure-occurrence or fault-detection phenomenon to

the generalized assumptions. However, most of the generalized SRGM’s have been discussed

87
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in terms of continuous-time SRGM’s. Considering that there are discrete software reliabil-
ity growth models to describe the software reliability growth process depending on discrete
testing-time such as the number of days (or weeks), the number of executed test-cases [60],
we need to discuss a generalized discrete software reliability growth modeling approach. In
recent researches, Huang et al. [15] have discussed a unified scheme of discrete NHPP models
by applying the concept of weighted arithmetic, weighted geometric, or weighted harmonic
means. Dohi et al. [9] have proposed a generalized discrete software reliability model based
on the idea of cumulative Bernoulli trials. And, Okamura et al. [34] have discussed a unified
framework of discrete NHPP modeling based on the concepts of cumulative binomial trials and
order-statistics.

In this chapter we discuss a unified framework for discrete software reliability growth model-
ing in which the software failure-occurrence times obey a discrete-time probability distribution.
Based on the framework, we then discuss a generalized discrete SRGM which enables us to
assess software reliability in consideration of the effect of the program size. We can consider
that the effect of program size is one of the important factor influencing not only the testing-
coverage maturity process and also the software reliability growth process. And we derive
several generalized software reliability assessment measures based on the concept of the gen-
eralization framework. After that, we discuss parameter estimation based on the method of
maximum-likelihood for our generalized discrete SRGM. Additionally, we discuss optimal soft-
ware release problems with simultaneous cost and reliability objectives based on our generalized
discrete SRGM. Finally, we depict numerical illustrations of our generalized discrete model and

its application to derived optimal release policies by using actual fault count data.

6.2 Generalized Modeling

We discuss a unified framework for discrete software reliability growth modeling in which
the probability distribution of each fault-detection time obey a discrete-time probability dis-
tribution. Based on the framework, we develop a generalized discrete binomial process model

with the effect of the program size.

6.2.1 Unified framework

In a testing-phase the software failure-occurrence times can be regarded as order-statistics.

Okamura et al. [34] have discussed a unified framework for discrete software reliability growth
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modeling based on the order-statistics. The unified framework is based on the following as-

sumptions:

(A1) Whenever a software failure is observed, the fault which caused it will be detected imme-

diately, and no new faults are introduced in the fault-detection procedure,

(A2) Each software failure occurs at independently and identically distributed time with the

discrete probability distribution P(i)(i =0,1,2,---),

(A3) The initial number of faults in the software system, Ny(> 0), is a random variable, and

is finite.

We can develop a generalized discrete SRGM based on the assumptions above. First, let
{N(@), ¢ = 0,1,---} denote a discrete stochastic process representing the number of faults
detected up to i-th testing-period. Then, the conditional probability that m faults are detected

up to ¢-th testing-period given that Ny = n is derived as

PENG) = m | No=n} = ( 1) (PO} 1 PO (61)
Accordingly, we have the probability mass function that m faults are detected up to i-th testing-

period as
. n Nmi1 _ D{y1a-m _
PrVG) = m) = 3 (1) POY™ (1= PO "Pe(No =)
(m=0,1,2,--). (6.2)
The stochastic behavior of the software fault-detection or the failure-occurrence phenomenon
in the testing-phase can be characterized by giving a suitable probability mass function of the
initial fault content Ny. Okamura et al. [34] have discussed a generalized discrete NHPP model

for software reliability assessment by assuming that the initial fault content, Ny, obeys a Poisson

distribution, and proposed a parameter estimation method based on the EM algorithm.

6.2.2 Generalized discrete binomial process modeling

In this chapter we propose a generalized discrete binomial process model for software reli-
ability assessment by considering the case that the probability distribution of the initial fault

content, Ny, obeys a binomial distribution with parameters (K, \), which is given as
K
Pr{Ny =n} = (

n>/\"(1—/\)K”" 0<A<1l;n=0,1,---,K). (6.3)
Eq. (6.3) has the following physical assumptions:
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(a) The software system consists of K lines of code (LOC) at the beginning of the testing-
phase,

(b) Each code has a fault with a constant probability A,

(c¢) Each software failure caused by a fault remaining in the software system occurs indepen-

dently and randomly.

These assumptions are useful to apply a binomial distribution as a probability mass function

of an initial fault content in the software system to software reliability growth modeling, and

to incorporate the effect of the program size into software reliability growth modeling.
Substituting Eq. (6.3) into Eq. (6.2), we can derive the probability mass function of the

number of faults detected up to ¢-th testing-period as
Pr{Ng(i) = m} = ( i) {AP(H)}™{1 — AP(i)}™ (m=0,1,2,--- K). (6.4)

From Eq. (6.4), we can see that the number of faults detected up to i-th testing-period obeys
a binomial process if the probability mass function of the initial fault content is the binomial

distribution as Eq. (6.3).

6.2.3 Discrete failure-occurrence times distribution

We need to specify a discrete failure-occurrence times distribution to develop an SRGM.
In this chapter we apply a discrete Weibull distribution [30] to the discrete failure-occurrence

times distribution. Its probability distribution function is given as
P =1-(1-p)* (=1,2--:8>00<p<]1). (6.5)

In Eq. (6.5), p represents the probability that a software failure caused by a fault is observed
per one testing-period, and 3 the shape parameter.

We focus on the cases that § = 1 and § = 2, respectively, as the special cases for the
discrete Weibull distribution in Eq. (6.5). When =1 in Eq. (6.5), the distribution becomes

a geometric distribution:
P@)=1-(1-p) (=1,2---;0<p<1), (6.6)

which has the constant failure rate. The geometric distribution means that a software failure

occurs at any testing-period decreases geometrically, which represents the case that the internal
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program structure is simple and the testing-skill of test-case designers is high. When g = 2,

the distribution can be regard as a discrete Rayleigh distribution:

i2

P@E) =1-(1-p) (i=1,2---;0<p<1), (6.7)

which has the increasing failure rate. Applying the discrete Rayleigh distribution to a software
failure-occurrence times distribution means that the internal program structure is complex and
the initial testing-skill of test-case designers is low, however, the testing-skill of them improves

more and more as the testing-period goes on.

6.3 Generalized Reliability Assessment Measures

Software reliability assessment measures are well-known as useful metrics which enable us to
assess software reliability quantitatively. In this section we derive several generalized software
reliability assessment measures based on the unified framework of discrete software reliability

growth modeling.

6.3.1 Expectation and variance of the number of detected faults

Information on the current number of detected faults is one of the important metrics to
estimate the degree of testing-progress. Therefore, the expectation and variance of the number
of detected faults are useful measures because the number of faults detected up to ¢-th testing-
period, N (%) in Eq. (6.2), is treated as a random variable.

The expectation of the number of detected faults, E[N(7)], is derived as
: $ n N1z N -z
BN =32 3 (1) (POY {1 - POYPr{N =)
z=0 n
= E[Ny|P(1). (6.8)
And the variance, Var[N(7)], is also derived as

Var[N(i)] = E[N(9)%] — (E[N()])
= Var[No]{ P(i)}* + E[No] P(:){1 — P(3)}. (6.9)

Therefore, if Ny obeys the binomial distribution in Eq. (6.3), they are given as

E[Ng(i)] = K\P(3), (6.10)
Var[Na(i)] = KAP(i){1 — AP(i)}, (6.11)
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respectively. We can see that KA in Eq. (6.10) represents the expected initial fault content

when Ny obeys the binomial distribution.

6.3.2 Software reliability function

A software reliability function is one of the well-known software reliability assessment mea-
sures. Given that the testing or the operation has been going up to i-th testing-period, the
discrete software reliability function is defined as the probability that a software failure does
not occur in the time-interval (2,7 + h)(¢,h = 0,1,---) [60]. Accordingly, we can formulate the

discrete software reliability function R(i,h) as
R(i,h) =Y Pr{N(i+h) =k | N(i) = k}Pr{N(i) = k}
k
=Y [{P(z’)}"‘{l —P(i+R)}*Y ( Z) {1 -P@GE+h)}" Pr{Ny = n}},
k n
(6.12)

by using Eq. (6.2). Therefore, if Ny obeys the binomial distribution in Eq. (6.3), the discrete

software reliability function can be derived as
Rp(i,h) = [1 = MP(i+h) — P())}]", (6.13)
by using Eq. (6.12).

6.3.3 Instantaneous and cumulative MTBF’s

As substitutions for an ordinary MTBF, we derive instantaneous and cumulative MTBEF’s.

The ordinary MTBF can not be derived because the generalized SRGM has the following

properties:
F(i,0) =1 - R(i,0) =0, (6.14)
F(i,0) =1 — R(i,0)

=1-> {P@)}"* Pr{No = n}, (6.15)

where F'(i,h) represents the probability that a software failure occurs in the time-interval
(¢, + h]. These equations above implies that the probability distribution function, F(i,h),

does not satisfy the properties of the ordinary probability distribution function. Accordingly, we
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need to utilize discrete instantaneous and cumulative MTBEF’s as substitutions for the ordinary
MTBF.
Using Eq. (6.8), we can formulate the discrete instantaneous MTBF as
1

MTBF;(7) = : 6.16
"= BNG+ 1] EINVG) (6.16)

And the discrete cumulative MTBF can also given as
MTBF¢(i) = — (6.17)

E[N(5)]
By substituting Eq. (6.10) into Eqgs. (6.16) and (6.17), we can obtain specified instantaneous

and cumulative MTBEF’s, respectively.

6.4 Parameter Estimation

In this section we discuss parameter estimation for the generalized discrete binomial process
model in Eq. (6.4) based on the method of maximum-likelihood. Suppose that we have observed
J data pairs (¢;,y;)(j = 0,1,2,---,J) with respect to the cumulative number of faults, y;,
detected during a constant time-interval (0, ¢;](0 < ¢; < ¢ < --- < t;). The likelihood

function [ for the generalized discrete binomial process model, Ng(i), can be derived as
I = Pr{Ng(t1) = y1, Ng(t2) = y2,- -~ Np(ts) = ys}

= HPT{NB(tj) =y; | Np(tj-1) = yi—1}Pr{Np(t1) =y}, (6.18)

by using the Bayes’ formula and the Markov property [36,50]. The conditional probability in
Eq. (6.18), Pr{Ng(t;) = y; | Ng(tj—1) = y;j-1}, can be shown as

PI‘{NB(tj) =Y i NB(tj—l) = yjml}

K—vy,_ s s
= ( 7 1) {2(tj-1, )1 70 {1 = 2(tjo, 1)} 7Y, (6.19)
Yi —Yj-1

by considering that we can regard t;_; as the initial time and that the distribution range of

Np(i) is 0 < Np(i) < K — y;j—1. In above equation, setting
_ MP(y) - Pt-1)}

Z(tj_l,tj) = 1_ )\P(t 1) 5 (620)
i
we can rewrite Eq. (6.18) as
J
- K-y RN ] g ) VEY (6.21)
= H Ui — Ui {z(t;-1,45)} { z(tj-1,t5)} ) :
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by using Eq. (6.19), where ¢y, = 0, yo = 0, and P(¢y) = 0. Accordingly, the logarithmic

likelihood function can be derived as

logl=L

J
=log K! — log{(K — y)!} — > _log{(y; — v5-1)!} + v log A

+ 3 (s — y-1) 1og{P(t;) = P(t-0)} + (K —ys)log{1 = AP(t))},  (6.22)

by taking the natural logarithm of Eq. (6.21).
When we apply the discrete Weibull distribution in Eq. (6.5) to the software failure-
occurrence times distribution, i.e., P(i) = 1 — (1 — p)*, the logarithmic likelihood function

can be given as

J
L =log K1~ log{(K — y,)'} + yslog A — > {(y; — y5-1)!}
j=1

J
+ Z(yj —y;_1)log{(1 = p)¥i-1 — (1 —p)

tf}
+ (K - y))log [1 _M1-(1- p)t?}] , (6.23)

by using Eq. (6.22). In this case that the value of the parameter § in Eq. (6.5) is supposed, we
have to estimate the parameters A and p if we can know the program size K. The simultaneous

logarithmic likelihood equations with respect to the parameters A and p can be derived as

oL _w oy 1 _
Q{J_ _ J . 1 By t?"l B B t?_l«l
I~ S T T gy TP e

— (K — y){toA1 - p)o1) 1 0. 625

1-M1-(1-p)t}
respectively. Solving Eq. (6.24) with respect to A, we can obtain

= L (6.26)
K{1—-(1-p)}

Substituting Eq.(6.26) into Eq.(6.25), we can obtain the following equation:

1

tﬂyJ(1~ -1
1-(1-p) Z y“{(l—)w—(l—-p)t?}

{1 =p)S T = (1 - p)) (6.27)
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Accordingly, we can obtain the maximum-likelihood estimates X and p of the unknown param-
eters A and p, respectively, by solving the simultaneous likelihood functions in Eqgs.(6.26) and

(6.27) numerically.

6.5 Optimal Software Release Problems

Software developing managers have a great interest in how to develop the reliable software
product economically and when to release the software to the customers [59]. In this section
we discuss discrete cost-optimal software release policies based on our generalized discrete
binomial process model. And then, we also discuss discrete optimal software release policies
with simultaneous cost and reliability requirements in consideration of software quality control
point of view. In this chapter we discuss the case that the geometric distribution in Eq. (6.6)

is applied to the software failure-occurrence times distribution.

6.5.1 Cost-optimal software release policies

We discuss cost-optimal software release policies based on our generalized discrete binomial

process model. First of all, the following notations are defined:

¢; : debugging cost per one fault in the testing-phase,
¢co : debugging cost per one fualt in the operational phase, where ¢; < ¢,

c3 : testing cost per constant period.

Let Z denote the software release period. Then, the expected total software cost C(Z)
which indicates the expected total cost during the testing and operational phases is formulated

The cost-optimal software release period is derived by minimizing the expected total software

cost C(Z) in Eq. (6.28). From Eq. (6.28), we can derive the following equations:
C(Z“*-l)—C(Z)_CQ—Cl[ C3
¢

) )
where W (Z) represents the expected number of detected faults during a Z-th testing-period.

- W(Z)] , (6.29)

2 — C1

And, we need to define the following notation to discuss the discrete software release policies:

o= { m C(n]) < C(ln) +1)

[n]+1 (otherwise), (6.30)
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where [ n ] represents the Gaussian symbol for any real number n.
In the case that the software failure-occurrence times distribution obeys the geometric dis-
tribution, we can confirm that W(Z) has the following properties:
W(Z+1)<W(2Z)
W(0) = K\p , (6.31)
W(o0) =0
for any nonnegative interger Z(> 0) since 0 < p < 1. That is, we can see that W(Z) is a
monotonically decreasing function in terms of the testing-period Z(> 0). Therefore, we can

obtain the cost-optimal software release policies as follows:

[Cost-Optimal Release Policy]
Suppose that co > ¢; > 0 and ¢3 > 0.

(1) If W(0) < 2, then the cost-optimal software release period is Z* = 0.
(2) If -2~ < W(0), then we have the following an only solution Z = Z, minimizing
Eq.(6.28):
log [————i—c £ ]
Zo = (c2—c1)KAp (6.32)

log(1 - p)
Thus, the optimal software release period Z* =< Zy >.

6.5.2 Cost-reliability-optimal software release policies

Further, we discuss the optimal software release problems which take both total software cost
and reliability criteria into consideration simultaneously. In the actual software development,
the software developing manager has to spend and control the testing resources under both
minimizing the total software cost and satisfying the software reliability requirement rather
than only minimizing the cost.

Now, let Ry (0 < Ry < 1) be the software reliability objective. Using the discrete software
reliability function in Eq. (6.13), we can discuss the optimal software release policies which
minimize the total expected software cost in Eq. (6.28) with satisfying the software reliability
objective Ry. That is, the cost-reliability-optimal software release problem can be formulated
as follows:

minimize C(Z)
subject to Rg(Z,h) > Ry, Z >0 } ‘

Supposing h is a constant value, we can see that the discrete software reliability function

(6.33)

Rg(Z,h) is a monotonically increasing function in terms of the testing-period Z when the
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software failure-occurrence times obeys the geometric distribution. Accordingly, if Rp(0,k) <
Ry, then we have only finite solution Z; satisfying Rp(Z — 1,h) < Ry and Rp(Z,h) > Ry.
Furthermore, if Rg(0,h) > Ry, then Rp(Z, h) > Ry for any nonnegative integer Z. Therefore,
in this case, we have to discuss optimal software release policies based on only the cost criterion.
From the discussion above, the cost-reliability-optimal software release policies can be obtained

as follows:

[Cost-Reliability-Optimal Release Policy]
Suppose that ¢cg > ¢; >0,¢c3>0,0< Ry <1,and h > 0.

(1) IEW(0) < ;2 and Rp(0,h) > Ry, then the cost-reliability-optimal software release
period Z* = 0.

(2) IEfW(0) < z%-and Rp(0,h) < Ry, then the cost-reliability-optimal software release
period Z* = Z;.

(3) IEW(0) > +2-and Rp(0,h) > Ry, then the cost-reliability-optimal software release
period Z* =< Zy >.

(4) U W(0) > -%- and Rp(0,h) < Ro, then the optimal software release period Z* =
max{< Zy >, Zl}

6.6 Numerical Examples

We show numerical examples for our generalized discrete binomial process model in Eq.(6.4)
by using actual fault count data cited by Ohba [32] and RADC [6]. We call these data DS1 and
DS2 in this chapter, respectively. DS1 consists of 19 data pairs (¢;, y;)(7 = 0,1,2,-+-,19; t19 =
19, 119 = 328) and the program size K of this software system is 1.317 x 10° (LOC). And DS2
consists of 35 data pairs (¢;, y;)(7 = 0,1,2,---,35; tgs = 35,y3s = 1301) and its program
size K is 1.240 x 10° (LOC). DS1 and DS2 show exponential and S-shaped reliability growth
curves, respectively. Therefore, we use DS1 in the case that the software failure-occurrence
times distribution obeys the geometric distribution, and DS2 in the case that the distribution
obeys the discrete Rayleigh distribution, respectively.

Figs. 6.1 and 6.2 depicts the estimated expected number of detected faults, E{N 5(1)]’s, and
its 95% confidence limits in case of the geometric and the Rayleigh software failure-occurrence

times distributions, respectively. The 1007% confidence limits for E[N 5(1)] are derived as

E[Np(i)] + K/ Var[Ns(0)], (6.34)

where K., indicates the 100(1 + v)/2 percent point of the standard normal distribution [58].

As to Fig. 6.1 the estimates of the unknown parameters A and p have been obtained that
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Fig. 6.1 : The estimated expected number of detected faults in the case of the geometric
software failure-occurrence times distribution and its 95% confidence limits for DSI.
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Fig. 6.2 : The estimated expected number of detected faults in the case of the Rayleigh soft-
ware failure-occurrence times distribution and its 95% confidence limits for DS2.
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N = 0.340 x 1073 and p = 0.052, respectively, by using the method of maximum-likelihood
discussed in Section 6.4. By using the estimates, the expected initial fault content can be
estimated as K - ) = 513. In Fig. 6.2 the estimates of the unknown parameters A and p have
been obtained that A = 0.316 x 102 and p = 0.107 x 1071, respectively. Accordingly, we can
estimate the expected initial fault content to be about 1328.

Figs. 6.3 and 6.4 show the estimated software reliability functions, fi;(z', 1)’s, by using
the estimated parameters, respectively. By using the estimated software reliability functions,
]?l;(i, 1), we can estimate the software reliabilities at the 60-th testing-period to be about 0-342
in Fig. 6.3 and at the 45-th testing-period to be about 0 - 579 in Fig. £4\, respectively.

Figs. 6.5 and 6.6 depict the estimated instantaneous MTBF’s, MTBF 5(7)’s, respectively.
In Fig. 6.5, we can estimate the instantaneous MTBF at the 60-th testing-period to be about
0-933 (weeks) or to be about 157 (hours). And we also estimate one at the 45-th testing-period
to be about 0 - 1.833 (months) in Fig. 6.6.

Next we show numerical examples for discussed optimal software release policies, such as
the cost-optimal and the cost-reliability-optimal release policies, respectively. Fig. 6.7 depicts
derived cost-optimal software release policy for ¢; = 1, ¢; = 32, and ¢3 = 10. In this case, Cost-

Optimal Release Policy (2) is applied, then we can estimate that the cost-optimal software

Software Reliability

Testing Time (number of weeks)

Fig. 6.3 : The estimated sotware reliability function in the case of the geometric software
failure-occurrence times distribution for DS1.
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Software Reliability

Testing Time (number of months)

Fig. 6.4 : The estimated sotware reliability function in the case of the Rayleigh software
failure-occurrence times distribution for DS2.

Instantaneous MTBF

Testing Time (number of weeks)

Fig. 6.5 : The estimated instantaneous MTBF in the case of the geometric software failure-
occurrence times distribution for DS1.
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Fig. 6.6 : The estimated instantaneous MTBF in the case of the Rayleigh software failure-
occurrence times distribution for DS2.

release period Z* = 83 (weeks). And Fig. 6.8 shows the numerical examples for derived
cost-reliability-optimal software release policy. For the specific operational period A = 1 and
the reliability objective Ry = 0 - 8, the cost-reliability-optimal software release problem can
be discussed in the followings. Suppose that the cost-optimal software release policy have
been discussed about the case of ¢; = 1, ¢ = 32, and ¢3 = 10. We can estimate Z; = 90
because R(89,1) = 0.798 < Ry and R(90,1) = 0.807 > Ry. Since W(Z) > c¢3/(¢c2 — ¢1) and
R(0,1) =2-280 x 10712 < Ry, Z* is estimated as Z* = max{< Z; >, Z;} = max{83,90} = 90
by using the Cost-Reliability-Optimal Release Policy (4). In Fig. 6.8, we can understand
an importance that the software development managers should estimate the optimal software
release period by considering not only minimizing the total expected software cost but also

satisfying the reliability objective.

6.7 Concluding Remarks

We have discussed a generalization for discrete software reliability growth modeling. We
have then developed generalized discrete binomial process model based on the unified framework

by assuming that a probability distribution of the initial fault content obeys the binomial
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Fig. 6.7 : The cost-optimal software release policy in the case of ¢; =1, co = 32, and ¢3 = 10
for DS1.
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and ¢z = 10 for DS1.
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distribution, which enables us to assess software reliability in consideration of the effect of the
program size. After that, we have derived generalized discrete software reliability assessment
measures based on the concept of the unified framework. And, parameter estimation method
based on the method of maximum-likelihood for our generalized discrete binomial process model
have been discussed. Additionally, as one of the applications of our generalized discrete binomial
process model, we have discussed optimal software release problems with simultaneous cost
and a reliability objective. Finally we have shown numerical examples for software reliability
assessment based on our generalized discrete binomial process models and its application to

derived optimal release policies by using actual fault count data.



Chapter 7

Infinite Server Queueing Modeling for
Software Reliability Assessment

7.1 Introduction

Quantitative assessment of software reliability in a testing-phase is important to provide
a software keeping high degree of reliability for users because a testing-phase is located in
the final stage of the software development process. Up to now, as mathematical models
to assess software reliability, several SRGM’s have been utilized for assessing the degree of the
achievement of software quality, deciding the time to release for operational use, and evaluating
the maintenance cost for faults undetected during the testing-phase. Most of SRGM’s have been
modeled by any stochastic processes to describe the software fault-detection phenomenon or
the software failure-occurrence phenomenon. Especially, it is known that an NHPP model can
describe software reliability growth process easily by supposing the mean value function of the
NHPP intuitively. On the other hand, for most of NHPP models, it has been pointed out that
it is difficult to understand physical interpretation for the fault-detection phenomenon by many
researchers. As one of the methods for solving this problem, several generalization methods for
SRGM'’s have been proposed. In recent years, Dohi et al. [8] has proposed a general approach to
existing SRGM’s by regarding the software failure-occurrence phenomenon as an infinite server
queue.

In this chapter we discuss generalized software reliability growth modeling by applying an
infinite server queueing thoery to basic assumptions of a delayed S-shaped SRGM [58,66], which
is a different approach from the infinite server queueing models proposed by Dohi et al. [8]. The
delayed S-shaped SRGM is one of the SRGM’s which can analyze the physical interpretation
for the fault-detection phenomenon. This SRGM has been developed by supposing that the

105
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fault-detection phenomenon consists of successive software failure-detection and fault-isolation
processes. In an actual testing-phase, we can consider that the time for analyzing or isolating
the causes of software failures do not always take a constant values.

We discuss a concept of conditional distribution of arrival times, which is utilized for de-
veloping our infinite server queueing model. After that, based on the concepts of the delayed
S-shaped SRGM and the conditional distribution of arrival times, we develop an infinite server
queueing model considering the time distribution of the fault-isolation process for software re-
liability assessment. Finally, we mention that our infinite server queueing model is a general
approach for several SRGM’s described by NHPP’s, and show numerical examples for our model

by using actual fault count data.

7.2 Delayed S-shaped SRGM

In this section we discuss an SRGM based on an NHPP and a concept of the delayed S-
shaped software reliability growth modeling [58, 66] which is the basic concept for developing
our infinite server queueing model.

First, let {Z(t),t > 0} be the counting process representing the cumulative number of
faults detected up to time ¢ (¢ > 0). Supposing that Z(t) obeys an NHPP, we can formulate
the fault-detection phenomenon as

Pr{Z(t):n}:-{—gth!—)}iexp{—H(t)} (n=0,1,2,--+)

; (7.1)

where H (t) is the mean value function which indicates the expectation of Z(t), i.e., the expected
cumulative number of faults detected up to time ¢, and h(t) called an intensity function which
indicates the instantaneous fault-detection rate at time ¢. Eq. (7.1) implies that the software
reliability growth process in the testing-phase is characterized by the mean value function H (¢)
or the intensity function h(t).

Generally, the cause analysis to detect software faults occurring software failures is con-
ducted in the testing-phase. Accordingly, the delayed S-shaped SRGM has been developed by
supposing that the fault-detection process is consisted of successive software failure-detection
and fault-isolation processes. That is, this SRGM regards analyzing the software failure-

occurrence phenomenon and isolating the faults causing software failures as the fault-detection.
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Fig. 7.1 : A basic concept of delayed S-shaped software reliability growth modeling.

The delayed S-shaped SRGM is derived by the following procedure. First of all, let m(¢) be
the expected cumulative number of software failures detected up to time ¢ in the software failure-
detection process. Then, we can obtain the following differential equation by the assumptions
of the delayed S-shaped SRGM:

dn(t)
dt

where o indicates the expected initial fault content in the software system, and b;(> 0) the

= bila —m(t)], (7.2)

failure-occurrence rate. Next, letting M (¢) be the expected cumulative number of faults isolated
(or detected) up to time ¢ in the fault-isolation process, we can also obtain the following
differential equation by assumptions of the delayed S-shaped SRGM:
dM (t)
dt
where by(> 0) represents the fault-detection rate. Suppose that b = b; = b, approximately.
Then, M(t) can be derived from Egs. (7.2) and (7.3) as

= ba[m(t) — M(t)], (7.3)

M(t) = a[l — (1 + bt) exp{—bt}]. (7.4)

The mean value funtion M (¢) in Eq. (7.4) is called a delayed S-shaped software reliability
growth model [58,66]. Fig. 7.1 shows the concept of the delayed S-shaped SRGM. Additionally,
let M¢(t) be the expected cumulative number of faults detected up to time ¢ in case of by # bs.
Then the mean value function Mq(t) is called a generalized delayed S-shaped software reliability

growth model [62], and is derived as

1
Mg(t) = a 1—1

-

(exp {—bvt} —vexp{-bit})|, (7.5)
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where v = by/b; which represents the relative measure between the frequency of the fault-

occurrence and the isolation progress rate.

7.3 Infinite Server Queueing Modeling

Two events of software failure-occurrence phenomenon and fault-detection process have
different meaning each other. Thus, the faults are not always detected even if the software
failures are occurred. And the time spent by analyzing the causes of each software failure is
randomly behaved by difference of the difficulty of isolating and detecting each fault. First of all,
in this section we introduce a concept of conditional distribution of arrival times which is need
for developing an infinite server queueing model. After that, utilizing the concept, we develop
an infinite server queueing model [36,41,42,50] to treat above situation comprehensively. And

we also propose SRGM’s considering the time distribution of fault-isolation process.

7.3.1 Conditional arrival times distribution

Before developing an infinite server queueing model, we need to discuss a concept of con-
ditional distribution of arrival times. In this section we discuss the conditional arrival times
distribution in case that the events occur in accordance with an NHPP formulated as Eq. (7.1).

Let S1, 53, -+, S, be the n arrival times of a counting process {Z(t), ¢ > 0} which obeys
an NHPP with its mean value function H(¢) and intensity function h(¢) in Eq. (7.1). Now we
consider the conditional distribution of the first arrival time, .Sy, given that there was an event

in the time-interval [0, t]. For s < ¢, the conditional distribution is derived as

H(Sl)

H(t)

_ [ W)

=/, H(t)dx' (7.6)

Similarly, we can derive the joint conditional distribution of S; and Sy as follows:

Pr{Si <s1 | Z(t) =1} =

PI‘{Sl S S1, SQ S S2 l Z(t) = 2}
H{(s1)[H(s2) — H(s1)]
[H(t)]?

= 2!/31 /0 IO dz,dzs, (7.7)

= 2!

H
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where s; < s < t. Then, if we condition that Z(t) = n, the joint conditional distribution of n

arrival times is given by

PI‘{SISSl, SQ<82,"' S <3n[Z():n}

— ! / / " Hz 1(g§xz)dw1dx2 - dzy. (7.8)

Therefore, given that Z(t) = n, the joint conditional density of n arrival times is derived as

follows:
Hr'l—l h(ti)
ty, to, 0, ty | Z(t) = n) = nl ==, .
f( 1, 42, ) bn I ( ) n) n [H(t)]n (7 9)
Eq. (7.9) implies that unordered random variables of n arrival times S, S, -+, S, are inde-

pendent and identically distributed with the density

h(z)

flz)=< H({) (0<z<t)
0

N

(7.10)
(otherwise),

if we condition that Z(¢) = n [41]. Of course, if Z(t) obeys a homogeneous Poisson process
(abbreviated as HPP) which is the special case for the NHPP, the n arrival times given Z(t) =

are independent and identically distributed uniformly on the interval [0, .

Additionally, we also introduce a useful conditional probability related to the conditional

arrival times distribution discussed above. If s < ¢t and 0 < m < n, then

Pr{Z(t—s)=n—m, Z(s) =m}
Pr{Z(t) = n}

T e

Eq. (7.11) implies that m events occured by time s(< t) are independent and each event is

Pr{Z(s)=m| Z(t) =n} =

occurred with a probability H(s)/H(t) respectively, given that Z(t) = n. That is, the condi-

tional distribution of Z(s) given that Z(¢t) = n obeys a binomial distribution with parameters

(n, H(s)/H(1))-
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7.3.2 Infinite server queueing modeling

We develop an infinite server queueing model for software reliability assessment based on
the following assumptions:

(A-1) The expected cumulative number of software failures are observed according to
an NHPP with the mean value function A(¢) and the intensity function A(%).

(A-2) The observed software failure is directly analyzed in the fault-isolation process
when the software failure is observed. After the software failure analysis, the
software fault is detected.

(A-3) The fault-isolation times are assumed to be independent with a common distri-
bution F'(t).
Let a counting process {X(t), ¢ > 0} be the random variable indicating the cumulative
number of software failures observed up to time ¢, and also a counting process {N(t), t > 0}
be the one indicating the cumulative number of faults detected up to time ¢. Suppose that the

test has been begun at ¢ = 0. Then, the distribution function of N(t) is given by

Pr{N(t) =n} = Z Pr{N(t)=n| X(t) = j}[A—gﬂie"A(t). (7.12)

And, for j software failures observed up to time ¢, the probability that n faults are detected

Software Fault-
Isolation Process  £(2) :
O T I X Fault
e :
Software Failure-
Detection Process O ; X Fault
AQ®)
—_ 3. . . @ > ®
\ ‘
Time ¢

Fig. 7.2 : Our infinite server queueing model with the time distribution of fault-isolation pro-
cess.
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via the fault-isolation process is given as
PN = 0] X(0) =3} = (1) o1 sl (7.13)

where p(t) means the probability that an arbitrary one fault is detected by time ¢, and also
p(t) is given by

¢ dA(z) 4
t)y= [ F(t— 7.14
) = [ Ple-o) T (7.14)
by using the Stieltjes convolution and the concepts of the conditional arrival times distribution.

Substituting Eqs. (7.13) and (7.14) into Eq. (7.12), we obtain the distribution function of the

cumulative number of faults detected up to time ¢ as

[y F(t — 2)dA(z)]"
n!

Pr{N(t) =n} = exp[—/O F(t — 2)dA(z)]. (7.15)

Eq. (7.15) is equivalent to an NHPP with mean value function fot F(t—xz)dA(z). That is, N(t)
has an NHPP with mean value function fot F(t — 2)dA(z). Fig. 7.2 shows the concept of our

infinite server queueing modeling.

7.4 Relationship to Existing SRGM’s

We have developed the infinite server queueing model for software reliability assessment,
and derived an SRGM considering the time distribution of the fault-isolation process in the
preceding section. Using Eq. (7.15), we can characterize the time-dependent behavior of fault-
detection phenomenon by determining A(¢) and F'(¢) which indicate the expected cumulative
number of software failures observed up to time ¢ and the time distribution function of fault-
isolation process, respectively. Accordingly, we can easily reflect the physical phenomenon for
the successive software failure-occurrence and the fault-detection on software reliability growth
modeling concretely and simply.

And, Eq. (7.15) can be considered as an general description for several NHPP models.
Specifically, for example, Eq. (7.15) is equivalent to the generalized delayed S-shaped SRGM
in Eq. (7.5) essentially if A(t) and F'(¢) in Eq. (7.15) are supposed as

A(t) = a(l —e™™), Ft)=1-e™, (7.16)

respectively. In Eq. (7.16), a represents the expected initial fault content in the software sys-

tem, b the failure-occurrence rate, a(> 0) the reciprocal of the expectation of the exponential
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distribution, i.e., the expectation of the Poisson distribution. Furthermore, by supposing that
n =0b= «ain Eq. (7.16), Eq. (7.15) is equivalent to the delayed S-shaped SRGM in Eq.
(7.4). Thus, using Eq. (7.15), we can easily understand the physical interpretation of the
fault-detection phenomenon, and reflect it on software reliability growth modeling. Table 7.1
summarizes the relationships between the infinite server queueing model and existing NHPP
models where Ms(t) fo (t — z)dA(z).

7.5 Numerical Examples

In this section we show several numerical examples for software reliability assessment by

using actual observed data. We suppose that A(t) and F(t) are given as

At)=a(l-7") (0<r<1), (7.17)
and

F(t) =1 — exp|—at], (7.18)

respectively. This case is one of the cases listed in Table 7.1. We apply the MLE to estimate the
model parameters. Supposing that we observed K data pairs (tg, )k =0,1,2,--- ,K; 0 <
ty <ty < -+ < tg) with respect to the total faults, yx, detected during constant time-interval
(0, tx], we can derive the following logarithmic likelihood function from the properties of the

NHPP:

K
InL = Z(yk - yk—l) . IH[MS(tk) - Ms(tk 1) .A/IS tK Zh’l Yk — Yr— 1 (719)
k=1

We can derive the following simultaneous equations by partially differentiating the logarithmic
likelihood funtion in Eq. 7.19 with respect to the parameters a, r, and o, respectively:
OlnL OlnL OInL
da or Oa

Accordingly, by solving numerically the above equations, we can estimate @, 7, and @, which

=0. (7.20)

are the estimates of a, r, and «, respectively.

We use a PL/I application program test data consisting of 19 data pairs (¢, yi)(k =
1,2,--+,19; t19 = 19, y19 = 328) [32]. Fig. 7.3 shows the estimated mean value function m(t)
and the 95% confidence limits of it where the estimated parameters of ]T/[;(t) are a = 459.08,
7 = 0.1916, and & = 0.0682. The 100¢% confidence limits is derived as

M () + K Ms(0), (7.21)
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Fig. 7.3 : The estimated mean value function, M\S(t)

where K, indicates the 100(1 + «)/2 percent point of the standard normal distribution [58].
We also apply the K-S goodness-of-fit test discussed in Section 4.7 to evaluate whether M\S(t)
fits statistically to the observed data. We verified that f/[;(t) fits to the observed data with the
5% level of significance by the K-S goodness-of-fit testing.

7.5.1 Software reliability function

Given that the testing or the operation has been going up to time £, the probability that a

software failure does not occur in the time-interval [¢, ¢t + z)(z > 0, ¢ > 0) is derived as
Rs(.’D I t) = exp[—{Mg(t + .’L‘) - Ms(t)}], (722)

from Eq. (7.1). Eq. (7.22) is called a software reliability function. We can estimate the software
reliability by using this equation. Fig. 7.4 shows the estimated software reliability with respect
to t = 19 (weeks) which is the termination time of the testing. Assuming that the software
users operate the software product under the same environment as the testing, for example, we

can estimate the software reliability ]?52(0‘1 | 19) to be about 0 - 410.
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7.5.2 Instantaneous MTBF

We also estimate an instantaneous MTBF which has been used as one of the substitution
of measures of MTBF. An instantaneous MTBF can be obtained as
1
MTBF;(t) = ——, 7.23
where hg(t) indicates the intensity function of the NHPP. Fig. 7.5 shows the time-dependent
behavior of the instantaneous MTBF in Eq. (7.23). Using Eq. (7.23), we can estimate the

mean time between failures, MTBF(19), to be about 0 - 112(weeks).

7.6 Concluding Remarks

In this chapter, we have discussed an infinite server queueing model considering the time
distribution of the fault-isolation process based on the concept of the delayed S-shaped software
reliability growth modeling. Generally, it is considered that the time spent by analyzing the
causes of each software failure is randomly behaved by difference of the difficulty of isolating
and detecting each fault. Accordingly, this chapter has treated with the random behavior of
the isolation times for each software fault by developing the infinite server queueing model.

Additionally, this chapter has shown that this model can easily express the physical description
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for the fault-detection phenomenon, and can describe several NHPP models as the special cases.
Finally, having assumed that A(t) = a(1 — r*) and F(¢) = 1 — exp[—at], we have shown the
result of goodness-of-fit testing to the actual data and several numerical examples by using

fault count data observed in the actual testing-phase.



Part 1V

IMPERFECT DEBUGGING
MODELING

117






Chapter 8

Software Reliability Modeling with
Imperfect Debugging Activities

8.1 Introduction

Assessing software reliability in a testing-phase located in the final phase of the software
development is one of the important project management activities to produce highly-reliable
software systems. A software reliability assessment method based on a software reliability
growth model has been known as one of the fundamental technologies for assesssing software
reliability quantitatively, and applied for practical use. The SRGM is a mathematical tool
based on probability and statistical theories, which can describe the software reliability growth
process by regarding the number of faults detected up to arbitrary testing-time as a random
variable. Therefore, most of the SRGM’s have been developed by applying counting processes
such as NHPP’s.

The SRGM’s can be classified into the following two models: perfect and imperfect de-
bugging models. The perfect debugging models are modeled by assuming a perfect debugging
environment in which faults latent in a software system are always detected and corrected per-
fectly by the debugging activities. On the other hand, the imperfect debugging models are
developed by assuming an imperfect debugging environment where faults are not always de-
tected and corrected perfectly and the debugging activities have a possibility that new faults
are introduced. We can see that the imperfect debugging environment is a suitable assumption
for software reliability growth modeling since debugging activities can not always detect correct
faults perfectly in the actual testing-phase. Therefore, a lot of SRGM’s developed by assuming
the imperfect debugging environment have been proposed so far. Yamada [53], Yamada and

Sera [61], Yamada et al. [69], and Zeephongsekul [72] have been proposed several types of im-
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perfect debugging models based on NHPP’s by considering that new faults are introduced by
imperfect debugging activities, respectively. And Yamada et al. [70] has extented a well-known
Goel-Okumoto model to an imperfect debugging model by using only a perfect debugging rate.
Thus, imperfect debugging models proposed so far treat the following two types of imperfect

debugging activities separately:

(1) The imperfect correcting activities which introduce new faults,

(2) The imperfect correcting activities which introduce no new faults.

However, it is possible that these two types of imperfect debugging activities are happened
simultaneously in the actual testing-phase. Accordingly, we need to consider the two types
of imperfect debugging activities simultaneously for developing plausible imperfect debugging
models. In this chapter we develop imperfect debugging models which incorporate the two types
of imperfect debugging activities simultaneously based on the NHPP’s. Then, we derive several
software reliability assessment measures based on our models. Further, we discuss estimation
methods of model parameters, and show numerical examples of our model by using actual fault
count data. Finally, we conduct goodness-of-fit comparisons among our models by using actual

data sets.

8.2 Imperfect Debugging Modeling

8.2.1 NHPP model

We develop imperfect debugging models based on NHPP’s. An NHPP model is one of
the SRGM’s having the following stochastic properties with respect to a counting process,

{N(t),t > 0}, representing the number of faults detected during a constant time-interval (0, ¢:

Pr{N(t) =n} = {H@))" exp{—H(t)}

n!
(TI,:O,I,2,'-') (81)

3

where H(t) is called the mean value function which represents the expected number of faults
detected during the time-interval (0,¢], and h(t) the intensity function representing the instan-
taneous fault-detection rate. The stochastic behavior of the fault-detection phenomenon can be
characterized by assuming a suitable mean value function H(¢). Most of the mean value func-

tions are developed by assuming basically that the number of faults detected at testing-time
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t is proportional to the current residual fault content. Accordingly, we can obtain the follow-
ing differential equation characterizing the time-dependent behavior of the expected number of
detected faults:
dH(t
T bl —HO] (0> 0, b00) >0), (62
if we assume the perfect debugging environment. In Eq. (8.2), a represents the expected initial

fault content, and b(t) the fault-detection rate per fault at testing-time 2.

8.2.2 Modeling with 2-types of imperfect debugging activities

We propose NHPP models by considering two types of imperfect debugging activities, such
as the activities which introduce new faults and the activities which introduce no new faults.
Our imperfect debugging models are developed by expanding the basic assumptions of Eq.
(8.2). That is, we expand Eq. (8.2) into the following differential equation:

dH (t

-—d%(—) = b(t)[a(t) — pH(t)) (a(t) > a, 0 <p<1), (8.3)
where p represents the perfect debugging rate, a(t) the number of faults in the software system
at testing-time ¢ considering with the imperfect debugging which introduces new faults. Ac-
cordingly, (1 — p) denotes the probability of the imperfect debugging which introduce no new

faults. Solving Eq. (8.3) with respect to H(¢), we obtain the following equation:

H(t)= e~ PZ(t) [/Ot a(s)b(s)e”'Z(s)ds 5.

0

We need to give suitable functions a(t) and b(t) in Eq. (8.4) to develop a specific imperfect
debugging model, respectively. As to the function a(t), it is very difficult to observe it when
new faults are introduced. Therefore, we consider the following two functions which describe
the time-dependent behavior of the expected total numbers of faults in the software system by

taking the numbers of introduced faults into consideration:

a1(t) = arexplBt]  (8>0), (8.5)
az(t) = ao(L+1t) . (v >0), (8.6)

respectively. In Egs. (8.5) and (8.6), a; (¢ = 1,2) represent the expected numbers of initial

inherent faults, 3 and v new faults introduction rates for the expected numbers of initial inherent
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faults, respectively. We can see that Egs. (8.5) and (8.6) mean that the expected numbers of
faults in the software system increase exponentially and linearly with constant increasing rates,
respectively. Substituting Eqs. (8.5) and (8.6) into Eq. (8.4) and solving Eq.(8.4), we can

obtain the following equations:

Hy(t) = pglf: 5 (explat] - exp[-pbut), (8.7)
(1) = 22 {( - )1 - expl-phat] +7t} , (8.5)

respectively, where we set b(t) = b;(i = 1,2) (constant values). In this chapter we call the
NHPP models with Egs. (8.7) and (8.8) as Model 1 and Model 2, respectively.
In Egs. (8.7) and (8.8), we can see that the mean value functions, H;(t) (i = 1,2), have the

following properties:

Hy(0) = Hy(0) =0 }

8.9
Hi(oco) = Ha(o0) = o0 &9

That is, the numbers of faults detected in infinitely long duration are infinity, respectively, since
these functions assume that new faults are introduced when debugging activities are conducted.
In existing imperfect debugging models, the Littlewood-Verrall model [25], the Weibull process
model [29], and the logarithmic Poisson execution time model [29] have the same properties as

Eq. (8.9) especially.

8.3 Reliability Assessment Measures

After characterizing the software failure-occurrence or fault-detection phenomenon by using
an SRGM, it is important to utilize several software reliability assessment measures derived
from the applied SRGM for quantitative assessment of software reliability. In this section we
derive reliability assessment measures, such as software reliability functions and hazard rates,

based on our proposed models.

8.3.1 Software reliability function

The software reliability function is one of the well-known software reliability assessment
measures. Given that the testing or the operation has been going up to testing-time ¢, the

software reliability function is defined as the probability that a software failure does not occur
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in the time-interval (¢t,t + z](¢ > 0, z > 0). Accordingly, the software reliability function

R(z | t) can be formulated as
R(z | t) = exp[-{H(t + z) — H(t)}], (8.10)

based on properties of the NHPP. Substituting Egs. (8.7) and (8.8) into Eq. (8.10), we can

derive software reliability functions as

Ry(z | t) = exp [ - pg lil ﬂ(exp[ﬂ (t + )] — exp[—pbi (t + )] — exp[Bt]) + exp[—pblt]] ;
(8.11)

Ry(z | t) = exp {% {(1 — E)Z—Q)(exp[—pbg(t + z)] — exp|—pbat]) — fyt} ], (8.12)

respectively.

8.3.2 Hazard rate

The hazard rate represents the frequency of software failure-occurrence per unit testing-

time, and is formulated as

G

A= TR

= h(t+ ), (8.13)

where z(xz | t)At represents the probability that a software failiure occurs during a small
time-interval (¢ + z,t + = + At] given that a software failure has not been occurring during a
time-interval (¢, + z|(t > 0, z > 0). Substituting Egs. (8.7) and (8.8) into Eq. (8.13), we

obtain the following hazard rate functions:

(o |t) = pglj’: 5 (Bexpl(t+ )] + pbyexpl-p (¢ -+ ) (8.14)
z(z|t) = % {exp[—pbs(t + z)}(pbs — 7) + 7}, (8.15)
respectively.

8.4 Parameter Estimations

We discuss the methods of parameter estimation for our imperfect debugging models. First
of all, we discuss parameters p, B, and ~ in Egs. (8.7) and (8.8). Ordinarily, estimating

these parameters by using fault count data or software failure-occurrence times data is very
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difficult. Therefore, we specify these parameters experimentally in this case. However, we set

the parameters 8 and « by using fault introduction rates ¢; (i = 1,2) formulated as

¢ = ﬁ(—%;a— (i=1,2), (8.16)

respectively. In Eq. (8.16), T' denotes the completion time of the testing. Using Egs. (8.5) and

(8.6), we can derive the fault introduction rates as

¢ = exp|BT] — 1, (8.17)
e =T, (8.18)

respectively. In the case that the fault introduction rates have been given as ¢; (¢ = 1,2), the

parameters § and v can be calculated as

1
g = T log(¢: + 1), (8.19)
1

from Eqgs. (8.17) and (8.18), respectively.

Next we discuss the methods of parameter estimation for o; and b; (i = 1, 2). In this chapter
we estimate the parameters o; and b;(i = 1,2) based on the methods of maximum-likelihood
by using the set and calculated parameters p, 8, and <y, respectively. Supposing that K data
pairs (t, yx)(k = 0,1,2,---, K) have been observed with respect to the cumulative number
of faults, yx, detected during a constant time-interval (0, #](0 < t; < t2 < --- < tg), we can

derive the logarithmic likelihood functions as

=

K

InLi = Y (yk = ye1) - In[Hi(te) — Hi(te1)] — Hiltxe) = > Infye — 1]

(i=1,2), (8.21)

based on the properties of NHPP’s [36,41,50]. Accordingly, the parameter estimates &; and
b; (i = 1,2) of parameters o; and b; can be obtained by solving the following simultaneous
likelihood functions numerically:

OlnL; O0lnL;
Bai N Bbz N

0 (i=1,2). (8.22)

which are derived from Eq. (8.21), respectively.
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Fig. 8.1 : The estimated mean value function, H, (t). (Model 1 ; p=20.95, ¢ =03, 8=
1.421 x 107%)
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8.4. Parameter Estimations 127

03 ! ! | ! ! ! !
0.29 . : : : | ' :
0.28
0.27
0.26

0.25

Hazard Rate

0.24

0.23

0.22

0.21

0.2 E E i i E E E

Operation Time (hours)

Fig. 8.5 : The estimated hazard rate function, z)(z | 1846.92).

Hazard Rate

Operation Time (hours)

Fig. 8.6 : The estimated hazard rate function, zz(z | 1846.92).



128 Chapter 8. Software Reliability Modeling with Imperfect Debugging Activities
8.5 Numerical Examples

We show numerical examples of our models by using actual fault count data. This data
set consists of 35 data pairs (¢, uk)(k = 1,2,---,35; t35 = 1846.92 (hours),yss = 1301)
[6]. In this numerical examples we set p = 0.95 and & = 0.3 ( = 1,2). Then, we can
calculate § = 1.421 x 10~* and v = 1.624 x 10™* by using Eqgs. (8.19) and (8.20), respectively.
Using these parameters set as above, we can obtain parameter estimates @; = 1.073 x 103,
B, = 1.730 x 1073, Gy = 1.066 x 103, and b, = 1.740 x 103 by using the methods of maximum-
likelihood, respectively.

Figs. 8.1 and 8.2 depict the estimated mean value functions, H, (t) and ffz(t), respectively.
And, Figs. 8.3 and 8.4 show the estimated software reliabilities Ri(z | 1846.92) and Ry(z |
1846.92) after the terminaiton time of the testing (¢35 = 1846.92 (hours)), respectively. If we
assume that the developed software system is used in the operational phase which is assumed
to have the same environment of the testing-phase, we can estimate the software reliabilities
after 5 hours from the termination time of the testing to be about & (5 | 1846.92) ~ 0.255 and
§2(5 | 1846.92) =~ 0.271 from Figs. 8.3 and 8.4, respectively. Furthermore, Figs. 8.5 and 8.6
show the estimated hazard rates, z1(z | 1846.92) and Zx(z | 1846.92), respectively. From Figs.
8.5 and 8.6, we can estimate the hazard rates after 800 hours from the termination time of the

testing to be about 23(800 | 1846.92) =~ 0.237 and Z2(800 | 1846.92) ~ 0.628.

8.6 Goodness-of-fit Comparisons

We compare our two types of imperfect debugging models proposed in this chapter in
terms of mean square errors (MSE) discussed in Section 2.4. In these model comparisons the
parameters are set p = 0.95, 3 = 1.421 x 107, and v = 1.624 x 10~ which are the same as in
Section 8.5, and we use the following fault count data:

- DS1(6] : (tk,ye)(k=1,2,---,35; ts5 = 35, yss = 1301) where ¢, is measured on the
basis of hours.

- DS2(6] : (tk,yk)(k=1,2,---,19; t19 = 19,719 = 328) where t; is measured on the
basis of weeks.

- DS3[12] : (tk,ye)(k = 1,2,---,24; tog = 24,924 = 296) where ¢, is measured on the
basis of weeks.

- DS4[44] : (tr, ye)(k=1,2,---,59; ts9 = 59, ysg = 5186) where ¢ is measured on the
basis of weeks.
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Table 8.1 : The results of model comparisons based on the MSE. (p = 0.95, 8 = 1.421 x 1074,
and v = 1.624 x 107%)
DS1 DS2 DS3 DS4
Model 1 4051.39  243.375 690.438  49086.4
Model 2 3913.79 237.192 674.719 45486.4

Table 8.1 shows the results of model comparisons based on the MSE. In Table 8.1, we can
say that Model 2 has better performance than Model 1 in terms of the MSE when we set the
parameter as p = 0.95, 8 = 1.421 x 107, and v = 1.624 x 10™*. That is, we can also say that
it is better to assume a linearly increasing function representing the expected number of faults

considering with new introduced faults like Eq. (8.6) in these model comparisons.

8.7 Concluding Remarks

We have proposed two types of imperfect debugging models based on the NHPP’s, consid-
ering with two types of imperfect debugging activities simultaneously, such as the activities
which introduce new faults and imperfect fault correction activities. Then, we have derived
software reliability assessment measures, such as the reliability functions and the hazard rate
functions, based on the stochastic properties of the NHPP’s. Further, we have discussed the
methods of parameter estimation for our proposed models, and shown numerical examples by
using actual fault count data. Finally, we have conducted goodness-of-fit comparisons among

our proposed imperfect debugging models in terms of the MSE by using four actual data sets.
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Chapter 9

Conclusion

This dissertation has discussed stochastic software reliability growth modeling for the pur-
pose of improvement of software reliability assessment. The main contributions obtained and
the future studies remaining in the respective chapters are summarized as follows:

The first part has discussed discretized software reliability growth modeling and its appli-

cation to optimal software release problems.

e Chapter 2 has provided discrete NHPP models by using Hirota’s bilinearization methods,
which have better performance than the discretized SDA models in terms of the MSE and
the predicted relative errors, and has derived optimal software release policies based on
our discrete NHPP models as one of the interesting issues for an application technique
to software project management. Compared with the case for the continuous NHPP
models, our discrete NHPP models proposed in Chapter 2 are expected to contribute
to decreasing labor of software development managers for software reliability assessment
because the proposed parameter estimation procedures of our models can get estimates
easily. And we can also obtain the inflection parameter along with the other parameters
in applying the discrete inflection S-shaped SRGM to the observed data, simultaneously.
On the continuous-time inflection S-shaped SRGM, it is known that we cannot obtain the
inflection parameter along with the other parameter estimates accurately. Further studies
are needed to examine the goodness-of-fit of the proposed two discrete NHPP models
by using more observed data sets, and to deal with problems on software development
management such as estimating the optimal allocation of testing-effort expenditures. And
also, the optimal software release policies derived in Chapter 2 need to be investigated in

actual software testing in terms of the validity.
e Chapter 3 has developed stochastic models by incorporating the discrete NHPP’s into
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the discrete SDA models including the discrete modified exponential curve model which
has been derived in this dissertation. Our proposed models in Chapter 3 can describe
software reliability growth process stochastically with conserving the basic properties
of the discrete SDA models. By developing stochastic models based on the discrete
SDA models, several software reliability assessment measures which are useful metrics
for quantitative software reliability assessment can be derived. We need further studies
so that we can examine performance of the proposed model more by using many sets of

faults count data collected in actual software projects.

The second part has provided software reliability growth modeling with several factors, such

as testing-coverage and testing-effort expenditures, related to the software reliability growth

process.

e Chapter 4 has discussed software reliability growth modeling with testing-coverage ma-

turity process in the testing-phase. Especially, the testing-coverage maturity process
with testing-skill of test-case designers has been described by developing the alternative
testing-coverage function. After that, the SRGM with testing-coverage maturity process
has been developed by characterizing the relationship between the testing-coverage matu-
rity process and the software reliability growth process. Incorporating the testing-coverage
maturity process into describing the software reliability growth process is very significant
for improvement of the accuracy of software reliability assessment. However, we have
to research more about the useful software reliability assessment measures, and examine
performance of the proposed model by using several actual data which are measured on

the C1 and path testing-coverage criteria.

Chapter 5 has provided a lognormal process SRGM with testing-effort expenditures. The
testing-effort is one of the important metrics influencing the software reliability growth
process. Software developing managers can grasp the relationship between the attained
software reliability and the amount of testing-effort expenditures by using our software
reliability growth model proposed in Chapter 5, and our model also enables software
development managers to decide how much testing-effort are expended to attain the
reliability objective. However, further studies are needed to examine the validity of our

model for practical applications by using more actual data.

In the third part generalization techniques for continuous or discrete-time software relia-

bility growth modeling. Our generalization frameworks for software reliability modeling are
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different from the conventional framework under which an SRGM is developed by solving a
differential equation modeled on suitable assumptions. Our generalized frameworks proposed
in this dissertation have a useful characteristic that software development managers can easily

obtain a feasible SRGM by analyzing the fault-detection phenomenon.

e Chapter 6 has discussed generalized discrete software reliability growth modeling. Es-
pecially, generalized discrete binomial process models with the effect of the program size
have been proposed. And optimal software release policies based on our models have been
also derived. The discrete binomial process SRGM’s proposed in Chapter 6 are suitable
for software reliability assessment for a small or medium size software product since the
binomial distribution in Eq. (6.3) representing the initial number of faults in the software
system can be regarded as a Poisson distribution as the parameter K — oco. Our general-
ized discrete modeling for software reliability aseessment proposed in Chapter 6 enables
us to obtain a suitable SRGM easily by analyzing the software failure-occurrence times
distribution in the actual testing-phase and applying its suitable probability distribution
function to our generalized discrete model. In Chapter 6, though we have applied the ge-
ometric and Rayleigh distributions as the software failure-occurrence times distributions,
we have been planning to develop feasible software failure-occurrence times distributions
which enable us to describe the times distribution flexibly in the future. And then, we
have to discuss the validity of our generalized discrete model for actual software reliability

assessment in the future studies.

e Chapter 7 has provided a generalization framework for software reliability growth model-
ing based on the NHPP by using an infinite server queueing theory. By using this general-
ized SRGM, the time-dependent behavior of fault-detection phenomenon is characterized
by A(¢) and F'(¢) which indicate the mean value function of software failure-occurrence
phenomenon and the distribution function of isolation time, respectively. But, there are
several problems for applying this SRGM to the actual testing-phase. We have shown nu-
merical examples in Chapter 7 by assuming that A(t) = a(1—r') and F(t) = 1 —exp[—at]
intuitively. However, we have to research on how to assume A(t) and F(¢) in actual
testing-phase, which is an important issue for practical software reliability assessment as

future studies.

The fourth part discusses software reliability growth modeling under imperfect debugging

environment. The imperfect debugging modeling is considered as one of the effective approach
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for feasible software reliability growth modeling because debugging activities do not always

remove faults perfectly in an actual testing-phase.

e Chapter 8 has proposed imperfect debugging models with 2-types of imperfect debugging
activities, such as the activities introducing new faults and the imperfect fault-correction
activities, simultaneously based on NHPP’s. Our imperfect debugging models have been
developed by extending the basic assumptions of software reliability modeling based on
the NHPP. In further studies, we have been planning to develop more plausible imperfect
debugging models which can describe software reliability growth process with the two
types of imperfect debugging activities more specifically by using other suitable stochastic
processes. And we have to evaluate the validity and usefulness of our models for practical

software reliability assessment.

We have discussed stochastic modeling for developing feasible software reliability growth
models and accurate software reliability assessment through this dissertation comprehensively.
As the future studies, we have to discuss application methods of our models to several software
project mangement isssues, such as the earned value management (abbreviated as EVM) and
software project risk management. And, these models proposed in this dissertation can be
regard as black-box models which ignore the software architecture and the control flow of input
data. Accordingly, we need to research on white-box software reliability modeling, such as the
modeling with module compositions, for accurate software reliability assessment. Addition-
ally, we have to research on software reliability assessment methodologies for recent software
developent environment such as an open source software development project as the future

studies.
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