STUDIES ON SOLVING METHOD OF
SOME COMBINATORIAL
PROBLEMS BY GA

by
Katsumi Hirayama

Course in Engineering of Social Development

at
TOTTORI UNIVERSITY
TOTTORILJAPAN
March 1997

PREFACE

When we consider effective production and management systems,
a lot of problems can be dealt with through combinatorial problems.
Various combinatorial optimization problems applied to production and
management systems have been studied in the field of Operations Re-
search(OR). One typical OR methods is mathematical programming,
which optimizes some function called an objective function, subject to
some constraint equations. Combinatorial optimization problems are
classified into the most difficult kind of problems in mathematical pro-
gramming. Combinatorial optimization problems have a-vast sums of
combinations which can not be enumerated even with a super computer.

We consider two types of combinatorial optimization problems,
which are categorized into two types of problems, One is to layout ge-
ometrical materials, which is called packing problem, and the other
is to decide combination of natural number in Markov Decision Pro-
cess(MDP). Packing problems can be applied to iron and steel industries,
glass industries and paper industries. Many optimal control problems of
stochastic systems can be formulated by MDP, e.g., queuing systems,
reliability systems and reservoir operation systems.

Some techniques to give an optimal solution of a combinatorial
problem have been developed. Dynamic programming, branch and bound,

and integer programming are typical methods to solve combinatorial opti-

mization problems. It is ,however, impossible to find an optimal solution
of combinatorial problems in real world manufacturing problems within
a reasonable time, even though appealing to above operational research
techniques. Computational time and effort will grow exponentially with
problem size which means the number of decision variables and the num-
ber of constraint equations. Almost combinatorial optimization problems
are known as Non-deterministic Polynomial(NP) complete problems. NP
complete problems are defined as the problem which cannot be given an
optimal solution within a polynomial expression time.

We apply Genetic Algorithms (GAs) to these problems. GAs are a
typical meta-heuristics and have been proposed by John Holland. GAs
are search procedures to find an approximate or possibly an optimal
solution, which are based on the mechanics of natural selection and nat-
ural genetics. Our GAs are categorized into Hybrid GAs which utilize
the other optimization methods, greedy algorithms, heuristics and Policy

Iteration Method (PIM).

Contents

1. INTRODUCTION 5
1.1. Combinatorial Optimization Problem - - - - - - - . .. 5
1.1.1. Heuristics on Combinatorial Optimization Prob-

JEIMS « « « « e e e e 6
1.1.2. Meta-Heuristics on Combinatorial Optimization
Problems - - « « + « o e e e e e e 8
1.1.3. Genetic Algorithms =« -« = =« - -« o o0 e 8
1.1.4. Geometrical Combinatorial Optimization Prob-
JEIMS « « « « e e e e e e 10
1.1.5. Natural Number Combinatorial Optimization Prob-
1ems 10
1.2. Outline of Dissertation - « - - =+« « v o v oo 11
1.3. Historical Review of Literature - « -« « - -« 13

2. TWO-DIMENSIONAL RECTANGULAR PACKING PROB-

LEM 19
2.1, Introduction - « « « « « « o o e e e 19
2.2. Two-dimensional Rectangular Packing Problem - - - - 22
2.3. Solving Method by Greedy Algorithm - - - - - - - 24

2.3.1. Evaluation Function to Choose a Rectangular Piece 24
2.3.2. Evaluation Function to Select an Allocation Position 25

2.4. Parameter Tuning Method by Genetic Algorithms - - - - 28
2.5. Numerical Experiment - - - - - - - -« oo oo 29
2.5.1. Experimental Data - - - - - - - oo 30
2.5.2. Experimental Types of GAs - - - - - - 30
2.5.3. Experimental Results - - - - -+ - -« 32

26 COHCIUSiQn 41
3. SLAB DESIGN PROBLEM 43
3.1, Introduction -« « « « « « « o o o e e 43
3.2. Slab Design Problem - - - - - -« o oo 45
3.3. Production Process of Heavy Steel Plates - - - - - - - - 47
3.3.1. Restriction of Order - - = - - - = = -+ oo oo 47

3.3.2. Restriction of Rolling «~ - - -« - -+ 43

3.3.3. Restriction of Slab ~ « =+ + - - oo 49
34 Formulation - - - + « + = = v+ e h e 50
3.5. Application Method - - - -+« = o e 53
3.5.1. Concept of Hybrid Genetic Algorithms - - - - - 53
3.5.2. Procedure of Hybrid GAs on Slab Design - - - - 34
3.6. Realistic Application - - = =+ = - - oo 58
3.6.1. Creating Initial Population -« - - -« - - - - - - 58
3.6.2. Coding -+« - - v e e 61
3.6.3. Genetic Operations - - - - - -+« - o oo 61
3.6.4. SEleCtOn « « « - ¢ e e e e 62
3.7. Numerical Example - - - -« -+« oo 62
38 COnClUSION « « « « « « « v e 66
4. A MARKOV DECISION PROCESS WITH A CON-
STRAINT 69
A1, Introduchion - - - « « - ¢ c e e 69
4.2. MDP with Constraint - - - - - - -+« - v oo 70
4.2.1. Definitions and Notations - « « - - <« -« -+ - 70
4.2.2. Mixed And Pure Policy -+« - - -+ oo 72
4.3. Genetic Algorithms - - - = -+ - = oo 72
43.1. Procedure of GAs - - - - - oo 73
4.3.2. Application of GAs -+ - - - - oo 76
4.4. Numerical Examples -« =« -+ - oo 79
4.5 ConclUSion - - « « « « « « v+ o e 93
5. A SINGLE RESERVOIR OPERATION OPTIMIZATION
PROBLEM 95
51, Introduchion -« « « « « « « o o oo e e 95
5.2, Preliminaries « - - « « « « « o o o e v e e 08
5.2.1. State Variables - - - -« -+ .o 98
5.2.2. Single Reservoir Operation Rule - - - - - -+« - 100
5.3. Problem Definition « - - - - - -« oo oo 101
5.3.1. Transition Probabilities « - - - - - - - -+ - - 101
5.3.2. Reliability Indices for Designing Reservoir the Op-
eration Rules - « « « « « c o e e e e e 102
5.4. Genetic Algorithms - - - - - - - - - oo 104
54.1. Procedure of GAs - - - - - - - oo 105
5.4.2. Policy Improvement Method for Local Search - - 108
5.5. Numerical Examples - - -« - - -« oo oo 109
5.6, ConcluSion « « « « « « « v v v e e e e 117
6. CONCLUSION 119

Q]

ACKNOWLEDGEMENT 121

BIBLIOGRAPHY 122

Chapter 1.

INTRODUCTION

1.1. Combinatorial Optimization Prob-
lem

When we consider effective production and management systems, a lot
of problems can be dealt with through combinatorial problems. Various
combinatorial optimization problems applied to production and manage-
ment systems have been studied in the field of Operations Research (OR).
One typical OR method is mathematical programming, which optimizes
some function called an objective function, subject to some constraint
equations.

Combinatorial optimization problems are classified into the most
difficult kind of problems in mathematical programming. Combinatorial
optimization problems have vast sums of combinations which can’t be
enumerated even with a super computer. A combinatorial optimization

problem is generally stated as follows,

min (2)

subject to z € F

Here, variable means a decision variable which is usually expressed as
a permutation of natural numbers, and F' is a set of feasible solutions
and/or a set of permutations.

Some techniques to give an optimal solution of a combinatorial
problem have been developed. Dynamic programming, branch and bound,
and integer programming are typical methods to solve combinatorial op-
timization problems. It is, howevers impossible to find an optimal so-
lution of combinatorial problems in real world manufacturing problems
within a reasonable time, even though appealing to the above operational
research techniques. Computational time and effort will grow exponen-
tially with problem size, which means the number of decision variables
and the number of constraint equations. Almost all combinatorial op-
timization problems are known as Non-deterministic Polynomial (NP)
complete problems. NP complete problems are defined as the problems
which can’t be given an optimal solution within a polynomial expression

time.

1.1.1. Heuristics on Combinatorial Optimization
Problems

Various heuristics are developed to find feasible solutions of combi-
natorial optimization problems. Heuristics are a powerful technique to

give some feasible solutions, which are very difficult to find in problems

6

Combinatorial Problem
- CHARACTERISTICS . PERMUTATION
iy : ° e
: Lmea..n.t y — N Optimized e

:| Subdivisiblity

Solution K
: : Optimal
:| Problem’s size | © RRAR

* CHARACTERISTICS

Linearity
~ | Subdivisiblity

Optimized
Solution

 Problem’s size

Figure 1.1 A concept of heuristics in combinatorial problem

of large size. Heuristics incorporate the experience of experts and utilize
the problem’s characteristics. Here, the problem’s characteristics include
the problem’s size, linearity, subdivisiblity and so on. However, a fea-
sible solution obtained by heuristics is not always an optimal solution,
and is only an approximate solution which disregards objective criteria.

Heuristics are what we call an expert system in the real world system.

Here, we define an optimal solution to be a feasible solution which
maximizes or minimizes objective function. That is, there is no other
feasible solution which is better than an optimal solution. On the other
hand, we define an optimized solution to be an approximate solution
in some sense. Figure 1.1 shows the relationship between a concept-of
heuristics and a combinatorial optimization problem.

7

1.1.2. Meta-Heuristics on Combinatorial Optimiza-
tion Problems

Recently, meta-heuristics attract the attention of a great many re-
searchers as a solving method of combinatorial optimization problems.
Typical methods of meta-heuristics are neural-networks, simulated an-
nealings and genetic algorithms. Meta-heuristics are a high rank concept
of standard heuristics, which is an effective method when we are not sat-
isfied with an optimized solution obtained by heuristics. Meta-heuristics
have an advantage of utilizing standard heuristics and/or mathematical
programming for local search. That is, meta-heuristics inherit the ad-
vantage of mere heuristics and/or mathematical programming. We are
convinced that a concept such as meta-heuristics can make an applica-
tion of software catch up with hardware. Meta-heuristics is the solving
method of combinatorial optimization problems in the sense of global
optimization.

Figure 1.2 shows a concept of meta-heuristics in a combinatorial

problem.

1.1.3. Genetic Algorithms

Genetic Algorithms (GAs) are typical meta-heuristics [21]. They have
been proposed by John Holland, whose research goals are to solve com-
plex problems in many areas, including machine learning, the simulation

of autonomous behavior and combinatorial optimization problems. GAs

8

Combinatorial Problem
- CHARACTERISTICS PERMUTATION

:| Linearity
| Subdivisiblity '-._ \ ..-'
: A /6 Optimal O

{| Problem’s size Osp(:ﬁé? Solution___..+*""

Input
Data

Subdivisiblity

Problem’s size

META-HEURISTICS

Figure 1.2 A concept of meta-heuristics in combinatorial problem

are search procedures to find an optimized solution, and they are based

on the mechanics of natural selection and natural genetics.

GAs are algorithms of multi-start local searches which can deal
with plural solutions simultaneously. GAs take advantage of utilizing
usual heuristics and/or mathematical programming which are suitable
to each problem. We particularly deal with what we call hybrid GAs
which utilize usual heuristics and/or mathematical programming. This
paper considers two types of combinatorial optimization problems, that
is, packing problems and MDP problems, which are formulated by some
combinatorial programming and proposed solving methods using hybrid

GAs.

1.1.4. Geometrical Combinatorial Optimization Prob-
lems

Combinatorial optimization problems are categorized into two types
of problems. One is to layout geometrical materials and the other is
to decide combinations of natural numbers. Combinatorial optimiza-
tion problems to layout geometrical materials are called packing prob-
lems. Packing problems can be applied to iron and steel industries, glass
industries and paper industries. In these industries, a typical packing
problem is how to distribute small rectangular pieces in a large rectan-
gular piece. In this problem, it is very difficult to find even one feasible
solution. There are various types of packing problems, that is, rectangu-
lar packing problems, knapsack problems and bin-packing problems. In
this paper, we deal with rectangular packing problems and bin-packing
problems in various combinatorial problems to layout geometrical mate-
rials. We propose solving methods of packing problems and bin-packing
problems by using hybrid GAs. On applying GAs to packing problems,
the most important thing is how to constitute genetic information. We

propose a constituting method suitable for each packing problem.

1.1.5. Natural Number Combinatorial Optimiza-
tion Problems
Typical combinatorial optimization problems to decide combinations

of natural numbers are scheduling problems, traveling salesman prob-

10

lems, Markov Decision Process (MDP) problems and so on. We deal
with MDP problems in various combinatorial problems to decide combi-
nations of natural numbers. Many optimal control problems of stochastic
systems can be formulated by MDP, e.g., queuing systems, reliability sys-
tems and reservoir operation systems. In this paper, we treat MDP with
constraints, and propose solving methods using hybrid GAs.

MDP is constituted of state space, action space, one step transition
probability and cost or reward associated with each state and action.
This problem is to find a policy, that is, a combination of actions for
each state, which optimize time average expected cost or reward in an
infinite time horizon. MDP with constraints doesn’t have any solving
method for finding an optimal solution. In this paper, we propose a
solving method of MDP with a constraint, and with multiple constraints
by using hybrid GAs.

We first analyze MDP with a constraint as a general framework,
and next analyze an optimal control problem of reservoir against drought

as a real world problem.

1.2. Outline of Dissertation

Chapter 2 and Chapter 3 discuss packing problems, which are to
decide geometrical combinatorials. Chapter 2 treats rectangular packing

problems using hybrid GAs interwoven with greedy algorithms. Chap-

11

ter 3 deals with two-dimensional bin-packing i)roblems, which are so-
called slab design problems in iron and steel industries. We apply hybrid
GAs interwoven with heuristic algorithms to this problem. A rectangu-
lar packing problem’s object is to minimize trim-loss of a large rectangle.
On the other hand, a two-dimensional bin-packing problem’s object is
to minimize the number of large rectangular pieces. Those objective
functions are different between rectangular packing problems and two-
dimensional bin-packing problems. Therefore, the way of modeling and
suitable local search are different for each problem. We propose differ-
ent ways of interweaving GAs in Chapter 2 and Chapter 3. We propoée
hybrid GAs combined with greedy algorithms in Chapter 2, and hybrid

GAs combined with heuristics in Chapter3.

Chapter 4 and Chapter 5 study MDP problems with constraints,
which are to decide combinations of natural numbers. Chapter 4 inves-
tigates a solving method of a MDP with a constraint, proposes applying
the Policy Iteration Method (PIM), and analyzes by applying hybrid
GAs which combine PIM. Chapter 5 considers a MDP problem with
multiple constraints, which is a single reservoir operation optimization
problem with multiple reliability constraints. Chapter 5 extends a solv-
ing method of a MDP with a constraint. However, even a MDP with a
constraint is too difficult to derive an optimized solution for. A single

reservoir operation optimization model is a more realistic problem than

12

a solving method of a MDP model with a constraint.

1.3. Historical Review of Literature

Combinatorial problems have been discussed by a great number of
researchers since the middle of the nineteenth century. Here, we intro-
duce some significant historical literature on packing problems and MDP

problems.

There are various types of packing problems such as two-dimensional
rectangular packing problems, three-dimensional cuboid packing prob-
lems, non-rectangular packing problems, strip-packing problems, bin-
packing problems, and so on. We discuss two-dimensional rectangular
packing problems and two-dimensional bin-packing problems as an ap-

plication of GAs.

Two-dimensional packing problems are available in many real world
problems. In regard to two-dimensional rectangular packing problems,
Kantorovitch [1] published the earliest paper “Mathematical methods of
organizing and planning production” in 1939. He extended one-dimensional
packing problems to two-dimensional packing problems. Paull and Wal-
ter [7] proposed an application of linear programming to this problem in
1954. Their work can be applied only to very small-size problems. After
that, many variants of the two-dimensional rectangular packing problem

are proposed. Gilmore and Gomory [2] proposed to apply the column

13

generation method to one-dimensional rectangular packing problems in
1961. Their success in one-dimensional problems stimulated research into

the two-dimensional case.

In regard to bin-packing problems, D.S.Johnson [9] proposed Fast
algorithms for bin-packing in 1974. After that, many researchers en-
titled two-dimensional rectangular bin-packing problems. Almost all of
their algorithms were heuristics such as the Best-Fit algorithm, First-Fit-
Decreasing algorithm and Best-Fit-Decreasing algorithm. B.S.Baker and
E.G.Coffman [8] proposed Next-Fit-Decreasing on bin-packing in 1981.
Moreover, Coffman, Garey and Johnson [10] surveyed Approximation al-
gorithms for bin-packing problems in 1984. Packing problems have been
surveyed by Dowsland [3] in 1992. In 1994, Ahmed el-bouri et al. [6]
presented heuristics for two-dimensional bin-packing problems. In their
paper, a heuristic algorithm combining priority rules with a restricted
search procedure is presented for solving two-dimensional bin-packing

problems.

Rectangular packing problems are also known as cutting stock prob-
lems. Here, cutting stock problems mean two-dimensional rectangular
packing problems with guillotine cut constraint. After Gilmore’s re-
search, cutting stock problems attracted many industries where many
shapes are cut from a piece of raw material. Wang [11] proposed two

algorithms for constrained two-dimensional cutting stock problems in

14

1983. Tokuyama and Ueno [4] discussed the cutting stock problem for
large sections in the iron and steel industries in 1985. Agrawal [5] pro-
posed a method to minimize trim loss in cutting rectangular blanks of

single size from a rectangular sheet using guillotine cuts in 1993.

The original form of a Markov Decision Process (MDP) was intro-
duced by Bellman [12] in 1957. In 1960, an excellent guide book “Dy-
namic Programming and Markov Processes” was published by Howard
[13]. He gave the Policy Iteration Method to find a stationary pure op-
timal policy. Each stationary pure policy is a combination of actions for
each state. Hence, the problem to find an optimal pure policy is a kind
of combinatorial optimization problem. MDP has received increasing at-
tention during the last three decades. Up to the present time, however,
only a limited amount of work has been done on MDP with constraints.
Hordijk and Kallenberg [14] investigated MDP with multiple constraints
in 1984. They analyzed the problem in the range of mixed policy and
formulated it by linear programming. Beutler and Ross [15] considered
MDP with single constraint and proposed a solving method by applying

Lagrange multipliers in 1985.

Regarding a reservoir operation problem, since Moran’s pioneering
work [26] on ‘Stochastic Reservoir Theory’ in 1954, extensive research has
been done to analyze the reliability performance of reservoir systems [27],

[28]. In particular, remarkable progress has been made in the estimation

15

of relevant indices. These indices specify the probability that water is
available from the reservoir (Reliability index) and the expected duration
of that following a drought (Expected Duration index). Hashimoto et al.
[29] in 1982 proposed to use ‘reliability’, ‘resiliency’ and ‘vulnerability’

criteria for water resource system performance evaluation.

Hashimoto’s indices cover the concepts of drought ‘frequency’, ‘du-
ration’ and ‘magnitude’ but fail to deal explicitly with the inflow distri-
bution. In order to introduce these indices into a stochastic programming
model, a consistent theoretical basis for formulating indices is required.
The problem was analyzed in the range of Mixed policy and was formu-

lated by linear programming.

Little’s pioneering work on reservoir policy appeared in 1955, which
provided a basis for what is now called Stochastic Dynamic Programming
(SDP). Since then, much work has been done to apply SDP to real world
reservoir operation problems [30],[31]. Most of the work in this direction
used a simple single-stage loss function which is assumed to be a decreas-
ing function of reservoir release (an ordinary single stage loss function).
A model of this type commonly takes the form of expected loss minimiza-
tion. These models could not explicitly consider the indices mentioned
above. As a result, those models tend to ignore the trade-off among the
various reliability indices. To overcome this problem, several approaches

have been developed. These include the one that treats ‘chance’ or ‘re-

16

liability’ of drought as a constraint [32], [33], [34], [35]. However, even
chance/ réliability constraint models could not take into account the du-
ration of drought in an explicit manner.

Tatano et al. discussed that in their paper [36] giving a reservoir
operation rule. The model was formulated in the form of a stochas-
tic linear programming model which minimizes expected loss per period
subject to two kinds of reliability constraints of drought frequency and
expected drought duration. In that model, state variables were defined

at maximum available amounts for release and occurrence of drought.

17

Chapter 2.

TWO-DIMENSIONAL
RECTANGULAR
PACKING PROBLEM

2.1. Introduction

This chapter describes a solving method for two-dimensional rect-
angular packing problems which are a kind of geometrical combinatorial
problem. Two-dimensional rectangular packing problems are the packing
of rectangular pieces (order plates) into a larger rectangular container
(mother plate). Two-dimensional rectangular packing applications are
required in industries such as glass, paper and metal in order to pro-
duce effectively. Two-dimensional rectangular packing problems are sub-
divided into two problem areas; that of determining a permutation of
order plates’ allocation while minimizing wastage (the trim-loss prob-
lem), and that of determining the number of mother plates and each
mother plate’s cutting pattern to meet a given order while minimizing

the number of mother plates (the assortment problem).

19

In this chapter, we deal with trim-loss problems which are also
called cutting problems. In a production system, order plates are pro-
duced by cutting patterns according to layout order plates on a mother
plate. The trim-loss problem is dominated by permutation of order plates
and a geometrical allocation on the plane. Therefore, it is important to
determine which order plate is the best to pack into the mother plate

next, and which allocation of points is the best to locate next.

However, it is impossible to calculate all permutations of order
plates and feasible allocation points within a reasonable calculation time
limit when the amount of order plates is large. Then, various heuris-
tic algorithms are developed to solve two-dimensional packing problems.
These heuristic algorithms consist of cutting pattern constraint, order
plate’s size and/or production rule-based algorithms. For example, one
approach is proposed from a mathematical perspectivé to a production
rule-based one, the other approach is to use heuristics consisting of or-
dering and placement rules for the required rectangular pieces. However,
characteristics of production rules are different for each individual factory
and production environment. Therefore, production systems which are
made by heuristics are not general purpose systems, when the production

environment changes.

There are several approaches to find an optimized solution in this
problem. These approaches adopt predetermined theories or rules that

20

are subject to the problem itself. It is very difficult to determine which
order plé,tes to allocate first. Moreover, the allocation position depends
on packing order. Since this determination affects the whole rectangular
packing performance, a two-dimensional rectangular packing problem is

a combinatorial problem.

We consider that in the trim-loss problem it is possible to control
two evaluation functions expressed by this problem’s characteristics. We
propose an approach which applies Hybrid GAs in order to guide a search
process effectively and to obtain an optimized allocation. Genetic infor-
mation in a trim-loss problem is expressed by the weighted coefficients
of evaluation function. Permutation and placement of order plates is im-
proved according to the progressing of genetic information. This method
is more general-purpose than the usual rule based approach or heuristics.
Kawakami and Kakazu [16] proposed that a three-dimensional packing
strategy is acquired through a hierarchical tuning. We basically refer-
ence their hierarchical tuning method on applying GAs. However, they
never discuss about two-dimensional rectangular packing problems and

allocation direction of rectangles.

We consider the allocation direction of rectangular pieces on two-
dimensional packing problems. Considering the allocation direction of
rectangular pieces means whether it is permitted to revolve a rectangular

piece 90 degrees or not. In case of permission to revolve the rectangular

21

pieces 90 degrees, the number of rectangular piece’s combinations is equal
to the square number of primals. Moreover, the problem’s characteristics
are suddenly complicated because we must add the decision of whether
the rectangular pieces are revolved 90 degrees or not. Therefore, we
define whether the allocated rectangular pieces are revolved 90 degrees
or not as the binary genetic information. This binary genetic information
lets us find the optimized solution, even if the problem’s size is large.

A numerical example was also presented to examine the computa-
tional efficiency of this proposed approach. Our new algorithm found an

optimal solution in a few minutes by 200mips workstation .

2.2. Two-dimensional Rectangular Pack-
ing Problem

In the previous section we proposed that a two-dimensional rectan-
gular packing problem is represented by two evaluation functions that
dominate the packing procedure. In this section, we discuss modeling
and procedure on two-dimensional rectangular packing problems. Two-
dimensional packing procedure consists of two steps. First, the most
suitable position in the mother plate is determined by a position eval-
uating function. Second, when an order plate is placed in a predeter-
mined next allocation position, the most suitable order plate is chosen
from an unallocated order plates’ set according to an order permuting

evaluating function. These two steps are executed recursively until al-

22

location space satisfies the termination conditions. We define gene in
GAs to Be weighted coefficients which are controlled by those evaluation
functions. Calculation results on two-dimensional rectangular packing
problems largely depend on a combination of weighted coefficients of two
evaluation functions. Our object is to give an optimized solution while
minimizing trim loss by finding which weighted coefficients suit the prob-
lem.

Here, we define some notations about the size of the container and

rectangular pieces, that is, the mother plate and order plates.

Mother plate size: (W, L) (2.1)

i th order plate size: P; = (w;, 4;), t=1,2,---,n (2.2)

Where, P; is the i-th order plate evaluation value, w; and ¥¢; are
dimensions of the i-th order plate, and n is the number of order plates.
First, we allocate a mother plate at initial point (0,0). Here, allocation
spaces (z,y) are restricted respectively to 0 <z <W,0<y < L.

Moreover, objective function (i.e., fitness on GAs) is as follows:

T w; - b
R — [7 2
> (i) 63
That is, R means the area ratio which covered order plates in a mother

plate, and m is the number of allocated order plates which is possible to

allocate to an order plate. Our object is to choose a suitable order plate

23

and to determined the order plate’s allocation point and direction in a
mother plate at each step, while maximizing the function R. That is,
our object is to layout order plates in a mother plate while minimizing

wastage (the trim loss).

2.3. Solving Method by Greedy Algorithm

We propose the greedy algorithm for determining a permutation of
order plates and an allocation point. The greedy algorithm is a solving
method which chooses the biggest element first in order to press the
overall solution space, then the next biggest element in the solution space
that is left. This algorithm presses solution space while choosing the most
suitable solution according to progress in the search process. This search
process is similar to a human’s intellect. For example, when we pay an
amount of money by using some kinds of coins and bills, we unconsciously
use this algorithm.

We define evaluation function @); to measure i-th order plate, weighted
coefficient e, to control allocation and evaluation item f, to evaluate the

order plates. In this paper, we consider two evaluation items.

2.3.1. Evaluation Function to Choose a Rectangu-
lar Piece

Evaluation function @;, weighted coefficient e, and the evaluation

items fy are as follows:

24

¥ = argmax @, (2.4)

2
Qi = > (ex fr), (2.5)

Where evaluation item f; and f; show non-similarity and area ratio
between mother plate and order plate, respectively. Function); is a liner
equation for fi, which is biased against weight coefficient e;. In case ey
is larger than eg, evaluation item f; has strong effect on choosing non-
similar rectangular pieces. In the opposite case, that is, e is smaller than
eq, evaluation item f, has strong effect on choosing large-sized rectangular
pieces. Therefore, this evaluation function allocates a rectangular piece

which has the highest evaluation value.

2.3.2. Evaluation Function to Select an Allocation
Position

We define evaluation function P; which measures j-th order plate’s

feasible allocation positions. Evaluation function P; chooses the most

suitable allocation position (z*,y*) of a set of allocable positions (z;,y;).

Here, an evaluation value P; and the most suitable allocation position

(z*,y*) are given as follows:

(=% y") = arg min P, (2.8)

P = e3-2%+eg- Y. (2.9)

Where (zj,y;) is a set of the j-th feasible allocation positions, and
es3 and e4 are weighted coefficients. Function F; is a linear equation for a
set of the j-th feasible allocation positions (z;,y;) which is biased against
weight coefficient eg, ey.

When j-th rectangular piece with dimension (wj, £;) is located at
allocation point (z,y), we add two points, (z 4+ w;,y) and (z,y+£;) to a
set of allocation positions, then delete the allocation point (x,y) from an
allocation position set. That is, the number of elements in j-th feasible
allocation position set is j. Here, the first allocation position is (0, 0).

Figure 2.1 shows the most suitable and feasible allocation points
when j is 3. The first allocation point (z1,%1) is the lower left point
O (0,0). When the 11th white order plate with dimension (wn1, ¢11)
which is chosen by evaluation function @); is allocated at the first allo-
cation point (0,0), the second allocation points (xq,y.) are (0, ¢;;) and
(w11,0). According to Figure 2.1, the 6th deep gray order plate is al-
located at (ws1,0). Therefore, the third allocation points (z3,y3) are
(0,411), (w11, €s) and (wyg + ws, 0). According to Figure 2.1, the 8th light
gray order plate is allocated at (0,¢;;). The fourth allocation points
(z4,y4) are (0, &1 + &), (ws, €11), (w11, &) and (w11 + wg, 0).

26

F (X4Y Y4). : — ;
=3, =13 |
B (x5, vo)l Order Plate 8 E
€ ' :
()). E (x4 v4)
B(x, v :
v D (xg4, y4)
j:l’ l=11 :E
Order Plate 11
00— o= . |

O (x4, vq) Alxy, vo) C (xg vs)

!

C (X4, y4)

Figure 2.1 Allocation position

In case e3 is larger than ey, allocation points along the x-axis di-
rection, while maximizing the evaluation item P;, have strong effect on
choosing. In the opposite case, that is, e3 is small than ey, allocation

points along the y-axis direction have strong effect on choosing.

Accordingly, each parameter e;, €9, e3 and e4 is an element of combi-
natorial information on a two-dimensional rectangular packing problem.
The different combination of those parameters leads to the different al-
location results. An optimized solution in a two-dimensional rectangular
packing problem is given by tuning those parameters while minimizing

trim-loss.

2.4. Parameter Tuning Method by Genetic
Algorithms

In this section, we propose a solving method of tuning parameters in
greedy algorithm using GAs. Here, a gene of GAs is defined as a string
which is lined with four parameters in greedy algorithm. Each parameter,
e1, ez, e3 and e4 is expressed by the binary code (0 or 1). Population of
GAs consists of the different genes, that is, the different parameter sets.
Figure 2.2 shows population, that is, the gene’s set which expresses four
parameters as sixteen bits. According to Figure 2.2, e; of string 1 is 0101
in binary code. 0101 means 23 x 0+ 22 x 1 +2' x0+2°x 1 =15 We

normalize 0101 to <, therefore e; = &. Similarly, e; = 83,5 = 12 and

16°
eq4 = T45_ As a result, stringl means allocation information which has
: : _ 5 _ 10 , _ 10 _ 4 Qi
weighted coefficients, e; = 562 = 1563 = Tg and e4 = 5. Similarly,

other strings respectively mean different allocation information:

Genes el e es €4
String 1 0101 1010 1010 0100
String 2 1101 0101 0000 0010

Stringn 1101 1110 1110 0100

Figure 2.2 A concept of population

Here, we explain the binary code which determined whether pieces

revolved 90 degrees or not as follows:

28

- { 0 same as primal data (w,¥) = (w;, &), (2.10)

1 revolved 90 degrees (w,4) = (4;, w;).

Figure 2.3 shows population, that is, the gene’s set which expresses
allocation information and allocation direction whether revolving 90 de-
grees or not. According to Figure 2.1 and Figure 2.3, String 1 shows
that the first chosen order plate ¢ = 11 is allocated the same direction
as primal data (w1, ¢11), the second chosen order plate ¢ = 6 is allo-
cated with dimension (4g,ws) which revolved 90 degrees and the third
chosen order plate ¢ = 13 is allocated the same direction as primal data
(wns, £13). Here, we must set m to a number large enough to allocate or-
der plates. Similarly, other strings respectively mean different allocation

and direction information:

Genes €1 e e3 €4 123 i m
String 1 0101 1010 1010 0100 010 0 1
String 2 1101 0101 0000 0010 101 1 0

: : : : : + 0 0
Stringn 1101 1110 1110 0100 011 0 1

Figure 2.3 A concept of population

2.5. Numerical Experiment

Based on the proposed method described above, some numerical
experiments were carried out on the two-dimensional rectangular packing

problem.

2.5.1. Experimental Data

We prepared two types of data, data 1 and data 2 which are generated
by random and artificially made. Data 1(Table 2.1) is created by random
values, and data 2(Table 2.2) is created artificially. The number of data
1 and data 2 order plates are 71 and 31, respectively. Data 1 has more
than enough plates to cover a mother plate. However, the amount of

order plates’ area in data 2 is the same as the mother plate’s area.

Table 2.1 Data 1
i | w; | 4 | pleces | ¢ | w; | 4; | pieces
11114 2 16 4 |3 3
21215 1 171316 3
313 |4 3 18| 4|3 1
41213 3 1911 |4 3
51516 3 201 6 | 5 1
6 | 6|5 2 21| 5 |2 2
71314 1 221 2 |1 1
8|16 |3 3 2311]2 3
91112 3 241 4 |1 3
10413 3 2511 4 2
1113 |2 3 261 2 |1 3
1216 |1 3 271 5 | 6 2
131116 2 281 4 |5 2
1412 (3 3 2011 | 4 1
151316 1 30| 4|1 3

2.5.2. Experimental Types of GAs

We tried three types of GAs - GAL, GA2 and GA3 - on two types of

data. Fach GA is shown as follows:

30

Table 2.2 Data 2

1 | w; | 4 | pleces | 1 | w; | £; | pieces
1174 1 11|11 2
21713 2 12121 2
31103 1 131311 2
4 11412 2 1414 |1 2
5116 | 2 1 15151 2
6 |18 | 2 1 616 |1 2
7120 2 1 17171 2
814 |2 1 1818 |1 2
916 |2 1 19,9 |1 2

10 8|2 1 2011011 1

e GAl
GA1 is simulated by Greedy Algorithm and GAs which have weighted

coefficients for Greedy Algorithm.

e GA2
GA?2 is simulated by Greedy Algorithm using GAs which have
weighted coefficients for Greedy Algorithm. GA2 prepares dummy
data exchanging width to length, and chooses the most suitable

rectangle from both primal data and dummy data.

e GA3
GA3 is simulated by Greedy Algorithm using GAs which have
weighted coefficients for Greedy Algorithm and binary genetic in-
formation on whether to permit 90 degrees revolution or not. Both
genetic information independently execute genetic operation, crossover

and mutation.

31

10

Figure 2.4 GA1 Allocation at generation 0

2.5.3. Experimental Results

The allocation process for each generation from GA1 to GA3 is shown
in Figure 2.4 to Figure 2.17. Here, population size is 20 and generation
is 50. We show experimental results and the processes of each GA as

follows:

e Results of GA1
In GA1, data 1 achieved objective function (area ratio) R = 100%
at initial generation, however, data 2 didn’t achieve R = 100% at
even generation 50. Figure 2.4 indicates that GA1 could get one
optimized solution from data 1. Here, data 1 has several kinds of
optimized solutions. It is seen that Figure 2.4 could pack well from

the bigger order plate to the smaller order plate.

32

10

Figure 2.5 GA1 Allocation at generation O

Figure 2.6 GA1 Allocation at generation 50

33

O U S oY

Figure 2.7 GA1 Allocation at generation 0

However, data 2 doesn’t have a plural number of optimized solu-
tions. Figure 2.5 and Figure 2.6 show GA1’s allocation of results at
generation 0 and 10, respectively. Results of GA1 on data 2 were
R = 94.8% at generation 0 and R = 99.0% at generation 50. There
are many differences between Figure 2.5 and Figure 2.6. These re-
sults show GA1 tried to search various combinations of allocation,

while maximizing objective function.

Figure 2.7 shows the results when it exchanges width and length
of primary data. This experiment didn’t improve the allocation of
order plate from initial generation. It is seen that data 2 is more

difficult than data 1.

34

Figure 2.8 GA2 Allocation at generation 0

Figure 2.9 GA2 Allocation at generation 10

Figure 2.10 GA2 Allocation at generation 50

Figure 2.11 GA2 Allocation at generation 0

36

Figure 2.12 GA2 Allocation at generation 21

o Results of GA2
Results of objective function of GA2 on data 1 were R = 92.5% at
initial generation, R = 95.5% at generation 10 and R = 98.5% at
generation 100. Each allocation process of GA2 on data 1 is given
in Figure 2.8 to Figure 2.10. Those results show that GA2, which
permitted revolving the order plate 90 degrees, is more difficult
than GA1, which didn’t permit revolving, since GA2 has two times
more feasible order plates than GA1. It means that the number of
the next choice of order plate which is chosen by evaluation function
@Q; is equal to the square number of GA1. Therefore, GA2 on data
2 allocated smaller order plates than GA1 on data 1 when j was

small, then couldn’t allocate the bigger order plates later.

37

Results of the objective function of GA2 on data 2 were R = 41.0%
at initial generation, R = 73.0% at generation 6 and R = 90.0%
at generation 21. FEach allocation process of GA2 on data 2 is
given in Figure 2.11 and Figure 2.12. In data 2, the order plate’s
width is longer than its length. Moreover, evaluation function @),
which has the same weighed coefficient, tends to choose similar
order plates. Figure 2.11 would indicate that GA2 evaluates order
plates which revolved at 90 degrees as a higher score of @); at initial
generation. Then, wider order plates (revolving 90 degrees) were
chosen faster at initial generation. However, longer order plates
were chosen faster at generation 6. Direction of order plates is
similar in both cases. These processes seem to indicate that GA2
is not a more effective algorithm than GA1. However, GA1 can’t
allocate to revolve the order plate at 90 degrees. It means GA1l
can solve only small problems for the two-dimensional rectangular
packing problem. GA2 can solve complicated problems, but it is

not a more effective algorithm than GA1 on data 1.

Results of GA3

GA3 has objective function R = 99.5% at initial generation, then
achieves R = 100.0% at generation 1. This results shows that GA3
is a more effective algorithm than GA2. Each allocation process of

GA3 on data 2 is given in Figure 2.13 and Figure 2.14.

38

5
10

Figure 2.13 GA3 Allocation at generation 0

5 10 15 20 2% 30 35 40
5
10

Figure 2.14 GA3 Allocation at generation 1

39

Figure 2.15 GA3 Allocation at generation O

Figure 2.16 GA3 Allocation at generation 9

40

10

Figure 2.17 GA3 Allocation at generation 15

Results of the objective function of GA3 on data 2 were R = 97.0%
at initial generation, R = 99.0% at generation 9 and R = 100.0%
at generation 15. Each allocation process of GA3 on data 2 is
given in Figure 2.15 to Figure 2.17. GAS3 has more complexity
allocation than GA1l or GA2. These processes would indicate that
gene whether the gene revolving order plates 90 degrees or not

works effectively.

2.6. Conclusion

In this paper, we proposed Hybrid Genetic Algorithms for the solv-
ing method of two-dimensional packing problems. Hybrid Genetic Algo-

rithms have two kinds of genetic information; one is weighted coefficients

41

of evaluation functions for determining allocation position and choosing
a rectangular piece, the other is allocation of direction whether to revolve
order plates 90 degrees or not. Our approach indicates that Genetic Algo-
rithms have automatic tuning mechanisms for two-dimensional packing
problems, moreover, improvement of genetic information is effective ac-
cording to the characteristics of the problem. Some experimental results

show the usefulness of our approach.

42

Chapter 3.

SLAB DESIGN PROBLEM

3.1. Introduction

Recent tendency in heavy industries is toward smaller lot sizes, shorter
delivery times and higher grades. Under this tendency, the effective
production system which attains a high-assortment yield ratio within
a reasonable time is required.

When we consider the effective production system, a lot of problems
must be dealt with through the bin-packing problems. The bin-packing
problems are one of the typical packing problems which are categorized
into geometrical combinatorial optimization problems. For example, a
bin-packing application which packs rectangular pieces into a large rect-
angle is required by industries such as glass, metal and circuit layout
application in LSI design.

The general bin-packing problem assumes a collection of equal ca-
pacity bins and a list of pieces which are to be packed into the bins
subject to the requirement that the capacity of no bin be exceeded. In

43

regard to the bin-packing problem, D.S.Johnson [9] published the paper
“Fast algorithms for bin-packing” in 1974. After that, many researchers
tried to study the various bin-packing problems. Many of these varia-
tions are surveyed by Coffman, Garey and Johnson [10]. However, almost
all former bin-packing solving methods in a real industrial systems are
heuristics, because the size of the bin-packing problem in a real indus-
trial system is large enough to solve and has complexity to satisfy many

constraints.

A class of problems with a slightly different objective is two-dimensional
bin-packing problems. The two-dimensional bin-packing problems are
usually a set of bins of fixed width and height with the objective of fit-
ting the given pieces into a minimum number of bins. In regard to the
two-dimensional bin-packing problem, Coffman and Shor [17] studied the

distinction in 1990.

In this chapter, we deal with the two-dimensional bin-packing prob-
lems, which can be dealt with through a slab design problem in iron and
steel industries. Slab design is an important problem to improve the

production system in iron and steel industries.

We tried to apply the slab design problem to hybrid GAs which
combined with heuristics for two-dimensional bin-packing problems. We
show some results that hybrid GAs exceeded the former algorithms: at

generation 30, and raised yield ratio 0.6%. Moreover, this system applied

44

by hybrid GAs works good enough to run on the available time.

3.2. Slab Design Problem

In iron and steel industries, H.Saito et.al. [19] proposed the two-
dimensional assortment problem in the production of heavy steel plate in
1988. Moreover, B. Watson et.al. [20] proposed the rectangular cutting-
stock problem by genetic algorithm in 1992. However, their problem is
not a bin-packing problem but a cutting-stock problem. A cutting-stock
problem is easier than a bin-packing problem, because a cutting-stock
problem doesn’t require packing all of the order plates into mother plates.
The difficulty of the bin-packing problem is to allocate all of the order
plates into mother plates. In the previous chapter, we showed that data
1, which has more than enough order plates to cover a mother plate, is
easier than data 2 whose amount of order plates’ area is the same as a

mother plate.

Though the slab design problem is often known as a cutting stock
problem, we define slab-design problems as two-dimensional bin-packing
problems.

For heavy steel plates’ effective production planning and manage-
ment system, first of all, orders of the same thickness and specification
required from customers are grouped into a lot. Then, the size of the
rolled mother plates is determined. Finally, the slabs’ dimensions are

45

Orders of the same Decision on the number of slabs & slab size |
thickness & specification |- Rolled mother plates Slabs
Orders ~ Number i a g
(5] X @ —7
X5
N | |
Restriction‘!of order Restriction of rolling Restriction of slab
e = F— .7 T
Cutting Cooling Rolling Reheating Casting Furnace
AL oY
</ je7/ [IO 2L 2 22850
e TR — Slab
Products Rolled mother
(Order plates) Plates

Production process

Figure 3.1 A concept of slab design problem

determined for each rolled mother plate. This procedure is called “Slab

Design”. The top of Figure 3.1 shows a concept of slab design.

The bottom of Figure 3.1 shows the production process in the iron

and steel industries. In this process, slabs mean the intermediate material

of rolled plates, and are usually produced by a casting machine.

Then, the slabs are heated in a reheating furnace to a set tem-

perature. After being heated, the slabs are milled to mother plates of

pre-determined thickness, width and length by a rolling mill. After that,

mother plates are transferred to the finishing line and cut in longitudinal

and transverse directions according to the cutting pattern of each mother

plate, and divided into small plates.

46

sPEC Al Bl C
A Ol -1- O : Feasible assortment
B o101 - X 1 Infeasible assortment
c X 1010 Assortment
Assortment possibility
= Orders === . A A O

Figure 3.2 Restriction of order

3.3. Production Process of Heavy Steel
Plates

The production procedures of slab design lead to three constraints,
restriction of order, rolling, and slab. Each restriction is classified as

follows.
3.3.1. Restriction of Order

Figure 3.2 shows feasible assortment. Basically, order plates with the
same thickness and specification are grouped into a lot. Here, specifica-
tion means the reheating temperature, quality of material, and cutting
equipment which the customers required. However, there are some dif-

47

patternl pattern2 5 | pattern3
— | Order plates

pattern4 pattern5
* Restriction of cutting (Guillotine cut)

Two-column assortment(patternl ~3) One-column assortment(pattern4,5)

Lmax

* Restriction of slab size & weight

Figure 3.3 Restriction of rolling

ferent specification orders in a lot. According to Figure 3.2, even though
different specification orders such as A and B are possible to assort, or-
der A and C are impossible to assort. To divide order C into the other
group leads to a decrease in the combinatorial possibility. Therefore, we

consider order plates in a lot as much as possible.

3.3.2. Restriction of Rolling

Restriction of rolling derives from rolling, cooling and cutting equip-
ment. Figure 3.3 shows restriction of cutting and the rolled mother
plate’s dimensions. The top of Figure 3.3 shows that cutting restricts
only from pattern 1 to pattern 5, what we call guillotine cut (i.e. cuts

48

Slab(D~ (9 are

. ossible to roll
Wide Rolled p.. The Group of Slabs ﬂ
Mother Plate ~ e 4 Ordersd /
Assor tment plates

Narrow Rolled
Mother Plate
Assortment

Slab @~ @ are

possible to roll

Figure 3.4 Restriction of slab

from one edge of a previously cut rectangle to the opposite edge). The
bottom of Figure 3.3 shows that cooling bed and rolling equipment re-
strict slab size and weight. We must design order plates smaller than
maximum width, length and weight, and larger than minimum width,

length, and weight.
3.3.3. Restriction of Slab

Figure 3.4 shows restriction of slab size and weight by a slab cross
section of casting size. This restriction is caused from rolling ratio (i.e.
divide slab width into rolled mother plate width) on the rolling equip-

ment. According to Figure 3.4, a wide width rolled mother plate can’t

49

be rolled from a narrow width slab. A cross section of casting size is not
continuous but discontinuous, because it depends on the casting machine.
Accordingly, a slab dimension (thickness, width, length) is determined by
a rolled mother plate. When we determine the slab dimension, we must
check feasible slab length charged in a reheating furnace and feasible

cross section rolled on a rolling machine, simultaneously.

34 Formulation

In this section, we show the formulations and characteristics of the

slab design problem. The problem is formulated as follows:

Minimize Y SV}, (3.1)
J
subject to. (3.2)
SV; = Z v; + Cy;, (3.3)
icg;
SL;(CSk) = agl%, (3.4)
Vi< Yy < Vinan, (3.5)
Winin < PWa(wg;) < Wina, (3.6)
Limin £ PLp(8y,) < Lingg, (3.7
SLmin(CSk) < SLj(CSk) < SLmax(CSy). (3.8)
where

50

index of orders,

K index of slabs,

Vs weight of order i,

SV; weight of slab j,

g; a set of order index including slab j,

Cy, margin and waste weight of slab j,

k index of cross sections,

C Sy dimensions of cross section k,

e coefficient,

w; width of order i,

¢, length of order i,

h assortment pattern,

Vinin minimum weight of slab,

Vinaz maximum weight of slab,

Winin minimum width of slab,

Winaz maximum width of slab,

SLypin(CSy) minimum length of slab,

SLmer(CS;) maximum length of slab,

PWh(wy,) function of rolled mother plate width
determined by a set of order plate g;,

PLy(4y,) function of rolled mother plate length

determined by a set of order plate g;.

The slab design problem is to find a set of order index g; including
slab 7 which minimizes Eq. (3.1) subject to Eq. (3.3) to (3.8). Further,
the slab dimension which has a slab cross section size and length is de-
termined simultaneously. Thus, the slab design problem can be defined

as a set partition problem, which packs all order plates V7 to all slabs Vg;

From this formulation, it seems when the objective function }_ SV;
equal to minimize margin and waste weight 35 C,.. C,, is different for
each slab, 3~ Cy. changes when the assortment changes. Figure 3.5 shows
the margin and waste part of a rolled mother plate. Margin and waste

weight consists of the cutting part, waste part, top margin and side

o1

Side margin Top margin

Order part Waste part

Figure 3.5 Margin and waste weight C;

margin weight. Generally speaking, to assort same size order plates into
one slab means to decrease margin weight in Cy,, and to increase the
number of slabs and total margin weight in 3~ Cy,. In the opposite way,
if different size order plates were assorted into one slab, margin and waste
weight in C, §vou1d increase, and the number of slabs and total margin

in 37 C,,; would decrease.

Consequently, trade-off exists between the number of slabs and total
slab weight. Therefore, each slab’s waste weight Cy; decreases when the
number of slabs is minimized, and the number of slabs and total slab

weight 3-S5V} increases when each slab’s waste weight Cy; is minimized.

52

3.5. Application Method |

3.5.1. Concept of Hybrid Genetic Algorithms

It is too difficult to find the feasible solution within reasonable time
under the strict constraints. Thus, we apply hybrid GAs combined with
heuristics to the slab design problem. Figure 3.6 shows a concept of a
hybrid GAs in a slab design problem. The previous solving method of
slab design is given on the right side in Figure 3.6. In this chapter, slab
design can be defined for the two-dimensional bin-packing problem on
the left side in Figure 3.6. The theoretical bin-packing problem without
some restrictions may be given by Next-Fit-Decreasing on bin-packing
which B.S.Baker and E.G.Coffman [8] proposed. However, slab design
problems in iron and steel industries have many restrictions. We apply
Hybrid GAs in order to bridge a gap between theoretical bin-packing
and real assortment restrictions. An important point of this research is
to develop a method of translation from genotype (genetic information)
to phenotype (feasible slab design solution). Two kinds of searching

methods of Hybrid GAs in this chapter are as follows:

1. Local Search Conversion from genotype (i.e. the group of order

plates) to phenotype (i.e. the group of slabs) by heuristics.

2. Global Search

Combinatorial global search (minimizing a part of combinatorial

53

Assortment

Combinatorial problem S
restriction

(2D Bin-Packing)

Restriction
Gen otype of order

I /

Translation = Heuristics

v > \ Restriction
Phenotype \ of rolling

GA

The group of
ordered plates

The group
of slabs

Restriction of slab J

Figure 3.6 A concept of hybrid GAs in slab design problem

solutions enumerated by local search) by GAs.

3.5.2. Procedure of Hybrid GAs on Slab Design

We describe the slab design problem application method as follows.

Step 1 Creating initial population
Mapping locus to order name, and binary code is allocated to locus

at random (Figure 3.7).

Step 1.1 Sort order plate’s width and length, and spread the number of

order plates.

Step 1.2 Set locus 0 or 1 at random as the initial population.

54

<Example Order>

Order Name Width Length Number

a 2500 8500 2

b 2000 6000 2

c 1800 8500 4

d 1800 7500 3
Locus 1234567891011
Ordername : aa bbc cccddd
String(i) :{00110110000]

stepl.2(Random)

Figure 3.7 Example input data

Orders
Genotype (Orders) Iﬁ X2
(Orders: aabbccccddd [Z:I %2
String : 001101 10000}
Ce] X 4
\} Heuristics Cdl X 3

a a

(¢ T
I o s

: : 5 Rolled mother g

\(b..i.b . j/ plate)

Figure 3.8 Coding method of slab design problem

55

Two-column| Orders: a a
assortment String : 0 0

Yo
< o

MaxbimumA T Piéot]')late @40 | ;“"C“ o
width - [A
a +® 4 a+@ Choice
} cross section
Order Plate Rolled Mother Plates
Orders : bb cc
String : 001101190
Pivot plate
1 c | 9 d
| ¢ Y| Ved|! Choice

Cross Section

Figure 3.9 Coding method of two-column assortment

One-column
assortment Order b b d

String :OOb_l_OllOOOO
@

L(—— Maximum length
Lb 15b ﬁ

Calculation
of slab
length

Choice
Cross section

Cross section

Order : d
Sting :00110110000

- Calculation
E‘ Chome. of slab ST
Cross section length

Figure 3.10 Coding method of one-column assortment

56

Step 2 Coding
Conversion from gene (i.e. the group of order plates) to phenotype

(i.e. the group of slabs) by heuristics (Figure 3.8).

Step 2.1 Sort order plate widthwise, lengthwise by turns under the max-
imum width and length. The only order plate whose locus sets to
1 is to be a pivot order plate in a two-column assortment mother
plate, and the other order plate whose locus sets to 0 is sorted fol-
lowing a pivot order plate in two-column assortment (middle of
Figure 3.9). Repeat to assort the two-column assortment mother
plates until pivot order plate is not in the string (bottom of Figure

3.9).

Step 2.2 Sort left order plate whose locus sets to 1 into one mother
plate as one-column assortment. Therefore, sort left order plate
whose locus equals to 0 into another mother plate as one-column

assortment (Figure 3.10).

Step 3 Genetic Operation
After Step 2 is finished for all strings, choose a pair of strings at
random for parents. Operate a pair of strings for crossover, and
create a pair of new strings. Choose a string at random, operate a
string for mutation, and create a new string. In case a new string

is the same as the parent, change the pair of parents, and repeat

o7

to create the new strings.

Step 4 Selection
Select higher fitness strings by elitist strategy. Repeat Step 2 and

3 until stopping generation.
3.6. Realistic Application

This section describes the improvement of realistic application for

the slab design problem.
3.6.1. Creating Initial Population

Realistic application must find the better solution within reasonable
time. Therefore, GA parameter (population size, stopping generation)

and quality of initial population are important.

GAs Parameter

First, as we describe the determining method of GA parameter, we
define the same characteristic groups as a class. The class is judged from
the observational information (order plates’ specification, the number of
order plates, the kind of order plates’ width and length, etc.).

The observational information is classified in Table 3.1 The sen-
sitivity of fitness and run time are given by case study analysis when
GA parameters change. Few regulations of increasing state can be ob-

served according to case studies. For example, some class’ fitness never

58

increases from initial generation, some class’ fitness increases steeply, and

some class’ fitness increases step-wise.

By those case stildies, it is possible to predict problem size and
the degree of difficulty from the observational information. Here, the
degree of difficulty means a characteristic to judge whether the fitness
increases or not. We defined the classes raising the fitness as the 1st (dif-
ficult) degree of difficulty when both the population size and the stopping
generation increase, the classes raising the fitness as the 13th degree of
difficulty when either the population size or the stopping generation in-
crease, and the classes keeping the fitness from initial generation as the
25th (easy) degree of difficulty, even though both the populration size and

stopping generation change.

Next, we will describe the setting of GA parameter. When GA
parameter 1 (population-size 10) takes 50sec (generation 50) until the
fitness achieves 95%, GA parameter 2 (population-size 20) takes 40sec

(generation 20) until the fitness achieves 95%.

In this case, the latter GA parameter 1 is better. The setting of GA
parameter effects run time very much; accordingly the relation between
population-size and stopping generation has trade-off. In a realistic sys-
tem, we would choose a GA parameter minimizing run time from the

saddle-points which are given by the same solution.

The slab design system predicts the fitness transition from the ob-

59

servational input data, and dynamically sets the GA parameter which

finds the best solution within a reasonable run time.

Table 3.1 Classification of order group

Class | The number | The kinds | Total | The type The size | The degree
of of order of of of
order width weight fitness group difficulty
1 large large heavy | step-wise large 1(difficult)
2 large middle heavy | step-wise large 1
3 large small middle steep middle 2
32 small small light | no-change small 25(easy)

Creating Method for Initial Population

We prepared 10 kinds of creating methods for initial population. In this

section, we describe a part of them.

CREATING METHOD 1 If more than two same size order plates

were in a group and these order plates could assort two-column

assortment mother plates, creating method 1 would pack as many

same size order plates as possible into a mother plate. In order

to create an initial string, count how many order plates can pack

into a mother plate. Moreover, count how many mother plates are

required to pack all the order plates. Then, set locus to the number

of rolled mother plates pivot, 1, and the other locus to 0.

60

CREATING METHOD 2 Set the same gene (0 or 1) to the same
order plate to assort the one-column assortment plate by turns

from the widest order plate.

3.6.2. Coding

Coding converts binary code to a slab design solution. Here, the other
coding which corresponds a rolled mother plate to an integral number is
also possible. However, since the number of slabs j is unknown, it still
requires that in order to convert the solution the transaction satisfies the
constraints or not to succeed to the next generation. Moreover, if order
plates in the same rolled mother plate do not satisfy the constraints such
as maximum rolled mother plate’s width, length, and weight, the slab
design solution not to satisfy the constraint of the strings has risk for
decreasing the efficiency of transaction.

Accordingly, we propose the logic that all of the phenotypes satisfy
the constraints. Our logic converts a genotype into a phenotype which

satisfles the constraints heuristic.

3.6.3. Genetic Operations

Genetic operations mean crossover and mutation. Genetic operation
is important to create the new strings as an engine of GAs. Genetic
operation is requires two things. The one is to keep variety, and the

other is that new strings, like the old strings, should not succeed to

61

the next generation. If this transaction is removed, all of the strings in
the generation come to have the same gene. Accordingly, the variety of

strings is lost and all of the strings fall into the local optimum solution.

3.6.4. Selection

Few methods of selection are proposed for applying to different types
of problems. We apply the elitist strategy which succeeds to the next
generation only the higher fitness strings as elites. This method has
an advantage of keeping the best solution of the generation. The elitist
strategy is suitable in case of finding the best solution within a reasonable
run time.

The elite strings of the previous generation need not convert from
the binary code to the slab design solution; it is good enough to succeed

only the value of fitness. This operation can increase the run time.

3.7. Numerical Example

Figure 3.11 and Figure 3.12 show a part of the case study for deter-
mining GA parameter. Figure 3.11 shows the fitness transition when the
number of initial pre-optimized strings are 6 and 10. Figure 3.12 shows
the fitness transition when the number of initial random strings are 6
and 10.

It resulted that 10 initial strings in a population can create the
higher fitness elite from both Figure 3.11 and Figure 3.12. Generally

62

94.00

93.50

e/
w
D
()

Fitness[%

92.50

92.00

91.50

- = - Pre-optimized (The number of strings:6)
—— Pre-optimized (The number of strings:10)

N 5 1 O I

N T

0

5

10 15 20 25 30 35 40 45 50
Generation

Figure 3.11 The relation between the number of solutions and initial

solutions

63

94.00
93.50 r
—93.00
ti\o.l
w2
w2
O
-
X
F~92.50
92.00 r
------- Random (The number of strings:6)
—— Random(The number of strings:10)
91'50 1 N I 1 1 N T O O T O I I T O O B O A A R |
0 5 10 15 20 25 30 35 40 45 50
Generation

Figure 3.12 The relation between the number of solutions and calculation
time

64

speaking, 10 initial strings in a population are difficult to fall into local
optimum solution. This is because 10 initial strings in a population can

keep the variety on the meta-search.

However, run time increases when the number of the initial popu-
lation increases. In spite of point A being earlier than point B in gener-
ation, point B is earlier than point A in run time. In the case of realistic
application, finding the best solution is required as soon as possible. Ac-

cordingly, point B is preferred in Figure 3.12.

The setting of GA parameter is effective for the run time. There-
fore, prediction of the fitness transition pattern from observational input
data is effective for reduction of run time. Pre-optimized initial popula-
tion in Figure 3.11 is more effective in the searching process than random
initial population in Figure 3.12, when population size is the same. These
results show that the improvement of creating initial population method

is effective.

Figure 3.13 shows the comparison between former algorithms (branch
and bound method) and hybrid GAs, when representative data is input;
the kind of order plates are approximately 100, the number of order plates
are approximately 300 and the degree of difficulty is high. Hybrid GAs
exceed the former algorithms at generation 30. The run time is one sec-
ond per generation by using a work station (100MIPS). The slab design

system must dispose everyday of approximately 5,000 order plates within

65

1.30
1.20
1.10
1.00
0.90
0.80
0.70

Competitive rate[%]

-<«— B&B-+Heuristics

GA+Heuristics

{00000 0 I 0 0 O % 5 I B N I

350 S 0 2 N S S 200 % 0 2 T T T O W Y I 2

0 5 10 15

20 25 30 35 40 45
Generation

Figure 3.13 The comparison with B&B+heuristics

3 hours. The system applying hybrid genetic algorithms is good enough

for the available run time.

The variety of improvement in the previous section can reduce run

time 1/8. The setting of GA parameter is flexible for the setting of run

time, according to the production environment change.

3.8. Conclusion

In this paper, we proposed hybrid GAs which combined with heuris-
tics on the slab design problem which is a kind of two-dimensional bin
packing problem. We have gotten successful results by this variety of

improvements. This system has worked in Sumitomo Metal Industries,

66

Kashima Steel works since December in 1995. This system at Kashima
Steel works has contributed to a raised yield ratio of 0.6% and other

benefits.

67

Chapter 4.

A MARKOV DECISION
PROCESS WITH A
CONSTRAINT

4.1. Introduction

Many optimal control problems of a stochastic system, e.g., queuing
systems, and reliability systems, can be formulated by Markov Decision
Process (MDP). In this chapter, we consider a decision making prob-
lem as one of discrete-time MDP problems. This problem has a finite
state space, a finite action space and two kinds of immediate rewards.
The problem discussed in this chapter is to maximize the time average
expected reward generated by one reward stream in the range of pure pol-
icy, subject to a constraint that the other average reward is not smaller
than a prescribed value. MDP with a single constraint in the range of
mixed policy has already been studied by Beulter and Ross [15]. They
showed that an optimal policy can be obtained by randomizing at most

two pure stationary policies. Mixed policy is, however, very tedious to

69

a

handle in applying to real world problems. On the other hand, in the
case of MDP with no constraint, an optimal pure policy can be obtained
by using Policy Iteration Method (PIM). However, for MDP even with a
single constraint, any algorithm to find an optimal pure policy has not
been discovered.

Here, we apply GAs to find a near optimal, possibly optimal pure
policy. GAs proposed in this chapter also fall into a category of a Hybrid
GAs in the sense that they combine with PIM. Our new algorithm can
find an optimal solution of MDP with a constraint which has 510 feasible

solutions in a few minutes by 200mips Work Station .

4.2. MDP with Constraint

4.2.1. Definitions and Notations

Here, we define some notations.
I ={0,1,---,N } the state space,

D; ={1,2,---,K; } the action space in state 1,

pfj one step transition probability when action k is taken in state 1,

kbk

¢, b7 two kinds of immediate rewards when action k is taken in state 4

S set of pure policy, that is, S = Dy x Dy X -+ X Dy,

s pure policy, s € S.

70

We assume that the Markov chain induced byA any pure policy has only
one ergédic set. This means that there is a stationary distribution for
each policy.

For convenience of expression, let pj;, a;j and b; be transition prob-

ability and immediate rewards when policy s is taken, respectively.

g(s) time average expected reward in an infinite time horizon, with re-

spect to reward ai when policy s is taken,

h(s) time average expected reward in an infinite time horizon, with re-

spect to reward b; when policy s is taken,
w7 stationary distribution when policy s is taken.

g(s) and h(s) are derived by the following simultaneous equations which

have the unknowns, g(s), v;(s) and h(s),w;(s),7 € 1.
g(S) + Ui(s) = af + pr]U](S), 1= 17 s, N
J
vo(s) = 0,

(4.1)

h,(S) + wl(s) = bf + prjw](s)7 ¢ = 17 T,
5
’LUO(S) = 0.

(4.2)
It is also given by using stationary distribution as follows:

os) = Yomia, (43)

h(s) = Zvrfbf., (4.4)

Moo= 3 ompy, €l (4.5)

71

Here, our problem is expressed as follows:

max g(s),

subject to

4.2.2. Mixed And Pure Policy

An optimal mixed policy and an optimal pure policy are shown in
Figure 4.1. Thus, a mixed optimal policy is a randomized policy of two
pure policies corresponding to clear circles A; and A,. That is, we can
find an optimal mixed policy, a clear triangle A, which is the cross point
between a vertical line @ and a line A;A;. However, an optimal pure
policy, a dark star B, is not always on a line A;A;. An optimal pure
policy is contained in the triangle area determined by a line A4, , a
vertical line & and a horizontal line passing through A,.

After all, searching an optimal pure policy is required to enumerate
all pure policies. However, pure policies s exist on the discrete points
denoted by dark circles. Moreover, these dark circles have vast sums of

the combination of pure policies.
4.3. Genetic Algorithms

Genetic Algorithms are search algorithms based on the mechanics

of natural selection and natural genetics [23]. Meta-heuristics [21] such

72

Pure Optimal Policy|

v

Figure 4.1 Mixed and Pure Policy

as GAs, simulated annealings and neural networks have emerged as the
method of choice for applications in engineering optimization problems.

Now, many applications are published as optimization algorithms.

4.3.1. Procedure of GAs

In genetics, the gene’s function identifies the position of a gene
(its locus). In artificial genetic search, strings are composed of a prob-
lem’s features, which take on different values. Features may be located
at different positions on the string [22]. Creatures fall heir to their off-
spring’s superior character by gene, to survive their species. Biological
individuals have chromosomes, and each chromosome is constructed with

73

genes. On the computer, a new set of artificial strings is created using
bits and pieces of the fittest of the old in every generation. We encode

chromosome to policy as follows:

strings s : kg, k1,--+,ky, ki € D€l (4.7)

String s and gene k; correspond to policy and action in state 7, respec-
tively. Each action is expressed by a decimal number. The GAs work by
holding a population of encoded solutions to a search problem, and then
try to select and breed new solutions derived from the existing popula-
tion. The members of the population consist of parents and breed a new
population. Typically, parents interbred by exchanging alleles to create
a new chromosome using some form of “crossover”. In order to main-
tain good search characteristics a mutation factor is often used. Here,
we define z,,(t) to be a m-th string at generation ¢. String ko, k1, - -, kx
is a pure policy s in MDP. Gene k; corresponds to an action in state i.
Moreover, we define X(¢) to be a population which is a set of different

strings at generation ¢, where M is population size.

X(t) = {xl(t)712(t)7;$M(t)} (48>

Here, M is population size.

Step 1
By choosing actions for each state at random, we create a policy

74

which is a string on GAs. By the same procedure, we create a set

of policies, that is, the initial population X (0).

X(O) = {xl(O),$2(O),-‘-,$m(t),~ T 7$M(O)}

Step 2
We select better policies which are evaluated by fitness, what we

call, objective function. Here, we choose elitist strategy.

Step 3
We create a new population X (£+ 1) which is a set of new policies

by crossover and mutation.

Xt+1) ={z1(t+ 1), 22+ 1), -, zn(t), -, zp(t+ 1)}

Step 4

We stop or t = t+ 1 and go to Step 2.

The important parts of this algorithm are how to set the fitness,
how to survive the superior policy, and how to create the new policy.
Selection plays an important role to induce the direction of successful
search. The genetic operator plays an important role to find new search
space as a driving force. When these procedures work effectively, GA

gives full play to power.

4.3.2. Application of GAs

In this section, we give a way of setting up the fitness, parameter and
procedure of GAs. Gene k; corresponds to an action in state 7. String
ko, k1, -, kn is a pure policy s in MDP. String length is the number of
state N + 1. s is a target policy. First, calculate 77 by Eqgs. (4.5) and
(4.6), then solve g(s), h(s) as phenotype (h(s),g(s)) by Egs. (4.3) and

(4.4). Important parameters in our GA are reported as follows:

f(h(s),g(s)) Phenotype of individual (policy),
N+1 String length,
M Population size,

F(s) Fitness of policy s,

L Allowing generations.

Here, we propose three types of GA; GA1l, GA2, and GA3.

GAl

GA1 searches an optimal policy by applying what we call a simple GA.
If the time average reward h(s) under policy s is more than «, then av-
erage reward ¢(s) is adopted as the fitness F'(s). If A(s) is smaller than
or equal to a, the fitness F'(s) is zero. Then. this policy does not inherit

the next generation. That is,

1) If h(s) > a then F(s) = g(s).

11) If h(s) < a then F(s) = 0.

GA2

GA2 is a Hybrid GA which combines with PIM in MDP. If the time
average reward h(s) is more than or equal to «, then average reward g(s)
is adopted as the fitness F'(s). If h(s) is smaller than ¢, then we find a
new policy s* by using PIM, where GA2 has two types of fitness, objective
function Fi(s) and a slope of improvement by PIM Fi(s). Fi(s) evaluates
objective function g(s), and Fi(s) evaluates a slope of improvement by
PIM, that is, —2—%. Accordingly, selection is sorted as the keys of both F(s)
and Fy(s). If the number of strings which didn’t satisfy a constraint has

less population, strings which have the higher F;(s) would survive. That

is, the fitness is given as follows:

i) If h(s) > a then, Fi(s) is given by g(s)
and Fy(s) is given by 0.
11) If h(s) < a then, we solve a simultaneous equation,
h(s) + w;(s) = b5 + prjwj(s),
7
1€40,---,N}, we(s) =0.
with respect to h(s),w;(s).
We apply PIM to the current policy s, that is,

77

we find an action
" 3 % .
ki = arg %%)f{bf + ‘Z;pijwj(s)} for each state ¢.
We let s* be a policy (kg, -+, ky)-
gl =gl
Fy(s) is given by hs) —hls)

ita) If h(s*) > a then, Fi(s) is given by g(s*).

11b) If h(s*) < a then, Fi(s) is given by 0.

GA3

GA3 is also a Hybrid GA which combines with PIM. GA3, however,
uses penalized fitness. If the time average reward h(s) is more than or
equal to a, then the time average reward g(s) is adopted as the fitness
F'(s). If h(s) is smaller than «, we find a new policy s* by using the same
procedure as GA2. If h(s*) is more than or equal to @ and g(s*) is more
than or equal to g(s*), we swap current policy s to a new policy s*. If
h(s*) is more than or equal to « and and g(s*) is smaller than g(s), we
impose a penalty to fitness. If h(s) is smaller than a, we set the fitness
zero. By this operation, the ineffective policy isn’t selected to the next

generation. Thus, the fitness is given by the following procedure:

i) If h(s) > a then, F(s) is given by ¢g(s).
it) If h(s) < a then,

a new policy s* is given by the same procedure as GA2.

78

11a) If h(s*) > a and g(s*) > g(s) vthen, we swap
s,9(s) and h(s) to s*, g(s*) and h(s*), respectively.
F(s) is given by g(s*).
1) If h(s*) > a and g(s*) < g(s) then,
F(s) is given by g(s)/8, B < 1.

111) If h(s*) < o then, F(s) is given by 0.
4.4. Numerical Examples

In this section, we present a numerical example to examine the
computational efficiency of the proposed GA1, GA2, and GAS.

Weset N =9 K, =51=0,---,9,M = 20, L = 300, and tran-
sition probability pf;. Immediate rewards a¥ bf are given in Tables 4.1
to 4.5. Transition probability pfj is, what we call, one step transition
probability. This type of transition probability is used for a queuing
system.

In this example, the problem size is so small that we can find an
optimal pure policy by using the enumeration method. We evaluate three
types of GAs by the number of generations which are required to achieve
an optimal policy or a near optimal policy, when « is 10, 20, 30, and 40.
Moreover, GA1, GA2 and GA3 prepare a string which maximizes h(s)
by PIM at initial generation. PIM can maximize time average expected

reward, whether h(s) or g(s). This operation is effective to search strings

79

which satisfy a constraint.

n—=3

Table 4.1 Reward a, b, and probability(1/1000) under action=1
[jla[b[O]1[2]3[4]5][6][7][8]9]
i=0|8|8|165(835| 000|000]0]O
i=1|14/31{276(503|221| 0 { 0 | O | 0O] O] 0| O
i=2|13[20| O [404{28 569 0 | O | O |0 | O | O
i=3| 2|16 0 | O |179|579]243)/ 0 | O | 0O | 0O | O
i=4|2 (21| 0 | 0 | O |256|128|617| 0 | O | O | O
i=5|10(41| 0 | 0 | O | O |762(200{ 38| 0 | O | O
i=6(19(37{ 0 | 0 | O | O | O |168|358{474| 0 | O
i=7|17/2| 0 0] 0| 0| 0|0 |336|347|317| O
i=83(2000 (0| 0| 0| 0] 0| 0 |354]146|500
i=9|11(38| 0 | 0 | O | O | 0| 0| 0|0 |504/49

Table 4.2 Reward a, b, and probability(1/1000) under action=2
[jlafbfOf1]2]3[4[5]6[7[8[9]
i=0|7]10|162(838|{ 0 | 0O | O | O |0} 00O
i=114(5|639{14 347/ 0 | 00| 0|0 |00
i=2|18|22] 0 |209|442|349| 0 | O | O |0 |0 | O
i=3{3122| 0 | 0 |256|279]|465| 0 | O | O | O | O
i=4115(36| O | 0 | 0 |399|45(556| 0 | 0 | O | O
i=5/5(32{ 0| 0| 0|0 {161] 0 |839 0| 0| O
i=6|16(23| 0 | 0 | O | O | O | 14|183|803| O | O
i=7]2144)0 | 0] 0| 0| 0|0 |159/483|358| 0
i=8/0[7] 00| 0]0|0)]0]|0|89]|278/633
i=9112{6| 0| 0000|000 917 83

Table 4.3 Reward a, b, and probability(1/1000) under actio
| j |a[bJO]1]2]3[4[85[6[7[8]9]
i=0]|9 (174971503} 0 { O | O[O | O[O |O}|O
i=1]7141]252|290(457 0 | 0| 0O | O} 0|00
i=219133] 0 |237/437|326/ 0 | 0 | O | O | O | O
i=3|19121| 0 | 0 | 10{367|622] 0 | O | O | O | O
i=4|11|48| 0 | 0 | O |365|170({465| O | 0 | O | O
i=5/51200 0 | 0 | 0| 0 |650(317|33| 0| 0|0
i=6[19|17, 0 | O | O | 0| 0 |95|715/1901 0 | O
1=71191411 0 | 0 | O | O | O | 0 |332/328|341| O
i=812124) 0| 0] 0| 0] 0] 0| 0]295210[495
i=914139{ 0] 00| 0]0]0] 0| 0 |709/291

80

Table 4.4 Reward a, b, and probability(1/1000) under action=4
[jJa[b[O[1]2[3[4]5]6[7[8[89]

i=0]3139|446/554| 0 {0 | O | O |0 0|00
i=1|8|38|436(221|1344{ 0 | O O} 00| 0|0
i=2119|48| 0 |620|31565| 0 | 0|0 0|00
i=3/0|5| 0| 0 196297507 0 | 0 | O |0 | O
i=4|10|48| 0 | O | 0 |127|253(620) 0 | O | O | O
i=5{5125/ 0| 0| 0| 0 |240|{625|135| 0 | 0 | O
i=6{11|46| 0 | O | O | O | O |347|189{463| 0 | O
i=7{3135/ 0| 0| 0| 0|0} 0|301610/89| 0
i=8{4144] 0 | 0| 0| 0] 0| 0] 0 |109|341|551
i=9115(35/ 0 | 0|0 | O |0 0| 0] 0O 673327

Table 4.5 Reward a, b, and probability(1/1000) under action=>5
[jfa[bfO]1[2]3[4[5[6]7[8]09]

i=0| 6 [28]549(4511 0 | 0| 0|00 0}|0}]0
i=1{6(15/30(626(343 0 | 0| 0} 0|0]0 |0
i=2|6 (40| 0 |5591235|206{ 0 | 0 | 0O | O | O | O
i=3[13|14] 0 | 0 |264|595(142) 0 | 0 | O [O | O
i=4]16(121 0 | 0 | 0 |258|379|363] 0 | O [O | O
i=5(11126/ 0 | 0 | O | O |409|1811409) O | O | O
i=6(18{26| 0 | 0 | 0 | O | O |316|377307| O | O
i=7(11{11} 0 | 0 | O | O | O | O |156|269|575] O
i=8(18{15| 0 | 0 | 0 | 0O | O | 0| 0 |215/355/430
i=9115/29] 0 | O O | O | 0O} 0O] O} 0 |603/397

The harder a constraint is, the more difficult the strings included
in the initial population. This results in it taking many generations to
search for strings which satisfy a constraint.

Figures 4.2 to 4.4 show the search process of GA1, GA2, and GA3,

when «a is 40. In these figures, the diamond-shaped point is plotted on the

81

two kinds of average reward (h(s), g(s)) of the elite, when the generation

achieves the side number of the diamond-shape.

Figure 4.2 shows the process of elite A(s) on the X axis and g(s)
on the Y axis, when « is 40. GA1 took first movement at generation
66. First movement was going to the left side, in order to increase Y di-
rection as much as possible. If new strings created by genetic operation
satisfied a constraint, that is, h(s) > o, new strings would succeed to the
next generation. At first movement, GA1 took more generations than
GA2 and GA3. From second movement to last generation, it took ap-
proximately 20 generations to the next movement. This would indicate
that it is difficult to find strings which satisfy a constraint, even though a
string which maximized h(s) by PIM was prepared at initial generation.
Second movement is earlier than first movement. It is seen that new
strings which are interbred from old strings which satisfy a constraint
have an element of satisfying a constraint. Accordingly, to increase the
amount of strings which satisfy a constraint among the population means
to accelerate the generations until attaining an optimal solution. As a
result, when new strings tend to satisfy a constraint, the next movement
will be faster. GA1 went zigzag in order to increase g(s) to the Y di-
rection. This seems to indicate that GA1 increased g(s) no matter what

the constraint.

Figure 4.3 shows the process of elite h(s) on the X axis and g(s) on

32

12

10

40 40.95

41

Figure 4.2 (h,g) in GA1 (h > 40)

83

GA2 (a=40)

40 40.95

41

Figure 4.3 (h,g) in GA2 (h > 40)

84

the Y axis, when « is 40. GA2 took first moverﬁent at only generation 4.
First movement was going to the left side, in order to increase Y direction
as much as possible. According to Figure 4.4, second movement indicates
a characteristic of GA2. GA2 progressed on the Y axis direction more
than GA1 and GA3, since fitness of GA2 set up a slope of improvement by
PIM, that is, %,91. PIM dose not always increase g(s), even though it tends
to increase h(s). Fitness of GA2 attaches importance to increasing g(s)
on the Y axis. If new strings created by genetic operation didn’t satisfy
a constraint, that is, h(s) < «, PIM would try to satisfy a constraint.
However, new strings which decrease g(s) on the Y axis have difficulty
which do not surviving. Moreover, even new strings created by genetic
operation satisfy a constraint survive easier than GA1l. GAZ2 also went
zigzag in order to increase g(s) to the Y direction. This seems to indicate

that GA2 advances even in the decreasing direction of h(s). GA2 has

characteristic which increase g(s) no matter what the constraint.

Figure 4.4 shows the process of elite h(s) on the X axis and g(s)
on the Y axis, when « is 40. GA3 achieved an optimal solution in the
earliest generation. Moreover, the movement of GA3 is quicker than the
others, and it took approximately 5 generations to the next movement.
According to Figure 4.4, GA3 took first movement at only generation
3. However, it took last movement in generation 15. Due to attaching

importance to satisfying a constraint, it is seen that the variety of strings

85

40 40.5

41

Figure 4.4 (h,g) in GA3 (h > 40)

86

in the population was lost. Thus, GA3 is effective when we solve the

problems in which it is difficult to find the feasible solution.

Figures 4.5 to 4.8 show the generation process g(s) and h(s) of

GAl, GA2, and GA3, when «a is 20 and 40.

Figure 4.5 shows the process of elite g(s) at each generation ,when
a is 40. When « is 40, there are few feasible solutions which satisfy a
constraint. According to Figure 4.5, GA3 attained an optimal solution
the fastest. GA2 is better than GA3 until approximately generation
10. However, GA2 is worse than GA1 after approximately generation
120. It is seen that GA2 falls into the local optimal solution. Due to
CGAZ2 attaching importance to increasing of g(s), it is difficult to escape
from the local optimal solution. This figure indicates GA3 is a robust

algorithm, even though there are few feasible solutions.

Figure 4.6 shows the same process, when a is 20. When o is 20,
there are many feasible solutions, and this figure shows an opposite case
of Figure 4.5. According to Figure 4.6, GA3 still attained an optimal
solution the fastest. However, GA1 is better than GA3 until approxi-
mately generation 10. GA1 couldn’t attain an optimal solution within
300 generations. This result does not include boundlessness generations.
Therefore, GA1 might attain an optimal solution if it took more gener-
ation. Since GAs have the mutation which can escape the local optimal

solution as genetic operation. This indicates GA2 and GA3 which com-

87

Process of Generation (.« =40)

12
~ -
11 b
N
10 1
g(s) |s
9 -

———GAL
- == =GA2
Tr | — A3

0 50 100 150 200 250
GENERATION

Figure 4.5 Progress of ¢(s) in GA1,GA2 and GA3 (h > 40)

88

17 Process of Generation (a=20)
—
16.5 | — ;
16 '
15.5 -
g(s) 15
14.5
14
13.5
—GAl
13 === =GA2
12.5
12 : ‘ : :
0 50 100 150 200 250
GENERATION

Figure 4.6 Progress of g(s) in GA1,GA2 and GA3 (h > 20)

89

I Process of Generation (a=40)

—GAL
40.

v f e GA2
——GA3

40.2 —

40 ' ’

0 50 100 150 200 250
GENERATION

Figure 4.7 Progress of h(s) in GA1,GA2 and GA3 (h > 40)

90

45 Process of Generation («=20)

—GAl
10 |

——GA3
3

| |

0 50 100 150 200 250
GENERATION

Figure 4.8 Progress of h(s) in GA1,GA2 and GA3 (h > 20)

91

bined with PIM are more effective than a simple GAs, i.e. GAL.

Figure 4.7 shows h(s) in the same process as Figure 4.5. According
to Figure 4.7, GA3 approached 40 the fastest. GA2 and GA3 repeated
up and down until generation 10, and decreased step-wise. On the other
hand, GA1 repeated up and down from generations 60 to 70. This indi-
cates GA2 and GA3 searched a wide area by PIM until generation 10,

and after that progressed in feasible solution space.

Figure 4.8 shows A(s) in the same process as Figure 4.6. According
to Figure 4.8, GAS3 still approached 40 the fastest. As compared with
Figure 4.7, GA1, GA2 and GAS3 repeated up and down until generation
300. Due to there béing many feasible solutions, they searched various
points in wide feasible solution space in order to increase g(s). Moreover,
it is interesting that the GA2 searching area is different from GA3’s. GA2
searched from h(s) = 27 to h(s) = 30, GA3 searched from h(s) = 21 to
h(s) = 27. This indicates each GA approaches a problem in a different

way.

The optimal solution and the average reward g(s) (the generations)
by each GAs in each problem is listed in Table 4.6. Table 4.6 shows
enough results to understand that GAs are an effective search method.
In this example, maximum h(s) is 40.9 [g(s) = 7.4] and maximum g(s)
is 16.8 [h(s) = 24.8]. We confirm that Hybrid GAs (GA2,GA3) are

more effective than a simple GA (GA1) because GA1 can not achieve an

92

optimal pure policy until generation 200, when o is 20. However, GA2
and GA3 can find an optimal pure policy for whatever value a is. Also,

GA3 is more effective than GA2, when « is a large value.

Table 4.6 The results of numerical example

o 10 20 30 40
Optimal Solution 16.8 16.8 16.6 11.9
CAl 16.8(202) | 16.6(104) | 16.6(185) | 11.9(142)
CA2 16.8(202) | 16.8(266) | 16.6(117) | 11.9(207)
CA3 16.8(202) | 16.8(243) | 16.6(100) | 11.9(39)
4.5, Conclusion

In this paper, we proposed Hybrid GA which combined with PIM
on MDP with constraints. We got successful results. When PIM is used
once per improvement of individuals, it is possible to find the policy
which satisfies the constraint by retrying. It is interesting that search
processes are different by the setting of fitness, such as GA2 and GA3. We
examined MDP with single constraint in this paper, and we are sure that
GA can be used as a tool for MDP with multiple constraints. However,
we think it is important to consider the way of setting the fitness in order
to search effectively. It would be of benefit to continue the research of

these problems.

93

Chapter 5.

A SINGLE RESERVOIR
OPERATION
OPTIMIZATION
PROBLEM

5.1. Introduction

There are many decision making problems in the world. Scientific de-
cision making is important for economic and government activity. Most
decision making problems can be dealt with a MDP model. Hence, deci-
sion making problems in the real world have many constraints. Therefore,
to solve the decision making problems in the real world, we must solve the
MDP with multi constraints problems. As we described in the previous
chapter, it is difficult to solve MDP with even one constraint. Moreover,
there is not an application to get an optimal solution within a reasonable
time.

A reservoir operation problem is also a decision making problem.

However, if a reservoir operation optimization model is formulated as

95

a MDP model, this model must be dealt with as a MDP with multi
constraints. This is because it is required to estimate drought ‘frequency’,
‘duration’ and ‘magnitude’, in order to analyze reliability performances

of a reservoir against droughts.

Since Moran’s pioneering work [26] on ‘Stochastic Reservoir Theory’
in 1954, extensive research has been done to analyze reliability perfor-
mance of reservoir systems [27], [28]. In particular, remarkable progress
has been made in the estimation of relevant indices. These indices spec-
ify the probability that water is available from the reservoir (Reliability
index) and the expected duration of that following a drought (Expected

Duration index).

Hashimoto et al. [29] in 1982 proposed to use ‘reliability’, ‘re-
siliency’ and ‘vulnerability’ criteria for water resources system perfor-
mance evaluation. Hashimoto’s indices cover the concepts of drought
‘frequency’, ‘duration’ and ‘magnitude’ but fail to deal explicitly with the
inflow distribution. In order to introduce these indices into a stochastic
programming model, a consistent theoretical basis for formulating indices

is required.

Tatano et al. discussed a reservoir operation rule in their paper [36].
The model was formulated in the form of a stochastic linear programming
model which minimizes expected loss per period subject to two kinds of

reliability constraints of drought frequency and expected drought dura-

96

tion. In that model, state variables were defined at maximum available

amounts for release and occurrence of drought.

In this chapter, we try to solve a reservoir operation optimization
problem, which is formulated to a MDP with multiple reservoir reliability
constraints. The model determines an operation rule which minimizes
expected welfare loss per period subject to some reliability constraints
of ‘expected drought duration’ and ‘drought frequencies’. We present a
new approach to solve a reservoir operation optimization model applying
hybrid GAs. In applying GAs, we represent each water release strategy
by a string in GAs. The expected welfare loss per period of each strategy
is described as the ‘fitness’. At each stage to generate a string (i.e. water
release strategy) in GAs, strings which are unsatisfied by either constraint
are improved by using PIM. Therefore, we take into consideration the
two constraints of expected drought duration and drought frequency. To
create new strings, we apply genetic operators such as crossover and
mutation. Some numerical examples are also presented to investigate
the computational efficiency of our hybrid GA to solve the optimal water
release problem with two constraints in reliability of a single reservoir.
Our new algorithm can find an optimal solution of MDP with a constraint
which has 3.24 x 101° feasible solutions in a few minutes by 200mips Work
Station .

97

5.2. Preliminaries

5.2.1. State Variables

Defining S,, I, and R, as reservoir storage, inflow and release variables
at the nth stage, respectively, where the stage parameter n implies the
time duration from first stage to the nth stage, S,, I, and R, take non-

negative discrete values, i.e.,

I,=0,1,2,---,T, (5.1)
Sn: 05152)”' » Uy (52)
Rn=0,1,2,--- 041, (5.3)

where the values of these variables are discrete based on a certain unit
amount of water, v is the reservoir capacity and I is the upper bound of
inflows.

In the present model, the state vector at stage m is defined as
(Xn, 6,). Xp is the maximum available amount of water for release at
stage n and is defined as S,,+1 = S, + I, — R,. Therefore, the domain of
X, at each stage n is X = {0, A,2A,---, v+ I}. 8, is a dummy variable

which specifies the occurrence of a drought. The definition of 8, is

0 otherwise. (54)

5:{1 if Ry,.1<0D,

where D denotes demand level at normal stages n and is assumed

to be a constant. Let A = {0,1} be the domain of &,.

98

Inflow: I,

Reservoir
Storage:Ss

i

Reservoir
Capacity:v

Figure 5.1 Process of L(R(-)) and FR(R(-)) on Problem 1

If a drought is in process at stage n, water demand D should exceed
water supply R,_1 at stage n — 1 and ¢, takes unity. If 6, takes zero,
reservoir release R,,_; exceeds water demand D at normal stages, i.e., a

drought is not in process at stage n.

Figure 5.1 shows the model of a single reservoir operation opti-
mization problem. According to Figure 5.1, an optimal operation rule is
determined by the control tower while taking into account welfare loss
per period and reliability constraints of ‘expected drought duration” and
‘drought frequencies’.

99

5.2.2. Single Reservoir Operation Rule

In this paper, we concentrate on finding a desirable operation rule
from a class of steady, closed-loop operation rules. Reservoir operation
rule R(z,l) is defined as a function of values (z,l) of the state vector
(Xn, 6) which specifies the amount of reservoir release. Namely, if state
vector (X, 6,) at stage n takes the value (z,[), release from the reservoir
R, is determined by the rule, i.e., R, = R(z,).

Since the reservoir has a finite capacity for water storage v, releases

from the reservoir should stay in the region Q(x;v), where
Q(z;v) = {Ry| max(0,z —v) < R, < z}. (5.5)

This means that the region {(z;v) consists of the one of the con-
straints in mathematical formulation to be solved in order to design
desirable operation rules. In other words, mathematical formulation
to be solved in this paper are formatted to find a satisfiable function
R : X x A — X in terms of the objective, social expected loss mini-
mization, which satisfies reliability constraints from a class of admissible

functions R, where
R={R:Xx A - X|R(z,1) € Qz:v) for V(z,l) € X x A}. (5.6)

For convenience of expression, an operation rule which is formulated
as a function R(z,!1) is denoted by R(-). Since reservoir operation rule
R(-) deterministically assigns a specific amount of releases to all the

100

possible values of state vector (z,l) € X x A, the operation rule R(-) can

be regarded as a pure strategy for a single reservoir operation policy.
5.3. Problem Definition

In this paper, we focus on a design problem of a single reservoir
operation with multi-reliability constraints. The problem is formulated
as a problem to find an operation rule R(-) in R which minimizes ex-
pected social welfare losses per period within infinite time horizon under
EL(R(-)), with two kinds of reliability constraints, drought frequency

FR(R(-)) and expected drought duration ED(R(-)):

Rr(%ierln EL(R()), (5.7)
subject to

FR(R()) < FR, (5.8)

ED(R(-)) < ED. (5.9)

where 'R and ED denote upper bounds of drought frequency and ex-

pected drought duration, respectively.

5.3.1. Transition Probabilities

Given an operation rule R(z,l), one step transition probability

P g,(la)c’l()y,k) from state (z,1) to (y, k) is formulated as
(@) (yk) — r{Xni1 =Y, 6n41 = k| Xn = 2,60 = [} (5.10)

101

Storage balance condition is defined as Sp11 = S, + I, — Ry, From
the storage balance condition, the following relationship among maxi-
mum available amounts for release X,,, X1 , release R, and inflow I,, ;4

holds,
Inp1 = Xon _Xn+Rﬂ)(n: 1a2>) (511)

It is assumed that inflow I, is an independent discrete random variable*,
identical at each stage and having a PDF 6(-) .
PR(m,l)

Then, each value of one step state transition probability P, ",)

is calculated by
Pt = 0y—z+7)- {x(k = Ox(r = D) +x(k = Dx(r < D)}.(5.12)

where x(-) is a function which takes unity if (-) is true, and null otherwise.

It is easily found that state vector (Xy, 6,) forms an ergodic Markov
Chain given a specific operation rule R(-). Hence, the reservoir operation
problem formulated in the above can be regarded as a special case of MDP

problems with reliability constraints.

5.3.2. Reliability Indices for Designing Reservoir
the Operation Rules

Based on the knowledge that state vector (Xy, &,) forms an ergodic

Markov Chain, let us show the way to estimate reliability indices which

*Of course, it is easy to attend the model to the serially correlate inflow cases. In
order to show the basic idea of applying hybrid GAs, the authors decided to show the
model for the simplest case.

102

correspond to a specific operation rule R(-),VEL(R(-)), FR(R(-)) and
ED(R())

Welfare losses due to droughts are assumed to occur when release
from the reservoir R, is smaller than water demand D and to depend
on deficits D — R,,. Let the social welfare losses in a single stage be
denoted by function L(r) of release from the reservoir at the stage where
L(r) takes a positive real number T if release is smaller than demand, i.e.,
r < D, and L(r) takes zero otherwise.

Since state vector (Xy, &,) forms an ergodic Markov Chain, given a
certain operation rule R(-), the expected value of social welfare losses per
period, 3% o E[L(R(X:, Ay))]/(n + 1) converges. Hence, we can denote
the expected value of social welfare losses per period EL(R()) as

R(Xn, An))]

i (5.13)

" E|L
EL(R()) = lim 3 2
Then, EL(R(-)) can be estimated by solving the following equations:

EL(R()) + u@y = LRz, D)) + > PeS) puge, (5.14)
(y:k)

for V(z,l) € X x A.
where EL(R(-)) and (., are unknown variables for the equations.
In order to formulate F R(-) and ED(-), functions Lpg(r,{) Lrg(r,1)

are formulated as

1if r < D,

0 otherwise, (5.15)

Lpp(r,l) = {

TL(r) can be measured by a monetary term.

103

lif r<D and [=0,

0 otherwise. (5.16)

LFR(Ta l) = {

In the same discussion for EL(R(-)), given an operation rule R(-),
average expected values of these functions converge. Let PF(R(-)) and
F R(R(-)) be the converged average expected values of these functions.

Then, PF(R(-)) and FR(R(-)) can solve the following equations:

PF(R(-)) + v = Ler(R(@, 1), 1) + 3 Pagly V) (5.17)
(¥:k)

for V(z,l) € X x A,

FR(R()) + wy) = Ler(R(@,0,1) + 3 Faiy (s W, (5.18)
(y:k)
for V(z,l) € X x A,
where PF(R(-)), U@, FR(R(-)) and w;) are unknown variables
for the above equations. Given a certain operation rule R(-), drought fre-
quency is estimated by solving Eq.(5.19). It has been proved by Tatano,

et.al. [36] that ED(R(.)) is estimated by

_ PF(R())

ED(R(-) = FREQ)

(5.19)

Now, it is clearer to estimate values of functions which consist in our

programming problem.

5.4. Genetic Algorithms

The optimization technique using GAs also falls into the category

of Meta heuristics [21]. Meta heuristics have been remarkably applied

104

for many problems, for which it has been difficult to solve the optimal

solution up to now.
5.4.1. Procedure of GAs

GAs is a search algorithm based on the mechanics of natural selection
and natural genetics [23]. In natural terminology, we say that chromo-
somes are composed of genes, which may take on some number of values
called alleles. In genetics, the position of a gene (its locus) is identified
separately from the gene’s function. In artificial genetic search, we say
that strings are composed of features or detectors, which take on differ-
ent values. Features may be located at different positions on the string.
On the computer, a new set of artificial strings is created by using bits
and pieces of the fittest of the old in every generation. We encode strings
and chromosomes to reservoir operation rule R(-) and reservoir release

R(z,1), respectively. Strings show as follows:
1=0 1=1

R(1,0), R(2,0), ..., R(N,0), R(L, 1), B(2,1),. .., R(N, 1)

3

1, %, 6, 0, 1,..., 5

4

operation rule R(z,l)=gene of RL,()

Here, we design each chromosome R(z,!1) for V(z,1) satisfying Eq.(5.5).
Each reservoir release is expressed by a decimal number. The GAs
works by holding a set of strings (population) of encoded solutions to
a search problem, and then tries to select and breed new solutions de-
rived from the existing population. The members of the population are

105

called parents and breed a new population. Typically, parents inter-breed
by exchanging alleles to create a new chromosome using some form of
“crossover” and “mutation”. Those operations create the new strings
i.e. reservoir operation rules. The operation rules which have higher fit-
ness, i.e. loss per a period, exchange the lower fitness operation rules by

selection. The process of GAs is as follows:

Step 1
Generation ¢ = 0 . Create initial population G(0) of population

size M at random.

Step 2

For each givén operation rule Rf (1) € G(t) = {RL(-), -, R, ()}
estimate EL(RL, (), FR(RL,(-)) and ED(RL,(-)) by Egs. (5.14),(5.19)
and (5.19), respectively, and set fitness to each operation rule re-

ferring to Table 5.1

If either FR(R. (-)) or ED(R?, (-)) do not satisfy conditions, a local

search is implemented and R!,(-) may be replaced by Rt (-).

Step 3

Except for elitist operation rule, we apply genetic operations to
every operation rule at ¢ th generation so as to create a new pop-
ulation at the ¢ + 1 th generation, G(t + 1). The elitist (best)

106

Table 5.1 Setting of Fitness

FR ED Local Search Fitness
satisfy | satisfy - L(R("))
not | satisfy | PIM(Eq.(5.20)) | L(RE,(-)) or L(Rt (-)) with Penalty o
satisfy | not | PIM(Eq.(5.20)) | L(R:,(-)) or L(R:,(-)) with Penalty 8
not not — 0

operation is determined as the operation rule which has maximum
fitness among those at the generation. Genetic operations consist
of ‘crossover’ and ‘mutation’. Figure 5.2 illustrates the genetic op-

erations.

Step 4

Stop or t =t + 1 and go to Step 2.

cut CROSSOVER
string A 13233|333451323333345 —— string A’ 13233333451222323345
string B 12233|333451222323345 — string B’ 12233333451323333345
change MUTATION
string C 12233333451323333345 —— string C’ 12233333451223333345

Figure 5.2 Genetic Operations

The important parts of this algorithm are how to set the fitness, how
to survive the superior gene, and how to create the new gene. Selection
plays an important role to induce the direction of a successful search.

The genetic operator plays an important role to find new search space

107

as a driving force. When this procedure works effectively, GAs gives full
play to power.

Generally speaking, GAs is not suitable to local search. This is
because it is difficult to change only tiny part of a gene, when the gene
is large. However, GAs is powerful in global search by multiple point
search. Thus, we propose Hybrid GAs combined PIM. We use PIM for
local search, and GAs for global search. Therefore, we apply Hybrid GAs

to a single reservoir operation model with multiple reliability constraints.

5.4.2. Policy Improvement Method for Local Search

In the primitive GAs applications to constraint optimization problems,
algorithms may be described as genes which do not satisfy constraints
that cannot survive more than one generation. This kind of description
of algorithms often causes inefficient search for a better feasible solution
because these algorithms may allow too small a number of genes to create
the next generation.

To avoid this problem, local search is used in this paper. We focus
on operation rule Rf,(-) which does not satisfy one of the constraints.
PIM is used to find a feasible operation rule Rt (-) based on the infeasible

one R: (-). The local search (PIM) procedure is the following:

Step 2-1
Estimate R: (-) based on Rt (-) by

108

Lo (2,0)
arg min {L Rz, wly, k
g(a:z)eg(){ rr(B, (%) @) (y,k))}

(FR(R.,()) =2 FR)

arg min {Lpp(RL(z,0),0)+ > m’;)((zll))v(y,k)}
(212 v) (v) ’

(ED(R,,() = ED)

R (z,1) = (5.20)

where w(y, k), v(y, k) are solutions of equations specifying the op-

eration rule as R. (-).

Step 2-2

If Rt (-) is feasible, let R! () replace Rt (-). Otherwise, keep R (.).
5.5. Numerical Examples

In this section, we apply the proposed model to a reservoir opera-
tion design problem, in order to examine our approach. It is assumed
that the water demand D is 3m3/s, and the reservoir capacity v is 4m?®.
Inflows are assumed to obey a log-normal distribution of which the pa-
rameters have an average of u = 6.25m®/s, and a standard deviation

= 9.65m3/s. The upper bound of drought frequency FR is 0.025,
which is equivalent to a frequency of once in a year. The upper bound
of average sojourn time of drought E'D is 1.8 stage, which is equivalent

to ten days. The social welfare loss function is specified as follows:

21)

Ut

L(r) =

ae?P-" if r < D,
0 (

otherwise.

Here, social welfare loss at that stage is assumed to be a non-decreasing
convex function of the deficit of (D — R,). Parameters are assumed to

109

be a = 0.1158 and b = 0.3225.

There is a tradeoff between two constraints, F'K and ED. Further, a
denominator of ED is F'R, and F'R is restricted severely. Here, we define
three types of problems, Problem 1, Problem 2 and Problem 3. Problem
1 is to solve an optimal operation rule which minimizes expected welfare
loss per period, Eq.(5.7), subject to the reliability constraint of ‘expected
drought duration’, Eq.(5.8). Problem 2 is to solve an optimal operation
rule which minimizes expected welfare loss per period, Eq.(5.7), subject
to the reliability constraint of ‘drought frequencies’, Eq.(5.9). Problem
3 is to solve an optimal operation rule which minimizes expected welfare
loss per period, Eq.(5.7), subject to multiple reliability constraints of

‘expected drought duration’, Eq.(5.8) and ‘drought frequencies’, Eq.(5.9).

Figure 5.3 shows the process of expected loss per function EL(R(-)),
and the drought frequency FR(R(-)) in Problem 1, when the elite reser-
voir operation rule R(-) is taken at each generation. Problem 1 is the
same as GAs in the previous chapter, that is, MDP with a constraint. Ac-
cording to Figure 5.3, the expected loss per function EL(R(-)) increased
step-wise, on the other hand the drought frequency FR(R(-)) repeated

up and down until generation 50. This indicates that GAs still searched

for an optimal solution in Problem 1.

Figure 5.4 shows the process of expected loss per function EL(R(-))

and the average sojourn time of drought FD(R(-)) in Problem 2, when

110

0 50 100 150 200 250
GENERATION

Figure 5.3 Process of L(R(-)) and FR(R(-)) on Problem 1

111

........

0 50 100 150 200 250 300
GENERATION

Figure 5.4 Process of L{(R(-)) and ED(R(-)) on Problem 2

112

2.1
e oo eemeseemes oo

1.9 -

1.7 -

1.5 -

1.3 -

] —L

------- ED

1.1 ¢ —-- FR X100

0.9 -

0.7 '

0 50 100 150 200 250 300

GENERATION

Figure 5.5 Process of L(R(-)), FR(R(-)) and FR(R(-)) on Problem 3

113

the elite reservoir operation rule R(-) is taken at each generation. Prob-
lem 2 also has only one constraint, as does Problem 1. However, this
constraint includes two functions, FFR and PF. Constraint functions
ED divides PF by F'R. In this constraint, we are confused whether it is
better to minimize £ D by minimizing F' R or maximizing PF'. According
to Figure 5.4, L was decreasing, while £ D was increasing. This indicates
GAs with the advantage of multi-point search is available even in this

problem.

Figure 5.5 shows the process of expected loss per function EL(R(-)),
drought frequency FR(R(-)) and the average sojourn time of drought
ED(R(-)) in Problem 3, when the elite reservoir operation rule R(-) is
taken at each generation. Problem 3 has multiple constraints, which
have tradeoffs. According to Figure 5.5, L was decreasing while F'R
and ED were controlled well. Therefore, GAs finds that changing F'R is
more effective than changing PF'. This indicates that GAs can progress

the objective function, while controlling multiple constraints which have

tradeofls.

Figure 5.6 is an optimal reservoir operation rule in Problem 1. This
rule can be understood as a real operation rule. In safe state .S, it releases
water from the reservoir capacity, and the expected loss is kept as low as
possible. In the drought state F', the operations save some of the water

as storage in the reservoir.

114

Rix, 1)

>

[N
O Ot = U1 DO U1 U1k U1
T

- Reservoir operation rule in Problem 1

w

f—

o

Figure 5.6 An optimized operation rule of Problem 1

4+ Reservoir Operation rule in Problem 2

Figure 5.7 An optimized operation rule of Problem 2

115

Reservoir cperation rule in Problem 3

L

R(x, 1)
o w
S U TN OV LW U O O
T T T L) T T

L5 T —R(x,0)
—————— R(x,1)
0.5+
0 1 2 3 4 5 6 7 8 9

Figure 5.8 An optimized operation rule of Problem 3

Figure 5.7 is an optimal reservoir operation rule in Problem 2. Ac-
cording to Figure 5.7, an optimal reservoir operation rule in the safe
state is the same as in the drought state F'. This indicates Problem 2
must release water even in the safe state in order to satisfy the reliability

constraint of ‘drought frequencies’.

Figure 5.8 is an optimal reservoir operation rule in Problem 3. This
rule is the same as Problem 1. This indicates F'R has much effect. In
order to satisfy both of the constraints, F'R and ED, it should release
an amount of water until the reservoir capacity is in safe state S. This
operation keeps the expected loss as low as possible. By minimizing F'R,
L is decreasing, however, ED is increasing. Therefore, it is important to

find the most suitable F R in Problem 3.

116

Table 5.2 shows the results for different combinations of constraint

change.

Table 5.2 Results of three problems

EL FR ED | GENERATION
Problem 1 | 0.1205 | 0.0196 — 391
Problem 2 | 0.0867 — 1.1788 286
Problem 3 | 0.1205 | 0.0196 | 1.6650 286

5.6. Conclusion

In this paper, we proposed hybrid GA which combined with PIM in an
operation optimization model with multiple reliability constraints. We
have gotten successful results. Here, PIM is used once per improvement of
an operation rule. However, it is possible to find an operation rule which
satisfies the constraint by retrying. We are sure that hybrid GAs can be
used as a tool for a MDP model with multiple constraints. However, we
think it is important to consider the way of setting fitness for effective

search. It would be of benefit to continue the research of this problem.

117

Chapter 6.

CONCLUSION

In this thesis, various combinatorial optimization problems are solved
by Genetic Algorithms. The modeling methods are different for each
problem’s characteristics, however, all of the Genetic Algorithms pro-
posed also fall into a category of a Hybrid GAs in the sense. Genetic
Algorithms are easy to model and combine with other optimization meth-
ods. However, it must be considered how to combine various optimization
methods into Genetic Algorithms. There are many combinatorial opti-
mization problems, in the real world. In this thesis, we have dealt with

rectangular packing problems and natural numbering problems.

Rectangular packing problems are difficult to translate from a gene
to a feasible solution which satisfies constraints, because a geometrical
factor is included. Then, in a two-dimensional rectangular packing prob-
lem, we proposed that Genetic Algorithms be applied as parameter tun-
ing of greedy algorithm. Moreover, we formulated a slab design problem
as a two-dimensional bin-packing problem. Genetic Algorithms are ap-

119

plied as assorting information of heuristics. In both problems, Genetic
Algorithms is give good results.

Natural number combinatorial optimization problems are formu-
lated with as a Markov decision process model with constraints. More-
over, a reservoir operation problem is dealt with a Markov decision pro-
cess model with constraints. Natural number combinatorial optimization
problems are difficult to satisfy with constraints. However, transfer from
a gene to a feasible solution is easy, due to a phenotype. That is, a so-
lution is equal to a gene in natural number combinatorial optimization
problems. In natural number combinatorial optimization problems, Ge-
netic Algorithms also give good results. However, it is uﬁknown whether
phenotypes satisfy all constraints. Thus, it is important to change an
infeasible solution to a feasible solution.

All of the Genetic Algorithms proposed in this thesis, have given
good results. We are sure that Genetic Algorithms are a suitable tool for

solving combinatorial problems.

120

ACKNOWLEDGEMENT

The author would like to thank Prof.H. Kawai of Tottori Uni-
versity for supervising this dissertation. His continuing guidance and
encourageﬁent on the dissertation have greatly helped the completion of
the work.

The author is also grateful to Prof.K. Sugata, Prof.H. Kita, of Tot-
tori University and Prof.K. Kobayashi of Kyoto University for their gen-
erous support of the work.

This dissertation could not have been completed without the guid-
ance and encouragement of the above professors.

Furthermore, the author wishes to express his thanks to Prof.H.
Tatano and Dr.K. Fukuyama for his helpful advice. His excellent assis-
tance greatly helped to get the reservoir operation optimization problem
into shape.

Prof. H. Tokuyama of Shizuoka University, Dr.T. Makino, Dr.N.
Ueno, Mr.Y. Nakagawa and Mr.S. Sotojima of Sumitomo Metal Indus-
tries, Ltd. have contributed knowledge and support with regard to the
slab design problem.

The author also wishes to express his thanks to Mr.S. Wever for his
help with technical writing in English.

The author’s thanks are also go to assistant Prof.J. Koyanagi and

all of the members of Prof.H. Kawai’s laboratory at Tottori University.

121

Bibliography

1]

Kantorovitch, L. V., “Mathematical methods of organising and plan-

ning production”, Management Science 6, pp. 366-422, (1960).

Gilmore, P. C. and Gomory, R. E., “Multistage cutting stock prob-
lems of two and more dimensions”, Operations Research 13, pp. 94-

120, (1961).

Kathryn A. Dowsland and William B. Dowsland, “Packing problems

» European Journal of Operational Research 56, pp. 2-16, (1992).

H. Tokuyama and N. Ueno,“The cutting stock problem for large
sections in the iron and steel industries”, European Journal of Op-

erational Research 22, pp. 280-292, (1985).

P. K. Agrawal, “Minimising trim loss in cutting rectangular blanks
of a single size from a rectangular sheet using orthogonal guillotine
cuts” European Journal of Operational Research 64, pp. 410-422,
(1993).

123

[6]

[10]

[11]

[12]

[13]

Ahmed El-Vouri, Neil Popplewell, S. Balakrishnan, Attahiru S. Alfa,
“A search-based heuristic for the two-dimensional bin-packing prob-

lem”, INFOR, Vol.32 No.4, (1994).

Paull, A. and Walter, J., “The trim problem: an application of linear
programming to the manufacture of newsprint paper”, Proceedings

of Annual Econometric Meeting, Montreal, Sept. 10th-13th, (1954).

Baker, B.S. and Coffman, E.G., “A tight asymptotic bound for next-
fit-decreasing bin-packing”, STAM Journal on Algebraic and Discrete

Methods 2, pp. 147-152, (1981).

David S. Johnson, “Fast Algorithms for Bin Packing”, Journal of

Computer and System Science, pp. 272-314, (1974).

Coffman, E.G., Garey, M.R and Johnson, D.S., “Approximation
algorithms for bin packing -an updated survey”, Algorithm Design

for Computer Systems Design, pp. 49-106, (1984).

Wang. P.Y. , “T'wo algorithms for constrained two-dimensional cut-

ting stock problems”, Operations Research 31, pp. 46-49, (1983).

Bellman, R. , A Markovian Decision Process, Princeton Univ. Press,

Princeton, New Jersey, (1957).

Howard, R.A., Dynamic Programming and Markov Processes,

M.LT. Press, Cambridge, (1960).

124

[14]

[17]

[18]

Hordijk, A. and Kallenberg, L.C.M., “Constrained Undiscounted
Stochchastic Dynamic Programming”, Mathematics of Operations

Research, Vol. 22, pp. 276-289, (1984).

Beutler, F.J. and Ross, K.W., “Time-Average Optimal Constrained
Semi-Markov Decision Processes”, Advances in Applied Probability,

Vol. 18, pp. 341-359, (1986).

T. Kawakami and Y.Kakazu, “A GA-based hierarchical tuning of
the 3-D packing strategy in a multiagent environment”, 1994 Japan
U.S.A Synposium on Flexible Automation, A Pacific Rim Confer-

ence , pp. 1319-1326, (1994).

Coffman, E.G., Jr., and Shor, P.W., “Average-case analysis of cut-
ting and packing in two dimensions”, European Journal of Opera-

tional Research 44, pp. 134-145, (1990).

Y. Masumoto, K. Yosikawa and N. Kato, “ Realistic evaluation of
two-dimensional bin-packing algorithm ” (in Japanese), Proc. of Op-

erational Research in Japan, pp. 42-43, (1986).

H. Tokuyama, N. Ueno, M. Kawabata, Y. Kitano and H. Saito, “The
tW0—dimeﬁsional assortment problem in the production of heavy steel
plates”, Asian-Pasific Operations Research: APORS ’88, pp. 289
304, (1988).

125

[20] B. Watson, K. Matsuda, K. Nose, M. Konishi, Y. Tomita, S. Sakai
and S. Sasaki, “Solution of the rectangular cutting stock problem
by genetic algorithm”, 1992 Pacific Conference on Manufacturing

Proceedings, pp 523-530, (1992).

[21] Toshihide Ibaraki, “New extend of modern heuristics — Genetic Al-
gorithm, Simulated Annealing, Tabu Search,Neural Net is effec-
tive 7 — Operations Research Society of Japan 30th symposium (in

Japanese)”, pp. 1-10, (1993).

[22] Hiroaki Kitano, Genetic Algorithm (in Japanese), Sangyotosho,

(1993).

[23] David. E. Goldberg, Genetic Algorithms in Search Optimization and

Machine Learning, Wesley Publishing Company Inc, (1989).

[24] Beutler, F.J. and Ross, K.W.,“Optimal Policies for Controlled
Markov Chains with a Constraint”, J. Math. Anal. Appl., Vol. 112,

pp. 236252, (1985).

[25] Toshio Kitagawa, Markov Process (In Japanese), Kyoritsushupan,

(1967).

[26] Moran, P.A.P., “A Probability Theory of Dams and Storage System
", Aust. Jour. Applied Science, Vol. 5, pp. 116-124, (1954).

126

[27] Lloyd, E. H., “Reservoirs with Serially Correlated Inflows”, Techno-

metrics, Vol. 5, No. 1, pp. 85-93, (1963).

[28] Prabhu, N. U., “Time-dependent Results in Storage Theory”, Jour.

Applied Probability, Vol. 1, pp. 1-46, (1964).

[29] Hashimoto T., Stedinger, J. R. and Loucks D. P., “Reliability,
resiliency, vulnerability criteria for water resource systems perfor-
mance”, evaluation, Water Resour. Res., Vol. 18, No. 1, pp. 14-20,

(1982).

[30] Yakowitz, S., “Dynamic Programming Applications in Water Re-

sources”, Water Resour. Res., Vol. 18, No. 4, pp. 673-696, (1982).

[31] Yeh, W., “Reservoir management and operations models : a state-of-
the-art review”, Water Resour. Res., Vol. 21, No. 12, pp. 1797-1818,

(1985).

[32] Askew, A.J., “Optimum reservoir operating policies and the imposi-
tion of a reliability constraint”, Water Resour. Res., 10(1), pp. 51-56,

(1974).

[33] Askew, A.J., “Chance-constrained dynamic programing and the op-
timization of water resources system”, Water Resour. Res., 10(6),
pp. 1099-1106, (1974).

127

[34] Rossman, L., “Reliability-constrained dynamic programming and
randomized release rules in reservoir management”, Water Resour.

Res., 13(2), pp. 247-255, (1977).

[35] Sniedovich, M., “Reliability-constrained reservoir control problems,
1, Methodological issues”, Water Resour. Res., 15(6), pp. 1574-1582,

(1979).

[36] Tatano, H., Okada, K., Yoshikawa, K. and Kawai, H, “A frequency
and duration contrained model for the optimization of a single
reservoir operation”, in Hipel, K.W. and Fang, L. (eds.) Stochastic
and Statistical Methods in Hydrology and Environmental Engineer-
ing, Kluwer Academic Publishers, Netherlands, Vol. 4, pp. 375-388,

(1994).

128

END

