A Study

on
Markovian Software Reliability Modeling
for

Availability and Safety Assessment

January 1999

Koichi Tokuno

A Study
on
Markovian Software Reliability Modeling
for

Availability and Safety Assessment

Dissertation submitted in partial fulfillment for
the degree of Doctor of Philosophy
(Engineering)

Koichi Tokuno

Doctoral Program of the Graduate School of Engineering,

Tottori University, Tottori, Japan

January 1999

Copyrighted
by

Koichi Tokuno
1999

ABSTRACT

This doctoral dissertation deals with software quality measurement and assessment in
dynamic environment such as the testing phase of the software development process and
the operational maintenance phase. In particular, we propose several stochastic models
for software reliability, availability, and safety assessment. These models are developed by
employing Markov processes. The dissertation consists of the three main parts.

In the first part software reliability modeling is discussed. In particular, imperfect
debugging environment is the central argument. Chapter 2 gives a software reliability
model with imperfect debugging considering the uncertainty of fault removal. Based on this
model, optimal software release policies with cost factors and reliability requirement are also
investigated as application to practical use. Chapter 3 proposes an imperfect debugging
model considering the existence of regenerative faults as well and presents application
examples of the model to an actual testing data set. These two models provide several
stochastic quantities for software reliability measurement.

In the second part software availability is the main issue. Chapter 4 discusses software
availability modeling by treating operational and restoration time-intervals of a system as
random variables depending on the cumulative number of corrected faults. Estimation of
unknown parameters is also provided in this chapter. Chapters 5 and 6 give customer-
oriented software availability models. The model considering two types of software failures
in user operation is discussed in Chapter 5 and two types of restoration scenarios in Chap-
ter 6. Chapter 7 proposes a software availability model with degenerated performance.
This model can provide a new performance measure considering reliability and compu-
tation simultaneously. Chapter 8 deals with availability modeling for a computer-based
system, which consists of one hardware and one software subsystem.

The third part focuses on software safety measurement and assessment. Chapter 9
gives a safety assessment model describing the relationship between software failure-occur-
rences and software safety. Based on the software reliability /availability modeling discussed
in the above two parts, Chapter 10 deals with software safety modeling which takes account
of the situation where a system engenders unsafe states in operation.

In the final chapter we summarize the results obtained in the dissertation and future

research works on software reliability modeling.

ACKNOWLEDGMENTS

The author would like to express his gratitude to Professor Shigeru Yamada, the supervisor
of the author’s study and the chairman of this dissertation reviewing committee, for his
introduction to research in software reliability, valuable advice, continuous support, and
warm guidance.

The author is indebted to Professor Hajime Kawai, Professor Satoru Ikehara, Professor
Yutaka Fukui, and Professor Kazuhiro Sugata, the members of the dissertation reviewing
committee, for reading the manuscript and making helpful comments.

The author wishes to particularly thank Professor Shunji Osaki of Hiroshima Univer-
sity for invariable encouragement and support.

The author has also received priceless cooperation and suggestions from many people
for the achievement of this work. Special thanks are due to Professor Naoto Kaio of
Hiroshima Shudo University, Associate Professor Satoshi Fukumoto of Aichi Institute of
Technology, Associate Professor Mitsuhiro Kimura of Tottori University, and Associate
Professor Tadashi Dohi of Hiroshima University.

The anthor would also like to acknowledge the kind hospitality and encouragement of
the past and present members of Professor Yamada’s laboratory and the staff of Depart-
ment of Social Systems Engineering of Tottori University.

Finally, the author wants to thank his late parents Kaoru and Mitsuko, to whom this

dissertation is dedicated.

Contents

1 Introduction ‘ 1
1.1 Software Reliability Engineering 1
1.2 Organization of Dissertation e 5

Part I SOFTWARE RELIABILITY MODELING

2 Software Reliability Modeling with Imperfect Debugging 9
2.1 Imtroduction L 9
2.2 Model Description 10
2.3 Derivation of Reliability Measures 15

2.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults 15
2.3.2 Distribution of the Number of Faults Corrected Up to a Specified
Time e 16
2.3.3 Expected Number of Faults Detected Up to a Specified Time . .. 17
2.3.4 Distribution of the Time between Software Failures 18
2.4 Optimal Software Release Problems 20
2.4.1 Reliability-Optimal Software Release Policies 20
2.4.2 Cost-Optimal Software Release Policies 21
2.4.3 Cost-Reliability-Optimal Software Release Policies 22
2.5 Numerical Examples Lo o o 24
2.6 Concluding Remarks Lo oo 35

3 Software Reliability Modeling with Two Types of Failures 37
3.1 Imtroduction e 37
3.2 Model Description 38

xi

xii

3.3

3.4
3.5
3.6

Contents

Derivation of Software Reliability Measures 41

3.3.1 Distribution of the First Passage Time to the Specified Number of

Corrected Faults 41
3.3.2 Distribution of the Number of Faults Corrected Up to a Specified

Time e e 42
3.3.3 Expected Number of Software Failures 42
3.3.4 Distribution of the Time between Software Failures 42
Parameter Estimation L L. 43
Numerical Examples Lo o L. 44
Concluding Remarks 50

Part II SOFTWARE AVAILABILITY MODELING

4 Software Availability Modeling 53
4.1 Introduction L 53
4.2 Modeling and Assumptionso 55
4.3 Derivation of Software Performance Measures 58

4.4
4.5
4.6

4.3.1 Distribution of the First Passage Time to the Specified Number of

Corrected Faults 58
4.3.2 State Occupancy Probability and Software Availability 60
Parameter Estimation Lo .. 62
Numerical Examples L oo 63
Concluding Remarks 72

5 Operational Software Availability Modeling with Two Types of Failures 73

5.1
5.2
5.3

5.4

Introduction 73
Model Description 74
Derivation of Software Performance Measures 78

5.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults 78
5.3.2 Operational State Occupancy Probability and Software Availability 80

Numerical Examples oo 82

Contents xiii

5.5 Concluding Remarks L oo oo 88

Operational Software Availability Modeling with Two Types of Restora-

tions 89
6.1 Introduction e 89
6.2 Model Description L e 89
6.3 Derivation of Software Performance Measures 92

6.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults L. 92
6.3.2 Operational State Occupancy Probability and Software Availability = 94

6.4 Numerical Examples 95
6.5 Concluding Remarks L oo 99
Software Availability Modeling with Performance Degeneration 101
7.1 Introduction 101
7.2 Model Description L 102
7.3 Software Availability Analysis L 105
7.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults 105
7.3.2 State Occupancy Probability 107
7.3.3 Instantaneous Software Availability and Computation Software Avail-
ability 109
7.4 Numerical Examples L oo 110
7.5 Concluding Remarks 114
Availability Modeling for Hardware-Software System 115
8.1 Imtroduction 115
8.2 Model Descriptiono PR 116
8.3 Derivation of System Performance Measures 119

8.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults 119
8.3.2 Operational State Occupancy Probability and System Availability . 120
8.4 Numerical Examples oL Lo 121

xiv

8.5

Contents

Concluding Remarks 125

Part IIT SOFTWARE SAFETY MODELING

9 Software Safety Modeling Related to Failure Occurrences 129
0.1 Imtroduction L . e 129
9.2 Model Description L 130
9.3 Software Safety/Availability Analysis 133

9.3.1 Distribution of the First Passage Time to the Specified Number of
Corrected Faults L . 133
9.3.2 State Occupancy Probability 134
9.3.3 Software Safety oo 137
9.3.4 Instantaneous Software Availability 138
9.4 Numerical Examples L o 138
9.5 Concluding Remarks Lo oo 142

10 Software Reliability /Availability Modeling with Safety 145
10.1 Introduction Lo 145
10.2 Software Reliability Assessment Model with Safety 146

10.2.1 Model Description Lo o 146
10.2.2 Derivation of Safety/Reliability Measures 150
10.3 Availability-Intensive Safety Assessment Model 153
10.3.1 Model Description R .. 153
10.3.2 Software Availability/Safety Analysis 155
10.4 Numerical Examples L Lo oo 159
10.5 Concluding Remarks 165

Part IV CLOSING

11 Conclusion 169

References 173

Contents XV

Publication List of the Author 179

List of Figures

1.1
1.2
1.3

Software reliability technologies.
SRE activities over the software product life-cycle phases.

The dependability tree.

Part I SOFTWARE RELIABILITY MODELING

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
2.10

2.11

3.1

3.2
3.3

A sample function of (Y, T').
A diagrammatic representation of transitions between states of X(¢) for
software reliability modeling with imperfect debugging.
A sample realization of hazard rate z;(t) for software reliability modeling
with imperfect debugging. Lo oL
Dependence of perfect debugging rate p on Gyo(t) (D = 0.2, k= 0.9).
Dependence of perfect debugging rate p on E[X(¢)|20] (D = 0.2, & = 0.9).

Dependence of perfect debugging rate p on Var[X(t)|20] (D = 0.2, k = 0.9).

Dependence of perfect debugging rate p on cv[X(¢)[20] (D = 0.2, k£ =0.9).
Dependence of decreasing ratio of the hazard rate, k on Var[X(t)|20] (D =
0.2, p=0.9). . . .
M(t|30) and D(#30) (D = 0.2, k=09, p=0.9).
Dependence of number of failures ! on software reliability Ri(z) (D =
0.2, E=0.9, p=0.9) . oo vttt
Dependence of number of failures ! on hazard rate A\(z) (D = 0.2, k =

0.9, p=0.9).

A sample realization of hazard rate z;(7) for software reliability modeling

with two types of failures. Lo

Estimated M(2) and B[X(£)].

——

Estimated Gag(t). « - - o v v oo

13

14
25
26
27
28

30
31

32

33

xviii List of Figures

3.4 Estimated cv[X/\(t)].
3.5 Estimated R;Ta:)

J———

3.6 Estimated Aj(z).

Part II SOFTWARE AVAILABILITY MODELING

4.1 A sample realization of Y(£).
4.2 A diagrammatic representation of state transitions between X (t)’s for soft-

ware availability modeling. oL

——

4.3 Estimated Gag(t) (a=0.8).
4.4 Operational state occupancy probability Py, (t) (DATA 1: a = 0.8).

4.5 Bstimated A(f) (DATA 1: @ =0.8).

46 Estimated A(f) (DATA 2: a=08).

47 BEstimated Ay,(t) (DATA 1: a=08).
)

——

4.8 Estimated A,,(t) (DATA 2: a=0.8).

5.1 A diagrammatic representation of state transitions between X (t)’s for oper-
ational software availability modeling (I).

5.2 Dependence of a on G,(t) (n = 5,6 =001, n =10, D = 0.1, k = 0.8,

E=05,7=09) o oo
5.3 Dependence of a on A(t) (§ = 0.01, = 1.0, D = 0.01, £ = 0.8, E = 0.5,
r=0.9).
5.4 Dependence of § on A,(t) (a =1.0,7 =10, D =001, k =08, E = 0.5,
r=10.9). e
5.5 Dependence of § on A,,(t) (e =1.0,7 =10, D =0.01, k = 0.8, E = 0.5,
r=10.9). .
5.6 Dependence of r on A(t) (¢ = 0.9, § = 0.01, » = 1.0, D = 0.01, k = 0.8,
E=05) oot

5.7 Dependence of D: 60 on A(t) (a=09,7=1.0,k=0.8, E=05,r=0.9).

6.1 A diagrammatic representation of state transitions between X (¢)’s for oper-

ational software availability modeling (II).

6.2

6.3

6.4

6.5

7.1

7.2

7.3

7.4

7.5

8.1

8.2

8.3

8.4

8.5

8.6

List of Figures Xix

Dependence of a on A(t) (p = 09, D =01, k = 08, E =05, 7 = 0.9,
n=1.0). 96

Dependence of a on Ay (¢t) (p =09, D =0.1, k = 0.8, E = 0.5, » = 0.9,
n=1.0). 97

Dependence of p on A(¢t) (a =09, D =0.1, k =08, E = 0.5, 7 = 0.9,
D= L0)e o 98

Dependence of p on Ag,(t) (e =09, D =0.1, k=08, E = 0.5, r = 0.9,
D=1.0) o 99

A diagrammatic representation of state transitions between X(¢)’s for soft-

ware availability modeling with performance degeneration. 104
Dependence of a on A(t) (D =0.1, k=08, E=02, r=0.9). 111
Dependence of a on 4.(¢) (D =01, k=08, E=0.2,r=0.9,0=01, n=
1.0, C=1.0,6=05). 112
Dependence of 6 on A.(t) (a=0.9, D=0.1, k=08, E=02,7r=009, 0=
0.1, p=1.0, C=1.0). R 113
Dependence of pon A.(t) (a =09, D=01, k=08, E=02,r=0.9, § =
0.1, C=1.0, 6§=05). . o oo 114
A sample behavior of hardware-software system. 117

A diagrammatic representation of state transitions between X (t)’s for avail-

ability modeling for hardware-software system. 118

Dependence of a on G,(t) (n = 5,60 = 0.01, p = 1.0, D = 0.1, k = 0.8,
B=05,7=09) i 122

Dependence of a on A(t) (§ = 0.01,p =1.0, D = 0.01, £k = 0.8, E = 0.5,
P = 0.0). e 123

Dependence of 7 on A(t) (6 = 0.01, n = 1.0, D = 0.01, k = 0.8, E = 0.5,
G=0.9) o 124

Dependence of 8 : D on A(t) (n=1.0,k=0.8, F=05,r=09,a=009). 125

XX List of Figures

Part III SOFTWARE SAFETY MODELING

9.1

9.2

9.3

9.4

9.5

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

A diagrammatic representation of state transitions between X (t)’s for soft-

ware safety modeling related to failure occurrences. 132
Dependence of p; on software safety S(¢) (D =0.1, k=08, E=1.0, r =
0.9,a=0.9, y=15). 139
Dependence of p; on instantaneous software availability A(t) (D = 0.1, k =
08, E=1.0,7=09, a=0.9, y=15). 140
Dependence of v on software safety S(¢) (D =0.1, k=08, E=1.0, r =
0.9, p1 = 0.3, @ =0.9). + ot 141
Dependence of ¥ on instantaneous software availability A(¢) (D = 0.1, k =
08, E=1.0, r=09, p1 =03, a=09). 142

A diagrammatic representation of state transitions between X (¢)’s for the
software reliability assessment model with safety. 149

A diagrammatic representation of state transitions between X (¢)’s for the

availability-intensive safety assessment model. 155
Dependence of # on S1(t) (D =10.1,k=08,a=09,7=0.1). 160
Dependence of k on S1(¢) (D =0.1,a=0.9,6=001,7=01). 161
Behaviors of state occupancy probabilities (¢ = 0.9, D = 0.1, k¥ = 0.8,
E=02,7=09,6=001,7=01). 162
Dependence of a on S»(t) (D = 0.1,k = 0.8, E =02, r = 0.9, § = 0.01,
n=0.1). .. 163
Dependence of a on A(t) (D = 0.1,k =08, F =0.2,r =09, § = 0.01,
n=0.1). ..o 164

Dependence of a on A,,(¢t) (D =0.1, k=08, E=0.2,7 = 0.9, § = 0.01,
D= 0.0)e o 165

List of Tables

Part I SOFTWARE RELIABILITY MODELING

2.1
2.2
2.3
2.4

2.5

2.6

3.1

Testing time ¢, to reach the objective probability r (r = 0.9, n =10, D =

0.2, k=0.9). . o oo S 24
Testing time ¢, maximizing Var[X(¢)|N] (D =02, k=0.9). 27
Testing time ¢, to reach the objective cv (¢=0.1, D =02, k=09). ... 29
MTBSF E[X;] (p=09, D=02 k=09).0.... 34
Optimum release time 7™ for Theorem 1 (zo = 2.5, Ry = 0.95, D = 0.2, k =

0.9). © o e 35
Optimum release time T for Theorem 2 (¢; = 1.0, ¢; = 10.0, ¢ = 0.2, D =

02, k=09, N=30). o 35
MTBSE E[XI]. o o oo e e e e e 49

Part I SOFTWARE AVAILABILITY MODELING

4.1
4.2

Generated data sets. 64

Maximum-likelihood estimates., 65

xxi

Chapter 1

Introduction

1.1 Software Reliability Engineering

At present, enormous software systems have been developed as computer systems have been
utilized in various fields. The ability or utility of existing computer systems are greatly
influenced by performance/quality of their software systems. Therefore, once system fail-
ures due to defects or faults latent in software systems come to the surface, the systems
are entirely useless and many people sustain great damage. Moreover, they may cause
serious accidents affecting people’s lives [24]. Under the background like this, the software
production technologies for the purpose of producing quality software systems efficiently,
systematically, and economically have been developed and researched energetically. Among
these, software management technologies have recently risen in importance [14, 63].

Comprehensive use of technologies and methodologies in software engineering is needed
for improving software quality/reliability. Figure 1.1 summarizes the representative soft-
ware reliability technologies [57]. Software Reliability Engineering (SRE) is a subdiscipline
of software engineering and the quantitative study of how well the operational behavior
of software-based systems meets customer requirements [27, 32]. Figure 1.2 shows SRE
activities in the respective software life-cycle phases [4, 57].

Fault Avoidance

Production Fault Tolerance

Technology Systematic Specification Technique
Failure Modes and Effects Analysis

Software Reliability
Measurement and Assessment

Management Techniques
Technology Reliability Modeling
Data Coilection Procedure

Fig. 1.1. Software reliability technologies.

2 1. Imtroduction

DEVELOPMENT STEPS SRE ACTIVITIES

Feasibility

» Determine functional profile

» Define and classify failures

| | * Identify customer reliability needs
. Development * Conduct trade-off studies
Requirements Plan « Set reliability objectives

* Allocate reliability among components
Design * Engineer to meet reliability objectives

I » Focus resources based on functional profile
: » Manage fault introduction and propagation
Implementation » Measure reliability of acquired software

* Determine operational profile

System Test » Conduct reliability growth testing
l * Track testing progress
Field Trial * Project additional testing needed

* Certify reliability objectives are met

* Project post-release staff needs
l | * Monitor field reliability vs. objectives
Operation Maintenance * Track customer satisfaction with reliabiilty
* Time new feature introduction
by monitoring reliability
* Guide product and process improvement
with reliability measures

Fig. 1.2. SRE activities over the software product life-cycle phases.

There exist two fundamental ways to improve software quality /reliability: fault avoid-
ance and fault tolerance. Fault avoidance is the more traditional approach and attempts
to ensure a fault-free system by equipping methodologies for fault prevention and fault
removal in the software development process. Fault tolerance techniques are based on the
premise that a system will contain residual design faults, no matter how carefully designed
and validated, and attempt to limit performance degradation and failure occurrences due

to such faults to a minimum. The N-version programming [2] and the recovery block

1.1. Software Reliability Engineering 3

scheme [45] are the representative software fault-tolerance approaches. The software-fault-
tolerant architecture consists of plural variants, which are different systems produced from
a common specification, and a decider, which monitors the results of variant execution [20].

We define the following technical terms in SRE [25, 35, 57]:

o Software failure
A software failure occurs when a software system ceases to deliver the expected

outputs and does not function in accordance with a software specification.

o Software fault

A defective statement or a set of defective statements in a software program which

may cause a software failure. A software fault is also referred as a software bug.

o Software error

A human intellectual action that results in a software system containing a software

fault. A software error introduces a software fault into a system.

In this dissertation the terms software fault and software error are used as the same
meaning since a software fault is a manifestation of a software error. Hereafter a software

fault is referred as a fault.

The definitions of dependability and the software attributes of dependability handled

in this dissertation are given as follows:

Dependability is defined as the trustworthiness of a system and is a comprehen-
sive term to describe the attributes such as reliability, availability, safety, confidentiality,

integrity, and maintainability [25].

¢ Software reliability is the attribute that a software system will perform without
causing a software failure over a given time period, under specified operational envi-

ronment.

e Software availability is the attribute that a software system will perform and be

available at a given time point, under specified operational environment.

e Software safety is the attribute that a software system will not induce any hazards

whether or not the system is functioning in accordance with the specification, where

4 1. Introduction

a hazard is defined as a state or a set of conditions of a software system that, together

with other conditions in the environment of the system, will lead inevitably to an

accident [23].

The main characteristics of dependability are summarized in Fig. 1.3 [25].

AVAILABILITY
RELIABILITY

ATTRIBUTES CONFIDENTIALITY
INTEGRITY
MAINTAINABILITY
FAULT PREVENTION
FAULT REMOVAL

MEAN

PEPENDABILITY S<§§§§§§§§§§§§FAUETTOLERANCE

FAULT FORECASTING

FAULTS
IMPNRMENTS<EEEEEEERRORS
FAILURES

Fig. 1.3. The dependability tree.

One of the above software reliability technologies is a quantitative technique for soft-
ware quality/reliability measurement, and many mathematical models for the purpose of
measuring and assessing software reliability reasonably, which is a so-call software reliabil-
ity model, have been proposed and applied to practical use because it is considered that
software reliability is the main quality characteristic in a software product. A mathematical
software reliability model is often called a software reliability growth model which describes
a software fault-detection or a software failure-occurrence phenomenon during the testing
phase of the software development process and the operation phase [1, 26, 35, 44, 56, 57].

The existing software reliability models are classified from various view points by
several researchers such as Mellor [28], Musa et al. [35], Romamoorthy & Bastani [44],
Shanthikumar [49], Xie [54], and Yamada [56]. Yamada [56, 57] classifies the software

reliability growth models into the following three categories:

1.2. Organization of Dissertation 5

(1) the failure-occurrence time model: astochastic model taking notice of the time-interval

between software failure-occurrences.

(2) the fault-detection count model: a stochastic model taking notice of the cumulative

number of faults detected or software failures occurring over a specified time period.

(3) the availability model: a stochastic model describing the time-dependent behavior of a

software system which alternates between up and down state.

The above models are utilized for measuring and assessing the degree of achievement of
software reliability, deciding the time to software release for operational use, and estimating

the maintenance cost for faults undetected during the testing phase.

1.2 Organization of Dissertation

This dissertation studies software reliability modeling for availability and safety assessment
by employing Markov processes. The dissertation is divided into the three main parts: Part
I on software reliability modeling, Part II on software availability modeling, and Part III
on software safety modeling. The three parts are complemented by this introduction and

a conclusion in Chapter 11.

— Part I: Software Reliability Modeling
In the first part software reliability modeling is discussed. In particular, imperfect
debugging environment is the central argument. Chapter 2 gives a software reliability
mode] with imperfect debugging considering the uncertainty of fault removal. Based
on this model, optimal software release policies with cost factors and reliability re-
quirement are also investigated as application to practical use. Chapter 3 proposes
an imperfect debugging model considering the existence of regenerative faults as well

and presents application examples of the model to an actual testing data set.

— Part II: Software Availability Modeling
Chapter 4 discusses software availability modeling by treating operational and restora-
tion time-intervals of a system as random variables depending on the cumulative

number of corrected faults. Estimation of unknown parameters is also provided in

6

1. Introduction

this chapter. Chapters 5 and 6 give customer-oriented software availability models.
The model considering two types of software failures in user operation is discussed
in Chapter 5 and two types of restoration scenarios in Chapter 6. Chapter 7 pro-
poses a software availability model with degenerated performance. This model can
provide a new performance measure considering reliability and computation simul-
taneously. Chapter 8 deals with availability modeling for a computer-based system,

which consists of one hardware and one software subsystem.

Part III: Software Safety Modeling

The third part focuses on software safety measurement and assessment. Chapter 9
gives a safety assessment model describing the relationship between softwa,re‘failure-
occurrences and software safety. Based on the software reliability /availability model-
ing discussed in the above two parts, Chapter 10 deals with software safety modeling
which takes account of the situation where a system engenders unsafe states in op-

eration.

Chapter 11 summarizes the results obtained in the dissertation. We conclude the

dissertation with prospects for the future research works on software reliability modeling.

Part I

SOFTWARE RELIABILITY
MODELING

Chapter 2

Software Reliability Modeling with
Imperfect Debugging

2.1 Introduction

As computer systems grow in size and complexity, quality software systems are more re-
quired for a higher degree of system reliability. Therefore, quality control approaches are
indispensable to developing quality software systems efficiently. Software reliability, i.e.
one of representative software quality characteristics, is called one of the taken-for-granted
quality or must-be quality for a software system. Accordingly, it is great important for
the software development managers to establish a reliability objective and its reliability
assurance procedures precisely [14, 59, 63]. Generally, a mathematical model is very useful
for evaluating and assessing the degree of achievement of software reliability. A mathemat-
ical software reliability model is called a software reliability growth model which describes
a software fault-detection or a software failure-occurrence phenomenon during the testing
phase in the software development process and the operation phase [55, 56]. A software
failure is defined as an unacceptable departure from program operation caused by a fault
remaining in the software system. Using the models, we can estimate several quantita-
tive measures such as the initial fault content, the software reliability, and the mean time
between software failures.

Most software reliability growth models proposed so far are based on the assumption
of perfect debugging that all faults detected during the testing and the operation phase
are corrected and removed perfectly. However, debugging actions in actual testing and
operation environments are not always performed perfecﬂy. For example, typographical

errors invalidate fault-correction activities or fault removal is not carried out precisely due

9

10 2. Software Reliability Modeling with Imperfect Debugging

to wrong analysis for the obtained testing results [50]. That is, they are in imperfect debug-
ging environment. Therefore, the faults are not always corrected and removed perfectly
when they are detected. Then, it is interesting to develop a software reliability growth
model considering imperfect debugging environment (cf. [38, 48, 64]). Such an imperfect
debugging model is expected to estimate reliability assessment measures more accurately.

In this chapter, we discuss a software reliability growth model with imperfect debug-
ging that faults are not corrected/removed certainly when they are detected. Defining a
random variable representing the number of faults corrected by a given time point, this
model is formulated by a Markov process [10, 42]. We derive various interesting quantities
for software reliability measurement. Furthermore, based on this model, we discuss optimal
software release problems by introducing software cost and reliability criteria [7, 17, 40].
Finally, we show numerical illustrations of software reliability measurement and optimal

software release problems.

2.2 Model Description

For imperfect debugging environment, the software reliability model developed in this

chapter is based on the following assumptions:

Al. Each fault which causes a software failure, when detected, is corrected perfectly with
probability p (0 < p < 1), while it is not corrected with probability ¢(= 1 — p) [48].
We call p the perfect debugging rate.

A2. The hazard rate is constant between software failures caused by a fault in the software

system, and geometrically decreases whenever each detected fault is corrected [31].
A3. The probability that two or more software failures occur simultaneously is negligible.

A4. No new faults are introduced during the debugging. At most one fault is removed

when it is corrected and the correction time is not considered.

We consider a stochastic process (Y, T') where fault count vector Y = {Y(I); [=
1, 2, ...} and time series vector T' = {T}; [= 1, 2, ...} [42,47]. Let: =0, 1, 2, ... be the

state space, where 7 represents the cumulative number of corrected faults. Then, the events

2.2. Model Description 11

{Y (1) = i} means that ¢ faults have been corrected at the I-th software failure-occurrence
and 7} represents the [-th software failure-occurrence time-point, where Y (0) = 0 and
Ty = 0. A sample function of (Y, T') is shown in Fig. 2.1. For example, Fig. 2.1 shows that
a fault is detected at T3 but the fault correction fails (i.e. the fault is imperfectly debugged).
Furthermore, let {X(¢), t > 0} be a random variable representing the cumulative number of
faults corrected up to the testing time ¢. Then, {X(t), ¢t > 0} forms a Markov process [10].
That is, from assumption Al, when ¢ faults have been corrected by arbitrary testing time
t, after the next software failure occurs,

X(t) = i (with probability ¢) (2.1)

i+ 1 (with probability p),

(see Fig. 2.2). Furthermore, from assumption A2, when ¢ faults have been corrected, the

hazard rate for the next software failure-occurrence is given by
z(t)=Dk* (i=0,1,2, ...; D>0, 0<k<1), (2.2)

where D and k are the initial hazard rate and the decreasing ratio, respectively. A sample
function of z;(t) is shown in Fig. 2.3. We see that the hazard rate z;(t) decreases when
the correction of a detected fault succeeds, but when failing in the fault correction it does
not decrease. Equation (2.2) describes the software failure-occurrence phenomenon where
a software system has high frequency of software failure-occurrence during the early stage
of the testing or the operation phase and it gradually decreases after then [35]. This model
has high applicability in practical software reliability modeling. For example, Gaudoin et
al. [8] and Musa & Okumoto [33, 34] have discussed software reliability modeling based
on this model. Early software reliability models such as those of Goel & Okumoto [10]
and Jelinski & Moranda [13] often assume that the hazard rate decreases by a constant
amount with perfect debugging. Then, the distribution function for the next software

failure-occurrence time is given by
Fy(t) =1— e DF, (2.3)

Let Q;;(7) denote the one-step transition probability that after making a transition

into state 7, the process {X(t), t > 0} makes a transition into state j by time t. Then,

12 2. Software Reliability Modeling with Imperfect Debugging

@:,;(T) representing the probability that if ¢ faults have been corrected at time zero, j

faults are corrected by time 7 after the next failure occurs is given by

X (1)

Y(5)
Y(4)
Y(2)=Y(3)

Y(1)

Qij(1) = Py(1 — e~ P¥), (2.4)
where P;; are the transition probabilities from state ¢ to state j and given by
g (=1)
Pi=4p (j=i+1) (5, 3=0,1,2, ...). (2.5)
0 (otherwise)
\

N N/ AV >< NZ S
N\ N\ N VAN
T1 12 T3 T4 T5

Testing Time

Fig. 2.1. A sample function of (Y, T').

2.2. Model Description 13

Fig. 2.2. A diagrammatic representation of transitions between states of X (¢) for software reli-

ability modeling with imperfect debugging.

14 2. Software Reliability Modeling with Imperfect Debugging

Dk |-

Y

o
e e

Testing Time
(A perfect debugging, V: imperfect debugging)

Fig. 2.3. A sample realization of hazard rate z;(¢) for software reliability modeling with imperfect

debugging.

2.3. Derivation of Reliability Measures 15
2.3 Derivation of Reliability Measures

2.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults

Suppose that i faults have been corrected at some testing time. Let G;,(t) denote a
distribution function of the first passage time from state 7 to state n. In other words, G ,(t)
is the probability that n faults are corrected in the time interval (0, ¢] on the condition that
i faults have been already corrected at time zero. From (2.4) the probability of making a
transition from state 0 to state 1 in the small time interval (¢, ¢ + dt] is dQo,1(t). Then,
since the process {X(¢), ¢ > 0} restarts on the condition that one fault has been corrected
at time u (i.e. the fault has been perfectly debugged), the distribution function of the first

passage time from state 0 to state n is given by
i
[Gralt — 1)dQ0s(w) = Qs # Gialt), (26)

where * denotes a Stieltjes convolution. Similarly, for the case of imperfect debugging
at the first software failure-occurrence, the distribution function of the first passage from

state 0 to state n is given by
t
|} Gonlt = 0)aQua(w) = Qoo * Goalt). (27)

Since the events described in (2.6) and (2.7) are mutually disjoint, we get the following

renewal equation:

Gon(t) = Qo * G1a(t) + Qoo * Gonlt). (2.8)
In general;, we have
Gin(t) = Qigr1 * Gigan(t) + Qi * Ginlt) (¢=0,1,2 ..., n—1), (2.9)

where G,,(t)=1(n=1, 2, ...).

We use Laplace-Stieltjes (L-S) transforms [42] to solve (2.9), where the L-S transform
of G;,(t) is defined as
Gm@)zlfeﬂWGm@y (2.10)

From (2.9) we get

Gin(s) = Qiir1(8)Girrn(s) + Qii(8)Gin(s) (6=0,1,2, ..., n—1). (2.11)

16 2. Software Reliability Modeling with Imperfect Debugging

From (2.4) the L-S transforms of Q;;+1(t) and Q;;(¢) are respectively given as

~ pDE
i = = 2.12
Q , +1(8> s+ Dkz ()
gDk
i(8) = . 13
Qis(s) 1 DF (2.13)
Substituting (2.12) and (2.13) into (2.11) yields
~ pDkt .
Gi,n(S) = WGi+l’n(s) (Z = 0, l, 2, ceey T — 1) (214)
Solving (2.14) recursively, we obtain the L-S transform of Go(t) as
n—1 z
pDk
Gl I_IO s + pDk
-1 H
pDk
= 2.15
; ' +pDk2 (2.15)
where
Al=1
Lp(n—1)—i
Ay:a%—)— (n=23 ...,i=0,1,2 ..., n =1\ (2.16)
NGRS
=0

By inverting (2.15) and rewriting Go,(t) as G,(t), we have the distribution function of the

first passage time when n faults are corrected
n—1 ;
= Y A1 — e7PPFY), (2.17)

where Go(t) = 1.

2.3.2 Distribution of the Number of Faults Corrected Up to a
Specified Time

Let S, (n = 1, 2, ...) be random variables representing the n-th successful correction
time of detected faults. Since X (t) is a counting process [53] (see Fig. 2.1), we have the

following equivalent relation:

{Sn <t} = {X(¢) 2 n}. (2.18)

2.3. Derivation of Reliability Measures 17

Therefore, we get
Pr{S, <t} =Pr{X(t) > n}. (2.19)

Let P,(t) denote the probability that n faults are corrected up to testing time ¢. From
(2.17) and (2.19), we obtain the probability mass function P,(t) as

P.(t) =Pr{X(¢t) = n}
=Pr{X(t) > n} - Pr{X(t) >n+1}
=Pr{S, <t} - Pr{S,4; < t}
= Gn(t) — Gara(t). ' (2.20)
Suppose that the initial fault content in the system prior to the testing, NV, is known.

Then, we can derive the expected number of faults corrected up to testing time ¢ using

(2.20) as

E[X(t)|N] =D nP,(t)

n—O

= Z n{Gn(t n+1()}
= E Ga(t). (2.21)

It is noted that Py(t) = Gn(t) since Gn41(t) = 0.
Furthermore, the second moment of X (t) is given by

t)?|N] = Z n?P,(t
"y
Z (2 — 1)Ga(2). (2.22)
Therefore, the variance of X (¢) is calculated by
N 2
Var[X(¢)|N] = > (2n — 1)G {Z G } : (2.23)
n=1

2.3.3 Expected Number of Faults Detected Up to a Specified
Time

We introduce a new random variable Z(¢) representing the cumulative number of faults

detected up to testing time ¢. Let M;(t) be the expected number of faults detected up to

18 2. Software Reliability Modeling with Imperfect Debugging

time ¢ on the condition that ¢ faults have been already corrected at time zero, i.e.
Mi(t) = E[Z(2)|X(0) = 1], (2.24)

which is called a Markov renewal function [42]. Suppdsing that the initial fault content N

is known, we obtain the following renewal equations:
Ml(t) = Fz(t) -+ Qi,i * Mz(t) + Qi,z'—}-l * Mi+l(t) (Z = 0, 1, 2, ey N - 1), (225)

where My(t) = 0. Using the L-S transforms of M;(t) (¢ =0, 1, 2, ..., N —1), from (2.15)

we get
~ 1 N n-1 pD]»z
My(
pg_-:lg s + pDk?

=15 Gus) (2.26)

pn:l
Inverting (2.26) and rewriting My(t) as M(¢|N), we have the expected number of faults

detected up to time % as

MEN) =~ Gult)

- %E[X(t)|N]. (2.27)

We consider that all faults detected by the testing are divided into two types. One
are the faults which are successfully corrected, the other are the faults detected again due
to imperfect debugging [64]. Then, the expected number of faults debugged imperfectly is
given by

D(t|N) = M(¢|N) — E[X(t)|N]
-]%E[X(t)uv]. (2.28)

2.3.4 Distribution of the Time between Software Failures

Let X; (I =1, 2, ...) be a random variable representing the time interval between the
(I — 1)-st and the [-th software failure-occurrences and &,(z) be a distribution function of
X;. It is noted that X; depends on the number of the faults corrected up to the (I — 1)-st

software failure-occurrence, however, this is not explicitly known.

2.3. Derivation of Reliability Measures 19

Here, let C; be a random variable representing the number of faults corrected up to
the (I — 1)-st software failure-occurrence. Then, C; follows a binomial distribution having

the following probability mass function:
-1\ . :
Pr{C, =i} = (; >p’ql"1_’ (1=0,1, 2, ..., I —1), (2.29)

where (l:.l) = (I — 1)!/[(I = 1 — ©)!!] denotes a binomial coefficient. From (2.29), at the
(I — 1)-st software failure-occurrence, the expected number of corrected faults is given by

p(l—1).
Furthermore, it is evident that

Pr{X; < z|C; = i} = Fy(z), (2.30)
which is given by (2.3). Accordingly, we can get the distribution function for X; as

$(z) =Pr{X; <z}
= I_ZIPI{XI < z|C =i} Pr{C =1}

i=0

< (11N ;i D

D (231
=0

Then, we have the reliability function for X; as

Rz(x) = PI‘{X[> ZE}

=1~ 9‘31(9:)
-1 {—1\ . . i
= E(,)p’ql_l"ze Dk, (2.32)
=0 \ ¢
Furthermore, the hazard rate for X; is given by
d

) = dz
)= k)

D§ (1;1) (kp)iql—l—z’e—Dk":c
_ =0

Z(l—il>piql—1—ie—Dkim

i=0

(2.33)

The expectation of random variable X is defined by

B[X)] = /0 ” Ry(z)de. (2.34)

20 2. Software Reliability Modeling with Imperfect Debugging

We call (2.34) the mean time between software failures (MTBSF). From (2.32), we can

derive E[X]] as
2 -1
@ﬁ_g_q)__. (2.35)

Apparently, the following inequality holds for arbitrary natural number i:

E[X]] =

BlX] <E[Xu] (=12 ..) (2.36)

That is, a software reliability growth occurs whenever a software failure is observed.

2.4 Optimal Software Release Problems

One of the most interesting problems for software development managers is deciding when
to deliver a software system to customers. This decision problem is called an optimal
software release one. Considering evaluation criteria such as achieved software reliability,
cost, delivery time and so on, we need to estimate a testing termination time. Based
on the software reliability model discussed above, we investigate optimal software release

problems introducing total expected software cost and software reliability criteria [60, 62].

2.4.1 Reliability-Optimal Software Release Policies

We consider an optimal software release problem that decides the total testing time required
to attain a software reliability objective. Suppose that we deliver a software system at the
time point when m faults have been detected by the testing. Then, from (2.35) the mean

time to software release is given by

g;E[X{] - lp"l‘)(é/ L ;* /i))m. (2.37)

And from (2.32) software reliability R(zo;m) for specified operational time z, is given by
o [m i m—j _—Dkiz
R(mmm):Z(j)p’q Te o, (2.38)
i=0

Letting Ry be a software reliability objective for the operational time zg, the minimum
integer m which satisfies R(zo;m) > Ry is the optimum number of detected faults, m*,

since R(zg; m) in (2.38) is a monotonically increasing function with respect to the number

2.4. Optimal Software Release Problems 21

of detected faults m. That is, if R(zo;0) < Ry, then there exists a finite and unique

m = myg (1 < mg < co) which satisfies the following inequalities:
R(zg;m) > Ry and R(zg;m —1) < Ry. (2.39)
Thus, we have the following theorem for a reliability-optimal software release problem.

Theorem 1 Suppose that zo > 0 and 0 < Ry < 1.

(1) If e P20 < Ry, then the optimum number of detected faults is m* = my, and the

optimum software release time s

1~ (p/k+q)™

T ==Da=1/k "

where myg is an integer number which satisfies (2.39).
(2) If e P20 > Ry, then the optimum number of detected faults is m* = 0, and the

optimum software release time s T = 0.

2.4.2 Cost-Optimal Software Release Policies
The following cost-parameters are defined:
¢; : debugging cost per fault during the testing phase,
¢y : debugging cost per fault during the operation phase (c2 > ¢; > 0),

c3 : testing cost per unit time (c3 > 0).

Suppose that the expected number of faults detected eventually is M = [N/p| since
M(oo|N) = N/p from (2.27), where [z] denotes the least integer that is not smaller than

z. Then, the total expected software cost is given by

_ 1-(p/k+q)"
C(m) =com+co(M —m) + c3 D1~ 17k) (0 <m < M). (2.40)

Therefore, the integer m minimizing C(m) in (2.40) is the optimum number of detected

faults, m*.

22 2. Software Reliability Modeling with Imperfect Debugging
For finding m = m* minimizing C(m) in (2.40), we define the following equation:

Y(m)=C(m+1)—C(m)
=—~(—a)+ S(@/k+q" (0<m<M-1) (2.41)

It is noted that Y (m) is a monotonically increasing function with respect to the number
of detected faults, m, since p+¢g =1and 0 < k£ < 1. If Y(0) < 0, then the minimum
m which holds Y (m) > 0 satisfies inequalities C(m + 1) > C(m) and C(m) < C(m — 1).
Accordingly, the optimum number of detected faults, m* = m, is given by

In{D(cy —c1)/cs}
ln(p/k+q) | (242)

Thus, we have the following theorem for a cost-optimal software release problem.

my =

Theorem 2 Suppose that co > ¢; > 0 and c3 > 0.

C3 D
1) If D > >)
) i c2—a ~ (p/k+g)M?
m* =my (1 <my <M —1), and the optimum software release time is

. 1—(p/k+q™
= —1n

then the optimum number of detected faults is

where m; is given by (2.42).

(2) If D > & , then the optimum number of detected faults is m* =

(p/k+ M1 " o —c
M, and the optimum software release time ts

. _1-(p/k+ag"
pD(1-1/k) °

< , then the optimum number of detected faults is m* = 0, and the

(3) FDs——

optimum software release time is T* = 0.

2.4.3 Cost-Reliability-Optimal Software Release Policies

We discuss an optimal software release problem which evaluates both software cost and
reliability criteria simultaneously. Consider decision policy on the optimum number of

faults to be detected by the release time which minimizes the total expected software cost

2.4. Optimal Software Release Problems 23

C(m) in (2.40) subject to the condition that software reliability R(zo;m) in (2.38) satisfies
reliability objective Ry. The optimal software release problem can be formulated as follows:

For a specified operational time zo (zo > 0),

minimize C(m)

(2.43)
subject to R(zg;m) > Ry, 0 < Rp <1

This problem is called as a cost-reliability-optimal software release problem [60]. From Sec-
tions 2.4.1 and 2.4.2, we have the following theorem for a cost-reliability-optimal scftware

release problem.

. Theorem 3 Suppose that cy > ¢; >0,¢c3>0,292>0, and 0 < Ry < 1.

C3 D
1) If D> >
(1) I ca—c (p/k+qM1

detected faults is m* = max{my, m;}, and the optimum software release time is

e L= (p/k+ gyt ™)
B pD(1 - 1/k)

and e P* < Ry, then the optimum number of

D C3
2) I >
2) b (p/k+ Mt " ca—a
faults 15 m* = max{mg, M}, and the optimum software release time is
1— (p/k‘ + q)ma.x{mo, M}
pD(1-1/k)

and e~P% < Ry, then the optimum number of detected

T =

D
(3) If D > <> and e P% > Ry, then the optimum number of

ca—c _ (p/k+g)M?
detected faults is m* = my, and the optimum software release time is
o L= (/k+ g™
pD(1—-1/k) ~

D C3

4) I >

@ o 7 o

faults is m* = M, and the optimum software release time is

. _1-(p/k+ g™
pD(1—-1/k)

and e~z > Ry, then the optimum number of detected

c
2 and e P® < Ry, then the optimum number of detected faults is

() FD< =

m* = my, and the optimum software release time is

. 1—(p/k+q)™
T =pa—1m

24 2. Software Reliability Modeling with Imperfect Debugging

% and e D= > Ry, then the optimum number of detected faults is

(6) If D < ——

m* = 0, and the optimum software release time is T™ = 0.

2.5 Numerical Examples

Using the software reliability model discussed above, we show some numerical illustrations
for software reliability measurement and its application.

The distribution functions of the first passage time to the specified number of corrected
faults, Go(t), in (2.17) are shown in Fig. 2.4 for various perfect debugging ra,tes., p’s, where
n =10, D = 0.2, and k£ = 0.9. We can calculate the testing time £, to reach an objective
probability r (0 < 7 < 1) such that G,(t) = 7. In case of 7 = 0.9, the values of ¢, for
various perfect debugging rates p’s are shown in Table 2.1. We can see that the smaller

perfect debugging rate p becomes, the more difficult it is to correct faults.

Table 2.1. Testing time ¢, to reach the objective probability » (» = 0.9, n =10, D =0.2, k =

0.9).
p |t
1.0 | 120.9
0.95 | 127.3
0.9 | 1344
0.85 | 142.3
0.8 | 151.2

2.5. Numerical Examples 25

(&)
0.0)
3
Il
Y
-
NN
NN

0 50 100 150 200 250 300
Testing Time

Fig. 2.4. Dependence of perfect debugging rate p on Gyo(t) (D = 0.2, k =0.9).

The expected numbers of faults corrected up to testing time ¢, E[X(¢)|N], in (2.21)
for various p’s are shown in Fig. 2.5 where N = 20, D = 0.2, and k£ = 0.9.

The variances of the number of faults corrected up to testing time ¢, Var[X (¢)|N], in
(2.23) for various p’s are shown Fig. 2.6 where N = 20, D = 0.2, and k£ = 0.9. As shown
in Fig. 2.6, Var[X (¢)|N] is a convex function with respect to testing time ¢ with

Var[X(0)|N] = Var[X (c0)|N] = 0. (2.44)

This means that the correctability of faults in debugging is unstable during the early stage
of the testing, and as the testing is in progress, it becomes stable. Then, we can calculate
testing time ¢, maximizing Var[X(¢)|N], which is regarded as a minimum testing time
required to stabilize the fault-correctability. The values of ¢; for various p’s are shown in
Table 2.2. As shown in Fig. 2.6 and Table 2.2, we can see that the smaller the perfect-
debugging rate p becomes, the more difficult it is to stabilize the fault-correctability.

26 2. Software Reliability Modeling with Imperfect Debugging

E[X()I20]

0 200 400 600 800
Testing Time

Fig. 2.5. Dependence of perfect debugging rate p on E[X (¢)|20] (D = 0.2, k£ =0.9).

2.5. Numerical Examples 27

Var[X(7)I20]

4.529
4_

0 100 200 300 400 500 600 700
Testing Time

Fig. 2.6. Dependence of perfect debugging rate p on Var[X (¢)|20] (D = 0.2, k= 0.9).

Table 2.2. Testing time ¢, maximizing Var[X (t)|N] (D = 0.2, k£ =0.9).

p
. 1.0 09 08 07 | E[X(t,)N] Var[X(t,)|N]
10 | 45.193 50.217 56.491 64.561 | 6.385 3.346
20 |162.55 180.62 203.19 232.22 | 14.26 4.529
30 | 462.23 513.59 577.79 660.33 | 22.74 4.744

28 2. Software Reliability Modeling with Imperfect Debugging

Furthermore, the coefficients of variation (cv) of X(¢), cv[X (t)|N], defined as

Var[X (t)| V]
EX(@)|N]

cv[X(t)|NV] = (2.45)

for various p’s are shown in Fig. 2.7 where N = 20, D = 0.2, and k£ = 0.9. As shown in
Fig. 2.7, cv[X(¢)|N] is a monotonically decreasing function with respect to testing time t.
We can calculate the testing time %, to reach an objective cv, ¢. In case of ¢ = 0.1, the

values of ¢, for various p’s are shown in Table 2.3 along with E[X (¢.)|N] and Var[X(t.)|N].

cv[X(1)120]

0.3} 0.9

0.2t
0.1 N
N
RN
0 200 400 600 800

Testing Time

Fig. 2.7. Dependence of perfect debugging rate p on cv[X (¢)|20] (D = 0.2, k = 0.9).

2.5. Numerical Examples 29

Table 2.3. Testing time ?. to reach the objective cv (¢ = 0.1, D = 0.2, £ =0.9).

p
N 1.0 09 08 07 | EXE)N Var[X(t)N]
10 | 97.342 108.16 121.68 139.06 9.500 0.9019
20 | 269.03 298.92 336.28 384.32 17.95 3.222
30 | 413.04 458.93 516.30 590.05 21.77 4.740

Var[X(¢)|N]’s for various k’s representing the decreasing ratio of the hazard rate
are shown in Fig. 2.8 where N = 20, D = 0.2, and p = 0.9. We can see that the
smaller k& becomes, the smaller the maximum of Var[X(¢)|N] becomes, while the longer
time Var[X ()| N] takes to converge.

The expected number of faults detected up to testing time ¢, M(¢|NV), in (2.27) is
shown in Fig. 2.9 along with the expected number of imperfect debugging faults, D(¢|N),
in (2.28) where N =30, D = 0.2, k = 0.9, and p = 0.9. In this case,

M(c0|30) = 33.3, D(c0|30) = % .30 = 33.3¢. (2.46)

Then, (100g)% of the cumulative number of faults detected eventually is imperfectly de-
bugged.

The reliability function, R;(z), in (2.32) and the hazard rate, \;(z), in (2.33) for various
I’s are shown in Figs. 2.10 and 2.11 where D = 0.2, £ = 0.9, and p = 0.9, respectively,
and the values of MTBSF for various I’s are shown in Table 2.4. Figs. 2.10, 2.11, and
Table 2.4 show that a software reliability growth during the testing occurs whenever a

software failure occurs.

30 2. Software Reliability Modeling with Imperfect Debugging

Var[X(#)120]
> k=0.90

k=0.80

0 500 1000 1500 2000
Testing Time

Fig. 2.8. Dependence of decreasing ratio of the hazard rate, k on Var[X (¢)|20] (D = 0.2, p = 0.9).

Number of Software Faults

357

30¢

25¢

20¢

15¢

10¢

2.5. Numerical Examples 31

M(#130) (Total)

D(1130) (Imperfect debugging)

1

500 1000 1500 - 2000

Testing Time

Fig. 2.9. M(t|30) and D(¢|30) (D = 0.2, k =0.9, p =0.9).

32 2. Software Reliability Modeling with Imperfect Debugging

R(x) =11

/
0,“,0

Fig. 2.10. Dependence of number of failures [on software reliability Ry(z) (D =0.2, k=0.9, p =
0.9).

2.5. Numerical Examples 33

A(x)

0.257

0.2 [=1
3

0.15 5
7

0.1} 9
11

0.05¢}

0 5 10 15 20

X

Fig. 2.11. Dependence of number of failures ! on hazard rate A;(z) (D =0.2, £k = 0.9, p = 0.9).

34 2. Software Reliability Modeling with Imperfect Debugging

Table 2.4. MTBSF E[X] (p=0.9, D =0.2, k =0.9).

A E[X]
1 | 5.000
2 | 5.500
3 | 6.050
4 | 6.655
5 | 7.321
6 | 8.053
7 | 8.858
8 | 9.744
9 |10.72
10 | 11.79

Next, we show numerical examples of the optimal software release problems. Tables
2.5 and 2.6 show relationships between the perfect debugging rate p and the optimum
software release time T for Theorem 1 and Theorem 2 where zq = 2.5, Ry = 0.95, ¢; =
1.0, ¢ =100, ¢3 =02, D =0.2, £k = 0.9, and N = 30, respectively. We can see that
improving the perfect debugging rate is more efficient to quicken the optimum software
release time when the perfect debugging rate is low.

Furthermore, we show a numerical example on the cost-reliability-optimal software

release problem. Consider the optimal software release problem formulated as follows:

minimize C(m)

(2.47)
subject to R(2.5;m) > 0.95

The minimum satisfying R(2.5;m) > 0.95 is mo = 25 and the optimum number of detected
faults, m minimizing C(m), is m; = 24. From Theorem 3 (1), the optimum number
of detected faults is m* = max{25, 24} = 25, i.e. though the total expected software
cost C(m) is minimized when m = 24, the software reliability objective is not satisfied.

Accordingly, the optimum software release time is given by

. 1—(p/k+q)®
~ pD(1-1/k)

= 491.74.

2.6. Concluding Remarks 35

Table 2.5. Optimum release time T* for Theorem 1 (zo = 2.5, Ro =0.95, D =0.2, k = 0.9).

p | m* i

1.0 22 411.96
09| 25 491.74
0.8 | 28 554.22
0.7 32 642.11
06| 37 741.82
0.5 45 93540
04| 56 1171.99
03| 75 1604.38
0.2 | 113 2471.52
0.11]226 5017.14

Table 2.6. Optimum release time T™ for Theorem 2 (¢; = 1.0, ¢ =10.0, ¢3=0.2, D =0.2, k =
0.9, N = 30).

p |m* T C(m*)
1.0 | 21 366.26 184.25
09| 24 44249 212.50
0.8 26 458.62 237.72
0.7 30 543.84 268.77
06| 35 64290 313.58
0.5 41 73598 378.20
0.4 | 51 920.99 475.20
0.3 | 68 124557 636.92
0.2 | 100 1801.35 960.27
0.1]199 3607.86 1930.37

2.6 Concluding Remarks

In this chapter, we have developed an software reliability model considering the imperfect

debugging environment where software faults detected by testing are not always corrected/

36 2. Software Reliability Modeling with Imperfect Debugging

removed. This model has been described by a Markov process. Various interesting stochas-
tic quantities for software reliability measurement and assessment have been derived from
the model and their numerical examples are illustrated. Application of this model to several

optimal software release problems has been also discussed.

Chapter 3

Software Reliability Modeling with
Two Types of Failures

3.1 Introduction

Many software reliability models have been developed for the purpose of estimating software
reliability quantitatively. Among these, it is said that software reliability growth models
have high validity and usefulness. These models can describe a software fault-detection or
a software failure-occurrence phenomenon during the testing phase in the software develop-
ment process and/or the operation phase. A software failure is defined as an unacceptable
departure from program operation caused by a fault remaining in the system.

Most of representative software reliability growth models are based on the following

assumptions:
o The debugging is perfect.

o The hazard rate for software failures is proportional to the residual current fault

content.

The above assumptions imply that all of faults latent in the system are corrected and a
hazard rate converges to zero. However, in general, it is impossible to remove all faults
from the system and deliver a fault-free software system to the customers. Proficient pro-
grammers recognize the existence of the regenerative faults [50]. Accordingly, the software
system may show the same failure-occurrence phenomenon as a hardware system duting
the last stage of the testing phase. Furthermore, debugging activities contain human-error

factors such as typographical errors or misunderstandings about the test results. That

37

38 3. Software Reliability Modeling with Two Types of Failures

is, the actual debugging environment is the imperfect one. Several imperfect debugging
models have been proposed [18, 38, 48, 52].

In this chapter, modifying and extending the model of Chapter 2 (hereafter referred
to as the basic model), we discuss a software reliability model with the existence of the
two types of software failures. One is due to the original faults remaining in the system
prior to testing. The other is due to faults randomly introduced or regenerated during the
testing phase. The former and the latter types of software failure-occurrence phenomena are
described by a geometrically decreasing and a constant hazard rate, respectively. Defining a
random variable representing the cumulative number of faults successfully corrected uptoa
specified time point, we use a Markov process to formulate this model [42]. From this model,
several interesting quantities for software reliability assessment are derived. Furthermore,
the method of maximum-likelihood estimation of model parameters is presented. Finally,
numerical examples of software reliability measurement and assessment based on the actual

testing data are illustrated.

3.2 Model Description

In this chapter, we assume that the following two types of software failures exist:

F1: software failures due to faults originally latent in the system prior to the testing.

F2: software failures due to faults randomly introduced or regenerated during the testing

phase.

The extended software reliability growth model constructed here is based on the fol-

lowing assumptions:

Al. The debugging activity is performed as soon as the software failure occurs.

A2. The debugging activity for the fault which has caused the corresponding software
failure succeeds with probability p (0 < p < 1), and fails with probability ¢(= 1 — p).
We call p the perfect debugging rate.

3.2. Model Description 39

A3. The hazard rate for F1 is constant between software failures and decreases geomet-

rically as each fault is corrected. The hazard rate for F2 is constant throughout the

testing phase [31].
A4. The debugging activity is performed without distinguishing between F1 and F2.
A5. The probability that two or more software failures occur simultaneously is negligible.

A6. At most one fault is corrected when the debugging activity is performed, and the

fault-correction time is not considered.

From assumptions A3 and A4, when : faults have been corrected, the hazard rate for

the next software failure-occurrence is given by

Zi(T):Dk'i‘i‘e
(i=0,1,2,...; D>0,0<k<1,0>0 7>0), (3.1)

where D is the initial hazard rate for F1, k is the decreasing ratio of the hazard rate,
and 6 is the hazard rate for F2. In the actual testing environment, it is difficult to specify
immediately when the faults are introduced or regenerated and whether the software failure
is due to the regenerative fault or not. Therefore, we assume that the faults are introduced
randomly in the system and that the software failures caused by the introduced faults
occur randomly during the testing phase. Accordingly, the hazard rate for F2 is on average
constant through the testing phase. Furthermore, we consider that increase in the hazard
rate by introduction of other new faults during debugging can be negligible [9]. A sample
function of z;(7) is shown in Fig. 3.1. We can see that the hazard rate z;(7) decreases when
the debugging succeeds, but remains constant when debugging fails.

The expression of (3.1) comes from the point of view that software reliability depends
on the debugging efforts, not the residual fault content. We do not note how many faults
remain in the software system. Equation (3.1) describes a software failure-occurrence
phenomenon where a software system has high frequency of software failure-occurrence and
perfect debugging contributes largely to the improvement of software reliability during the
early stage of the testing phase; later in the testing phase, the decrease in the hazard rate

is slower even if debugging is perfect [35, 56, 57].

40 3. Software Reliability Modeling with Two Types of Failures

Zi(7)
N

D+6—

Dk+0----- —

DK+ Q-+

DK34 O} ---eerewmmsmameannsgonnas
Dk4+9"""" e Lecme- T R I ______

t
9--------------l -- o mmmew
¥ f t j i

Testing Time

(A : perfect debugging, Y : imperfect debugging)

Fig. 3.1. A sample realization of hazard rate z;(r) for software reliability modeling with two

types of failures.

From (3.1), the distribution function for the next software failure is given by
Fy(r) = 1— e (PH+O)T (3.2)

Furthermore, let @;;(7) denote the one step tramsition probability that after making a

transition into state 7, the process {X(¢), ¢ > 0} makes a transition into state j by time 7.

3.3. Derivation of Software Reliability Measures 41

Then, Q; ;(7), which represents the probability that if ¢ faults have been corrected at time
zero, j faults are corrected by time 7 after the next failure occurs, is given by

Qi,j(T) — P‘L] [1 _ e_(Dki-I-e)T} , (3.3)
where P;; are the transition probabilities from state ¢ to state j and given by

g (j=1)
P;=4q4p (j=1+1) (1, 7=0, 1, 2, ...). (3.4)
0

(otherwise)

3.3 Derivation of Software Reliability Measures

Using the similar procedures to the basic model, we can derive several quantitative measures

for software reliability measurement.

3.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults

Recall that S, denotes the random variable representing the time spent in removing n

faults, which is defined in Chapter 2. Then, the distribution function of S, is given by

Gn(t) =Pr{S, <t}

n—1 i
=S Ar[1—e PPN (1> 0;n=1,2, ..), (3.5)
1=0
where
Al=1
ki 1 6/D

=0

A
IF

Furthermore, the mean and the variance of S,, are given by

E[S.] = z T (37)
V&I’[Sn] = :Lg_o m, (38)

respectively.

42 3. Software Reliability Modeling with Two Types of Failures

3.3.2 Distribution of the Number of Faults Corrected Up to a
Specified Time

Recall that X (t) denotes a counting process representing the cumulative number of faults

corrected up to testing time ¢, which is defined in Chapter 2. Using (3.5), we can obtain

the expectation and the variance of X(¢) as

E[X(1)] = f_fl Ga(t), (3.9)
Var[X ()] = i(n—1)Ga(t) — [}: Gn(t} (3.10)

respectively.

3.3.3 Expected Number of Software Failures

The expectation of the number of software failures up to testing time ¢ are given by

M(t) = Z Gn(t)

n-‘l

— “E[X(t)], (3.11)

where (3.9) is used as E[X (¢)].

3.3.4 Distribution of the Time between Software Failures

Recall that X; (I = 1, 2, ...) denotes the random variable representing the time interval
between the (I — 1)-st and the I-th software failure occurrences. Then, the reliability
function and the hazard rate of X; are given by

Rl() = PI‘{XI > x}

_Z<] >1112—(Dk+€)7 (312)

3.4. Parameter Estimation 43

ST\ ;i —(Dki46)z
; p'q ' (DK +6)e

lz-“i <Z - l)pqu 1—i —(Dk’-i—G)m

i=o \ ?

. 1=0

(3.13)

respectively. Furthermore, the expectation of X;, i.e. MTBSF, is obtained as

-1 1—1 pqu 1—1
ElX] = . .14
] ;0(i)Dkz+9 (3.14)

3.4 Parameter Estimation

In this section, we discuss the estimation method of the unknown parameters D and k.
The hazard rate for X; can be regarded as a random variable depending on the cu-
mulative number of the corrected faults. Letting H, (I = 1, 2, ...) be the random variable

representing the hazard rate for X;, we have

; -) .
PI‘{C[= ’L} = PI'{H] = Dk* + 9} — (. 1)pqu——l—-z
(i g O, 1, 2) ey l—- 1) (315)

Then, the expectation of H; is given by

E[H] = §(Dki +6)- (l 'Z' 1)pz‘ql—1—i

=0

= D(pk +¢)""* +9. (3.16)

Accordingly, using (3.16), we approximate the hazard rate for X; expressed by (3.13).
Then, the probability density function for X, is approximated by

éi(z) = [D(pk + q)"! + gle~PPr+a) T +6lz (3.17)

Suppose that the data set on m software failure-occurrence time-intervals z;, i.e. the
realization of X; (I = 1, 2, ..., m) is observed during the testing phase. The simultaneous

probability density function, i.e. the likelihood function, is given by

b"

I
s
S
£

i
L

[D(pk +q)"" + 6] -exp |- > _[D(pk + ¢)" " + 6]z, (3.18)
1=1

0
3

~
1
b

44 3. Software Reliability Modeling with Two Types of Failures
Taking the natural logarithm of (3.18) yields

WL=3 {ln[D(pk + ¢ + 6] — [D(pk + ¢ + 6lz1}. (3.19)

The maximum-likelihood estimates D and & for the unknown parameters D and k can be

obtained by solving the simultaneous likelihood equations 01ln L/8D = 01n L/0k = 0, i.e.

zi [D(;Z;k:qg)zl)—l 5~ Pt Q)H‘”l} =0, (3.20)
é [%@;)ip;ilql_; — (= Dpk+ ‘J)l_le} =0, (3.21)

which can be solved numerically.

3.5 Numerical Examples

Applying the extended software reliability model discussed above to the actual testing-data,
we show several numerical illustrations of software reliability measurement and assessment.

The data set consists of 26 software failure-occurrence time-interval data z; (days;
=1, 2, ..., 26) cited by Goel and Okumoto [11]. The testing termination time is 250
days, i.e. Y28, 2; = 250.

For these data, we assume that model parameters p and 6 can be prespecified. Let
d = 6T be the expected number of F2 in the testing time-interval (0, T]. Assuming that
10% of the cumulative number of software failures at the testing termination time T' = 250
are F2, we can determine that 8 = 0.0104. In case of p = 0.9, the maximum-likelihood

estimates of unknown parameters D and k are estimated as

——

D=0189, k=0947 (§=0.0104, p=0.9),

respectively. The estimated expected numbers of software failures A(T(\t) in (3.11) and

———

corrected faults E[X(¢)] in (3.9) are shown in Fig. 3.2.

3.5. Numerical Examples 45

M)

w
ul

w
(-

Actual

N)
U1

N
O

[
oy

Y
o

F2

/

0 50 100 150 200 250 300 350
Testing Time (Days)

Ul

Number of Failures or Faults

Fig. 3.2. Estimated AZ(\t) and E[}\(t)]

—

The estimated Gag(t) in (3.5), which represents the distribution function of the time
spent in correcting 26 faults, are shown in Fig. 3.3. Though 26 software failures are observed
at the testing termination time, the probability that 26 faults are corrected is estimated as
0.266. Letting the objective of this probability be 0.9, we can estimate that about 120-day

testing time must be added.

46 3. Software Reliability Modeling with Two Types of Failures

(igﬁ(f)

0.9 -
0.8¢
0.6¢f
0.47¢
0.266
0.27
0 250 _ 370
100 200 300 400 500 600
Testing Time (Days)
Fig. 3.3. Estimated Gag(t).
The coefficient of variation (cv) of X(¢t), cv[X(¢)], is defined as
+/ Var[X (t)]
v X)) = o (3.22)

E[X(2)]

.

Figure 3.4 shows the estimated cv[X(t)]. As shown in Fig. 3.4, cv[X(¢)] is a monotone

decreasing function with respect to testing time ¢. cv[X(¢)] is can be regarded as a measure

of stability of the fault correction. The cv at the testing termination time is estimated as

0.131. Letting the objective cv be 0.1, we can estimate that about 200-day testing time

must be added.

3.5. Numerical Examples 47

cv[X(7)]
0.4¢

0.3¢

0.131
0.1 —

0 100 200 300 400449 500 600

Testing Time (Days)

250

—

Fig. 3.4. Estimated cv[X (¢)].

The estimated reliability function R;Xa:) in (3.12) for the next software failure-
occurrence time-interval X,7 is shown in Fig. 3.5 along with that in the case where F2
is not considered, i.e. # = 0. The value of MTBSF for various !’s are shown in Table 3.1.
These figure and table indicate that the consideration of F2 lowers software reliability.

The estimated hazard rates /\l/(;:) expressed by (3.13) for various I’s are shown in
Fig. 3.6. From (3.13) and (3.16), it is noted that A, (0) = E[H)] for arbitrary natural

number /. Since this figure indicates that (3.13) is nearly constant with respect to x, the

approximation of the hazard rate A\;(z) by using (3.16) is valid.

48 3. Software Reliability Modeling with Two Types of Failures

Ry;(x)
1

0 10 2.0 3.0
x (Days)

Fig. 3.5. Estimated R;,Tm)

3.5. Numerical Examples 49

Kz(x)
0.25¢
0.2 ~1
=5
0.15
[=10
0.1f §=%(5)
=25
0.05 [=277
0 10 20 30

x (Days)

Table 3.1. MTBSF E[X]].

—

Fig. 3.6. Estimated A;(z).

0
l 0 0.0104
27 118.99 15.84
28 119.94 16.50
29 120.95 17.18
30 | 22.00 17.88

50 3. Software Reliability Modeling with Two Types of Failures

3.6 Concluding Remarks

In this chapter, we have developed a software reliability growth model considering the
software failure-occurrence due to the faults introduced during debugging of the testing
phase. This model can consider the imperfect debugging environment in which both fault
removal is uncertain and debugging may introduce other new faults. Accordingly, this
imperfect debugging model is superior to the earlier one discussed in Chapter 2. Several
quantities for software reliability measurement have been derived from this model and the
numerical examples of software reliability analysis based on the actual testing-data have

been illustrated.

Part 11

SOFTWARE AVAILABILITY
MODELING

Chapter 4

Software Availability Modeling

4.1 Introduction

It is often reported that unexpected system accidents have occurred due to defects or faults
remaining in software systems. Since today’s social life depends on computer systems so
much, their breakdowns do great damage. Furthermore, they may give rise to serious
accidents menacing human life [43, 57]. Under the background like this, the software
production technologies for the purpose of producing quality software systems efficiently,

systematically, and economically have been developed and researched energetically.

The software failure-occurrence process is primarily systematic since software systems
are the sets of logic. But it is impossible to recognize all of input domain in advance.
Furthermore, even if we were to recognize input domain, we could not specify which data
are inputted in execution [24]. In addition, software faults, which are the causes of soft-
ware failures, are more latent and more difficult to be isolated than hardware defects.
Accordingly, the description of the failure-occurrence phenomenon for software systems
needs the stochastic approach as well as for hardware systems. Many mathematical mod-
els for the purpose of reasonable software reliability measurement and assessment have
been proposed and applied to practical use since it is considered that software reliability
is the main quality characteristic in software products. A mathematical software reliabil-
ity model is often called a software reliability growth model which describes a software
fault-detection or a software failure-occurrence phenomenon during the testing phase of
the software development process and the operation phase [35, 56]. A software failure is
defined as an unacceptable departure from program operation caused by a fault remaining
in the software system. This model is utilized for measuring and assessing the degree of

achievement of software reliability, deciding the time to software release for operational

53

54 4. Software Availability Modeling

use, and estimating the maintenance cost for faults undetected during the testing phase.

Software development managers and customers have taken a growing interest in the
software performance measure such as the possible utilization factor as well as in the
hardware product. In particular, for telecommunication software systems, it is one of
the software quality characteristics to be considered. Accordingly, it is very important
to measure and assess software availability, which is defined as the probability that the
software system is performing successfully, according to the specifications, at a specified
time point [50]. However, few quantitative models for measuring software availability are
proposed. '

It is often assumed that the hardware systems are renewed by repair or replacement
of failed parts. Then, the hardware failure-characteristic is described without concerning
with the number of failures. On the other hand, when software failures occur, debugging
activities to remove faults are performed and software reliability improves. Accordingly,
it is necessary to consider the software reliability-growth process in software availability
modeling.

In this chapter, we discuss software availability modeling [16, 19, 21, 39]. It is assumed
that the mean times to the software failure-occurrence and the restoration times become
longer geometrically with the progress in fault correction. This assumption reflects that
the fault complexity becomes higher as the debugging activity proceeds [35, 36]. Further-
more, we consider the assumption of imperfect debugging. That is, it is assumed that all
detected faults are not corrected and removed certainly. Aiming at the cumulative number
of faults corrected perfectly, we describe the time-dependent behavior of the system, which
alternates between the operational state (up state) that a system is operating regularly
and the restoration state (down state) that a system is inoperable, with a Markov pro-
cess [47]. Several stochastic quantities for software availability measurement in dynamic
environment are derived from this model. Estimation of unknown parameters in this model
is also discussed. Finally, numerical illustrations for software availability measurement and

assessment based on this model are presented.

4.2. Modeling and Assumptions 55

4.2 Modeling and Assumptions
The following assumptions are made for software availability modeling:

Al. The software system is unavailable and starts to be restored as soon as a software

failure occurs, and the system can not operate until the restoration action is complete.

A2. The restoration action implies the debugging activity, which is performed perfectly
with probability a (0 < a < 1) and imperfectly with probability b(= 1 — a). We call
a the perfect debugging rate. One fault is corrected and removed from the software

system when the debugging activity is perfect.

A3. The hazard rate is constant between software failures caused by faults in the software

system, and geometrically decreases whenever each fault is corrected perfectly [31].

A4. The next restoration time when n faults have been already corrected from the system,

follows an exponential distribution with mean 1/u,.

A5. The probability that two or more software failures occur simultaneously is negligible.

Consider a stochastic process {X(¢), ¢ > 0} with the state space (W, R) where
up state vector W = {W,; n = 0, 1, 2, ...} and down state vector R = {R,; n =
0, 1, 2, ...} [42, 47]. Then, the events {X(¢) = W,} and {X(¢) = R,} mean that the
system is operating and inoperable due to the restoration action at time point ¢, when n

faults have been already corrected, respectively.

From assumption A2, when the restoration action has been complete in {X(t) = R.},

W, ith probability b
X(t) = (with probability b) (4.1)
Weat1 (with probability a).

Furthermore, from assumption A3, when n faults have been corrected, the hazard rate

for the next software failure-occurrence is given by
A=DE* (n=0,1,2,...; D>0,0<k<1), (4.2)

where D and k are the initial hazard rate and the decreasing ratio of the hazard rate,

respectively. The expression of (4.2) comes from the point of view that software reliability

56 4. Software Availability Modeling

depends on the debugging efforts, not the residual fault content. We do not note how many
faults remain in the software system. Equation (4.2) describes a software failure-occurrence
phenomenon where a software system has high frequency of software failure-occurrence
during the early stage of the testing or the operation phase and it gradually decreases after
then [35]. Early software availability models such as those of Kim et al. [16] and Okumoto
& Goel [39] often assume that the hazard rate is proportional to the residual fault content
and decreases by a constant amount with the perfect debugging.

Next, we describe the time-dependent behavior of the restoration action. The restora-
tion action for software systems includes not only the data recovery and the program reload
but also the debugging activities for manifested faults. From the viewpoint of the fault
complexity, there are cases where the faults detected during the early stage of the testing
or the operation phase have low complexity and are easy to correct/remove, and as the
testing is in progress, detected faults have higher complexity and are more difficult to cor-
rect/remove [35, 36]. In the above case, it is appropriate that the mean restoration-time
becomes longer with increasing the cumulative number of corrected faults. Accordingly,

we express U, as follows:
(n=0,1,2,...; E>0, 0<r<1), (4.3)

where E and r are the initial restoration rate and the decreasing ratio of the restoration
rate, respectively. In case of r = 1, i.e. u, = E means that the complexity of each fault is
random.

Let T,and U, (n =0, 1, 2, ...) be the random variable representing the next software
failure-occurrence and the next restoration time-interval when n faults have been corrected,
respectively. Furthermore, let Y(¢) be the random variable representing the cumulative
number of corrected faults up to time t. The sample behavior of Y(¢) is illustrated in
Fig. 4.1. It is noted that the cumulative number of corrected faults is not always coincident

with that of software failures or restoration actions.

4.2. Modeling and Assumptions 57

Yl \(t)

——— (up state)

........ (down state)

X: software failure - occurrence
A : perfect debugging
\ : imperfect debugging

Fig. 4.1. A sample realization of Y (¢).

Let Qa5(7) (A, B € (W, R)) denote the one-step transition probability that after
making a transition into state A, the process {X(t), ¢ > 0} makes a transition into state

B by time 7. The expressions for @ 4,5(7)’s are given as follows:

Qw,r.(T)=1—e, (4.4)
QRn,Wn+1 (7-) = CL(]. - e—#nT)7 (45)
QRn,Wn (7') = b(l - e""”). (46)

The sample state transition diagram of X (¢) is illustrated in Fig. 4.2.

58 4. S’of\'hsra,ré> Availability Modeling

Fig. 4.2. A diagrammatic representation of state transitions between X (t)’s for software avail-

ability modeling.

4.3 Derivation of Software Performance Measures

4.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults

Let S, (n =1, 2, ...; So = 0) be the random variable representing the time spent in
correcting n faults and G,(¢) be the distribution function of S, ,respectively. Furthermore,
let G;,.(t) be the distribution function associated with the probability that n faults are cor-
rected in the time interval (0, ¢] on the condition that 7 faults have been already corrected

at time zero. Then, we obtain the following renewal equation with respect to G;,(t):

Gin(t) = Qwir: * Qriwiyy * Gig1n(t) + Qwyr, * Qriw, * Gin(t)
(i=0,1,2 ..., n—1), (4.7)

where * denotes a Stieltjes convolution and G,,(f) = 1 (n = 1, 2, ...). Then, the
Laplace-Stieltjes (L-S) transform of (4.7) is obtained as follows (see Section 2.3):

éi,n(s) = @Wi,&(S)QRi,WiH(s)éi—{—l,n(s) + @W;,R;(S)@Rg,m(s)éi,n(s)
(1=0,1,2, ..., n—1). (4.8)

4.3. Derivation of Software Performance Measures 59

From (4.4)—(4.6), the L-S transforms of Q4 5(t)’s are respectively given as

Ai

Ow. r.(s) = —— 4.9
5 ap;
QR Wiy, () = T (4.10)
= by
w.ls) = . 4.11
Gnn(s) = 2. (@1)
Substituting (4.9)—(4.11) into (4.8) yields
= a;p; =
Gz’ () = Gi n
n(s) s2+ (A + pa)s + adip; +1a(s)
LiYi = .
- Givin =0, 1,2 ..., n—1), 4.12
(S +.’Bi)($ +yz) +1, (8) (Z n) ()
where
ZT; 1
y} =3 [(Ai +p;) £ \/(/\i + pi)? — dad;p;
(double signs in same order). (4.13)

Solving (4.12) recursively, we obtain G,(s) as

H ;Y;
(5 + T (3 + yz)

= Z (Al @i | A y) (4.14)

where constant coefficients A} ; and A2 ; are given by
¥ k)

n—1
H T;Y;

A= T (i=0,1,2 ..., n—1), (4.15)
iL’iH(-’Bj - afz)H(yy —z;)
j=0 7=0

n—1
H Z;Y;

PP (i=0,1,2 ..., n~1), (4.16)

w11 (v =) 11 (2

it

60 4. Software Availability Modeling

respectively. By inverting (4.14), we have the distribution function of the first passage time

when n faults are corrected

G.(t) = Pr{S, < t}
-1
=1-Y (AL e+ A2 e*) (n=1, 2, ...), (4.17)

=0

0
where we postulate H - = 1. It is noted that

j=0
370

i
L

(AL, +AZ)=1, (4.18)

i
[=1

for arbitrary n > 1.
Furthermore, E[S,] and Var[S,] are given by

Bis] =% ((4.19)
Var[S,] = g (;2 + ;1-2—) (4.20)

respectively.

4.3.2 State Occupancy Probability and Software Availability

Let Py p(t) (A, B € (W, R)) be the conditional state occupancy probability that the

system is in state B at time point ¢ on the condition that the system was in state A at

time point zero, i.e.
Pap(t) = Pr{X(t) = B|X(0) = A}
(4, B (W, R), (421)
and Py, (t) = Pw,w., (t) and Pg, (t) = Pw,,r,(t) are called the operational and the restora-

tion state occupancy probability, respectively.

We obtain the following renewal equations with respect to Pw, (t) and Pw, w, ()

Py, (t) = Gr * Pw, w. (%), (4.22)

Pw, w.(t) = € + Qw, k. * Qr.w. * Pw,w.(t). (4.23)

4.3. Derivation of Software Performance Measures 61

From (4.23), the L-S transform of Py, w,(t) is given by

~ s(s +)
V= =
Wn,Wn(s) (s + wn)(s + yn)
s s ZnYn
= + . 4.24
(a/\n a/\n,un> (s + zn)(s + ¥n) (424)
Substituting (4.24) into the L-S transform of (4.22) yields
~ s ~ s2 .
Py, (s) = ;};GnH(S) + mGnH(S)- (4.25)
By inverting (4.25), Pw, () is obtained as
Py (t) =Pr{X(t) = W, }
1 1,
- g, g . (8), :
. ? +1(t) + a)‘n#ngn+1() (4.26)

where g,(t) is the probability density function associated with G,(t) and g}, (t) = dg.(t)/dt.
Using the similar procedure for the derivation of Py, (t), we obtain the following

renewal equations with respect to Pg,(t) and Pg, g, (%):

Pg,(t) = Gn * Qw, &, * Pr,,r. (1), (4.27)
PRn,Rn (t) = g Hnt + QRn,Wn * QWn,Rn * PRn,Rn(t)‘ (428)

From (4.28), the L-S transform of Pg_ g (t) is given by

~ s(s+ An)
P = . 4.29
RmRn(S) (8 +$n)(3 +yn) ()
Substituting (4.29) into the L-S transform of (4.27) yields
~ An s(s+)
P =) Gn
O WAL T RIS
8§ ~
= 2 Guao). (4.30)
By inverting (4.30), Pg,(t) is obtained as
Pr(t) = Pr{X(t) = Ra)
1
= —gn,+1(2). 4.31
aung +1(t) ()
The following equation holds for arbitrary time ¢:
> [Pw.(t) + P, ()] = 1. (4.32)

n=0

62 4. Software Availability Modeling

The instantaneous software availability [50] is defined as
Alt) = Pw, (1), ' (4.33)
n=0

which represents the probability that the software system is operating at specified time
point t. Furthermore, the average software availability over (0, £] [41] is defined as

1 1
Agn(t) = =

A A(z)de, (4.34)

which represents the ratio of system’s operating time to the time-interval (0, t]. Using

(4.26) and (4.31), we can express (4.33) and (4.34) as
21 1
— —(n t ey
A(t) Z [a)\ng +1() + aAnﬂngn+l(t):l

n=0
> 1

=1->

n=0 Qfln
1& 1
a,'v - = Gn ——0n t
=7 7;) L/\n +1(t) + a)\n#ng +1()}

1 o0
R e (436)

n=0 n

gnt1(t), (4.35)

respectively.

4.4 Parameter Estimation

Applying the method of maximum likelihood, we discuss the estimation of the unknown
parameters D, k, E, and 7.

Let V; (I =1, 2, ...) be the random variable representing the time interval between
the (I—1)-st and the I-th software failure-occurrences. It is noted that V; is not always same
as random variable T7_; (see Fig. 4.1). Then, the hazard rate of V; can be approximated
as follows (see Section 3.4):

hi(z) = D(ak + b)'72. (4.37)
Suppose that m software failure-occurrence time-intervals v; ({ = 1, 2, ..., m), i.e. the
realization of V;, are observed. The simultaneous probability density function, i.e. the

likelihood function, is given by

m m

L=D"]](ak+b)"exp |-D > (ak +)t . (4.38)
=1 =1

4.5. Numerical Examples 63

Taking the natural logarithm of (4.38) yields

InL =mlnD + ﬂﬂ;—)ln ak +b) — DS (ak +b)u. (4.39)
=1

The maximum-likelihood estimates D and %k for the unknown parameters D and k can be

obtained by solving the simultaneous likelihood equations 81n L/0D = 3In L/dk = 0, i.e.

m

D=— , (4.40)
> (ak +b)"?

=1

S (1~ 1)(ak + b) 2y
m—1 =2

2(ak +b) ‘Zak—f—b ’

=1

(4.41)

which can be solved numerically.

Similarly, we can discuss the estimation of the unknown parameters F and r. Let
Z; (I =1, 2, ...) be the random variable representing the restoration time for the I-th
software failure-occurrence. Suppose that m restoration times 2z (I = 1, 2, ..., m) are
observed. Then, the maximum-likelihood estimates % and 7 for the unknown parameters

E and r can be obtained by solving the following simultaneous likelihood equations:

m

E=—) (4.42)
> (ar +b)F~
1=1
. S~ 1)(ar +)%z
P =1 , (4.43)

=2
2ar +0) i(ar +)12
=1

which can be solved numerically.

4.5 Numerical Examples

We show several application examples of the software availability model discussed above.

64 4. Software Availability Modeling

We use the data set consisting of 26 software failure-occurrence time-interval data
wy (days; I =1, 2, ..., 26) cited by Goel & Okumoto [11]. However, restoration times
are not explicitly shown in these data. Therefore, we assume that w; includes both the
software failure and the restoration time, i.e. w; = v+ 2 (I =1, 2, ..., 26). Accordingly,

we generate v;’s and z;’s for respective w;’s, using the following procedure:

Step 1: Generate a random number § (0 < & < 1) following the beta distribution
BET A(a, () [42] having the following density function:

1o - ==
B(a,p) = /0 1 (1 —)P dt (- (4.44)

(@>0,8>0,0<£<1)
Step 2: Let v; = uwy and 2z = (1 — &)wy.

We call the data set generated by BET'A(8, 2) DATA 1 and generated by BET A(5, 5)
DATA 2, respectively. The generated data sets and the maximum-likelihood estimates D,
k, E, and 7 for various values of a are shown in Tables 4.1 and 4.2, respectively. For

example, in case of ¢ = 0.8, the maximum-likelihood estimates are obtained as:

D =0.246, £ = 0.940, £ =1.114, 7=0.960 (DATA 1: a = 0.8),
D =0.365, k =0.956, E =0.500, 7=0.954 (DATA 2: a = 0.8).

Table 4.1. Generated data sets.

l 1 2 3 4) 6 7 8 g 10 11 12 13
w9 12 11 4 7 2 5 8 5 7 1 6 1
v |68 111 80 3.0 60 18 38 6.6 42 69 08 49 09
z (22 09 30 10 1.0 02 12 14 08 01 02 11 0.1
vy |61 55 72 21 41 04 23 30 25 42 06 38 04
z 129 65 38 19 29 16 27 50 25 28 04 22 0.6

DATA1

DATA2

4.5. Numerical Examples

Table 4.1. (Continued)

[l |14 15 16 17 18 19 20 21 22 23 24 25 26
w; | 9 4 1 3 3 6 1 11 33 7 91 2 1
v |87 35 09 26 29 53 09 93 241 53 828 1.5 0.8
DATAL z 103 05 01 04 01 07 01 17 89 1.7 82 0.5 0.2
vy 152 1.7 05 19 12 36 05 6.7 186 2.6 495 14 04
DATA2 z7 138 23 05 11 18 24 05 43 144 44 415 0.6 0.6
Table 4.2. Maximum-likelihood estimates.
DATA 1 DATA 2
a D k E a a D 2 E T
1.0 | 0.246 0.952 1.114 0.968 1.0 1 0.365 0.956 0.500 0.954
0.910.246 0.947 1.114 0.964 0.9 10.365 0.951 0.500 0.949
0.8]0.246 0.940 1.114 0.960 0.8 10.365 0.945 0.500 0.943
0.7 10.246 0.931 1.114 0.954 0.7 10.365 0.937 0.500 0.934
0.6] 0.246 0.920 1.114 0.947 0.6 | 0.365 0.927 0.500 0.923
0.5(0.246 0.904 1.114 0.936 0.5(0.365 0.912 0.500 0.908
0.41]0.246 0.880 1.114 0.920 0.40.365 0.890 0.500 0.885
030246 0.840 1.114 0.893 0.3]0.365 0.853 0.500 0.847
0.2 0246 0.760 1.114 0.840 0.2 {0.365 0.780 0.500 0.770
0.10.246 0.520 1.114 0.680 0.1 10.365 0.560 0.500 0.540

——

65

Figure 4.3 shows the estimated Ga(t)’s in (4.17) in case of a = 0.8, which represent

the distribution functions of the time spent in correcting 26 faults where 26 software failures

are observed at the testing termination time, which is 250 days. Letting the objective of the

probability that 26 faults are corrected be 0.9, we can estimate that 213-day testing time

for DATA 1 and 172-day testing time for DATA 2 must be added. Furthermore, we can

—

—

estimate E[Ss6] = 369.1 (days) for DATA 1 and E[S26] = 346.2 (days) for DATA 2, respec-
tively. Therefore, we can see that the case of DATA 2 is more stable in fault correctability

than the case of DATA 1.

66 4. Software Availability Modeling

sz_é(f)

0.9

0.87

DATA 1
0.6 DATA 2 —;

0.4r
0.2¢
0.038 b ———~” .
150 200 250 300 400 500 600

421.5 462.9

Time (Days)

Fig. 4.3. Estimated G;Jt) (a = 0.8);

Figure 4.4 displays the operational state occupancy probabilities Py, (t)’s in (4.26)
for various n’s in the case of DATA 1. Figure 4.4 indicates that the maximum probabilities
that the system is in each state make transitions with the lapse of time.

Figures 4.5 and 4.6 show the estimated instantaneous software availabilities A(%)’s
in (4.35) for DATA 1 and DATA 2, respectively. Furthermore, Figs. 4.7 and 4.8 show
the estimated average software availabilities A,,(t)’s in (4.36) for DATA 1 and DATA 2,

respectively.

4.5. Numerical Examples 67

0 25 50 75 100 125 150

Time (Days)
Fig. 4.4. Operational state occupancy probability Pw, (¢) (DATA 1: a = 0.8).

We define the inherent availability for the next up-down cycle when n faults have been

corrected as follows [55]:

E[T,]
E[T.] + E[U,)
_ 1N
1A+ 1

1
= =0 2, ... 4.4
o (=012), (4.45)

Pn = /\n//*"n
=Cvy" (C=DJE, y=k/r), (4.46)

AI(’I’L)

Il

68 4. Software Availability Modeling

where we call p, the maintenance factor and C and + the initial maintenance factor and
the availability improvement parameter, respectively. For DATA 1 and DATA 2, C and v

are given by

C =0.221, ¥ =0.979 (DATA 1: a = 0.8),
C =0.730, § = 1.002 (DATA 2: a =0.8),

respectively. As shown in Figs. 4.5-4.8, in case of v < 1 and v > 1, the software availability
improves and lowers with the lapse of time, respectively. Then, v can be regarded as an
index to determine whether or not the software availability grows and reflects the degree
of difficulty of the software performance improvement.

The initial inherent availability, i.e. A7(0) = 1/(1 + C) depends on only the initial
maintenance factor C. A;(0)’s for DATA 1 and DATA 2 are given by

———

A7(0) = 0.819 (DATA 1:a=0.8),
A7(0) = 0.578 (DATA 2: a = 0.8),

respectively. We can see that C determines the software availability in the early stage of

operation.

4.5. Numerical Examples 69

A0

0 100 200 300 400 500

Time (Days)

Fig. 4.5. Estimated Z(\t) (DATA 1: a =0.8).

70 4. Software Availability Modeling

0 éél(l)

0 100 200 300 400

Time (Days)

Fig. 4.6. Estimated A(f) (DATA 2: a = 0.8).

500

4.5. Numerical Examples 71

A1)

.88
.86
.84 r

.82 1

0.8 ' ' ‘ ‘ '
0 100 200 300 400 500

Time (Days)

Fig. 4.7. Estimated Ay, (t) (DATA 1: a = 0.8).

72 4. Software Availability Modeling

Aav(t)

0.65r

0 100 200 300 400 500

Time (Days)

—

Fig. 4.8. Estimated A4,,(t) (DATA 2: a = 0.8).

4.6 Concluding Remarks

In this chapter, we have developed a software availability model considering a situation
where the debugging activity is not always performed perfectly and the fault complexity
increases with the progress of fault correction. Several useful stochastic quantities for soft-
ware reliability/availability assessment have been derived from this model. Furthermore,
the estimation of unknown parameters has been discussed. Numerical illustrations for soft-
ware availability measurement have been also presented 1‘;0 show that these quantities are

very useful for software performance assessment.

Chapter 5

Operational Software Availability
Modeling with Two Types of

Failures

5.1 Introduction

In complex computer systems, it is not too much to say that the ability of software com-
ponents, which is a major one in computer systems, determines the performance of the
overall system. It is crucial to achieve an appropriate level of software reliability efficiently
and economically since software reliability is the most important aspect of software quality.
Many analytical models have been developed and studied in order to capture reliability of
implemented software products \quantita,tively [43]. A mathematical reliability assessment
model is a software reliability growth model which describes a software fault-detection or a
software failure-occurrence phenomenon in dynamic environment such as the testing phase
in the software development process and the operation phase [35, 56]. A software failure is
defined as an unacceptable departure from program operation caused by a fault remaining
in the software system. This model is utilized for measuring the degree of achievement
of software reliability, determining the testing time duration for software release, and esti-

mating the maintenance cost for faults undetected during the testing phase.

Software development managers and customers have taken a growing interest in the
software performance measures such as the possible utilization factor since today’s com-
puter systems have required nonstop operation. To construct a software reliability model
incorporating recoverability is an interesting matter. This model can measure and assess

software availability, which is defined as the probability that the software system is per-

73

74 5. Operational Software Availability Modeling with Two Types of Failures

forming successfully at a specified time point [25]. In particular, for telecommunication
and switching systems, software availability is one of the software quality characteristics
not to be negligible. Though extensive research has been done on performance evaluation
techniques for hardware systems, few analytical models for measuring software availability
are proposed [19, 21].

In this chapter, we construct a software availability model considering two types of
software failures during the operation phase, based on the model discussed in Chapter 4.
The causes of software failures include not only the faults that could not be detected/
corrected during the testing phase but also operation misses of customers or uﬁexpectable
operational conditions not described in the requirement and design specifications. Recently,
it have been often reported that computer systems are down because situations not sup-
posed in the system specification have occurred. Since software availability is a customer-
oriented metric, it is interesting to consider such software failures in software availability
modeling. The occurrence phenomena of two types of software failures mentioned above
are described by a geometrically decreasing and a constant hazard rate, respectively. Fur-
thermore, this model considers the imperfect debugging environment where faults are not
always corrected and removed from the system when debugging activities are performed.

The time-dependent behavior in which the system alternates between the operational
state (up state) that a system is operating regularly and the restoration state (down state)
that a system is inoperable and restored can be modeled by a Markov process [47]. The
description of software availability modeling is discussed in Section 5.2. Several stochastic
quantities for software availability measurement are derived in Section 5.3. Numerical

illustrations for software reliability /availability analyses are presented in Section 5.4.

5.2 Model Description

In this chapter, we assume that the following two types of software failures exist during

the operation phase:

F1: software failures caused by the faults that could not be detected/corrected during the

testing phase.

F2:

The

Al.

A2.

A3.

A4.

A5.

AS6.

5.2. Model Description 75

software failures caused by the faults introduced by deviating from the expected op-

erational use.
following assumptions are made for software availability modeling:

The software system breaks down and starts to be restored as soon as a software

failure occurs, and the system can not operate until the restoration action is complete.

The restoration action for F1 implies the debugging activity and software reliability
growth occurs if a debugging activity is perfect. The restoration action for F2 has

no effect on software reliability growth.

The debugging activity for F1 is perfect with probability ¢ (0 < a < 1), while
imperfect with probability b(= 1 — a). We call a the perfect debugging rate. A

perfect debugging activity corrects and removes one fault from the system.

When n faults have been corrected, the next occurrence time-interval and the restora-
tion time for F1 follow expomnential distributions with means 1/, and 1/u,, respec-

tively.

The occurrence time-interval and the restoration time for F2 follow exponential dis-

tributions with means 1/6 and 1/7, respectively.

The probability that two or more software failures occur simultaneously is negligible.

We introduce a stochastic process.{ X (t), ¢ > 0} representing the state of the software

system at time point ¢. The state space of the process {X(¢), t > 0} is defined as follows:

W

R?:

the system is operating,

: the system is inoperable due to F1 and restored,

the system is inoperable due to F2 and restored,

where n = 0, 1, 2, ... denotes the cumulative number of faults corrected during the

operation phase.

76 5. Operational Software Availability Modeling with Two Types of Failures

From assumption A3, when a restoration action for F1 is complete in {X(¢) = R}},

W, with probability b

X(t) = (with p 7 9) (5.1)
W11 (with probability a).

Next, we describe the software failure-occurrence phenomenon for F1. In this chapter,

we use Moranda’s model [31], i.e. the hazard rate A, is given by
A=DK* (n=0,1,2,...; D>0, 0<k<1), (5.2)

where D and k are the initial hazard rate and the decreasing ratio of the hazard rate for F1,
respectively. The description of (5.2) comes from the point of view that software reliability
depends on the debugging efforts, not the residual fault content. We do not pay attention to
the number of faults remaining in the software system. In conventional software availability
modeling, e.g. Kim et al. [16] and Okumoto & Goel [39], it is often assumed that the hazard
rate is proportional to the residual fault content and decreases by a constant amount with
perfect debugging. Equation (5.2) describes a software failure-occurrence phenomenon
where perfect debugging corresponding to software failures occurring in the early stage
of the operation phase contributes largely to improvement of software reliability [25]. It
is probable that (5.2) fits in with the operational environment where several functions
executed with high frequency are relatively specified. This reason is that faults latent in
modules with high frequency of execution are detected early and reliability of corresponding
modules improves rapidly. In the above operational environment, reliability of the overall
system also improves rapidly even if reliability of modules with low frequency of execution
is low.

Furthermore, we describe the restoration characteristic for F1. Generally, the faults
detected later tend to have higher complexity, i.e. it takes more time to isolate the faults
and to check the fault correction [36]. Accordingly, it is appropriate that the restoration

time for F1 becomes longer with increasing n. Then, we assume pu, as follows:

n=Er" (n=0,1,2,...; E>0,0<7r<1), (5.3)

where E and r are the initial restoration rate and the decreasing ratio of the restoration

rate for F1, respectively.

5.2. Model Description 77

Finally, we describe the failure and the restoration characteristic for F2. During the
testing phase of the software development process, the implemented system is tested to
verify whether or not the system operates in accordance with the specification and software
reliability growth occurs with debugging activities. However, it is often that the operational
conditions not described in the specifications occur during the operation phase; for instance,
many transactions have rushed at some time point or the loads into some specified system
resources have concentrated. It is assumed that the software failures due to the condition
mentioned above occur randomly throughout the operation phase. Furthermore, for the
above software failures, the system is often restored without the debugging activity when
it is more important to shorten inoperable time than to adapt the system to operational
environment different from the specifications. Even if the debugging activity is performed,
it is often makeshift and the similar software failures may recur. Since there are various
restoration procedures for F2, it is assumed that the restoration time-interval is also random
and the restoration action for F2 has no bearing on software reliability growth throughout
the operation phase.

Let Q4 p(7) (A, B€ {W,, R., R2;n=0, 1, 2, ...}) denote the one-step transition
probability that after making a transition into state A, the process {X(¢), ¢ > 0} makes a

transition into state B by time 7. The expressions for Q4 p(7)’s are given as follows:

An ot
QW‘"-,R'}:,(T) - 9+)\ [1 —¢€ (9‘*‘)‘“)]’ (54)

Qw..,rz () =
QR Wi (T)

Qrw.(T) = (1 —e),
(7)

QRn,Wn T

= (l - e_”n)7
)

The sample state transition diagram of X (t) is illustrated in Fig. 5.1.

78 5. Operational Software Availability Modeling with Two Types of Failures

Fig. 5.1. A diagrammatic representation of state transitions between X (¢)’s for operational soft-

ware availability modeling (I).

5.3 Derivation of Software Performance Measures

5.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults

Let S, (n =1, 2, ...; Sy = 0) be the random variable representing the time spent in
correcting n faults and G;,(t) be the distribution function associated with the probability
that n faults are corrected in the time interval (0, ¢] on the condition that i(< n) faults

have been already corrected at time zero. Then, we obtain the following renewal equation:

Gin(t) = Qw,r * Qriwy, * Gisra(t) + Qwirr * Qrw; * Gin(t)
Qo Quew* Ginlt) (i=0,1,2, ..., n—1), (5.9)

where % denotes a Stieltjes convolution and G, ,(t) = 1(¢) (unit function) (n =1, 2, ...).

Then, we get the Laplace-Stieltjes (L-S) transform [42] of (5.9) as

Gin(s) = @Wi,R}(s)@R},WiH(s)éi-i-l,n(s) + @Wi,Rg(S)QRg,Wi(S)éi,n(s)
+ Quw,r2(5)Qrew,(8)Gin(s) (1=0,1,2, ..., n—1). (510)

5.3. Derivation of Software Performance Measures 79

From (5.4)—(5.8), the L-S transforms of Q4 p(t)’s are respectively given as

Qw.r(s) = “’:*_“g"_ij':\“ (5.11)
Qw,r:(s) = ﬁ (5.12)
Qi (s) = T (5.13)
@R},W,-(S = ST;, (5.14)
Qrz(8) = 7o (61
Substituting (5.11)—(5.15) into (5.10) yields
Gin(s) = — 2240 & 20,12 ...,n-1), (5.16)

(s+z)(s+y)(s+ z)

where —z;, —y;, and —z; are the distinct roots of the following third order equation:
3 + (9 + 1+ Ai + /ii)sz + (0/1,@ + T]/\z + e + a/\i/,l,i)S + Gﬂ]/\i/,l,i = 0. (517)

Solving (5.16) recursively, we obtain the L-S transform of Go,(t) as

nd adipi(s + 1)

ég’n(s) = H

im0 (s +z)(s +y:)(s + z)

Al jx; Aﬁiyi A% .z
= Z i T (5.18)
i=0 3+$z 3+yi 8+Z{
where constant coefficients A ;, A2 ;, and A2 ; are given by
- z)] H Ajtt
1 _ _
Ani= 3 — (t=0,1,2, ..., n—1), (5.19)
zi [(25 — 2) [T (95 — @:)(2 — =)
=0 j=0
la(n —)] H Ajti
2 _ —
A= — (t=0,1,2, ..., n—-1), (5.20)
vi [T —)]I (2 —)z —)
=0 j=0

JFi

80 5. Operational Software Availability Modeling with Two Types of Failures

hw—%WiIMM

3 _ ——
An,i = — — (Z =0, 1, 2, , L — 1), (5.21)
zi [(25 — zi) [T (25 — 2:)(%; — 2)
3=0 j=0

respectively. By inverting (5.18) and rewriting Go,(t) as G.(%), we obtain the distribution

function for S, as

Gn(t) = Pr{Sn < t}
n—1
=1- Z(Ai,ie—zgt + Ai’z_e—-y{t + Ai’ie—zit)
=0

(n=1, 2, ...; Go(t) = 1(t)), (5.22)

0
where we postulate H - = 1. It is noted that

i=0

30

n—1
Z(Avla,i + Ai,i + A?z,z') =L (5.23)

=0

Furthermore, E[S,] and Var[S,] are given by

=l/1 1 1 1)
E[S,] = — ===}, 5.24
[] iz:% (231' Yi Z; n ()
=1/ 1 1 1 1)
Var|lS,| =) | =+ —+— - =], 5.25
[] i=0 <$i2 yi? zZ2 n? ()

respectively.

5.3.2 Operational State Occupancy Probability and Software
Availability

Let P;,(t) be the conditional state occupancy probability that the system is operating
at time point ¢ when n faults have been corrected on the condition that the system was

operating at time point zero when ¢ faults had been already corrected, i.e.
Po(t) =Pr{X(t) =W,|X(0)=W;} (:=0,1,2, ..., n), (5.26)

and P,(t) = Py ,(t) is called the operational state occupancy probability. Then, we obtain

the following renewal equations:

Po(t) = Gu % Poa(t), (5.27)

5.3. Derivation of Software Performance Measures 81

Pn’n(t) = e_(g"}‘/\n)t + QWn,R-}m ES QR%,Wn * Pn,n(t>
+ Qw,rz * Qrzw, * Paalt). (5.28)

From (5.28), the L-S transform of P, ,(t) is given by
ﬁn,n(s) — 8(8 + #n)(s + 77)
(s 4 2n)(s +yn)(s + 2a)

— s s® a'/\nlj'n(s + 77)
N <a)\n i aAnun> (s+z,)(s +a)(s + 20)° (5.29)

Substituting (5.29) into the L-S transform of (5.27) yields

32

adnphn

Bos) = fgém(s) + Gria(s). (5.30)

By inverting (5.30), the operational state occupancy probability is obtained as

P.(t) = Pr{X(t) = W,}
1 1

_ - '
- aAngn“}‘l(t) + a)\n/vbngn_*_l(t)’ (531)

where g,(t) is the probability density function of the random variable S, and ¢,(t) =
dg.(t)/dt. Equation (5.31) is the same form as derived in Chapter 4.
The instantaneous software availability is defined as
At) =) Palt), (5.32)
n=0
which represents the probability that the software system is operable at specified time
point ¢t. Furthermore, the average software availability in the time interval (0, ¢] is defined

An(t) = % /0 ' Alz)de, (5.33)

which represents the ratio of system’s operating time to the time interval (0, ¢]. Using

(5.31), we can describe (5.32) and (5.33) as

A(t) — io: [gn-i—l(t) + g;-i-l(t)} , (534)

= al, aAnfin
_ 1 & | Gria(t) | Gana(t)
Ap(t) = t;}[o T o | (5.35)

respectively.

82 5. Operational Software Availability Modeling with Two Types of Failures

5.4 Numerical Examples

Using the software availability model discussed above, we show numerical illustrations for

software availability measurement.

The distribution functions of the first passage time to the specified number of corrected
faults, G, (¢)’s in (5.22) are shown in Fig. 5.2 for various perfect debugging rates, a’s, where
n=56=0.01,p=10,D=0.1, E=0.5 and r = 0.9. Figure 5.2 shows that the smaller

a becomes, the longer time it takes to remove faults from the system.

The instantaneous software availabilities, A(¢)’s in (5.34) are shown in Fig. 5.3 for
various values of @ where 8§ = 0.01, n = 1.0, D = 0.01, £k = 0.8, £ = 0.5, and r = 0.9.
In practical calculation of A(t) and A,,(t), we need to specify the supremum of n instead
of infinity. We denote this value as N. Figure 5.3 displays the time-dependent behavior
of A(t) in time interval [0, 800]. In this case, G20(800) = 2.38 x 107'? when a = 1.0.
That is, the probability that 20 faults are corrected up to time ¢t = 800 are sufficiently
small. Accordingly, we set N = 20. Figure 5.3 indicates that software availability is low
immediately after the operation and increases gradually with the lapse of the operation
time and that (5.34) can measure the degree of unstableness of the system in the early stage
of the operation phase. This figure also shows that the higher certainty of the debugging

activity becomes, the larger software availability becomes.

A(t)’s and the average software availabilities, A,,(t)’s in (5.35) are shown in Figs. 5.4
and 5.5 for various values of 8, where ¢« = 1.0, » = 1.0, D = 0.01, £ = 0.8, E = 0.5,
and r = 0.9, respectively. The hazard rate for F2, 6 reflects the specification quality; i.e.,
the specification covers the user requirements well with decreasing 6. Figures 5.4 and 5.5

indicate that the utilization of the software system becomes larger as § decreases.

A(t)’s for various values of r are shown in Fig. 5.6, where a = 0.9, § = 0.01, = 1.0,
D =0.01,%k =08, and £ = 0.5. As shown in Fig. 5.6, in case of r > k and r < k,
software availability improves and decreases with the lapse of time, respectively, and in
case of r = k, this is constant. Then, the ratio of r to k& can be regarded as an index to

determine whether or not the software availability grows during the operation phase.

The hazard rate for the next software failure, which is not distinguished between F1

5.4. Numerical Examples 83

and F2, when n faults have been already corrected is denoted as
a,=X+0 (n=0,1,2 ...). (5.36)

A(t)’s in the cases of (i) D : § = 1 : 5 and (ii) D : § = 5 : 1 on the condition that
oy = D + 6@ is the same value are shown in Fig. 5.7, where ¢ = 0.9, n = 1.0, £ = 0.8,
E = 0.5, and r = 0.9. Figure 5.7 shows as follows: In the case of (i), software availability
is stable when debugging is performed enough and the hazard rate for F1 is low. In the
case of (ii), though software availability is lower than (i) in the early stage of the operation
phase, it increases with the lapse of time and is larger than (i). The behavior shown in
Fig. 5.7 is due to whether the system has much room for reliability growth or not. For
example, ag = 0.06 for both of (i) and (ii), but 1o = 0.0510 for (i) and a0 = 0.0154 for
(ii). Then, (ii) has more room for reliability growth than (i).

Gs(1)

0.8}
a=1.0
0.6
0.9
0.4} 08
0.2} 0.7
0.6

0 100 200 300 400
Time

Fig. 5.2. Dependence of a on G,(t) (n =5, 6§ =001, 7 =10, D =01, k = 0.8, E = 0.5,
r =0.9).

84 5. Operational Software Availability Modeling with Two Types of Failures

A()

0.997

0.985¢}

0.975

a=1.0

0.9
0.8
0.7

100

200

300

400

Time

500

600

700

800

Fig. 5.3. Dependence of a on A(t) (§ =0.01, =1.0, D =0.01, k =0.8, F = 0.5, 7 = 0.9).

5.4. Numerical Examples 85

A(t)

0=0.005

0.997

0=0.01
0.98

6=0.02
0.97¢
0.96 ' ‘ ' :

0 200 400 600 800

Time

Fig. 5.4. Dependence of § on A4, (t) (a =1.0,7=1.0, D =0.01, k=08, E=0.5, 7 =0.9).

86

Ag(1)

0.

0.

0

0

5. Operational Software Availability Modeling with Two Types of Failures

99
98 1 6=0.005
977 0=0.01
.96 0=0.02
.95
0 200 400 600 800
Time

Fig. 5.5. Dependence of 6 on A, (t) (2 = 1.0, 7=10,D=001,%k=08, E=05r=0.9).

5.4. Numerical Examples 87

0.985¢

0.98}

0.9757¢

0 100 200 300 400 500 600 700 800
Time

Fig. 5.6. Dependence of 7 on A(t) (¢ =0.9,6=0.01,7=1.0, D =0.01, k=08, E=0.5).

88 5. Operational Software Availability Modeling with Two Types of Failures

A(?)

0.98

(ii) D=0.05, 6=0.01

0.96

0.94f (1) D=0.01, 6=0.05

0.92¢

0 100 200 300 400 500 600 700 800
Time

Fig. 5.7. Dependence of D : f on A(t) (a=0.9,7=1.0,k=0.8, E=0.5,7r=0.9).

5.5 Concluding Remarks

In this chapter, we have developed a software availability model integrating two different
types of software failure-occurrence phenomena during the operation phase: the one caused
by the faults remaining in the system is described by a geometrically decreasing hazard rate
and the other caused by those introduced by deviating from the specification is described by
a constant hazard rate. The dynamic behavior of the system has been modeled by a Markov
process. Several quantitative measures for software performance assessment have been
derived from this model. Numerical illustrations for software availability measurement have
been also presented to show that these measures are very useful for software performance

evaluation.

Chapter 6

Operational Software Availability
Modeling with Two Types of

Restorations

6.1 Introduction

In this chapter, we discuss another software availability model for operational use, taking
notice of restoration scenarios during the operation phase. Debugging activities correspond-
ing to software failures which occur during the operation phase are not always performed
because protracting an inoperable time may much affect the customers. This is a different
policy from the testing phase. Since software availability is one of the customer-oriented
metrics, we need to reflect on operational environment in software availability modeling.
Traditional software availability models [16, 39] do not reflect on the above situation very
much. We consider two kinds of restoration actions during the operation phase: one in-
volves debugging and the other does not.

The time-dependent behavior in which the system alternates between the operational
state (up state) that a system is operating regularly and the restoration state (down state)
that a system is inoperable and restored can be modeled by a Markov process [47]. Several
stochastic quantities for software availability measurement are derived from this model.

Finally, numerical illustrations for software availability analyses are presented.

6.2 Model Description

The following assumptions are made for operational software availability modeling:

89

90 6. Operational Software Availability Modeling with Two Types of Restorations

Al. The software system breaks down and starts to be restored as soon as a software

failure occurs, and the system can not operate until the restoration action is complete.

A2. When a software failure occurs, the restoration action with the debugging activity is
performed with probability p (0 < p < 1), while without the debugging activity is
performed with probability ¢(= 1 — p).

-~

A3. The debugging activity is perfect with probability a (0 < a < 1), while imperfect
with probability b(= 1 — a). We call a the perfect debugging rate. If the debugging

activity is perfect, one fault is corrected and removed from the system.

A4. When n faults have been corrected, the time to the next software failure-occurrence
and the restoration time with the debugging activity follow exponential distributions

with means 1/A, and 1/p,, respectively.

A5. The restoration time without the debugging activity follows an exponential distribu-

tion with mean 1/7.
A6. The probability that two or more software failures occur simultaneously is negligible.

Recall that the process {X(t), t > 0} represents the state of the software system at
time point ¢. The state space of {X(¢), t > 0} is defined over again as follows:

W,: the system is operating.
RL: the system is inoperable and restored with the debugging activity.

R2: the system is inoperable and restored without the debugging activity,

where n = 0, 1, 2, ... denotes the cumulative number of corrected faults.

From assumption A2, when the next software failure occurs in {X(¢) = W, },

R! (with probabilit
X(t) = - (with probability p) (6.1)
R2 (with probability g).

Furthermore, from assumption A3, when a restoration action with the debugging activity
is complete in {X(¢) = R},
W, (with probability b)

X(t) = (6.2)
W,+1 (with probability a).

6.2. Model Description 91

We use Moranda’s model [31] to describe the software failure-occurrence phenomenon,

which is the same as the description in Chapter 5, i.e. the hazard rate A, is given by
A=DkE* (n=0,1,2 ...;D>0,0<k<1), (6.3)

where D and %k are the initial hazard rate and the decreasing ratio of the hazard rate,
respectively.

We turn to the description of the restoration characteristic. There are various restora-
tion scenarios according to various types of software failures during the operation phase.
In this chapter, we pay attention to whether or not the restoration action includes the
debugging activity. The restoration rate u, for the restoration time with debugging as

follows:
pn=Er (n=0,1,2, ...; E>0 0<7r<1), (6.4)

where F and r are the initial restoration rate and the decreasing ratio of the restoration rate,
respectively and this description has already been discussed in Chapter 5. On the other
hand, there are cases where the system is often restored without debugging when it is more
important to shorten inoperable time than to adapt the system to operational environment.
We assume that it is probabilistic whether or not debugging activity is performed and that
the restoration action without debugging is complete randomly throughout the operation
phase.

Recall that Q4 p5(7) (4, B € {W,, R, R, n =0, 1, 2, ...}) denotes the one-
step transition probability that after making a transition into state A, the process {X(¢),

t > 0} makes a transition into state B by time 7. The expressions for Q4 5(7)’s are given

as follows:
Qw,.r1 (T) = p(1 — e™*7), (6.5)
Qw,.rz(7) = g(1 — e ™7), (6.6)
QR W,y (T) = a(l —e7#7), (6.7)
Qi (7) = B(1 — "), (6.5)
Qrew,(T)=1—¢e". (6.9)

The sample state transition diagram of X (t) is illustrated in Fig. 6.1.

92 6. Operational Software Availability Modeling with Two Types of Restorations

Fig. 6.1. A diagrammatic representation of state transitions between X (2)’s for operational soft-

ware availability modeling (II).

6.3 Derivation of Software Performance Measures

6.3.1 Distribution of the First Passage Time to the Specified

Number of Corrected Faults

Recall that S, (n =1, 2, ...; So = 0) denotes the random variable representing the time
spent in correcting n faults and that G;,(¢) denotes a distribution function associated with
the probability that n faults are corrected in the time interval (0, ¢] on the condition that

i(< n) faults have been already corrected at time zero. Then, we obtain the following

renewal equation:
Gia(t) = QW;,R,} * QR},W;.H * Gip1a(t) + QW,-,R&L * QR},W; * Gin(t)
+ Qw,, g2 * Qrew, * Ginlt) (t=0,1,2, ..., n—1), (6.10)

where x denotes a Stieltjes convolution and G, ,(t) = 1(¢) (unit function) (n =1, 2, ...).

Substituting the Laplace-Stieltjes (L-S) transforms of (6.5)—(6.9) into that of (6.10)
yields

R 0 Gl k) - ; -
Ginls) = (5+$z’)(8+yi)(3+Zi)Gz+1,n() (1=0,1,2 .., b, (611)

6.3. Derivation of Software Performance Measures 93

where —z;, Y and —z; are the distinct roots of the following third order equation:
$*+ (n+ X + pi)s® + [P + nps + (1 — pb)dipi]s 4 pandip; = 0. (6.12)

Solving (6.11) recursively, we obtain the L-S transform of Go,(t) as

= = paXipi(s + 1)
o8 Sy ey

- (% | e ”‘), (6.13)
s+wz; s+y stz

where constant coefficients Al ., A2 ., and Af‘z,i are given by

n—1
I paX;pi(n —)
1 j=0 -
A= —— — (:=0,1,2, ..., n—1), (6.14)
z; H(% - %‘i)H(yj - fci)(zj - ;)
=0 7=0
n—1
1 paXspi(n — w:)
2 =0 .
YL e — — ‘ (i=0,1,2 ...,n—1), (6.15)
v [T (5 —) 1 (25 — wi)(=s — w)
=0 i=0
i
n—1
I1 par;pi(n — 2)
3 _ j=0 . _
Al i=— — (t=0,1,2, ..., n—1), (6.16)
zi][(z5 — 20) [] (25 — 2:)(y; — 2)
wo

respectively. By inverting (6.13) and rewriting Gy () as G,(t), we obtain the distribution

function for S, as

G.(t) = Pr{S, <t}

n—1

=1~ Z(Ayl;,’ie_mit + Ai’ie'—%’t + Ai,ie—zgi)
=0
(n =1, 2, ...; Go(t) = 1(t)), 6.17)

0
where we postulate H - = 1. It is noted that

i=0
350

n—1
Z(Avlz,i + Ai,i + Ai,i) =1 (n2>1). (6.18)

1=0

94 6. Operational Software Availability Modeling with Two Types of Restorations

6.3.2 Operational State Occupancy Probability and Software
Availability

Recall that P;,(t) denotes the conditional state occupancy probability that the system is
operating at time point ¢ when n faults have been corrected on the condition that the

system was operating at time point zero when ¢ faults had been already corrected, i.e.

P, (1) =Pr{X(t) = W,|X(0) = W;} (1=0,1, 2, ..., n), (6.19)
and that P,(t) = Py,(t) is called the operational state occupancy probability. Then, we
obtain the following renewal equations:

Po(t) = G x Py a(t), (6.20)
Poa(t) =€ + Qu, m1 * Qraw, * Pan(t) + Qw,.m2 * Qraw, * Pan(t). (6.21)

From (6.21), the L-S transform of P, ,(t) is given by

L s(s4m)(s+7)
Ponls) = T2 +) + 20)

“< s 5?)(Padnfin(s + 1) (6.22)

= + .
pad, padnpin) (8 + Ta)(s + Yn)(s + 22)
Substituting (6.22) into the L-S transform of (6.20) yields

s =~ 2~

Gn+1(3) =+ pa,,\mun Gn+1(3). (6.23)

By inverting (6.23), the operational state occupancy probability is obtained as

ISn(s)

- DA,

P.(t) =Pr{X(t) = W, }
_ Gnr1(t) | Gnia(?)
= ot e (6.24)

where g,(t) is the probability density function of random variable .S, and g}, (t) = dg,(¢)/dt.

The instantaneous software availability is defined as
Alt) =D Pu(t), (6.25)
n=0

which represents the probability that the software system is operable at specified time

point ¢. Furthermore, the average software availability in the time interval (0, t] is defined

as
1

Awlt)= 7 /0 * A(z)dz, (6.26)

6.4. Numerical Examples 95

which represents the ratio of system’s operating time to the time interval (0, ¢|. Usin
b y g g

(6.24), we can describe (6.25) and (6.26) as

Aft) = f: [9n+1(t) n 9;+1(t)} 7 (6.27)

PaAA, PAAnfin

Gn+1(t) 9n+1(t)
[pa/\n +pa)\n#n s (6.28)

respectively.

6.4 Numerical Examples

Using the operational software availability model discussed above, we show numerical il-
lustrations for software availability measurement and assessment.

The instantaneous software availabilities, A(¢)’s in (6.27) and the average software
availabilities, Ag,()’s in (6.28) for various perfect debugging rates, a’s are shown in Figs.
6.2 and 6.3, respectively. These figures indicate that software availability drops rapidly
immediately after operation and gradually increases after. This tells us that these measures
can show unstableness of system performance in the early stage of the operation phase
quantitatively. These figures also indicate that the increase of the certainty of debugging
brings high software availability.

A(t)’s and A,,(t)’s for various values of p, which represents the probability that a
debugging activity is performed when a software failure occurs, are shown in Figs. 6.4
and 6.5, respectively. We can see that software availability is lower in the early stage of the
operation phase but more improves with the lapse of time as p increases. This reason is that
software reliability growth occurs even during the operation phase though the restoration

time tends to be longer.

96 6. Operational Software Availability Modeling with Two Types of Restorations

A(7)
0.987 a=0.9
0.7
0.5

0.96

0.94

0.92

0 100 200 300 400 500 600 700 800
Time

Fig. 6.2. Dependence of a on A(t) (p=09,D=0.1,k=08, E=05,r=09, 7= 1.0).

]

6.4. Numerical Examples 97

Ap(t)

0.96
a=0.9
0.94| 0'7\
0.5
0.92}
0.9f
0.88

0 100 200 300 400 500 600 700 800
Time

Fig. 6.3. Dependence of a on A,,(t) (p =09, D =0.1, k=08, E=0.5,7 =09, 7 = 1.0).

98 6. Operational Software Availability Modeling with Two Types of Restorations

A(?)

0.96

0.92

0.88

0.84 - ' ' - - ' - -
0 100 200 300 400 500 600 700 800

Time

Fig. 6.4. Dependence of p on A(t) (a =09, D=0.1,k=0.8, F=0.5,7=0.9, p = 1.0).

6.5. Concluding Remarks 99

A (1)

0.96
0.94
0.92

0.97

0.88¢

0.86
0 100 200 300 400 500 600 700 800

Time
Fig. 6.5. Dependence of p on Ay, (%) (e =0.9,D=0.1,k=0.8, E=0.5,r =0.9, p =1.0).

6.5 Concluding Remarks

In this chapter, we have developed a software availability model considering two different
kinds of restoration actions performed during the operation phase. The dynamic behavior
of the software system has been described by a Markov process. Several useful quantitative
measures for software performance assessment have been derived. Numerical illustrations
for software availability measurement and assessment have been also presented to show

that these measures are very useful for operational software performance evaluation.

Chapter 7

Software Availability Modeling with

Performance Degeneration

7.1 Introduction

Software reliability is one of the most important software attributes in measuring software
quality characteristics. A mathematical model for software reliability measurement is called
a software reliability growth model which describes a software fault-detection or a software
failure-occurrence phenomenon during the testing phase in the software development pro-
cess and the operation phase. A software failure is defined as an unacceptable departure
from program operation caused by a fault remaining in the system. A number of software
reliability growth models have been proposed for the last a few decades [25, 26, 43].

The traditional software reliability assessment measures, such as the expected residual
fault content and the mean time between software failures, are the developer-oriented ones.
However, the customers take a great interest in the performance-related reliability mea-
sures of software systems. For the purpose of deriving such measures, we need to construct
software reliability growth models incorporating maintainability and/or performance. One
of the customer-oriented metrics is the software availability which is defined as the proba-
bility that the software system is performing successfully at a specified time point. Several
stochastic models for measuring software availa’bﬂity have been proposed [19, 21]. Several
reliability /performance evaluation measures for computer systems from the viewpoint of
hardware configurations have also been proposed. Beaudry [3] has proposed the computa-
tion availability and the mean computation between failures for fault-tolerant compﬁting
systems. Meyer [29] has proposed the performability taking account of accomplishment lev-

els from customer’s viewpoint. Sols [51] has introduced the concept of degraded availability.

101

102 7. Software Availability Modeling with Performance Degeneration

These studies consider that systems have several different performance levels. However,
few quantitative measures considering simultaneous software reliability and performance
have been proposed. \

In this chapter, we develop a plausible software availability model considering the
degeneration of system performance in user operation. Software availability models pro-
posed so far assume only up and down state, taking software reliability growth process
in consideration. But software systems could not always display their full performance
when they are available in actual operational environment. Though systems do not fall
into operation stoppage outwardly, some internal parts of systems may be unfavorable
states. For instance, the system throughput decreases due to the concentration of loads
into some specified system resources and some parts of system functions are unavailable
due to maintenance of the corresponding software subcomponents. We assume that the
software system has two operational states during the operation phase: one is providing
with full performance and the other is with degenerated performance. The time-dependent
behavior of the software system, which alternates between the operational and restoration
state, is described by a Markov process. Then software reliability growth process is also
incorporated into this model. Several quantitative availability /performance measures are
derived analytically from this model. In particular, this model can derive computation
software availability which is a measure taking account of reliability and performance si-
multaneously. This metric is defined as the expected amount of possible computation
per unit time at a specified time point. Finally, numerical examples are presented for

illustration of software availability /performance measurement and assessment.

7.2 Model Description

The following assumptions are made for software availability modeling:

Al. When the software system is operating, the time-interval of operation with full per-
formance and the holding time of performance degeneration follow exponential dis-

tributions with means 1/6 and 1/7), respectively.

A2. The software system breaks down and starts to be restored as soon as a software

failure occurs, and the system can not operate until the restoration action is complete.

7.2. Model Description 103

A3. The restoration action implies the debugging activity and software reliability growth

occurs if a debugging activity is perfect.

A4. The debugging activity is perfect with probability a (0 < a < 1), while imperfect with
probability b(= 1 — a). We call a the perfect debugging rate. A perfect debugging

activity corrects and removes one fault from the system.

A5. When n faults have been corrected, the next software failure-occurrence time-interval
and the restoration time follow exponential distributions with means 1/X, and 1/,

respectively.

A6. The probability that two or more software failures occur simultaneously is negligible.

We define the computation capacity as the amount of useful computation per unit
time [3]. It is assume that the computation capacities are C(> 0) and C6 (0 < § < 1)
when the system is operating with full and degenerated performance, respectively. We call
6 the decreasing ratio of system’s computation capacity.

We introduce a stochastic process { X (t), ¢ > 0} representing the state of the software
system at time point ¢. The state space of the process {X(¢), t > 0} is defined as follows:

W.,: the system is operating with full performance,
L,: the system is operating with degenerated performance,

R,: the system is inoperable and restored,

where n = 0, 1, 2, ... denotes the cumulative number of faults corrected during the

operation phase.

From assumption A4, when a restoration action is complete in {X(¢) = R,},

W, ith probability b
X(t) = (with probability b) (7.1)
W41 (with probability a).

The descriptions of A, and u, are given by

A=Dk* (n=0,1,2,...; D>0,0<k<1), (7.2)
pn=Er* (n=0,1,2,...; E>0, 0<r<1), (7.3)

104 7. Software Availability Modeling with Performance Degeneration

respectively where D and k are the initial hazard rate and the decreasing ratio of the
hazard rate, respectively and F and 7 are the initial restoration rate and the decreasing
ratio of the restoration rate, respectively. The details of A, and u, have been discussed in
Chapters 2, 4, and 5.

Let Qap(7) (A, B € {W,, L,, R,;n=0, 1, 2, ...}) denote the one-step transition
probability that after making a transition into state A, the process {X(t), t > 0} makes a

transition into state B by time 7. The expressions for Q4 g(7)’s are given as follows:

Qw,.L.(T) = 3 9—}—9[1 — e (ntO)7), | (7.4)
Qw,,r.(T) = by /_: 9[1 — e~ t0)7], (7.5)
Qrow.(T) = An’i il g~ Oetm), (7.6)
Qi (7) = 3L =) (77)
QR (T) = a1 — ™7, (7.8)
Qrowa(7) = b(1 = e77). (7.9)

The sample state transition diagram of X (¢) is illustrated in Fig. 7.1.

Fig. 7.1. A diagrammatic representation of state transitions between X (¢)’s for software avail-

ability modeling with performance degeneration.

7.3. Software Availability Analysis 105
7.3 Software Availability Analysis

7.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults
Let T;;11 and G;;41(t) be the random variable representing the time spent in making a

transition from state W; to state W;,; and the distribution function of T; ;. ;, respectively.

Then, we obtain the following renewal equations:

Giit1(t) = Hw, r*Qr,wi, (1)
+ Hw, r*Qr,w:*Gii11(t)
Hw, (1) = Qwi,r:(t) + Qw,,L, * QLo (t) (> (7.10)
+ Qw1 * QL,w: * Hw,, g, (t)
(=0,1,2 ..) J

where * denotes the Stieltjes convolution and Hy, g, (t) represents the probability that the
process X (¢) makes a transition from state W; to state R; in an amount of time less than

or equal to t.

Substituting the Laplace-Stieltjes (L-S) transforms of (7.4)—(7.9) into that of (7.10)

yields
= LilY;
G =) 7.11
,+1(5) (3+$i)(3+'yi) ()
where
Z; 1
} =3 [()‘i + pi) \/()‘i + wi)? — 4a)\iﬂiJ
Yi
(double signs in same order). (7.12)
Let S, and G,(t) (n =1, 2, ...; Sy = 0) be the random variable representing the

time spent in correcting n faults and the distribution function of S,, respectively. Then,

the following relation are obtained:

n—1

Sa=> Tis. (7.13)

1=0

106 7. Software Availability Modeling with Performance Degeneration

Noting that T};.;’s are mutually independent, we can get the L-S transform of G,(t) as

3
|
et

Ga(s) Giiri(s)

-
Il
- o

3
|

TiY:
(s +z:)(s +vs)

Al-flti Az-i
(= 4 “”), (7.14)
s+ s+

Il
S e
L

Il

©
[==]

where constant coefficients AL ; and AZ; are given by

n~-1
H T5Yj
1 j=0
An,i - n—1 n—1
o [[(z; —) [[(g — 1)
=0 j=0
(:1=0,1,2, ..., n—1), (7.15)
n-1
H L5Y;
2 j=0
An’i - n—1 n—1
v [(i —w) I1 (=5 — w)
=0 7=0
(z':(), 1, 2, ..., n—l), (7.16)

respectively. By inverting (7.14), we have the distribution function of S, as

Ga(t) = Pr{S, < t}

n—1
=1~ Z(Ai,ie"“"t + Ai’ie'y"t)
i=0
(n=1, 2, ...; Go(t) = 1(¢) (unit fuction)), (7.17)

0
where we postulate [[-=1 for n = 1. It is noted that (7.17) is identical to the model

j=0
A

discussed in Chapter "4 and has no bearing on parameters 8 and 7, which are related to
performance degeneration and that
n—1

(AL, +A2)=1 (n=1,2,...). (7.18)

=0

7.3. Software Availability Analysis 107

Furthermore, the mean and the variance of S, are given by

E[S,] = ni (i + i) , (7.19)
S (L), o

respectively.

7.3.2 State Occupancy Probability

Let P4 p(t) be the conditional state occupancy probability that X (t) is in state B at time

point ¢ on the condition that X (¢) was in state A at time point zero, i.e.,

Pap(t) = Pr{X(t) = B|X(0) = A}
(A, B€{W,, L, Ry; n=0,1,2, ...}), (7.21)

and Pw, (t) = Pw,w.(t), Pr.(t) = Pw,.(t), and Pg,(t) = Pw,,zr,(t) be the state occu-
pancy probabilities that X (t) is in states W,, L,, and R, at time point ¢, respectively.

At first, we obtain the following renewal equations with respect of Py, (t):

PWn (t) = Gn * PWn,Wn (t), (722)
Py, w,(t) = et 4 Qu 1 x Q. w, * Pw,w,(t)
+ Qw,,r, * Qr,,w, * Pw,w,(t)

+ Qw, L. * QL. * Qr,,w, * Pw, w, (%) (7.23)

Then, the L-S transform of Py, (t) is obtained as
s(s+ X +7)(s + pa)
(s +)\ +04+79)(s+ 2o)(s + Yn)

X H Tidi : (7.24)

(s +z)(s + u:)

ﬁWn(S) =

By inverting (7.24), we have Py, (t) as

PW,, (t) = PI‘{X(t) = Wn}

— Bne—-(/\n—i—e—}-n)t + i(‘B”lL ie~:1:it + Bqu ie—yit)
2'=0 K b
(n=0,1,2 ... (7.25)

108 7. Software Availability Modeling with Performance Degeneration

where constant coefficients B*, B, ;, and B2 ; are given by

n—1

—0(tn = Ao — 6 —)] z59;
Bn — j=0
Iz = A =0 —n)(y; — Xa —0—n)
i—0
(n=0,1, 2 ...),
n—1
(An + 17— 23)(fn — T5) H TiY;
Bl . 7=0
(An+6+1— "Ei)H(mJ — ;) (yJ z;)
=0 j=0
(’L :Oa 17 27 B n):
n—1
(An+ 17—) (e — ui) [7595
B2, = =
(An+6+7— yz)H(yJ - %) H(fcz - %)
=R
(=0, 1, 2, ..., n),

respectively. It is noted that

B+ Bly+Bi,=1
BY+> (BL,+B2)=0 (n=1,2 ..)

=0

Next, we obtain the following renewal equations with respect of Pg, (t):

PRn (t) = Gn * HWn,Rn % PRn,Rn(t)7

Pg, r.(t) = e + Qr, w, * Hw, g, * Pr,.z.(t)-

From (7.30) and (7.31), the L-S transform of Pg (t) is obtained as

~ _ 5 A fhn, G (s
P = Grae O
:"—S—-én_*_l(S).

afiy

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)
(7.31)

(7.32)

7.3. Software Availability Analysis 109

Then, we have Pg, (1) as

Pa.(t) = Pr{X(t) = R,)

1
= onlt) (R=0,1,2,), (7.33)

where g,(t) denotes the probability density function of S,, i.e. g,(t) = dG,(¢)/dt.
Considering the stochastic process {Y'(t), ¢ > 0} representing the cumulative number

of faults corrected up to time £, we have the following equivalent relation:
[Y(t) =n} < {X(t) =W }U{X(®) = LIU{X(H) = R}, (7.34)
Furthermore, since {Y(¢), ¢ > 0} is a counting process,
{Sn <t} = {Y(t) 2 n}, (7.35)
then,

P,(t) =Pr{Y(t) = n}
= Gp(t) — Gpa(t) (=0, 1, 2, ...). (7.36)

Therefore, we have Pr_(t) as

Py (£) = Pr{X(¢) = L.}
= Gn(t) = Gat1(t) — Pw, (t) — Pr,(t)
(n=0,1, 2, ...). | (7.37)

7.3.3 Instantaneous Software Availability and Computation

Software Availability

The following identical equation holds for arbitrary time ¢:

(e o]

Z [Pw, (t) + Pr,(t) + Pr (t)] = 1. (7.38)

n=0

The instantaneous software availability is defined as

[e e}

A(t) =) [Pw.(t) + P (1)], (7.39)

n=0

110 7. Software Availability Modeling with Performance Degeneration

which represents the probability that the software system is operable at time point ¢. Using

(7.38), we can describe A(t) as

At)=1- ioPRn(t)

o~ nt1(t
=1-Y -a*—lQ (7.40)
n=0 l‘l’n

It is noted that A(¢) has no bearing on parameters 6 and 7.

Furthermore, the computation software availability [3, 37, 41] is defined as

A(8) = C S [P (8) + 6Py (2)], (7.41)

n=0
which represents the expected value of the computation capacity of the system at time

point .

7.4 Numerical Examples

Using the operational software availability model discussed above, we show numerical il-
lustrations for software availability /performance measurement and assessment.

The instantaneous software availabilities, A(t)’s in (7.40) and the computation soft-
ware availabilities, A.(t)’s in (7.41) for various perfect debugging rates, a’s, are shown in
Figs. 7.2 and 7.3, respectively. From these figures, we can observe that these quantities
drop rapidly immediately after operation and gradually increases after. These tell us that
these measures can show unstableness of software performance in the early stage of the op-
eration phase quantitatively. These figures also indicate that the increase of the certainty
of debugging brings high software performance.

A.(t)’s for various values of §, which represents the decreasing ratio. of the computa-
tion capacity, are shown in Fig. 7.4. We can see that the software performance becomes
lower when ¢ is estimated smaller.

A (t)’s for various values of 7, which is the parameter related with the holding time
of performance degeneration, are shown in Fig. 7.5. This figure indicates that the software
performance remains lower with decreasing 7 since smaller 7 means that the system tends

to keep the degenerated operational state longer.

7.4. Numerical Examples 111

.85 ——<
—— a=1.0
0.9
75 0.8
./ 0.7

0.6

.65 : : ; ; ; ‘
0 100 200 300 400 500 600 700 800

Time

Fig. 7.2. Dependence of a on A(t) (D =0.1, k=038, E=0.2, 7 =0.9).

112 7. Software Availability Modeling with Performance Degeneration

Ac(?)

0.85¢}

i

ot — a=1.0
0.9
0.8

0.7 0.7
0.6

0 100 200 300 400 500 600 700 800
Time

Fig. 7.3. Dependence of a on A.(t) (D =0.1, k=08, F=02,r=09, =01, =10, C=
1.0, § = 0.5).

7.4. Numerical Examples

0.7
0.5
0.3
0.1

113

0 100 200 300 400 500 600

Time

700

800

Fig. 7.4. Dependence of § on A.(t) (a=0.9, D=0.1, k=08, E=02,r=0.9, 6=01, n=

1.0, C = 1.0).

114 7. Software Availability Modeling with Performance Degeneration

A1)

0.75

0.65

0.5 * ' ; ' '
0 100 200 300 400 500 600 700 800

Time

Fig. 7.5. Dependence of on A.(¥) (¢ =09, D=0.1, k=08, E=0.2,r=09,0=01, C=
1.0, 6§ =0.5).

7.5 Concluding Remarks

In this chapter, we have discussed the software availability modeling with two different
operational levels: one is the operational state providing with full performance and the
other is providing with degenerated performance, describing the software reliability growth
process. Several stochastic quantities for software reliability /performance measurement
have been derived from this model. In particular, it is meaningful that a new performance
assessment measure for software systems considering both reliability and computation has

been provided. Finally, their numerical examples have been illustrated.

Chapter 8

Availability Modeling for

Hardware-Software System

8.1 Introduction

Recently, hardware and software components constituting a computer system have been
designed not separately, but synchronously with considering each other. The design method
considering the trade-off between hardware and software components is called hardware/
software co-design [30]. Hardware/software co-design (hereafter referred to as co-design) is
not a new concept, but it has received much attention since computer systems have grown
in size and complexity and both of hardware and software systems have to be designed in
order to use the mutual maximum performances. The concept of co-design is also important
in system quality/performance measurement and assessment.

Generally, hardware systems fail due to wear out and/or deterioration and are re-
newed by repair or replacement of failed parts. Therefore, it is often assumed that the
hardware failure- and maintenance-characteristics are not concerned with the numbers of
failures and/or repair activities. On the other hand, software systems fail due to the de-
fects or the mistakes latent in the software programs. A statement or a part of a statement
in a program that causes a software failure is called a software fault. In other words, a
software failure is defined as an unacceptable departure from program operation caused by
a software fault (hereafter referred to as a fault) remaining in the software system. Fur-
thermore, the restoration action for software systems includes not only the cause analysis,
the data recovery, and the program reload but also the debugging activities for manifested
faults. Then, the perfect debugging activity improves software reliability. Accordingly,

the software failure- and maintenance-characteristics depend on the cumulative numbers

115

116 8. Availability Modeling for Hardware-Software System

of software failures and/or fault corrections. Several software availability models involving
software reliability growth have been proposed [19, 21].

In this chapter, we discuss an availability model considering hardware and software
systems simultaneously [5, 6, 12]. The system is assumed to consist of one hardware
and one software subsystems. The failure-occurrence phenomena of the hardware and
the software subsystem are described by a constant and a geometrically decreasing hazard
rate, respectively. The time-dependent behavior of the hardware-software system (hereafter
referred to as a system), which alternates between the operational state (up state) that
a system is operating regularly and the restoration state (down state) thaf a system is
inoperable and restored, can be modeled by a Markov process [47]. The description of
system availability modeling is discussed in Section 8.2. Several stochastic quantities for
system performance measurement are derived in Section 8.3. Numerical illustrations for

system reliability /availability analysis and measurement are presented in Section 8.4.

8.2 Model Description

The following assumptions are made for availability modeling for the system:

Al. The system is down and starts to be restored as soon as a software or hardware failure

occurs, and the system can not operate until the restoration action is complete.

A2. The restoration action for the software subsystem implies the debugging activity,
which is performed perfectly with probability a (0 < a < 1) and imperfectly with
probability b(= 1 — a). We call a the perfect debugging rate. One fault is corrected

and removed from the software subsystem when the debugging activity is perfect.

A3. The next software failure-occurrence and restoration time for the software subsystem,
when n faults have been corrected, follow exponential distributions with means 1/,

and 1/p,, respectively.

A4. The failure time-interval and the restoration time for the hardware subsystem follow

exponential distributions with means 1/6 and 1/7, respectively.

8.2. Model Description 117
A5. The probability that two or more software or hardware failures occur simultaneously
is negligible.

Consider a stochastic process {X(t), t > 0} representing the state of the system at
time point t. The state space of the process {X(¢), ¢t > 0} is defined as follows:

W,: the system is operating,
RS: the system is inoperable due to a software failure and restored,
RE: the system is inoperable due to a hardware failure and restored,

n

where n = 0, 1, 2, ... denotes the cumulative number of corrected faults. A sample

behavior of the system is illustrated in Fig. 8.1.

" Haro|lware: Subsy_g_‘g_efm ____________ -
down ——— e
" Soft\/@(g SUbSYSter?“*“g —
down N

Total (Hardware-Software) System

up

down B — — —_— R

K—E—— X 7aN i 7aN Time

N
HF F SF HF

Fig. 8.1. A sample behavior of hardware-software system.

118 8. Availability Modeling for Hardware-Software System

The descriptions of A, and y, are given by
A=Dk* (n=0,1,2,...; D>0, 0<k<1), (8.1)
po=FEr* (n=0,1,2, ...; E>0, 0<r <1), (8.2)

respectively where D and k are the initial hazard rate and the decreasing ratio of the hazard
rate for the software subsystem, respectively and F and r are the initial restoration rate
and the decreasing ratio of the restoration rate for the software subsystem, respectively.
The details of A, and g, have been discussed in Chapters 4 and 5.

Let Qap(7) (A, B€ {W,, R}, R, n=0,1,2,...}) denote the one-step transition
probability that after making a transition into state A, the process {X(¢), t > 0} makes a

transition into state B by time 7. The expressions for Q4 g(7)’s are given as follows:

Qs (7) = 51—), (8.3
Qurp(7) = (1= 00, (5.4
QRﬁ»Wn-H (T) = a’(l - e~unr), (8.5)
Qrsw. () = b(1 —e™7), (8.6)
Qraw,(T)=1—¢"". (8.7)

The sample state transition diagram of X(¢t) is illustrated in Fig. 8.2.

Fig. 8.2. A diagrammatic representation of state transitions between X (¢)’s for availability mod-

eling for hardware-software system.

8.3. Derivation of System Performance Measures 119

8.3 Derivation of System Performance Measures

The availability analysis of this model is identical to the software availability modeling
discussed in Chapter 5 by changing the definition of the state space of X(¢) from states
R3 and RY of this chapter to states R and R2 of Chapter 5, respectively.

8.3.1 Distribution of the First Passage Time to the Specified

Number of Corrected Faults

Let S, (n =1, 2, ...;Sp = 0) be the random variable representing the time spent in

correcting n faults. Then, we obtain the distribution function for S, as
Gn(t) = Pr{S, < t}
=1- TS(Ai,ie_zit + Ai,ie—yit + Ai,z‘e_zit)
(n :=10 2, ...;Go(t) = 1(¢)), (8.8)
where —z;, —;, and —z; are the distinct roots of the following third order equation:
S+ (0 +n+ N+ w)s® + (Ops + 1 + s + adis)s + anlip; = 0, (8.9)

and constant coefficients AL ;, A2 ;, and A3 ; are given by

— ;)] H Ajt
A= —— — (i=0,1,2, ..., n—=1), (8.10)
zi [[(25 — @) [] (w5 — :)(2 — =)
=0 i=0
a(n — v)] H b
2 _ <
A2 = — - (i=0,1,2 ...,n=1), (811)
vi [—) [(75— vi)(z; —)
=0 j=0
J#
[a(n — 2)] H Ajti
L — — (i=0,1,2 ...,n—1), (8.12)

z 11 (25 — 2) I (25 — 2:)(9; —)

j=0 j=0

iFi

120 8. Availability Modeling for Hardware-Software System

respectively. It is noted that

n—1

D (Ani AL+ A =1 (n21) (8.13)
i=0
Furthermore, E[S,] and Var[S,] are given by
(111 1)
ElS)= (=+—+=-2], 8.14
[] g (mi Yi LT ()
= S T !

respectively.

8.3.2 Operational State Occupancy Probability and System
Availability

The operational state occupancy probability, which is defined as the probability that X (¢)

is in state W), at time point %, is obtained as

Pu(t) = Pr{X(t) = Wy}

1 1,
————— — t .

A a/\ngn+1(t) + a/\nﬂngn+l()7 (8 16)
where g,(t) is the probability density function of the random variable S, and g¢,(¢) =
dg,(t)/dt.

The instantaneous system availability is defined as
At) = Z P,(1), (8.17)
n=0

which represents the probability that the system is operating at specified time point t.

Furthermore, the average system availability in the time interval (0, ¢] is defined as
1 4
Anlt) = 7 / Alz)dz, (8.18)

0

which represents the ratio of system’s operating time to the time interval (0, f|. Using

(8.16), we can describe (8.17) and (8.18) as

Alt) = i:jo [g“;\lit) + i’ll;:i?] : (8.19)
Ag(t) = % i::o {G’;\l(t) + i‘;:i?] , (8.20)

respectively.

8.4. Numerical Examples 121

8.4 Numerical Examples

Using the system availability model discussed above, we show numerical illustrations for
system availability measurement and assessment.

The distribution functions of the first passage time to the specified number of corrected
faults, G,(t)’s, in ’(8.8) are shown in Fig. 8.3 for various perfect debugging rates, a, where
n=2560=001,7=10, D =01 E = 0.5, and » = 0.9. We can see that the smaller
perfect debugging rate a becomes, the more difficult it is to remove faults from the system.

The instantaneous system availabilities, A(¢)’s in (8.19) are shown in Fig. 8.4 for
various a’s, where § = 0.01, » = 1.0, D = 0.01, ¥k = 0.8, E = 0.5, and r = 0.9. System
availability lowers just after the operation and (8.19) can evaluate the degree of unstableness
of the system in the early stage of the operation phase. This figure shows that the higher
certainty of the restoration action for the software subsystem becomes, the larger system
availability becomes.

The dependence of the decreasing ratio of the restoration rate, r, on A(¢) is shown in
Fig. 8.5, where 6 = 0.01, = 1.0, D = 0.01, £ = 0.8, £ = 0.5, and a = 0.9. As shown in
Fig. 8.5, in case of » > k and r < k, system availability improves and decreases with the
lapse of time, respectively, and in case of r = k, this is constant. Then, the ratio of r to
k can be regarded as an index to determine whether the system performance grows or not
and reflects the degree of difficulty of the system dynamic-quality improvement.

The hazard rate for the next system failure when n faults have been already corrected
is denoted as a, =0+ A,. A(t)’'sincaseof §: D =5:1and §: D =1:5 on the condition
that ag = 8 + D is the same value are shown in Fig. 8.6, where n = 1.0, £k = 0.8, £ = 0.5,
r = 0.9, and a = 0.9. Figure 8.6 shows as follows: In case of (i),- system availability
is stable when the software debugging is performed enough and the hazard rate for the
software subsystem is low. In case of (ii), though system availability is low in the early
stage of the operation phase, it increases with the lapse of time. The behavior shown in
Fig. 8.6 is due to whether the system has much room for reliability growth or not. For
example, ap = 0.06 for both of (i) and (ii), but ajo = 0.0510 for (i) and a3 = 0.0154 for
~ (ii). Then, (ii) has more room for reliability growth than (i).

122 8. Availability Modeling for Hardware-Software System

Gs(1)

0 100 200 300 400
Time

Fig. 8.3. Dependence of a on G,(t) (n = 5,68 =0.01, p =10, D = 0.1, k = 0.8, E = 0.5,
r =0.9).

8.4. Numerical Examples 123

AD

0.9

0.8
0.985¢ E;Z 4‘EEEE==——>
0.975

0 100 200 300 400 500 600 700 800
Time

Fig. 8.4. Dependence of ¢ on A(t) (§ =0.01,p=1.0, D =0.01, £ =08, E = 0.5, r = 0.9).

124 8. Availability Modeling for Hardware-Software System

A(D)

0.997¢
0.985¢

0.987¢

0.9757¢

0.97 l : : ' - ' - '
0 100 200 300 400 500 600 700 800

Time

Fig. 8.5. Dependence of r on A(t) (§ =0.01,7=1.0,D=0.01, k=08, F = 0.5, a=0.9).

8.5. Concluding Remarks 125

A(?)

0.98

(i1) 6=0.01, D=0.05

(i) 6=0.05, D=0.01

0.92¢

0.9
0 100 200 300 400 500 600 700 800

Fig. 8.6. Dependence of 6 : D on A(t) (n=1.0, k=08, F =0.5,r =09, a =0.9).

8.5 Concluding Remarks

In this chapter, we have developed a system availability model for a computer system
which has one hardware and one software subsystem. The failure-occurrence phenomenon
for a software subsystem has been described by a geometrically decreasing hazard rate
and that for a hardware subsystem by a constant hazard rate. Several useful quantitative
measures for system performance assessment have been derived. Numerical illustrations
for system availability measurement and assessment have been also presented to show that

these measures are very useful for system performance assessment.

Part I11

SOFTWARE SAFETY MODELING

Chapter 9

Software Safety Modeling Related to

Failure Occurrences

9.1 Introduction

It has been very hard to forecast the degree of hazardous effects on our social lives in
occurrence of accidents connected with computer systems since present-day life has been
highly information-oriented and computer systems have grown in size and complexity. Re-
cently, failures and accidents due to defects and errors latent in software systems have been
increasing remarkably. Introducing such defects and errors is inescapable since software
systems are developed by labor-intensive techniques and source programs and documents
are intellectual products. Therefore, the concept of software engineering has been em-
phasized. Software engineering aims to manage the software life-cycle comprehensively,
considering productivity, quality, cost, and delivery simultaneously. In particular, great
importance has been attached to quality management techniques among the software pro-
duction technology and methodology for the purpose of improving software reliability, that
is, the characteristics that computer systems continue operating regularly without occur-
rence of failures on software systems [25, 35, 46, 57, 61].

Both software safety and reliability so far tended to be treated in the same concept.
However, software safety differs from software reliability and is regarded as an important
quality characteristic since software systems have controlled safety-critical systems. Soft-
ware safety is defined as the nonoccurrence of unsafe states in software systems. Software
systems in unsafe states lead to fatal accidents, mishaps, and hazards. Software reliability
is the attribute that software systems do not engender software failures, whereas software

safety is the attribute that software systems do not fall into hazardous conditions. A soft-

129

130 9. Software Safety Modeling Related to Failure Occurrences

ware failure is defined as an unacceptable departure from program operation caused by
a fault remaining in the software system. Accordingly, we can evaluate software safety
in terms of the probability that a software system does not fall into a state that induces
hazards whether or not the system is performing its intended functions [22, 58].

Fault Tree Analysis (FTA) and Failure Mode and Effect Analysis (FMEA) are repre-
sentative qualitative safety-assessment techniques [15]. These are effective tools for inves-
tigation and verification of reliability and safety in the specification and the design phase.
However, quantitative methods of software safety evaluation in dynamic environment dur-
ing the testing phase and the user operation in the field are seldom discussed.

In this chapter, we discuss a quantitative safety assessment model for software systems
by assuming that the software failures occurring in dynamic environment are classified into
two types: one leads to unsafe states and the other does not. This model describes the
relationship between the operating time and software safety/availability by taking the time
to restore to an operable state after a software failure-occurrence (i.e. the debugging time)
into consideration [50]. This model is formulated as a Markov process [47] and the metrics
of software safety and availability are derived. Finally, numerical examples for software

safety assessment using this model are provided.

9.2 Model Description

First, we describe the process in which a system is restored to an operable state after
a software failure-occurrence. In the case where a software failure occurs and a system
falls into an unsafe state, an action to avoid an unsafe state is first performed and then a
restoration action is performed so that a system operates regularly. On the other hand,
if a system does not fall into an unsafe state, only a restoration action is performed. The

following assumptions are made for software safety/availability assessment modeling:

Al. A system does not fall into any unsafe states when the system is operating. If a
software failure occurs, a system falls into an unsafe state with probability p; (0 <

p1 < 1), and does not fall into an unsafe state with probability ps(= 1 — p;).

A2. The restoration action includes the debugging activity and a fault causing a software

failure is corrected and removed from a system with a perfect debugging activity.

9.2. Model Description 131

A debugging activity is performed perfectly with probability a (0 < a < 1), while
imperfectly with probability b(= 1 — a). We call a the perfect debugging rate.

A3. When n faults have been corrected, the time to the next software failure-occurrence
and the restoration time follow exponential distributions with means 1/, and 1/p,,

respectively.

A4. The time interval of an action to avoid an unsafe state follows an exponential distri-

bution with mean 1/7.

A5. The probability that two or more software failures occur simultaneously is negligible.

We introduce a stochastic process {X(¢), ¢ > 0} to represent the states of a software
system in dynamic environment [47]. The state space of process {X(t), ¢ > 0} is defined

as follows:

W.,: the system is operating regularly and safely,
U,: the system is in an unsafe state,

R,: the system is restored,

where n = 0, 1, 2, ... denotes the cumulative number of corrected faults.

From assumption Al, if a software failure occurs in {X(¢) = W, }, then

U, (with probabilit
X(t) = (with probability p;) (9.1)
R, (with probability ps).

Furthermore from assumption A2, if a restoration action is complete in {X () = R, }, then

W, (with bability b
X(t) = (with probability b) (9.2)
Wot1 (with probability a).

The descriptions of A, and p, are given by

AM=Dk (n=0,1,2 ...;D>0 0<k<1), (9.3)
n=Er* (n=0,1,2, ...; E>0,0<7<1), (9.4)

132 9. Software Safety Modeling Related to Failure Occurrences

respectively where D and k are the initial hazard rate and the decreasing ratio of the
hazard rate, respectively and F and r are the initial restoration rate and the decreasing
ratio of the restoration rate, respectively. The details of A, and g, have been discussed in

Chapters 4 and 5.

Let Q4,5(7) (A, B € {W,, U,, R,;n=0, 1, 2, ...}) denote the one-step transition
probability that X (¢) makes a transition into state B during time interval (0, 7] after X (t)

was in state A at time zero. The expressions for Q4 5(7)’s are given as follows:

Qw,.v.(T) =p1(1 —e7), (9.5)
Qwa,r. (T) = Po(1 — e727), (9.6)
Qu.r.(T)=1—€e"", (9.7)
QRo Wi (T) = a1 — e77), (9.8)
QR w.(T) =b(1 — ™). (9.9)

Figure 9.1 illustrates the sample state transition diagram of X (t) forming a Markov

process.

Fig. 9.1. A diagrammatic representation of state transitions between X (t)’s for software safety

modeling related to failure occurrences.

9.3. Software Safety/Availability Analysis 133

9.3 Software Safety/Availability Analysis

9.3.1 Distribution of the First Passage Time to the Specified
Number of Corrected Faults
Let G;,(t) denote the probability that n faults are corrected during time interval (0, t] on

the condition that (< n) faults have already been corrected at time zero. Then, we obtain

the following renewal equations from Fig. 9.1:

Gin(t) = Hw,,r*Qr,w: 11 ¥Gis1,0(2)
+ Hw. g.* . ~*Gz'n t
Wi, R * QR W, *Gin (1) 9 (9.10)
HWi,Ri(t) = QWi,Ré(t) + QWi,Ui * QUi,Ri (t)
(=0,1,2, ..., n—1) |

where * denotes a Stieltjes convolution.

Substituting the Laplace-Stieltjes (L-S) transforms of (9.5)-(9.9) into that of (9.10)
yields

5 o dpi(pes+) . _
Gin(s) = (s+wi)(s+yz~)(s+zi)Gz+1’n(s) (:1=0,1,2, ..., n—1), (9.11)

where —z;, —¥;, and —z; are the distinct roots of the following third order equation:
s% 4+ (N + 4+ 7)s” + (Nags + pay + YA — bpedipi)s + adipey = 0. (9.12)

Solving (9.11) recursively, we obtain the L-S transform of Gg,(t) as

n—1

Gona(s) = [T

aX;pi(p2s +)
(s+z:) s+ y;)(s + 2)
(Ai o A2y Az
£l + 9 + £ ,
o \st+% s+y stz

s
o

3
-

(9.13)

where constant coefficients A ;, A2 ;, and A2 ; are given by
n—1
IT aXju;(y — p2zi)
1 j=0
A”’»:i - n—~1 n—1
z; [T (25 —2:) T[] (95 — i) (25 —)
=0 j=0

JF#i

(i=0,1,2 ..., n—1), (9.14)

9. Software Safety Modeling Related to Failure Occurrences

134
n—1
I aXjni(y — pows)
2 j=0
An,i - n—1 n—1
Y; H(y; — ;) H(zj - yi)(mj - yi)
=0 §=0
jeki
(:=0,1,2, ..., n—1), (9.15)
n—1
H a/\jﬂjﬁ’ - Pzzi)
3 _ =0
A’I’L,i - n—1 n—1
z [[(z — 2) [T (=5 — z:)(%; — 2)
=0 j=0
(2:07 1) 27 ey TL—].), (916)

0
respectively and we postulate H - = 1. It is noted that

J=0
30
n—1
DAL +AL+A)=1 (n=1,2,...). (9.17)
=0
Inverting (9.13) and rewriting Go(t) as G,(t), we obtain the distribution function of the
random variable S, (n =1, 2, ...; So = 0) representing the time to be spent in correcting
n faults as
G.(t) = Pr{S, < t}
n—1
=1 Z(A}l,ie“’”"t + Ai’ie‘y"t + Ai’ie“z"t)
=0
(n=1, 2, ...; Go(t) = 1(¢) (unit function)), (9.18)
Furthermore, the expectation E[S,] and the variance Var[S,) are given by
w111
E[S,] = (— 4= @) , (9.19)
= \Z: Y % Y
B n—1 1 1 1 p22
Var[Sn] = 2 .2 + y7 + ;‘2‘2‘ - ‘7—2) (9.20)

respectively.

9.3.2 State Occupancy Probability

Here, we derive the probabilities that X (¢) is in the respective states.

9.3. Software Safety/Availability Analysis 135

Let P4 p(t) be the conditional probability that X(¢) is in state A at time point ¢ on
the condition that X (¢) was in state B at time point zero, i.e.
P,p(t) =Pr{X(t) =B | X(0) = A}
(A, Be{W,, U,, R;; n=0,1, 2, ...}), (9.21)
and let Pw, (¢t) = Pw,w.(t), Pr.(t) = Pw, r.(t), and Py, (t) = Pw, . (t) denote the state

occupancy probabilities that X () is in states W, R,, and U, at time point ¢, respectively.

Initially, we obtain the following renewal equations with respect to Py, (¢):

Py, (t) = Gn * Pw, w.. (1), (9.22)

Py, w,(t) = e + Hw, g, * Qr,.w. * Pw, w,(2). (9.23)

From (9.23), the L-S transform of Py, w,(t) is given by

s(s + a)(s +7) (9.24)

PWn,Wn(S) = (8 + IL‘n)(S + yn)(s + zn>'

Substituting (9.24) into the L-S transform of (9.22) yields

n—1
3 s(s+7)(s + p) [T adipsa(pas +7)
Py, (s) = = =
[I(s +z:)(s +3:)(s + 2)
=0
n Bl ; ,__BZ ; __Bs Z;
Z (IL’ zy + ’n,zz) , (925)
i—o \ St s+ y; s+ 2z
where constant coefficients B ;, B2 ;, and B3 ; are given by
n—1
(v = 2:)(in —) I adjpi(y — pai)
Bl = =0
H H ;)2 — i)
j.'—-O 7=0
(i=0,1,2 ..., n) (9.26)
: n—1
(v = 9:)(pin — 92) TT @y (v — pows)
BZ L= j=0

II (v = %) 11 (25 = %:)(z5 — %)

j=0 j=0

136 9. Software Safety Modeling Related to Failure Occurrences

(i=0,1,2 ..., n), (9.27)
n-—1
(7 — 2)(pn — 2:) T] aXjpes (v — p22:)
B}, = =
’ H H z; — z:)(y; — %)
o §=0
(i=0,1,2 ..., n), (9.28)

respectively. Inverting (9.25), we have the state occupancy probability that X(t) is in state

W, at time point t as

Py, (t) =Pr{X(t) = W,}
= z [B',];,,ie_zit + Biz.e_yit + Bi’ie——zit}

=0

(n=0,1,2, ..). (9.29)

It is noted that
Bio+Bjo+ By =1
Z (Bi,i + szz,i + Bg,i) =0 (TL = 1) 2a ..)
=0
Following steps similar to those used in the derivation of Py, (¢), we obtain the fol-

(9.30)

lowing renewal equations with respect to Pg, (t):

1:)R1x (t) = Gn X 'HWnan. % PRn,Rn (t), (931)
Pr. r.(t)=e "'+ Qr, w. * Hw, r, * Pr. r.(t) (9.32)

From (9.31) and (9.32), the L-S transform of Pg,(t) is given by

5 $. a)\mu'n(p2'5 + 7) . é (3)

PR"(S) = Qfhn (5 + .’En)(s + yn)(s + Zn)

= c Gria(s). (9.33)

Inverting (9.33), we have the state occupancy probability that X(¢) is in state R, at time

point £ as

Pr, (t) = Pr{X(t) = R.}

1
= — - gouq(t
afn 9+1()

(n=0, 1,2, ...), (9.34)

9.3. Software Safety/Availability Analysis 137

where g,(t) denotes the probability density function of S, i.e. g,(t) = dG,(t)/dt.
Let {Y(¢), ¢t > 0} denote the stochastic process representing the cumulative number

of faults corrected perfectly up to time ¢. Then, we obtain the following equivalent relation:
{Y(t) =n} <= {X(t)=W,}U{X(t) =R, }U{X(t) =U,}. (9.35)

Furthermore, since {Y(t), ¢ > 0} is a counting process, we also obtain the following
equivalent relation:

{Sn <t} = {Y(t) 2n}. (9.36)

From (9.18) and (9.36), the probability that n faults are corrected up to time ¢ is given by

" P,(t) =Pr{Y(t) = n}
=Gn(t) = Guya(t) (n=0,1,2, ..). (9.37)

Therefore, we have the state occupancy probability that X (t) is in state U, at time point

t as

Py (t) = Pr{X(t) = U,}
= Go(t) — Goya(t) — Pw.(t) = Pa(t) (=0, 1,2, ..), (9.38)

since {X(t) = W,.}, {X(¥) = R}, and {X () = U, } are mutually exclusive.

9.3.3 Software Safety

The following equation holds for arbitrary time point ¢:

o0

> [Pw,(t) + P, (t) + Py, (¢)] = 1. (9.39)

n=0
In this chapter, the software safety is defined as the probability that a system does not fall

into any unsafe states at time point ¢ and given by

[eo}

S#) =Y [Pw,(t) + Pr.(t)]. (9.40)

n=0
On the other hand, the software unsafety is defined as the probability that a system falls

into unsafe states at time point ¢ and given by

Ut) = i Py, (). (9.41)

138 9. Software Safety Modeling Related to Failure Occurrences

From (9.40), (9.41) can be expressed by

U(t)=1- S(¢)
=13 [Pw.(¢) + Pr.(1)]- (9.42)

n=0
9.3.4 Instantaneous Software Availability

From this model, we can also derive a software availability assessment measure. That is,
the instantaneous software availability defined as the probability that a system is operating
regularly at time point ¢ is given by

A(t) =3 Pa (2). (9.43)

n=0

9.4 Numerical Examples

We offer several numerical examples for software assessment based on the stochastic model
discussed above.

Figures 9.2 and 9.3 represent the software safety in (9.40) and the instantaneous soft-
ware availability in (9.43) for various values of p; denoting the probability that a system
falls into an unsafe state in a software failure-occurrence, respectively. These figures in-
dicate that the software safety and availability drop rapidly immediately after operation.
This means that system performance is unstable in the early stage of the operation phase.
These figures also suggest that a system has higher availability and safety with decreasing
p1. Figures 9.4 and 9.5 show the software safety and the instantaneous software availability
for various values of 7. As these figures indicate, shortening the action time to avoid an

unsafe state raises system safety and availability.

9.4. Numerical Examples 139

S(_t)

0.995 :‘
p1=0.1
0.99 0.2
0.3
0.985 0.4
0.98
0.975 : : : :
0 100 200 300 400 500
Time

Fig. 9.2. Dependence of p; on software safety S(¢) (D =0.1, k=08, E=1.0, r =0.9, a =
0.9, v = 1.5).

140 9. Software Safety Modeling Related to Failure Occurrences

A1)

0.88¢

0.86 % p1=0.1
0.2

0.3
0.4

0 100 200 300 400 500
Time

Fig. 9.3. Dependence of p; on instantaneous software availability A(¢t) (D =0.1, k=08, F =
1.0, = 0.9, a = 0.9, v = 1.5).

9.4. Numerical Examples 141

5(1)

0.9957

0.99

0.985

0.98

0.975

O . 97 'y i M A 5
0 100 200 300 400 500
Time
Fig. 9.4. Dependence of v on software safety S(t) (D = 0.1, k =08, E=10, r =09, p; =

0.3, a = 0.9).

142 9. Software Safety Modeling Related to Failure Occurrences

A(t)

0.88

0.82
0 100 200 300 400 500

Time

Fig. 9.5. Dependence of + on instantaneous software availability A(t) (D = 0.1, k=08, E =
1.0, r=10.9, p; = 0.3, a =0.9).

9.5 Concluding Remarks

In this chapter, we have proposed a quantitative software safety assessment model, taking
notice of whether or not software failure-occurrences lead to unsafe states. The stochastic
behavior of the system in dynamic environment has been described by a Markov process.
The software safety and availability metrics have been derived from this model and enabled
us to evaluate quantitative software safety as well as qualitative analyses so far [58]. In

particular, it is very meaningful that quantitative evaluation techniques for software avail-

9.5. Concluding Remarks 143

ability measurement have been correlated with software safety, which is the attribute of
nonoccurrence of catastrophic consequences. This model has hinted at the possibility of es-
tablishing total evaluation techniques for software performance assessment. Furthermore,

numerical examples of software safety/availability measurement have been presented.

Chapter 10

Software Reliability /Availability
Modeling with Safety

10.1 Introduction

Software reliability is one of the most important quality characteristics and its evaluation
methods have been much discussed [43]. A mathematical model for software reliability
measurement is called a software reliability growth model which describes a software fault-
detection or a software failure-occurrence phenomenon in a dynamic environment such as
the testing phase of software development and the actual operation phase. A software
failure is defined as an unacceptable departure from program operation caused by a fault
remaining in the software system.

The notion of software safety begins being distinct from that of software reliability
and being regarded as an important quality characteristic since software systems have con-
trolled safety-critical systems such as nuclear power generation systems, defense systems,
vehicle control systems, and so on. Software reliability is the attribute that software sys-
tems do not incur software failures, while software safety is the attribute that software
systems do not fall into hazardous conditions whether or not the systems are perform-
ing intended functions [22]. Accordingly, software failure-occurrences do not always cause
the problems related to safety, and software systems functioning in accordance with the
specifications do not always ensure safety. There exist Fault Tree Analysis (FTA) and
Failure Mode and Effect Analysis (FMEA) in qualitative techniques for evaluating and as-
sessing software safety [15]. But safety-critical systems have many restrictions concerning
“time” and there is a limitation to perform dynamic analyses with FTA and FMEA. Any

quantitative methods of software safety evaluation in dynamic environments are scarcely

145

146 10. Software Reliability/Availability Modeling with Safety

discussed. In the preceding chapter, we have developed the quantitative safety assessment
model describing the relationship between software failure-occurrences and safety.

In this chapter, we develop two stochastic software safety assessment models based
on the models discussed in Chapters 2 and 4: the software reliability assessment model
with safety and the availability-intensive safety assessment model. Our attention in this
chapter is directed to the event that the system causes hazardous conditions randomly in
operation, not that the system may fall into an unsafe state when the system is down due
to software failure-occurrence. These two models are formulated by Markov processes [47]
to describe the time-dependent behaviors of the software system, taking into account the
software reliability growth process. These models can provide the metrics of software safety
defined as the probability that the system does not fall into hazardous states at a specified
time point. Numerical illustrations are presented to show that these models are useful for

software safety/reliability measurement and assessment.

10.2 Software Reliability Assessment Model with
Safety

10.2.1 Model Description

Referring to the model discussed in Chapter 2, we give the following assumptions to con-
struct the software reliability assessment model with safety taking notice of only operational

states:

Al. When the software system is operating, the holding times of the safe and the unsafe

state follow exponential distributions with means 1/6 and 1/, respectively.

A2. A debugging activity is performed when a software failure occurs. Debugging ac-
tivities are perfect with probability a (0 < a < 1), while imperfect with probability
b(=1— a). We call a the perfect debugging rate.

A3. Software reliability growth occurs in case of perfect debugging. The time interval
between software failure-occurrences follows an exponential distribution with mean

1/)A,, where n =0, 1, 2, ... denotes the cumulative number of corrected faults.

10.2. Software Reliability Assessment Model with Safety 147

A4. The probability that two or more software failures occur simultaneously is negligible.

A5. Only one fault is corrected and removed from the system per one activity of perfect
debugging. Debugging activities perform in the safe condition and the debugging

time is not considered.

Consider a stochastic process {X(¢), t > 0} representing the state of the software
system at time point ¢. The state space of {X(t), ¢ > 0} is defined as follows [47]:

W,: the system is operating safely,
U,: the system falls into the unsafe state.

From assumption A2, when the next software failure occurs in {X(¢t) = W,} or
{X(t) = Un},
W, (with probability b)

X(t) = (10.1)
W,y (with probability a).

The description of A, is given by
A=DE" (n=0,1,2,...; D>0, 0<k<1), (10.2)

where D and k are the initial hazard rate and the decreasing ratio of the hazard rate,
respectively (see Section 2.2).

In the preceding chapter, we have developed the model assuming the situation where
software failure-occurrences may lead to unsafe states and the system in operation does not
fall into any unsafe states. On the other hand, in this chapter we consider that the system
may induce unsafe states in operation. Furthermore, we consider that the occurrences of
the software failure and the unsafe conditions are independent mutually. In fact, some
faults which cause software failures may be those in connection with safety, and debugging
such faults may contribute to the improvement of software safety. However, debugging
activities are to correct the program so that the system functions in accordance with the
specifications and do not aim at the improvement of software safety. Therefore, we assume
that parameters 8 and 7, which are related to software safety, are constant regardless of

the software reliability growth process.

148 10. Software Reliability/Availability Modeling with Safety

Let Qap(7) (A, B € {W,, Up; n =0,1,2, ...

}) denote the one-step transition

probability that after making a transition into state A, the process {X(t), t > 0} makes a

transition into state B by time 7. The expressions for Q4 5(7)’s are given as follows:

Qw,v.(T) =
QWi (T) =
Qw,w.(T) =
QU Wy (T) =
Qu.w.(7) =
Quw, (T) =

A+ 7

2~

l—e

]___
1__

-(,\n+e)r}
e~ (= +0)-r]

~(An w)r]
(An +17)-r]

e
e~ (An +17)T]

An -H})T]

b

?

bl

I

?

(10.3)
(10.4)
(10.5)
(10.6)

(10.7)

(10.8)

where Qu, w, (7) denotes the case where a software failure occurs and debugging is imper-

fect, whereas QF;,_ yy, (7) denotes the case where the system returns to the safe state before

a software failure occurs. The sample state transition diagram of X (t) is illustrated in

Fig. 10.1.

10.2. Software Reliability Assessment Model with Safety 149

bAoAT

9A’L’

=
>
by

Fig. 10.1. A diagrammatic representation of state transitions between X(t)’s for the software

reliability assessment model with safety.

150 10. Software Reliability/Availability Modeling with Safety

10.2.2 Derivation of Safety /Reliability Measures

Distribution of the First Passage Time to a Specified Number of Corrected
Faults

Let S, (n =1, 2, ...; So = 0) be the random variable representing the first passage time to
state W,, in other words the time spent in correcting n faults, and G,(t) be the distribution
function of S,. Furthermore, let G;,(¢) be the distribution function associated with the
probability that n faults are corrected in the time interval (0, ¢] on the condition that ¢
faults have already been corrected at time zero. Then, we obtain the following renewal

equation:

Gin(t) = Qw.w: * Gin(t) + Qw.v. * Qp,w, * Ginalt)
+ Qwu: * Quow: * Gin(t) + Qwewiy, * Gir1a(t)
+ Qw,u; * Qu,wis, * Gip1a(1)
(¢=0,1,2, ..., n—1). (10.9)
Applying the Laplace-Stieltjes (L-S) transforms [42] to (10.9) recursively, we obtain the
L-S transform of G,(t) as

~ =l o
Gn(s) = :
(S) 1I=](:J s+ CLAi
n-l n a)\i
= ;Ai ST o (10.10)
where
Al=1 ‘
n-1)‘j
A = ,I:Io)\,- Y . - (10.11)
(n=2,3 ...;i=0,1, 2, ..., n—1)]

By inverting (10.10), we have the distribution function of the first passage time when n

faults are corrected:

Gn(t) = Pr{S, <t}

= f Ar[1— e
=0

(t>0; n=1, 2, ...; Go(t) = 1(¢) (unit fuction)), (10.12)

10.2. Software Reliability Assessment Model with Safety 151

Equation (10.12) is identical to the result obtained in Chapter 2 and has no bearing on
parameters € and 7, which are related to safety.
Furthermore, the mean and the variance of S,, are given by

n~1 1

E[Sn] = Z G,Az',

=0

(10.13)

Var[S,] = n‘; @—;—5557 (10.14)

=0

respectively.

State Occupancy Probability and Software Safety Metrics

Let P4 p(t) be the conditional state occupancy probability that the system is in state B

at time point ¢ on the condition that the system was in state A at time point zero, i.e.

Pap(t) = Pr{X(¢) = B|X(0) = A}
(A, Be{W,, U; n=0, 1, 2, ...}), (10.15)

and it is denoted that Pw, (¢) = Pw,w,(t) and Py, (¢) = Pw,u,(t). Then, we obtain the

following renewal equations:

PWn (t) = Gn * PWn,Wn (t), (1016)
Py, w,(t) = e 3t 4 Qu w. * Py w, (2)
+ Qw,. v, * Qu,.w, * Pw, w,(t

)
+ Qw,.u. * QU w, * Pw,w.(1). (10.17)

By applying the L-S transforms to (10.16) and (10.17), we obtain the L-S transform of

Py, (t) as
~ s(s+ A +1m) ’ﬁl a);

Pw.(s) = e Ee e | Py (10.18)

By inverting (10.18), we have Py, (t) as

Py, (t) =Pr{X(t) = W,}
— Bne—()\n+0+’r))t + iB?e"“’\‘t

=0

(n=0,1,2 ..), (10.19)

152 10. Software Reliability/Availability Modeling with Safety

where constant coefficients B” and B} are given by

n—1
——QH CL)\J'
B = =
H(a)‘.‘i -)"n -6 _77)
7=0
(n=0,1, 2, ...,
n-1
(A +m—aX) [T A
B® = 7=0
(An +0+1—ak;) H(/\j - X)
=
(=0, 1, 2, ..., n),
-1 0
respectively, and we postulate H .= H - = 1. It is noted that
j=0 =
B°+Bj=1

B*+> BY=0 (n=1,2,...)
=0 -

The following equation holds for arbitrary time point ¢:

oo

> [Pw.(t) + Py, (8)] = 1.

n==0

In this section, the software safety is defined as

S1(t) = i Py, (%),

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

which represents the probability that the system does not fall into any unsafe states at

time point ¢. The software unsafety is defined as

Ui(t) =S P (1),

n=0

(10.25)

which represents the probability that the system falls into unsafe states at time point £.

Using (10.23), we get
Ul(t) =1- Sl(t)
=1-Y Pw.(t).

n=0

(10.26)

10.3. Availability-Intensive Safety Assessment Model 153

Software Reliability and MTBSF

Let X; (I = 1, 2, ...) be the random variable representing the time interval between
the (I — 1)-st and the I-th software failure-occurrences. Then, the software reliability, i.e.
Pr{X; > z} and the mean time between software failures (MTBSF) are given by the same

results obtained in Section 2.3.4, i.e.
Rz(m) = PI{XI > :L'}
-1
-1\ ; ,
=y (_)a‘b"l“’e‘m, (10.27)
=0 \ *?

(a/k +b)1

10.28
D ? ()

E[X;] =

respectively where (l’;l) = (I -1)!/[(I — 1 —7)!i!] denotes a binomial coefficient. R;(z) and

E[X)] also have no bearing on parameters € and 7.

10.3 Availability-Intensive Safety Assessment Model

In this section, we describe the behavior of a software system which alternates between

operable and inoperable states in consideration of software safety, referring to Chapter 4.

10.3.1 Model Description

The following assumptions are made for availability-intensive safety assessment modeling:

B1l. When the software system is operating, the holding times of the safe and the unsafe

state follow exponential distributions with means 1/6 and 1/7, respectively.

B2. The software system breaks down and starts to be restored as soon as a software

failure occurs, and the system can not operate until the restoration action is complete.

B3. The restoration action implies the debugging activity and software reliability growth

occurs if a debugging activity is perfect

154 10. Software Reliability/Availability Modeling with Safety

B4. The debugging activity is perfect with probability a (0 < a < 1), while imperfect
with probability b(= 1 — a). A perfect debugging activity corrects and removes one

fault from the system.

B5. When n faults have been corrected, the next software failure-occurrence time interval
and the restoration time follow exponential distributions with means 1/A, and 1/u,,

respectively.
B6. The probability that two or more software failures occur simultaneously is negligible.

B7. The restoration actions are performed in safe states.

The state space of the process {X(¢), ¢ > 0} representing the state of the software

system at time point ¢ is defined over again as follows:

W,: the system is operating in a safe state,
U,: the system is operating in an unsafe state,

R,: the system is inoperable and restored,

where n = 0, 1, 2, ... denotes the cumulative number of faults corrected during the
operation phase.

From assumption B4, when a restoration action is complete in {X(¢) = R,},

W, (with probability b)

X)) = (10.29)
Wot1 (with probability a).
The descriptions of A, and p, are given by
A=Dk* (n=0,1,2 ...; D>0,0<k<1), (10.30)
o =FEr* (n=0,1,2,...; E>0,0<7r<1), (10.31)

respectively where D and k are the initial hazard rate and the decreasing ratio of the
hazard rate, respectively and E and 7 are the initial restoration rate and the decreasing

ratio of the restoration rate, respectively (see Section 4.2).

10.3. Availability-Intensive Safety Assessment Model 155

The expressions of one-step transition probabilities Q4 5(7)’s (4, B € {W,,U,, Rq;

n=20, 1, 2, ...}) are given as follows:
4 ~(nt)r
Qw,v.(7) = B +6[1 — e8], (10.32)
A s
Qw.p(7) = T ll —e (a8, (10.33)
Qu.wa(7) = 5 1 - e=Ontn)m), (10.34)
A .
Qv r(T) = 71 n[l — (b)), (10.35)
QR Wy (T) = a(l —e77), (10.36)
Qr.w. (1) =b(1 —e7*7). (10.37)

The sample state transition diagram of X (t) is illustrated in Fig. 10.2.

Fig. 10.2. A diagrammatic representation of state transitions between X (¢)’s for the availability-

intensive safety assessment model.

10.3.2 Software Availability /Safety Analysis

This model can be made analyses similar to those of the model discussed in Chapter 7 by
changing the definition of the state space of X (t) from state U, of this section to state L,
of Chapter 7.

Distribution of the First Passage Time to the Specified Number of Corrected
Faults

Recall that S, and G,(t) (r =1, 2, ...; Sp = 0) denote the random variable representing

the time spent in correcting n faults and the distribution function of S,,, respectively. Then,

156 10. Software Reliability/Availability Modeling with Safety

we have the distribution function of S, as

Go(t) =Pr{S, <t}

n—1

=1— > (A} e ™ + A2 %)
i=0
(n=1, 2, ...; Go(t) = 1(£)), (10.38)

where

z; 1
} =3 [()‘z‘ +) £ /(O +)2 — dadp
Yi

(double signs in same order). (10.39)

and constant coefficients A}, ; and A% ; are given by

n—1
H TiY;
1 _ 3=0
A’"»,i - n—1 n—1
2 [[(z5 — z:) [[(v —)
i=0 j=0
(z’ =0,1,2, ..., n— 1), (10.40)
n—1
H LiY;
2 _ j=0
An,i - 7n—1 n—1
yz‘H(yj - yz')H(xj)
=0 7=0
(z’ =0,1, 2, ..., n— 1), (10.41)

respectively. It is noted that (10.38) has no bearing on parameters 6 and 7 and that

n-1
(AL +AZ)=1 (n=1,2, ...). (10.42)

=0

Furthermore, the mean and the variance of S, are given by

=i/l 1
E[S,] = (~— + -——) , (10.43)
i=o \%i Y
n—1 1 1)
Var|S,| = —+—], 10.44
50=F (354 (10.49)

respectively.

10.3. Availability-Intensive Safety Assessment Model 157

State Occupancy Probability

The state occupancy probabilities that X (¢) is in the respective states are derived analyt-
ically (see Section 7.3.2).
Initially, the probability that X (¢) is in state W, at time point ¢ is given by

Pw. (£) = Pr{X(¢) = W.}
— Bge—(An+9+n)t + i(Bi ie—azit + szz, ie—'y;t)

=0

(n=0,1,2 ..), (10.45)

: 0 pi 2 :
where constant coefficients B,, B, ;, and B; ; are given by

n—1
_G(ll'n - >‘n -0 - n)H L;Y;
BO — j=0
TT(es — de — 6 1)(35 ~ a =0 =)
=0
(n=0, 1, 2, ...), (10.46)
n—1
(An +n - "Bi)(ﬂ'n - mi) H TiY;
Bl. — =0
A+ 0 +0—z) [T (z; — 2:) [] (35 — @)
1= j=0
(=0, 1, 2, ..., n), (10.47)
n—1
(An + 7= 1) (o — 3:) [1 2595
B2 = j=0
A+ 604+n—v)[1(w; —) [[(z; —w)
.7'._=‘g 7=0
(=0, 1, 2, ..., n), (10.48)

respectively. It is noted that

Bg -+ B‘])',O + B%,O =1
BY+Y (BL+B2)=0 (n=1,2 ...

=0

(10.49)

158 10. Software Reliability/Availability Modeling with Safety
Next, the probability that X (t) is in state R, at time point ¢ is given by

Pr.(t) = Pr{X(t) = R.)
1

— gt =0,1,2 ..), 10.50
—ga(®) (0) (1050)
where g,(t) denotes the probability density function of S,, i.e. g,(t) = dG,(t)/dt.

Finally, the probability that X(¢) is in state U, at time point ¢ is given by

Py, (t) = Pr{X(t) = U,}
= Ga(t) = Gaa(t) — Pw, (1) — Pr, (%)
(n=0, 1,2, ...). (10.51)

Software Safety and Availability

The following identical equation holds for arbitrary time ¢:

oo

> [Pw.(t) + Py, (t) + Pr,(t)] = 1. (10.52)

n=0

In this section, the software safety is defined as

x

S:(t) = Y [P (&) + Pr,(t)], (10.53)

n=0
which represents the probability that the software system does not fall into any unsafe

states at time point .

The instantaneous software availability is defined as
Alt) = Z Py (1), (10.54)
n=0
which represents the probability that the software system is operating safely at time point

t. FPurthermore, the average software availability is defined as
1 1
Ault)= 3 /0 A(z)de, (10.55)

which represents the ratio of the amount of time when the system is operating safely to
the time interval (0, t]. Equations (10.54) and (10.55) are the measures considering both
safety and availability.

10.4. Numerical Examples 159

10.4 Numerical Examples

Using two software safety assessment models discussed above, we show numerical illustra-
tions for software safety and reliability measurement.

The software safety metrics, S;(t) in (10.24) for various values of § are shown in
Fig. 10.3, where D = 0.1, £k = 0.8, a = 0.9, and = 0.1. Figure 10.3 indicates that the
software safety becomes larger as 8 decreases.

S1(t)’s are shown in Fig. 10.4 for various values of k, where D = 0.1, a = 0.9, 8 = 0.01,
and 7 = 0.1. S;(¢) converges to 17/(8 + 1), which denotes the steady probability that the
system is operating safely in the case where software failure-occurrences are not considered.
Figure 10.4 indicates that the software safety converges earlier with decreasing k. Smaller
k means that software reliability growth occurs more rapidly. Since this model assumes
that the system is not unsafe in causing a software failure, the software safety becomes
larger with increasing k, which means the high frequency of software failure-occurrences.

Figure 10.5 represents an example of the time-dependent behaviors of state occupancy
probabilities, Pw, (), Pr,(t), and Py, (t) wherea = 0.9, D = 0.1,k = 0.8, E = 0.2, r = 0.9,
6 = 0.01, and n = 0.1.

Figure 10.6 shows the dependence of a on the software safety, S2(¢) in (10.53) where
D=01,k=08, E=02r=0.9 6 =0.01, and 7 = 0.1. This figure indicates that the
software safety decreases with increasing a. This reasoning is the same as in the case of
Fig. 10.4 since larger a means that software reliability growth occurs more rapidly.

Figures 10.7 and 10.8 represent the instantaneous software availability, A(t) in (10.54)
and the average software availability, A,,(t) in (10.55) for various values of a, respectively,
where D = 0.1, k =08, E =02, r = 0.9, ¢ = 0.01, and n = 0.1. A(t) and A,,(t) drop
rapidly immediately after operation and improve gradually with the lapse of time. These

figures also tell us that a system has higher availability with increasing a.

160 10. Software Reliability/Availability Modeling with Safety

51(2)

6=0.01

0=0.02

0.8} _ 0=0.03
0=0.04

0=0.05

0 200 400 600 800
Time

Fig. 10.3. Dependence of 6 on S1(t) (D =0.1, k =0.8,a = 0.9, 7 =0.1).

10.4. Numerical Examples 161

e

0.98 k=0.9
0.8
0.7
0.94} 0.6

0.967

0.927¢
n/(e+n) ________________ e —
0.9 ' - , -
0 200 400 600 800

Time

Fig. 10.4. Dependence of k on S;i(t) (D =0.1, a = 0.9, 6 =0.01, » = 0.1).

162 10. Software Reliability/Availability Modeling with Safety

nZP (1)

1 T T T T

(@]

(@]
)]

(@]
>

;P walZ)

0.2 §

Probability

0 100 200 300 400 500 600 700 800
Time

Fig. 10.5. Behaviors of state occupancy probabilities (e = 0.9, D = 0.1, k = 0.8, E = 0.2,
r=0.9,0=0.01,7=0.1).

10.4. Numerical Examples 163

0.98
a=0.6
0.7
0.96} \ 0,8
0.9
1.0
0.94+
L
==
0.92 ' : : * : : : !
0 100 200 300 400 500 600 700 800
Time

Fig. 10.6. Dependence of a on So(t) (D=0.1,%k=0.8, F =02, =0.9, 6 =0.01, n =0.1).

164 10. Software Reliability/Availability Modeling with Safety

A(?)

0.
0.8
-
,’
0.75 < a=l.()
0.9
0.7} | 0.8
0.65 ¢ 0.7
0.6
0.6 ' : : ' : :
0 100 200 300 400 500 600 700 800
Time

Fig. 10.7. Dependence of a on A(t) (D =0.1,k=0.8, E=0.2,r=0.9, 8 =0.01, p = 0.1).

10.5. Concluding Remarks 165

A1)
1 a=1.0

0.75¢

0.7~ —

0.65 ' ! ! ' '
0 100 200 300 400 500 600 700 800

Time

Fig. 10.8. Dependence of a on A,,(t) (D =0.1,k=0.8, E=0.2,7=0.9,6 =0.01,n=0.1).

10.5 Concluding Remarks

In this chapter, we have proposed two software safety assessment models: the software
reliability assessment model with safety, and the availability-intensive safety assessment
model. These have considered the random occurrences of hazardous conditions in system
operation. The stochastic behaviors of the software system in dynamic environments have
been described by Markov processes, involving the software reliability growth process.
Several software safety/reliability assessment measures have been derived from these two
models and the numerical examples of software safety/reliability measurement have been
illustrated. These models can provide quantitative measures of software safety, which have

scarcely been proposed so far. In particular, it is very meaningful that this work suggests

166 10. Software Reliability/Availability Modeling with Safety

to enable quantitative assessment of simultaneous software safety and software availability,

which are the customer-oriented quality characteristics.

Part IV

CLOSING

Chapter 11

Conclusion

This dissertation has provided several Markovian models for software reliability, availability,
and safety measurement and assessment. The main contributions obtained and the future

studies remaining in the respective parts are summarized as follows:

Part I: Software Reliability Modeling

Chapter 2 has given a software reliability model considering the imperfect debugging en-
vironment where faults detected are not always corrected and removed certainly. Optimal
software release problems based on this model have also been discussed by introducing
the total software cost and the reliability requirement. Chapter 3 has reconstructed the
extended imperfect debugging model based on Chapter 2 by assuming that there exist the
faults regenerated during the testing phase. Estimation of unknown parameters has been
discussed and the application examples to the actual testing data have been presented in
this chapter. Several quantitative measures useful for software reliability assessment have
been derived from these models.

Estimation of cost parameters is not still established in optimal software release prob-
lems. Furthermore, the hazard rate for F2, 8, and the perfect debugging rate, p, have been
prespecified in Chapter 3. An experimental method for setting 6 and p is as follows: By
analyzing the testing data observed from a similar software-production project experienced
before, p can be set to the ratio of the number of faults corrected perfectly to the total
number of software failures observed during testing time interval (0, T, which is denoted
as My. Moreover, the ratio of the number of F2 to M,, which is denoted as 7y, is found.
Since a lot of efforts are needed in analyzing a testing data, p and 7y are also applied to
similar new projects. If M software failures are observed during testing time interval (0, T
of a new project, then we can determine that 8§ = (rgM)/T. However, it is necessary to

analyze testing data in detail in order to validate the assumption of two types of software

169

170 11. Conclusion

failures. Verification of the validity of this model remains a future problem.

Part II: Software Availability Modeling

The second part has discussed several stochastic modeling for software availability measure-
ment and assessment and derived quantitative performance measures considering several
operational environments. Chapter 4 has given the basic software availability model with
only up and down state, which has described the software reliability-growth process as
well. Chapters 5 and 6 have constructed the extended software availability models reflect-
ing the user operational environment, which have been based on the model in Chapter 4.
The existence of software failures due to operational uses deviating from the specification
has explicitly been considered in Chapter 5 and the operational restoration policy without
debugging in Chapter 6. Chapter 7 has developed the software availability model with
computation by assuming that a system can have two different levels in user operation:
full and degenerated performance level. This model has provided a performance measure
considering both of reliability and computation. Such measures have seldom been proposed
for software systems. Chapter 8 has presented availability modeling for a software-intensive
computer system, i.e. a hardware-software system.

The unknown model parameters must be estimated based on the actual data in order
to assess software availability with these models. For example, the value of p in Chap-
ter 6 can be set to the ratio of the number of restoration actions with debugging to the
total number of restoration actions by analyzing the field restoration-data observed from
a similar software product developed before. We will also apply this value to similar new
software products. But it is difficult to estimate model parameters immediately by using
the testing or field data observed from new software products themselves. In particular,
it is necessary to equip the data-collection procedures for measuring the actual restoration
times during the operation phase. The future study is to establish the practical estimation
method of unknown parameters. In Chapter 7 it seems that we can expand our model
by considering multilevel performance degeneration. However, it may be too difficult to

analyze the extended model by a Markov process.

11. Conclusion 171

Part III: Software Safety Modeling

The third part has dealt with stochastic modeling for software safety measurement based on
the software reliability /availability models discussed in the preceding two parts. Chapter 9
has presented software safety modeling by assuming that software failure-occurrences may
induce unsafe states. Chapter 10 has developed two software safety assessment models
considering that a system in operation may induce unsafe states. The software safety
metrics defined as the probability that a system does not fall into any unsafe states at
a specified time point have been derived from those software safety models. It is very
meaningful to have provided quantitative safety measures for software systems.

Generally, it is difficult to estimate the parameters related to safety; for example, p;
and <y in Chapter 9 and € and nin Chapter 10. We may be able to apply qualitative methods
for software safety analysis such as FTA and FMEA in order to estimate such parameters.
Reasonable estimation of those model parameters remains a future problem. Moreover, the
models in Chapter 10 deal with software safety and reliability factors independently, i.e.
6 and 7 have no concern with the cumulative number of corrected faults. However, there
may be cases where these two factors have a strong relation. It is an interesting problem

to construct models correlating safety factors with software reliability growth.

Most results derived in this dissertation have been obtained as closed forms. Thus,
we can evaluate performance measures easily, specifying each model parameters. On the
other hand, in general, various restrictions are more imposed on the development of models
in mathematical modeling than simulation modeling. For example, it is assumed that the
restoration times are distributed exponentially over this dissertation. However, it is not
said that this assumption is realistic. If restoration times are assumed to be distributed
generally, computation of perforinance measures seems to be much complicated. It is
an interesting problem to compare analytical modeling with simulation one. Moreover,
establishment of application of our models to practical problems concerned in the software

project management remains as advanced research works.

References

[1]

A. A. Abdel-Ghaly, P. Y. Chan and B. Littlewood, “Evaluation of competing software
reliability predictions”, IEEE Trans. Software Engineering, Vol. SE-12, No. 9, pp. 950-
967, September 1986.

A. AviZienis, “The N-version approach to fault-tolerant software”, IEEE Trans. Soft-
ware Engineering, Vol. SE-11, No. 12, pp. 1491-1501, December 1985.

M. D. Beaudry, “Performance-related reliability measures for computing systems”,

IEEFE Trans. Computers, Vol. C-27, No. 6, pp. 540-547, 1978.

W. W. Everett and J. D. Musa, “A software reliability engineering practice”, IEEE
Computer Magazine, Vol. 26, No. 3, pp. 77-79, March 1993.

M. A. Friedman and J. M. Voas, Software Assessment: Reliability, Safety, Testability,
John Wiley & Sons, New York, 1995.

M. A. Friedman, P. Y. Tran and P. L. Goddard, Reliability of Software Intensive
Systems, Notes Data Corporation, New Jersey, 1994.

E. H. Foreman and N. D. Singpurwalla, “Optimal time intervals for testing-hypotheses
on computer software errors”, IEEFE Trans. Reliability, Vol. R-28, No. 3, pp. 250253,
August 1979.

O. Gaudoin, C. Lavergne and J.-L. Soler, “A generalized geometric de-eutrophication
software-reliability model”, IEEE Trans. Reliability, Vol. 43, No. 4, pp. 536-541, De-
cember 1994.

A. L. Goel, “Software reliability models: Assumptions, limitations, and applicability”,
IEEE Trans. Software Engineering, Vol. SE-11, No. 12, pp. 1411-1423, December
1985.

173

174 References

[10] A. L. Goel and K. Okumoto, “An imperfect debugging model for reliability and other
quantitative measures of software systems”, Technical Report Vol. 78-1, Department
of Industrial Engineering and Operations Research, Syracuse University, New York,

1978.

[11] A. L. Goel and K. Okumoto, “Time-dependent error-detection rate model for software
reliability and other performance measures”, IEEE Trans. Reliability, Vol. R-28, No. 3,
pp. 206-211, August 1979.

[12) A. L. Goel and J. Soenjoto, “Models for hardware-software system operational-
performance evaluation”, IFEE Trans. Reliability, Vol. R-30, No. 3, pp. 232-239,
August 1981.

[13] Z. Jelinski and P. B. Moranda, “Software reliability research”, Statistical Computer
Performance Fvaluation, W. Freiberger, ed., pp. 465484, Academic Press, New York,
1972.

[14] A. Kanno, Software Quality Control (in Japanese), JUSE, Tokyo, 1986.

[15] S. J. Keene, Jr., “Assuring software safety”, Proc. Annu. Reliability and Maintain-
ability Symp., pp. 274-279, 1992.

[16] J. H. Kim, Y. H. Kim and C. J. Park, “A modified Markov model for the estimation of
computer software performance”, Operations Research Letters, Vol. 1, No. 6, pp. 253—

257, December 1982.

[17] H. S. Koch and P. Kubat, “Optimal release time of computer software”, IEEE Trans.
Software Engineering, Vol. SE-9, No. 3, pp. 323-327, May 1983.

[18] W. Kremer, “Birth-death and bug counting”, IEEE Trans. Reliability, Vol. R-32,
No. 1, pp. 37-47, April 1983.

[19] J.-C. Laprie and K. Kanoun, “X-ware reliability and availability modeling”, IEEE
Trans. Software Engineering, Vol. 18, No. 2, pp. 130-147, February 1992.

[20]

[24]

[25]

[26]

[29]

[30]

References 175

J.-C. Laprie, J. Arlat, C. Béounes and K. Kanoun, “Definition and analysis of
hardware- and software-fault-tolerant architectures”, IEEFE Computer Magazine,

Vol. 23, No. 7, pp. 39-51, July 1990.

J.-C. Laprie, K. Kanoun, C. Béounes and M. Kadniche, “The KAT (Knowledge-
Action-Transformation) approach to the modeling and evaluation of reliability and
availability growth”, IEEE Trans. Software Engineering, Vol. 17, No. 4, pp. 370-382,
April 1991.

N. G. Leveson, “Software safety: Why, what, and how”, ACM Computing Surveys,
Vol. 18, No. 2, pp. 125-163, June 1986.

N. G. Leveson, Safeware: System Safety and Computers, Addison-Wesley, New York,
1995.

B. Littlewood and L. Strigini, “The risks of software”, Scientific American, Vol. 267,
No. 5, pp. 62-75, November 1992.

M. R. Lyu, ed., Handbook of Software Reliability Engineering, IEEE Computer Society
Press, Los Alamitos, CA, 1996.

Y. K. Malaiya and P. K Srimani, eds., Software Reliability Models: Theoretical Devel-
opments, Evaluation and Applications, IEEE Computer Society Press, Los Alamitos,

CA, 1991.

J. J. Marciniak, ed., Encyclopedia of Software Engineering (Vols. 1 and 2), John Wiley
& Sons, New York, 1994.

P. Mellor, “Software reliability modeling: The state of the art”, Information and
Software Technology, Vol. 29, No. 2, pp. 81-98, March 1987.

J. F. Meyer, “On evaluating the performability of degradable computing systems”,
IEFEFE Trans. Computers, Vol. C-29, No. 8, pp. 720-731, 1980.

G. De Micheli, “A survey of problems and methods for computer-aided hard-
ware/software co-design”, J. Information Processing Society of Japan, Vol. 36, No. 7,

pp. 605-613, July 1995.

176 References

[31] P. B. Moranda, “Event-altered rate models for general reliability analysis’;, IEFFE
Trans. Reliability, Vol. R-28, No. 5, pp. 376-381, December 1979.

[32] J. D. Musa and W. W. Everett, “Software-reliability engineering: Technology for the
1990s”, IEEE Computer Magazine, Vol. 7, No. 6, pp. 36—43, November 1990.

[33] J.D. Musaand K. Okumoto, “A logarithmic Poisson execution time model for software
reliability measurement”, Proc. 7th IEEE Int. Conf. Software Engineering, pp. 230—
238, 1984. '

[34] J. D. Musa and K. Okumoto, “Application of basic and logarithmic Poisson execution
time models in software reliability measurement”, Software System Design Method
(NATO ASI Series, Vol. F22), J. K. Skwirzynski, ed., pp. 275-298, Springer-Verlag,
Berlin, 1986.

[35] J. D. Musa, A. Iannino and K. Okumoto, Software Reliability: Measurement, Predic-
tion, Application, McGraw-Hill, New York, 1987.

[36] Y. Nakagawa and I. Takenaka, “Error complexity model for software reliability es-
timation” (in Japanese), Trans. IEICE D-I, Vol. J74-D-1, No. 6, pp. 379-386, June
1991.

[37] M. Nakamura and S. Osaki, “Performance/reliability evaluation for multi-processor
systems with computational demands”, Int. J. Systems Science, Vol. 15, No. 1, pp. 95—
105, January 1984.

[38] M. Ohba and X. Chou, “Does imperfect debugging affect software reliability growth?”,
Proc. 11th IEEE Int. Conf. Software Engineering, pp. 237-244, 1989.

[39] K. Okumoto and A. L. Goel, “Availability and other performance measures for system

under imperfect maintenance”, Proc. COMPSAC ’78, pp. 66-71, 1978.

[40] K. Okumoto and A. L. Goel, “Optimum release time for software system based on
reliability and cost criteria”, J. Systems and Software, Vol. 1, No. 4, pp. 315-318,
1980.

[41] S. Osaki, Stochastic System Reliability Modeling, World Scientific, Singapore, 1985.

[42]

[43]

44

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

References 177

S. Osaki, Applied Stochastic System Modeling, Springer-Verlag, Heidelberg, 1992.

H. Pham, ed., Software Reliability and Testing, IEEE Computer Society Press, Los
Alamitos, CA, 1995.

C. V. Ramamoorthy and F. B. Bastani, “Software reliability status and perspectives”,

IEEE Trans. Software Engineering, Vol. SE-8, No. 4, pp. 345-371, July 1982.

B. Randell, “System structure for software fault-tolerance”, IEEE Trans. Software

Engineering, Vol. SE-1, Vol. 2, pp. 220-232, June 1975.
P. Rook, ed., Software Reliability Handbook, Elsevier Applied Science, London, 1990.

S. M. Ross, Stochastic Processes, Second Edition, John Wiley & Sons, New York,
1996.

J. G. Shanthikumar, “A state- and time-dependent error occurrence-rate software
reliability model with imperfect debugging”, Proc. National Computer Conf., pp. 311-
315, 1981.

J. G. Shanthikumar, “Software reliability models: A review”, Microelectronics and

Reliability, Vol. 23, No. 5, pp. 903-943, 1983.

M. L. Shooman, Software Engineering: Design, Reliability, and Management,
McGraw-Hill, New York, 1983.

A. Sols, “System degraded availability”, Reliability Engineering and System Safety,
Vol. 56, No. 1, pp. 91-94, 1997.

U. Sumita and J. G. Shanthikumar, “A software reliability model with multiple-error
introduction & removal”, IEEE Trans. Reliability, Vol. R-35, No. 4, pp. 459-462,
October 1986.

W. A. Thompson, Jr., Point Process Models with Applications to Safety and Reliability,
Chapman and Hall, New York, 1988,

M. Xie, Software Reliability Modelling, World Scientific, Singapore, 1991.

178 References

[565] S. Yamada, Software Reliability Assessment Technology (in Japanese), HBJ Japan,
Tokyo, 1989.

[56] S. Yamada, “Software quality/reliability measurement and assessment: Software reli-
ability growth models and data analysis”, J. Information Processing, Vol. 14, No. 3,

pp. 254-266, 1991.

[57] S. Yamada, Software Reliability Models: Fundamentals and Applications (in
Japanese), JUSE Press, Tokyo, 1994.

[58] S. Yamada, “Software reliability /safety assessment” (in Japanese), J. Japan Society
for Safety Engineering, Vol. 33, No. 6, pp. 432441, December 1994.

[59] S. Yamada and H. Ohtera, Software Reliability: Theory and Practical Application (in
Japanese), Soft Research Center, Tokyo, 1990.

[60] S. Yamada and S. Osaki, “Optimal software release policies with simultaneous cost
and reliability requirements”, European J. Operational Research, Vol. 31, pp. 46-51,
1987.

[61] S. Yamada and M. Takahashi, Introduction to Software Management Model—
FBvaluation and Visualization of Software Quality (in Japanese), Kyoritsu-Shuppan,

Tokyo, 1993.

[62] S. Yamada, T. Ichimori and H. Masuyama, “Optimal release problems on software
failure time-measuring reliability models” (in Japanese), Trans. IEICE A, Vol. J73-A,
No. 6, pp. 1117-1122, June 1990.

[63] S. Yamada, M. Kimura and M. Takahashi, Statistical Quality Control for TQM —
Applying SQC Methods in a Wide Variety of Both General Industrial Products and
Software Products (in Japanese), Corona Publishing, Tokyo, 1998.

[64] S. Yamada, T. Yamane and S. Osaki, “Software reliability growth models with error
debugging rate” (in Japanese), Trans. IPS Japan, Vol. 27, No. 1, pp. 64-71, January
1986.

Publication List of the Author

1. Koichi Tokuno, Shigeru Yamada and Shunji Osaki, “A Markovian imperfect de-
bugging model for software reliability measurement”, IEICE Transactions on Funda-
mentals of Electronics, Communications and Computer Sciences, Vol. E75-A, No. 11,

pp. 1590-1596, November 1992.

2. Shigeru Yamada, Koichi Tokuno and Shunji Osaki, “Imperfect debugging models with
fault introduction rate for software reliability assessment”, International Journal of

Systems Science, Vol. 23, No. 12, pp. 2241-2252, December 1992.

3. Shigeru Yamada, Koichi Tokuno and Shunji Osaki, “Software reliability measurement
in imperfect debugging environment and its application”, Reliability Engineering and

System Safety, Vol. 40, No. 2, pp. 139-147, May 1993.

4. Koichi Tokuno and Shigeru Yamada, “A Markovian software availability modeling
and measurement” (in Japanese), in the Proceedings of the 15th Software Reliability

Symposium, pp. 86-92, Osaka, Japan, December 1994.

5. Koichi Tokuno and Shigeru Yamada, “A Markovian software availability measure-
ment with a geometrically decreasing failure-occurrence rate”, IEICE Transactions
on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E78-

A, No. 6, pp. 737-741, June 1995.

6. Koichi Tokuno and Shigeru Yamada, “A Markovian modeling for software availability
measurement” (in Japanese), in Foundation of Software Engineering II (Kazuhito

Ohmaki ed.), pp. 159-164, Kindai-Kagakusha, January 1996.

7. Koichi Tokuno and Shigeru Yamada, “A software availability model with imperfect
debugging environment” (in Japanese), in the Proceedings of the 16th Software Re-

liability Symposium, pp. 72-77, Kyoto, Japan, February 1996.

179

180

o

10.

11.

12.

13.

14.

Publication List of the Author

Koichi Tokuno and Shigeru Yamada, “A software reliability growth model with two
types of software failure-occurrences” (in Japanese), in the Proceedings of Software

Symposium ’96, pp. 16—24, Hiroshima, Japan, June 1996.

Koichi Tokuno and Shigeru Yamada, “Imperfect debugging modelling with two types
of failure-occurrence rates for software reliability measurement”, in the Proceedings
of the Second Australia-Japan Workshop on Stochastic Models in Engineering, Tech-
nology and Management (Richard J. Wilson, D. N. Pra Murthy, and Shunji Osaki
eds.), pp. 621-630, Gold Coast, Australia, July 1996.

Keiko Takata, Koichi Tokuno and Shigeru Yamada, “Markovian software availability
modeling with a geometrically decreasing hazard rate”, in the Proceedings of the
Third China-Japan International Symposium on Industrial Management (ISIM ’96)
(Feng Yuncheng and Hirokazu Osaki eds.), pp. 544-549, Nanjing, China, October
1996.

Koichi Tokuno and Shigeru Yamada, “Markovian software availability modeling for
performance evaluation”, in Stochastic Modelling in Innovative Manufacturing: Pro-
ceedings, Cambridge, U.K., July 21-22, 1995 (Lecture Notes in Economics and Math-
ematical Systems 445) (Anthony H. Christer, Shunji Osaki, and Lyn C. Thomas eds.),
Pp- 246-256, Springer-Verlag, Berlin, 1997.

Koichi Tokuno and Shigeru Yamada, “Software availability model with a decreasing
fault-correction rate” (in Japanese), Reliability (the Journal of Reliability Engineer-

ing Association of Japan), Vol. 19, No. 1, pp. 3-12, January 1997.

Koichi Tokuno and Shigeru Yamada, “Markovian software availability modeling with
two types of software failures for operational use”, in the Proceedings of the Third
ISSAT International Conference on Reliability and Quality in Design (RQD ’97)
(Hoang Pham ed.), pp. 97-101, Anaheim, California, U.S.A., March 1997.

Koichi Tokuno and Shigeru Yamada, “A Markovian modeling for software availability
measurement” (in Japanese), Computer Software (the Journal of Japan Society for

Software Science and Technology), Vol. 14, No. 2, pp. 38-44, March 1997.

15.

16.

17.

18.

19.

20.

21.

22.

Publication List of the Author 181

Koichi Tokuno and Shigeru Yamada, “Markovian availability modelling for computer-
based system with software failure-occurrence”, in the Proceedings of the Second
International Conference on Quality and Reliability (ICQR ’97) (Albert H. C. Tsang
and C. Y. Tang eds.), Vol. 1, pp. 397-403, Hong Kong, September 1997.

Koichi Tokuno and Shigeru Yamada, “Markovian availability measurement and as-
sessment for hardware-software system”, International Journal of Reliability, Quality

and Safety Engineering, Vol. 4, No 3, pp. 257-268, September 1997.

Koichi Tokuno and Shigeru Yamada, “Operational availability measurement with
two types of software failures” (in Japanese), in Foundation of Software Engineer-
ing IV (Yoshiaki Fukazawa and Mikio Aoyama eds.), pp. 95-98, Kindai-Kagakusha,
December 1997.

Shigeru Yamada, Koichi Tokuno and Yu Kasano, “Quantitative assessment models
for software safety/reliability” (in Japanese), the Transactions of IEICE A, Vol. J80-
A, No. 12, pp. 2127-2137, December 1997, and Electronics and Communications in
Japan, Part 2, Vol. 81, No. 5, pp. 33-43, 1998.

Koichi Tokuno and Shigeru Yamada, “A Markovian software availability model for
operational use” (in Japanese), Computer Software (the Journal of Japan Society for

Software Science and Technology), Vol. 15, No. 3, pp. 17-24, May 1998.

Koichi Tokuno and Shigeru Yamada, “Markovian software availability modeling with
degenerated performance”, in the Proceedings of the European Conference on Safety
and Reliability (ESREL ’98) (Stian Lydersen, Geir K. Hansen and Helge A. Sandtorv
eds.), Vol. 1, pp. 425-431, Trondheim, Norway, June 1998.

Koichi Tokuno and Shigeru Yamada, “Markovian software safety/reliability measure-
ment with imperfect debugging”, in the Proceedings of the Fourth ISSAT Interna-
tional Conference on Reliability and Quality in Design (RQD ’98) (Hoang Pham and
Ming-Wei Lu eds.), pp. 5660, Seattle, Washington, U.S.A., August 1998.

Takashi Miki, Koichi Tokuno and Shigeru Yamada, “Imperfect debugging models

with introduced software faults and their comparisons”, in the Proceedings of the

182

23.

24.

25.

26.

27.

28.

Publication List of the Author

Fourth China-Japan International Symposium on Industrial Management (ISIM ’98)
(Feng Yuncheng and Hirokazu Osaki eds.), pp. 278-283, Dalian, China, October 1998.

Koichi Tokuno and Shigeru Yamada, “Operational software availability measurement
with two kinds of restoration actions”, Journal of Quality in Maintenance Engineer-

ing, Vol. 4, No. 4, pp. 273-283, October 1998.

Koichi Tokuno and Shigeru Yamada, “Software availability modeling with two restora-
tion actions for operational use” (in Japanese), in the Proceedings of the 18th Sympo-
sium on Quality Control of Software Production, pp. 193-200, Tokyo, Japan, Novem-
ber 1998.

Shigeru Yamada, Koichi Tokuno and Kei Inoue, “Optimal release problems with
software reliability /safety based on cost criteria” (in Japanese), the Transactions of

IEICE A, Vol. J82-A, No. 1, pp. 64-72, January 1999.

Koichi Tokuno and Shigeru Yamada, “An imperfect debugging model with two types
of hazard rates for software reliability measurement and assessment”, Mathematical

and Computer Modelling, to be published in 1999.

Koichi Tokuno and Shigeru Yamada, “Markovian reliability modeling for software
safety/availability measurement”, in Recent Advances in Reliability and Quality En-

gineering (Hoang Pham ed.), World Scientific Publishers, to be published in 1999.

Koichi Tokuno and Shigeru Yamada, “Stochastic software safety/reliability measure-

ment and its application”, Annals of Software Engineering, to be published.

END

