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Abstract 
 

 

Vision is a basic sense in human beings, and a lot of the information we receive comes mainly 

from our ability to visualize our surroundings. This is mainly true for robots as well. Therefore, 

visual technology has many applications in such areas as robotics, manufacturing, and security. 

Robots and home appliances that can understand their surroundings based on visual 

information can be very useful for human users. They can provide rich opportunities through 

their use of visual information such as a user-friendly human interface. 

However, image recognition issue is not easy to achieve. There are many inherent problems 

such as luminance changes, complex backgrounds, rotational changes of the target objects, and 

occlusion problems. Many researchers have been working stridently to solve these problems. 

Considering computational resources, computational processing power has increased in recent 

years, allowing computers to deal with huge amounts of information. The various methods of 

object detection are proposed that assumes by using huge computational power. However, such 

methods are impractical for embedded applications such as robots and home appliances, 

because we need to implement into small-sized hardware. Many works have assumed the 

implementation of generic processors. We cannot implement generic processors into smaller 

robots or home appliances. 

There are many techniques and methods suitable for implementation into smaller hardware. 

Furthermore, hardware implementation is difficult to achieve for some algorithms. In this 

thesis, we therefore focus on object recognition algorithms suitable for hardware 

implementation. In order to solve these problems of conventional method, we proposed a 

reduction method of the SIFT feature points for object detection and a human-pose tracking 

method for body parts detection, and we achieved the following results, respectively. 

First, the SIFT feature based object detection algorithm is described. While a Haar-like feature 

is a powerful method, it is not robust to changes in rotation or scale. The SIFT feature based 

method is used to overcome this problem because of its robustness to changes in size and 

rotation. However, in principle, the SIFT point based method requires large amount of memory 

and computational power. A SIFT feature produces a thousand feature points and requires 128 

dimensional vectors per point. Moreover, the method requires a lot of computational resources 

during the matching process. Straightforward implementation in hardware is not practical. 

Therefore, we propose a reduction of the SIFT feature point method before performing a 

matching step. The evaluation results show that this method can reduce the amount of memory 

and processing without sacrificing accuracy. In addition, we propose an effective matching 

method for texture-less objects. For example, a complex objects produce rich feature points 



 

 

indicates rich feature information. However, some objects in indoor scenes are texture-less. For 

example, home appliances tend to have square shape and little texture. The SIFT feature based 

method is difficult to apply to such cases. We therefore propose a new matching method using a 

pre-trained confidence table. The evaluation results by using 2432 samples show that the 

proposed method improved the recognition performance for texture-less objects. 

Second, a human pose tracking method is described. Considering the applications of embedded 

object detection, human recognition is a very important task for such products. While this type 

of tracking seems to be a different area of research, home appliances and robots are used by 

human users, and human recognition is important for such products. In this thesis, we focus on 

a tracking problem of golf swing, which tracks the grip of a golf player from an uncontrolled golf 

swing video by using a monocular camera. Generally speaking, particle filter based methods are 

widely used for such tracking problem. However, tracking a part of a person in difficult 

uncontrolled and complex background is not easy. A novel method that combines both global and 

local features was proposed. We therefore combined human pose estimation, and tracking using 

a pictorial structure model (PSM) for tracking human pose motion. The evaluation results show 

that the combination of the global and local features outperformed the conventional method 

based on particle filter. When we compared an unconstrained conventional particle filter with 

the proposed method, the proposed method showed a better tracking performance for all 

samples compared to conventional particle filter. 
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1. Introduction 

 

Vision is a basic sense in human beings, and we receive much of the information around us 

mainly through our sense of vision. Therefore, object recognition technology has the possibility 

to allow the realization of robot with a smarter sense of vision. Recognition technology has 

many applications in such field as robotics, manufacturing, and security. Robots and home 

appliances that can understand their circumstances through image information can be useful 

for human users. They can provide a lot of opportunities through their use of visual information, 

such as user-friendly human interface. 

However, object recognition is not an easy task to achieve. There are many inherent problems 

such as changes in luminance, complex backgrounds, changes in the appearance of the target 

objects, and occlusion problems. Many object recognition systems find objects from an original 

image. Luminance changes affect the recognition performance because many such systems use 

pre-trained models. Complex backgrounds also pose difficult problems. Separating the 

background and foreground (target object image) is a difficult problem and is still considered as 

unresolved. Appearance changes are also difficult to deal with. The appearance of an object 

differs with its changes in rotation and scale. To recognize the changes appearance of an object, 

the detection algorithm should use different appearance models. This problem is still 

unresolved, as is the occlusion problem. An occlusion occurs when one object is hidden by 

another object pass between it and the camera. As a result, the appearance of the target object 

varies widely. While many researchers have been working to solve these problems, many 

difficult problems still remain. 

Meanwhile, recent years have seen dramatic increases in computational processing power, 

allowing huge amounts of information to be treated using modern computers. The various 

methods of object detection proposed thus far have assumed the need for a significant amount of 

computational power. For example, some methods process different parts of an original image 

simultaneously. Such algorithms are easy to implement using the latest multi-core processors or 

GPU. However, these methods are still difficult to use in a real environment. Generic processors 

are designed for use in personal computers. They require a large power supply, complex 

peripheral circuitry and heat sink systems. In other words, they are impractical for 

implementation in small robots. For a practical use of object detection, we need to implement 

such algorithms into smaller hardware. For such occasions, we need to tackle such issues as 

hardware-oriented algorithms, a reduction of computational resources, and pipeline 

implementation. In this thesis, we focus on an object-recognition architecture that can be 

implemented in small hardware. We describe two conventional object-recognition methods in 

the following section. 
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1.1. Haar like based object detection method 
In this section, we describe a sign recognition algorithm implemented in an FPGA [1]. This 

algorithm can be used for indoor miniature robots. The pipeline architecture can process video 

streams in real-time and reduce the working memory. Many papers have focused on the design 

and implementation of the hardware for real time object detection [2][3]. Nair et al. 

implemented an embedded system for human detection on an FPGA [4]. This system detects 

people at a speed of 2.5 frames per second. However, it requires a large size SDRAM memory. 

Cho et al. implemented a face detection system [5] in a Xilinx Vertex-5 FPGA using a scalable 

architecture. However, this system also uses a large amount of memory, requiring 41BRAMs 

(Block RAM) for 320x240 (QVGA) resolution images, which corresponds to 1.4Mbit of memory 

on a Virtex 5 device. Through the use of a pipelined architecture, however,  the system does not 

require a large amount of frame-size memory. 

 An outstanding face detection algorithm proposed by Viola and Jones [6][7][8] is used as a base 

algorithm. Compared to a conventional algorithm, it can process images rapidly with high 

accuracy. An overview of the Viola-Jones face detector algorithm is described below. The detector 

process uses three key algorithms. 

The first key algorithm is a feature extraction method called an integral image. This allows for 

very fast feature extraction. An integral image is similar a Haar-basis function. The value of a 

dual-rectangle feature is defined as the difference between the sums of the pixels in two 

adjacent regions. Viola and Jones paper presented a very fast integral image computation 

method with computational advantage over previous methods because, like most object 

detection systems, the detector scans the input at many different scales.  

A second key algorithm is a learning algorithm based on AdaBoost, which is used to compute 

different features at many different times. In an image sub-window, the total number of 

features is extremely large. To ensure a fast classification, we do not need a large majority of the 

features, and can focus on only the important critical ones. Viola and Jones adopted a variant of 

AdaBoost to select the features used to train the classifier. The AdaBoost algorithm can boost 

the classification performance of a simple learning algorithm, and is a combination of weak 

classification functions for forming a stronger classifier. Here, a simple learning algorithm is 

called a weak learner. Such a learner is considered weak because we do not expect the best 

classification function for classifying the training data perfectly. For boosting a weak learner, 

the examples are re-weighted during the rounding step in the training process. The final strong 

classifier is a weighted combination of weak classifiers. The AdaBoost procedure can be easily 

interpreted as a greedy feature selection. It is an effective procedure for searching out a small 

number of good features from a large number of candidate features. 

The third key algorithm has a cascade classifier structure. Such a structure increases the 
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processing speed of the detector by focusing on the important regions of an image. Boosted 

classifiers that reject many of the negative sub-windows can be constructed. A cascade structure 

is constructed through the training of the classifiers using AdaBoost. Starting with a strong 

two-feature classifier, an effective detector can be gained by tuning the strong classifier 

threshold to minimize false negatives. The initial AdaBoost threshold is calculated to minimize 

the low error rate of the training data. A lower threshold yields a higher detection and higher 

number of false positives. The cascade structure reflects the fact that, in any single image, an 

overwhelming majority of the sub-windows are negative. Negative images should be rejected at 

the earliest stage possible.  

Haar-like features represent differences in the average intensities between adjacent 

rectangular regions, and are based on Haar basis functions. It can extract texture information 

without depending on the absolute intensities or color values. More specifically, adjunct regions 

have the same size and shape and are horizontally or vertically adjacent. They are not affected 

too much by noise because the haar-like feature is based on integral value.  

Figure 1.1.1 shows a block diagram of the hardware design, implemented on the Altera 

Cyclone III FPGA [9] using SystemVerilog [10] and Verilog-HDL. A fixed point hardware 

implementation was developed based on floating point software. Since the software uses a 

floating point, testing was required to convert the software implementation to work with 

fixed-point operations.  

Fig. 1.1.1 Block diagram of a hardware implementation on a Haar-like based system. 

Image data from the camera module are sent to the camera interface module, which converts 

the camera data from a serial form into a parallel form. Data from the camera interface then 

lead to a matrix and are converted into an L*a*b* color space. The converted data are then sent 

to the Haar-like feature generator and AdaBoost classifier. The parameters of the Haar-like 

features and trained AdaBoost classifiers are programmed in the ROM. The key feature of this 

design is a pipelined architecture. All modules in the design synchronize with video signal. 
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Therefore, a Haar-like feature calculator needs to address the control of the buffer memories. 

Figure 1.1.2 shows sample images taken from a camera.  

 

 

(a) Left arrow „LT‟ 
 

(b) Right arrow „RT‟ 

Fig. 1.1.2 Sample images from onboard camera 

 

Table 1.1 Hardware implementation details 

Input data format YUV 4:2:2  (640 x 480 pixels) 

Processing time < 1frame 

Number of classifiers 256 (max) 

 

Table 1.1 shows the hardware implementation details. The FPGA design is intended for 

practical use, and we therefore implemented the design suitable for a camera module of a 

mobile phone. Moreover, the design is pipelined and synchronized to vertical sync signal from a 

camera module. The MC5VC camera module provided by Konica Minolta for mobile phone 

applications is used in this work. The basic picture control function is processed inside the 

camera module. This module can connect directly to an FPGA device, without an interface 

circuit. The frame rate varies according to the optical luminance. The frame rate decreases in a 

dark environment. In contrast, in a bright environment, the frame rate increases. Many 

conventional systems uses frame buffer memory to synchronize the vertical sync timing. In 

contrast, the proposed system designed to synchronize with a vertical sync pulse without frame 

memory. 

 

1.2. Human detection using HOG and random trees 
A human detection method has many applications for surveillance, human interaction, and 

human behavior analyses such as a customer behavior analysis in a shopping centre. Dalal and 

Triggs recently proposed a method based on Histogram of Oriented Gradients (HOG) [11] 

features with SVM [12] for human detection, and achieved a high performance for the standing 

posture of a person. The appearance of a local object can be described based on a distribution of 

intensity gradients. Hou et al. proposed a multi-pose framework [13] with vector boosting, 
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which is a hierarchical tree of a detector cascade. Moreover, human detection in a cluttered 

background [17] and with occlusion [18] are also proposed. However, human detection is still a 

difficult problem because of the various changes in human appearance. Multi-pose detection can 

be considered a multi-class classification problem. For such problems, hierarchical-structure 

based approaches are widely used. A Randomized Tree is a tree structure method for multi-class 

recognition, which uses an ensemble of detection trees in which each decision tree outputs the 

likelihood of each class. The classification is based on a sum of the likelihoods for all classes 

from all decision trees.  

Human detection algorithm based on a hierarchical tree structure [16] is introduced in this 

section. A Randomized Tree [14][15] is suitable for parallel processing because each decision tree 

is independent. In addition, it is robust to noise in the training samples. 

As shown in Fig. 1.1.3, a random tree consists of multiple decision trees with branch nodes and 

terminating leaves. When recognizing individual classes, each leaf has a probability distribution 

for each class. Branching at each node is based on a split function. 

The training procedure consists of three steps: creating subsets, generating nodes, and 

partitioning the created subsets. In this method, a subset is a randomly selected data-set of the 

training samples. Nodes are made based on a pre-defined split function. The node generation 

process is repeated until the number of training samples reaches a pre-determined depth of the 

tree, or when the training samples comprise only a single class. Classification is performed by 

computing the probability of each class based on the following steps. 

The input image reaches a single leaf node in each decision tree. The probability distributions 

of each leaf nodes are then accumulated for each class, and the average probability of trees are 

computed. Finally, the class with the highest average probability is computed for the classifier 

output. 
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Fig. 1.1.3 Random tree architecture 

 

1.3. Thesis Organization 
 

In this thesis, object detection methods which suits for hardware-implementation is described. 

To achieve an object detection system for smaller hardware, low computational cost is major 

issue. We begin with SIFT feature based object recognition method. There are three major 

components. 

First, a hardware oriented SIFT feature based object detection algorithm is described. SIFT 

point based object detection methods are widely used. However, they require a high 

computational cost. We propose a reduction of the SIFT feature points. 

Second, a matching method for texture-less objects is proposed. For texture-less objects, the 

matching method is difficult to adopt. To deal with this subject, we propose a confidence based 

matching method. 

Finally, a human-pose tracking method is described. Human body parts are important objects 

for user friendly applications such as robots and home appliances.  

 

In the final part of this introduction, a brief tour of the contents is described. The rest of this 

thesis is organized as follows. 

 In chapter 2, we introduce feature-point based object recognition. We then describe two 

methods for improving the object recognition performance. In chapter 3, we detail the 

human-pose tracking problem. Finally, some concluding remarks are provided in chapter 4. 
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2. Feature-point based object recognition 

2.1. Point-based matching 
In computer vision, a window-scan based approach is widely used. This method computes 

features inside the image of the scanning window to features and compares the similarity with 

a trained model. The entire image inside the scanning window is used for the computation. 

However, this is not suitable for embedded systems because of the computational costs incurred. 

In this section, we focus on a feature-point based object recognition method. In this method, we 

extract the feature points from the original image. We compute the features from the 

appearance information around the feature points. The detection process is conducted by 

matching the features with those of the trained models. If many similar feature pairs exist, the 

object detector is fired. This method is robust to occlusions because not all feature points are 

needed for matching. Moreover, the method is faster than a scanning window based method 

because there is no need for scanning.  

One drawback of this method, however, is its weakness on a cluttered background because it 

does not include a pre-process for distinguishing background. In addition, it is difficult to 

classify texture-less objects because they produce low numbers of feature points. We can adopt 

many kinds of features. SIFT was an original proposal and is very popular owing to its 

robustness to rotation and scale invariants. However, SIFT features requires high 

computational costs. To deal with this, many features such as SURF, and PCA-SIFT have been 

proposed. 

In this section, we first briefly describe about SIFT features and a basic matching method. Two 

different computationally reduced point-based matching methods are also proposed: a reduction 

method for the number of SIFT feature [19], and a cost effective computational matching 

method [20]. 

 

2.2. SIFT feature reduction method 

2.2.1. Introduction 

This section focuses on obtaining an efficient feature recognition method. Specifically, a 

particular feature-point matching method using the descriptors for a limited amount of 

computational resources is considered. Research on robust local descriptors continues to be an 

active area of computer vision. A scale invariant feature transform (SIFT) [21] is probably the 

most commonly used among the evaluated descriptors and has been proven to be the most 

discriminative. SIFT relies on extracting the scale-invariant keypoints using a Difference of 

Gaussian (DoG) operator. The descriptor part is based on computing the magnitude and 
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orientation of the gradient images, which is based on a histogram of the gradient orientation 

computed for the surrounding regions centered on the extracted keypoints. 

However, the high dimensionality of the SIFT descriptor is a significant drawback, especially 

for online or large-scale dataset applications. For example, for a typical outdoor scene, SIFT 

usually produces several-hundred local features, which yield a large, high-dimensional feature 

space that needs to be searched, indexed, and matched. 

 Several researchers have addressed the problem of dimensionality reduction for feature 

descriptors. For example, Herbert Bay et al. proposed an approach called SURF [22] that 

combines a Hessian matrix-based measure for the detector and Haar-wavelet responses for the 

descriptor, resulting in a 64-dimension feature representation. PCA-SIFT [23], proposed by Yan 

Ke et al., reduces the dimensionality of the descriptor to 36, while obtaining a performance 

equal to the original SIFT. The key to PCA-SIFT is to apply the standard principal component 

analysis (PCA) technique to the gradient patches extracted around the local features, thus 

yielding a compact feature representation. However, PCA-SIFT requires an offline stage to train 

and estimate the covariance matrix used for a PCA projection, which typically requires the 

system to collect and train from a large, diverse collection of images prior to use.  

Another approach for a computational reduction of the feature descriptors is data compression. 

Vijay Chandrasekhar et al. proposed a low-bit rate descriptor called Compressed Histogram of 

Gradients (CHOG) [24]. The main idea behind CHOG is the representation of the gradient 

histogram as a tree structure that can be efficiently compressed. The method can reduce the bit 

rate of the descriptors using the Huffman and Gagie trees. The matching process of CHOG is 

based on a compressed domain, and thus requires a pre-computed distance look-up table. Nitser 

et al. proposed a recognition scheme for a large number of objects called a Scalable Vocabulary 

Tree (SVT)) [25]. The main basis for an SVT is a hierarchical k-mean clustering of the sample 

feature descriptors. An SVT can treat a large number of objects. However, the data size of SVT 

tends to be quite large. 

Chandrasekhar et al. also proposed a lossy, transform-based feature compression approach 

called Transform Coding [26], using a codec consisting of a Karhunen-Loeve Transform(KLT), 

scalar quantization, and entropy coding, and can efficiently compress the descriptors. 

 

2.2.2. Matching method 

This section describes the process used in an image matching method. The main idea is to 

reduce similar feature points. The image matching process occurs in three stages:  

First, the descriptors are computed using the SIFT method, which is described later. 

Second, similar feature points are removed. This process reduces the number of features as 

well as computational costs.  

Third, matching between the reduced feature points and database feature point is performed 
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using approximate kd-tree (ANN) method [27]. The comparison process reduces the number of 

matching feature pairs to a minimum.  

 

2.2.3. SIFT overview 

The SIFT descriptor proposed by Mikolajczyk is widely used for many problems including 

object recognition, image matching, or stereo correspondence. The features are invariant to 

image scaling and rotation, and partially invariant to changes in illumination. Large numbers 

of features can be extracted from the algorithm. Moreover, the features are highly distinctive, 

which allows a single feature to be matched with a large feature database. 

 The key stages of computations used to generate SIFT features are as follows: 

 

1. Scale-space extrema detection 

 At the first step of the computation searches interest points at all scales and image 

locations are searched by using a DoG function.  

 

2. Keypoint localization: 

Keypoints are selected based on the stability criterion measures at each candidate of interest 

point candidate. 

 

3. Orientation assignment: 

One or more orientations are assigned to each keypoint by computing the local image 

gradient directions. Future operations are performed for robustness with the changes in 

orientation, scale, and location for each feature. 

 

4. Keypoint descriptor: 

 The local image gradients are measured at the selected scale in the region around each 

keypoint. The SIFT keypoint descriptor is based on the histogram of gradients.  

 

2.2.4. SIFT details 

2.2.5.  Scale-space extrema detection 

The first stage of keypoint detection is to identify the locations and scales that can be assigned 

under different views of the same object. To efficiently detect stable keypoint locations, the DoG 

function is used. This function can be computed from the difference of two nearby scales 

separated by a constant multiplicative factor, k: 
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Here, L(x,y,σ) is the scale space of an image computed from the convolution of a variable-scale Gaussian, 

as shown in Fig. 2.2.1. 
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Figure 2.2.1 Difference of Gaussian images 
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Figure 2.2.2 shows Gaussian-filtered image samples. 

 

Figure 2.2.2 Gaussian-filtered images 

(a) Original Image

σ1 σ2 σ3 σ4

(b)Gaussian Filtered Image
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2.2.6.  Local extrema detection 

Local extrema tend to produce many points in a local area. In SIFT algorithm, they produce 

local extreme from comparing its neighbors. To detect the local maxima and minima, each 

sample point is compared with its eight neighbors in the current image, and nine neighbors in 

the above and below scale, as shown in Fig. 2.2.3. The keypoint is selected only if it is larger 

than each of these neighbors. The computational cost of this process is reasonably low because 

most of the simple points are eliminated. 

Figure 2.2.3 Local extrema search sample 

 

2.2.7. Orientation assignment 

The keypoint scale is used to select the Gaussian-smoothed image L, with the closest scale. All 

computations are therefore performed in a scale-invariant manner. In addition, to achieve 

invariance to the image rotation, the keypoint descriptor can be represented relative to the 

change in orientation.  

For each image, L(x,y), at this scale, the gradient magnitude, m(x,y), and orientation θ(x,y), are 

computed by using the pixel differences: 

 

22 ))1,()1,(()),1(),1((),(  yxLyxLyxLyxLyxm              (2.4) 
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An orientation histogram is computed from the gradient orientations of the sample image 

patch within a region around the keypoint. The orientation histogram has 36 bins covering the 

360° range of orientations. Each sample added to the histogram is weighted using a Gaussian 

window with an σ value 1.5-times that of the keypoint scale. 

Peaks in the orientation histogram correspond to the local directions of the local gradients. The highest 

peak in the histogram is detected, and any other local peak over 80% of the highest peak is also 
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used to create the keypoint. 

 

2.2.8. Keypoint descriptor 

Figure 2.2.4 shows the process flow used to compute the descriptors. Image patches detected 

around the keypoints are first divided into different 4-by-4 square grid configuration cells. The 

SIFT descriptor is calculated as a function of the gradient histograms, provided that such 

histograms are available for each cell and that the dx, dy values are sorted into sufficiently fine 

bins. Let PDx,Dy(dx, dy) be the normalized joint (x,y)-gradient histogram for each cell. The 

gradient within a cell may be weighted using a Gaussian window prior to the computation of the 

descriptor. The Gaussian window is applied for filtering, which reduces the effect of the cells 

that far from the keypoint. 

 

Figure 2.2.4 Orientation histogram calculation procedure for SIFT descriptor 
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The final SIFT descriptor is a 4-by-4 array of the histograms, each with eight orientation bins, 

that captures the rough shape of the oriented image. In addition, the keypoint descriptor is 

robust for changes in rotation and scale, and illumination. 

 

2.2.9. Feature reduction 

This section describes the details of the proposed feature reduction method. Figure 2.2.5 shows 

an overview of the feature reduction method. The main idea is to reduce the number of features 

that are near the feature value. The matching method includes the BBF, which is used to 
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compare feature descriptor and create feature pair. The SIFT descriptors usually produce 

several-hundred local features. However, some of them have a similar value, which implies that 

they do not contribute to the final matching result. Thus, it is reasonable to remove similar 

feature points in advance.  

The Histogram Intersection Kernel[28] measures the degree of similarity between two 

histograms. Since SIFT descriptors consist of 4-by-4-by-8 histograms, they can be considered a 

group of histograms. 

In addition, the Histogram Intersection Kernel is practical for low computation 

implementation and it can be defined as follows: 

 



m

i
ii ba

D
BAK

1
,min1),(     ,                            (2.8) 

where A and B denote the histograms, and D is the total number of bins. It is assumed that 

both histograms consist of m bins such that the i-th bin for (i = 1, ..., m) is denoted as ai and bi 

for the histograms A and B, respectively. 

If descriptor pairs have histogram intersection larger than a given threshold, they can be 

considered as be significantly similar. In this case, one of the descriptor pairs is removed.  

 

matching

(a) source (b) database
descriptor  

Figure 2.2.5 Overview of feature reduction comparing each source descriptor and removing similar descriptors 

in the source feature data. 

To adopt a method for measuring the similarity that presents the lowest computational cost, 

the performance and processing time of the Histogram Intersection Kernel[28] are examined 

and compared to those of the KL distance[29] and the Bhattacharyya distance[30]. The  

receiver operating characteristic (ROC) curves[31] as an indicator of accuracy are shown in Fig. 

2.2.6. All of these methods provide similar characteristics. 
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Figure 2.2.6 ROC curves for various distance measurement methods. 

 

In addition to accuracy, the runtime of the reduction process is also important. We evaluated 

the process runtime. The runtime of the reduction process as a computational cost versus the 

number of features is shown in Fig. 2.2.7. The evaluation was conducted using a 1.4GHz Intel 

Core 2 Duo computer on a Linux system. The runtime of each method is almost linear in terms 

of the number of feature points, and the Histogram Intersection Kernel provides a faster 

processing time. KL distance and Bhattahcarrya distance require almost the same amount of 

processing time. Thus, the histogram intersection kernel is selected as the similarity criterion. 
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Figure 2.2.7 Comparison of the processing times 

 

2.2.10. Experimental results 

 We compared the performances at the different distances described in the previous section, as  

used for the matching of the SIFT descriptors. The method proposed by Winder and Brown [32]  

was used for the evaluation. 

Figure 2.2.8 shows sample images of the Trevi Fountain dataset [32], which can be used for 



 

15 

evaluating the descriptor performance for accurate matching and non-matching information. 

This dataset consists of 64-by-64 grayscale pixel image patches and matching information. 

A matching algorithm calculates the distances between descriptors. Since a descriptor of image 

A should have at most one correct match in image A’, the simplest criterion is selected to match 

the descriptors. That is, if the distance between a of A and a' of A’ is smaller than threshold τ, a 

source descriptor a is counted as matched with its nearest neighbor a’. Next, if the number of 

matched descriptors is larger than a predefined value, images A and A' are classified into the 

same class.  

 

 

 

Figure 2.2.8 Sample images of the Trevi Fountain dataset.  

 

 The performances of the different distances are compared on a set of 800 images. Each image A 

of the database is compared to image A’.  

The matching is processed with a spatial tolerance of the positional relation of A and A'. As a 

result, incorrect matching may occur. An incorrect match is counted as a false positive, and a 

correct match is counted as a true positive.  

 

Table.2.1  True positive and false positive rates. 

  True Class 

  p n 

Hypothesized 

Class 

P 
True 

Positives 

False 

Positives 

N 
False 

Negatives 

True 

Negatives 

   

True positive rate = True Positives / (True Positives + False Negatives) 

              False positive rate = False Positives / (False Positives + True Negatives) 

 

For the evaluation, we use the ROC curves shown in Table 2.1. The true and false positive 

rates are calculated according to this table. The label of the dataset determines the 

hypothesized class of P and N. The true class of p and n is the matching result. Figure 2.2.9 
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shows the ROC curves[31] of the original SIFT and reduced SIFT, whose threshold τ is 18 for 

the Trevi Fountain dataset. Table 2.2 shows the results of the reduction. The data size can be 

reduced to 91.7%. The performance of the reduced data matches that of the original in this case.  

Here, another dataset, ZuBuD dataset [33] was used for further evaluation. The dataset 

contains Zürich buildings taken from different positions and matching information. Figure 

2.2.10 shows some sample images of the dataset. 

 Figure 2.2.11 shows the ROC curve results for the ZuBuD database. Table 2.3 shows that the 

data size can be reduced. The reduction of the features varies between 60 and 80% depending on 

the threshold. Therefore, the results show that the value of the reduction threshold value 

slightly affects the performance of the descriptor. Furthermore, the ROC performance of the 

proposed method with SIFT and a reduction in the number of features was compared to that of 

the original SURF. Figure 2.2.10 shows that the proposed method performs as well as SURF. 
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Figure 2.2.9 ROC curves of the original SIFT and reduced SIFT (Th = 18). 

 

Table 2.2 

Data reduction ratio using the Trevi fountain database 

(Original data size: 155,433 bytes). 

 

Reduced features (bytes) Ratio (%) 

142,476 91.7 
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Figure 2.2.10 Sample images of the ZuBuD dataset 
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Figure 2.2.11 ROC curves of reduced SIFT (ZuBud database). 

 

Table 2.3 Data reduction ratio using the ZuBuD database 

(Original data size: 644,937 bytes). 

Threshold Reduced features (bytes) Ratio (%) 

18 394,787 61.2 

20 494,288 76.6 
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Figure 2.2.12 Comparison between SURF and proposed method. 

 

2.2.11. Conclusion of SIFT feature-reduction method 

In this section, a new feature reduction method for SIFT feature-point based object recognition 

is described. SIFT feature-matching based object recognition is widely used. However, the high 

dimensionality of the SIFT descriptor is a significant drawback, and the matching process of a 

SIFT descriptor requires high computational costs. To overcome this problem, the SIFT 

feature-reduction method is proposed. The conclusions of this section are outlined below. 

 

The SIFT feature-point reduction method is proposed. A conventional point-based matching 

method requires high computational costs and is difficult to implement on a small hardware 

system. In the proposed method, to reduce the computational costs, the number of the future 

point is reduced before matching. We search the query feature space and remove similar SIFT 

descriptors. The evaluation results show that using the Zubud dataset, a data size reduction of 

9% can be achieved without sacrificing the recognition accuracy. 

 

The proposed method uses the distance function for measuring the SIFT feature distance. We 

compared three distance functions. The evaluation shows that Histogram Intersection Kernel is 

the fastest method compared to Bhattacharrya distance and KL distance. 

 

The proposed method is suitable for processing because it is independent of each feature 

descriptor. Implementing the proposed method using multi-threaded programming, or 

implementing it into hardware will result in a further improvement of the processing time. 
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2.3. SIFT feature-matching based on confidence LUT 

2.3.1.  Introduction  

The ability to recognize objects from a single image has many possible applications. Home 

appliances with an intelligent vision system can be useful applications for users. 

For example, a remote control system equipped with an image recognition system is such user 

friendly application. A small monocular camera module and an image recognition algorithm are 

embedded into a remote control system to fulfill the primary purpose of an image recognition 

system, which is obtaining information on the target object in front of the camera. In general, 

remote control devices are dedicated to particular systems. For example, a general television 

remote control can be used for only a specified television. However, if a universal remote control 

unit is used, users can access numerous home devices using a single remote control unit. In 

most cases, however, the controller’s target device must be selected in advance. In contrast, our 

proposed remote control system, which is equipped with an image recognition function, can 

automatically recognize which device a user wants to control. Since most users spontaneously 

and unconsciously point remote controllers at the devices they wish to operate, this system can 

provide a more user-friendly interface. In addition, conventional remote control systems require 

multiple selection buttons to operate multiple devices. The system does not need multiple 

selection buttons and can handle numerous devices without physical limitations.  

Adapting an image recognition algorithm to a remote control unit is an extremely challenging 

task. In general, the computational resources of remote control devices are strictly limited. 

However, the application requires a much higher standard of recognition performance. 

Point based object-recognition [34][35][36][37] based methods have been widely proposed. 

Figure 2.2.1 shows a general framework for such methods. The general framework for object 

recognition follows three steps: generating the feature points, matching the points to model, and 

estimating the positions using information associated with the matched model features. SIFT 

features [21] are commonly used to represent image features.  

Gordon and Lowe [34] proposed a method for accurate camera tracking that uses trained scene 

models and SIFT features. Collet et al. [42] extended Gordon and Lowe's method to improve the 

efficiency of recognizing multiple instances of an object. They used RANSAC [43] and Mean 

Shift [44] clustering to simulate object instances. Hsiao et al. presented a 3D recognition 

framework [36] that retains the ambiguity in the feature matching. Their method utilizes an 

affine transformation and hierarchical matching for improved performance. 

However, these point-based approaches are difficult to adapt to the home appliance recognition 

problem. Figure 2.12 shows an example of the SIFT features of various objects, including home 

electrical devices and coffee cans. An analysis of a TV set, DVD player, and air conditioner 
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shows that these devices produce a small number of SIFT feature points when compared to 

image of coffee and soymilk cans. Electrical home appliances tend to have simple external 

shapes. That is, there are few SIFT features available in these images to recognize, and it is 

therefore difficult to reach a preset threshold for proper identification. 

 

 

Query images

Features

Image
descriptors

Model
descriptors

Matching

Model images

Features

 

Figure 2.3.1 SIFT feature-point based recognition framework. Features are extracted from a target image and 

matched to a set of model descriptors. Model descriptors are trained using numerous different viewed model 

images. 

 

2.3.2. Algorithm 

The proposed matching method framework is based on the general point-based object 

recognition systems shown in Fig. 2.3.1. Features are extracted from an input image and then 

matched to the model descriptors. For a point-based image-recognition task, one common 

technique is the use of hierarchical matching using vocabulary trees [45], in which a visual 

word is assigned to each image feature. 
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The proposed algorithm is based on Lowe's BBF [21], which compares the distance between 

one point and its closest neighbor with the distance to its second closest neighbor. Figure 2.3.3 

shows some sample matches. However, this method is particularly difficult to apply to objects 

with a small number of SIFT features. Figure 2.3.4 shows the result of SIFT feature extraction 

for different objects. General home appliances with simple external shapes normally produce 

low feature counts. The proposed matching method uses confidence-based criterion whereby the 

confidence is computed in advance through the use of a labeled training dataset. This method 

was inspired by the Real AdaBoost algorithm[46][47], but is quite different in two ways. First, 

the proposed method does not use Haar-like features, and second, it does not apply to weak 

learners.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.2 SIFT feature detector results for (a) a soymilk can, (b) coffee can and home appliance,(c) TV set, 

(d) DVD player, and (e) an air conditioner with simple shape producing a small number of SIFT feature counts 

compared to the coffee can. 
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Figure 2.3.3 SIFT feature matching samples. 

Matching results when making pairs with similar SIFT feature points. The method outperforms other good 

results for objects producing many SIFT features such as a coffee can (right bottom). However, it has a poor 

performance for many types of home appliances with few feature points. 
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2.3.3. Best bin first 

The Best Bin First (BBF)[48] method proposed by Beis et al. is constructed around an 

approximate search technique that locates the nearest neighbor for a large fraction of queries, 

and a very close neighbor in the remaining cases. The BBF search algorithm is a modified 

version of a k-d tree[49], and can be described as follows. 

 It begins with a dataset of N points. The data space is then split on the dimension i', where the 

data exhibit the greatest variance. A division is then made at the median value of m of the data 

in this dimension, and thus an equal number of points fall to one side or the other.  

An internal node is then created to store i and m, and the process repeats with both data nodes. 

This process creates a binary tree with a depth of d=log2N. 

To search the nearest neighbor tree to query point q, a backtracking, branch, and bound search 

algorithm is used. The tree is first searched to locate the bin that contains the query point. This 

requires only d scalar comparisons, and in general, the located point from the bin provides a 

good approximation to the nearest neighbor. In the backtracking stage, whole branches of the 

binary tree can be pruned if the region of space that they represent is further from the query 

point than the distance between q and its nearest neighbor. The search process terminates 

when all unsearched branches have been pruned. 

 This search process is very effective in low dimensional spaces, but in higher dimensions, there 

are many more bins to explore, and the performance rapidly degrades. However, extra 

prolonged extra search efforts can be avoided by limiting the number of leaf nodes. 

 

2.3.4. Affine SIFT 

Affine SIFT [50][51] simulates all distortions caused by variations to the camera’s optical axis 

direction, after which the SIFT method is applied. An affine transformation A can be 

decomposed as  

)(
10
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)(  R
t

RA 







                                    (2.9) 

using singular value decomposition (SVD), where R(ψ), and R( ) are rotation matrices, λ>0 and 

t≥1. λ corresponds to a camera zoom and R(ψ) corresponds to a planar rotation. Since SIFT 

features are both scale and rotation invariant, we can ignore both the zoom and planar rotation 

parameters. The remaining parameters in the decomposition correspond to the camera 

viewpoint. More specifically, Affine SIFT simulates three parameters: scale, longitude and the  

latitude angles of the camera. 

 

The Affine SIFT procedure is described as follows: 

1. An image is transformed by simulating all affine distortions caused by changes in the 

camera optical axis orientation from a frontal position. The longitude φ and latitude θ are 
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parameters that affect the distortions.  

2. An anti-aliasing filter is applied in the direction of x, specifically, convolution using a 

Gaussian with a standard deviation of 12 tc . A value of c=0.8 was chosen by Lowe for 

the SIFT method. 

3. The filtered image is sub-sampled to simulate distortion.  

Tilt parameter t is denoted as 
cos

1
t . 

Images that undergo φ rotations followed by a tilt of t can be simulated by using the 

operation u(x,y)→u'(tx,y).  

4. These rotations and tilts are performed for a small number of latitude and longitude 

angles.  

5. The affine simulated images are compared using SIFT as the similarity invariant 

matching algorithm. 

Fig. 4.3.4 shows sample affine-transformed images. 

 

 

Figure 2.3.4 Affine SIFT transformed sample images 

 

 

2.3.5. Confidence-based matching  

This section shows details of the confidence-based matching method. First, the BBF algorithm 

is used to search for the nearest descriptor. Equation 2.10 shows the conventional Lowe's 

decision criterion. 

RATIOo Tdd  1                                     (2.10) 

Here d0 denotes the Euclidean distance from a query feature to its closest neighbor. d1 

denotes the distance to the second closest neighbor, and TRATIO is the threshold value, which was 

 chosen as 0.49 by Lowe. The decision making process is constructed for all detected SIFT 

feature points, after which the total matched point number is compared to the threshold value. 

If the matched point number is higher than the threshold, the query image is classified as 

matched. However, as shown Fig. 4.3.2, general usage home appliances that have simple 

external shapes normally produce low feature counts. This makes it difficult to set a threshold 
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value. 
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      (a)binary decision                   (b)LUT based decision 

Figure 2.3.5 Binary decision and LUT based decision 

 

2.3.6. Details of the proposed training method 

In general, simple-shaped objects produce significantly fewer SIFT feature counts. As shown in 

Fig. 2.2.1, soy milk and coffee cans produce many SIFT feature points compared to TV sets. 

Home appliances normally have simple shapes, and thus result in very low SIFT feature counts. 

Minor decision errors will affect the final decision. In our proposed method, the decision-making 

criterion is replaced with a confidence-based look-up table (LUT), as shown in Fig. 2.3.5. 

The proposed method uses confidence-based decision-making where the Euclidean distance 

between the query feature to its nearest neighbor and the confidence value are closely related. 

The primary idea is to use a confidence LUT instead of binary decision-making. 

An LUT is trained using labeled training data. In this method, the LUT should be 

appropriately trained to ensure it gains an efficient performance. A confidence LUT is trained as 

follows: 

First, a labeled image pair is defined. Positive image samples denote images that contain 

recognition target objects, while negative image samples denote images that do not.  

We let d(x) denote the Euclidean distance between the query feature and the nearest neighbor 

using the BBF method. 

  njnjdndjbinj ,...,1,/,/)1( maxmax                     (2.11) 

dmax denotes the threshold distance. 
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where 

               njllybinxdPW j
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Here,W+ and W- denote histograms for a positive and negative sample, respectively, and ε is a 

constant. 

The characteristic function is given by 
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The LUT size is set to 64 experimentally. Equation (2.11) shows the confidence LUT table as: 
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The final value is either1 or 0, specifying matching or non-matching, respectively. This value is 

calculated using Equation (2.12). 
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2.3.7. Experimental results 

We performed a number of experiments using the home appliance images shown in Fig. 2.3.6: 

a TV set, two types of DVD players, an air conditioner, and a coffee can. The images used for the 

experiments are 640 pixels × 480 pixels in size. Table 4.3 shows the details of the sample image 

data used for the evaluation. 

The sample data were randomly separated into either training data or test dataset. Figure 

2.3.7 shows two images of a trained LUT of a DVD player. The normalized Euclidean distance of 

the feature point corresponds to the LUT input. The threshold distance, dmax is 120000 

experimentally.  

Figure 2.3.8 shows the performance comparison results using ROC curves. The results show 

that the LUT method can improve the true positive rates for the TV, DVD-1, DVD-2 and air 

conditioner. For the coffee can images, the proposed method was not fully effective. 
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(a) TV 

 

(b) DVD player 1 

 

(c) DVD player 2 

 

(d) Air conditioner 

 

(e) Coffee can 

 

Figure 2.3.6 Sample objects used for the evaluation 

 

 

 

Figure 2.3.7 LUT of DVD player 2. X axis is feature distance and Y axis is computed confidence. Note that the 

distance is normalized to a LUT bin size of 64. 
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(a) TV 

 

(b) DVD1 

 

(c) DVD2 

 

(d) Air conditioner 

 

(e) Coffee can 

 

Figure 2.3.8 Performance comparison of a conventional method, an LUT-based method, and LUT+Affine 

SIFT applied using the sample datasets. 
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Table 2.4 Number of thst samples used for the evaluation 

Objects Positive Negative 

TV set 403 232 

DVD player 1 172 232 

DVD player 2 278 232 

Air conditioner 279 232 

Coffee can 140 232 

 

2.3.8. Conclusion of feature point based object recognition 

In this section, a confidence-based feature-matching method is described. SIFT feature-based 

matching is widely used. However, a SIFT descriptor usually produces low feature points when 

applied to texture-less objects. It is not easy to adopt a feature-matching method to texture-less 

objects because of its low feature count. The SIFT point-based object-recognition method is 

based on the BBF method, which compares the distances between one feature point and its 

closest neighbor with the distances to the second closest neighbor. To overcome this problem, we 

replaced a binary-based decision method with an LUT-based method. The conclusions of this 

section are outlined below. 

 

We replaced a binary decision with a pre-trained LUT-based method. The evaluation results by 

using 2432 samples show that the proposed method can improves the recognition performance 

for texture-less objects. However, it cannot improve the performance of texture-full objects. 

 

In addition, the proposed method can be considered suitable for hardware implementation, 

because the pre-trained LUT does not require a computational process in the classification 

stage. 
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2.4. Conclusion of feature-point based object recognition. 
 

In this section, we focus on SIFT feature matching based object recognition. This method 

utilizes object detection relying on matched pairs of SIFT features between query and database 

SIFT feature points. Two SIFT feature-point based object-recognition related methods are 

proposed in this section. 

 

First, a computational cost reduction method is proposed. After extracting the feature point, 

object detection is performed using a number of matched SIFT feature pairs. To overcome this 

problem, the SIFT feature-point based matching method has a drawback in terms of its  

computational costs. Similar SIFT descriptors in the query image are removed in advance. The 

evaluation results show that this method can reduce the amount of memory and processing 

without sacrificing accuracy. 

 

Second, we propose a new matching method for low feature counts. A SIFT descriptor usually 

produces a few points when applied to texture-less objects. That is, for texture-less objects, the 

SIFT descriptor-based matching method is difficult to adopt. To deal with this problem, we 

replaced a binary based decision method with an LUT-based method. This confidence 

LUT-based matching method can improve the recognition performance when applying SIFT 

feature matching to texture-less objects. 
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3. Human pose tracking 

 

3.1. Introduction 
Visualization of a human posture is a beneficial field of research. For example, for sport 

training, sedulous training is essential to attain greater sports proficiency. It is not easy for 

athletes to obtain a complete view of their posture on their own. A skilled trainer can provide 

the guidance on an athlete’s posture, but it is not easy to explain verbally.  

Many researchers have recently researched human-pose estimation in the field of computer 

vision. As an example, the visualization of a ballet dance using Gaussian Process Latent 

Variable Models (GPLVM) was proposed [56]. The method does not rely on an image, and uses 

information from a motion capture sensor.  

Kinect [57] is widely used for pose estimation. This system captures image data using depth 

data obtained through a combination of an RGB camera, IR projector, and IR camera. In 

addition to an image data processor for a camera module, Kinect also contains a human pose 

estimator. The human-pose classification algorithm is based on a random forest method. 

Urtasan et al. proposed a dynamic 3D reconstruction model [58] for tracking of the golf swing. 

In this method, Club tracker [59] is used for tracking a golf club, WSL tracker [60] is used to 

track the body joints of the knees, ankles, and wrists. 

In this section, a method for estimating and tracking of a golf swings in a video sequence is 

proposed. 

This tracking method [61][62] combines the global-pose estimation, a pictorial structure model 

(PSM)[63], and a particle filter. The proposed system estimates the tracking of the golf player’s 

grip from a monocular camera video using the original image, and does not require another 

sensor.  

 

3.2. Particle filter  
Particle Filter is a very popular algorithm for the tracking problem. Kitagawa originally 

proposed the method as Monte-Carlo filter [64] in 1995. In the area of computer vision research, 

Condensation algorithm[65] was proposed for contour tracking. This algorithm is based on a 

manner analogous to Particle Filter. There are many problems to be tackled for robust tracking 

including lost tracking and modeling the changes in appearance and motion. Many researchers 

have attempted to tackle these problems. For changes in appearance, Zhou et al. presented an 

approach [66] that uses appearance-adaptive models in a particle filter to realize robust visual 

tracking.  

Another approach is the use of a combination of off-line trained discriminative observers with 
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different life spans [67]. For lost tracking, a memory-based particle filter [68] method that 

stores the past history of the estimated target states is used. In this section, we treat the 

tracking of a golf swing. For visual tracking of human body parts, an algorithm [69] using a 

limb-tracking system is proposed based on an accumulated 2D model. 

A particle filter is a Monte Carlo approximation approach, and is commonly used for tracking 

applications [70]. The posterior probability can be defined as  
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                  (3.1) 

,where xt is the processing state at time t, yt is the observation, y1:t indicates the entire 

observation through time t, p(xt|xt-1) is a process dynamic distribution process, p(yt|xt) is the 

observation of the likelihood distribution, and k is the normalizing factor.  

At each time step, the particle filter updates each particle according to the previous particle set, 

and n particles xt-1 are sampled from the current particle set. 

1. Updated particle sets are generated by sampling from the proposed distribution. 

2. The weights of each particle are calculated. 

3. The tracking position of the target is estimated by calculating the mean position of the 

particles.  

In this section, we track the grip position of a golfer using a particle filter. HSV color histogram 

is used as an observation model. For a similarity measure, we adopt the Bhattacharrya distance 

[30] as  

))()(ln( xvxubdist   ,                        (3.2) 

where u(x) and v(x) are the color histogram of the initial and tracking frames, respectively.  

 

3.3. Proposed method 
Figure 3.3.1 shows the flow of the proposed algorithm. The main idea is to combine a 

conventional particle filter with the global-pose estimation. The conventional particle filter 

depends on the local information. Therefore, it is affected background clutters too much. In 

addition, lost track recovery is difficult. We focus on a combination of both global and local 

features and estimate the trajectory of the golfer's grip as follows: 

 

1. Position estimation is performed. 

2. For each frame, the pose of the golfer is estimated using a silhouette feature-based 

estimator. 

3. The left arm of the golfer is tracked by using the PSM. 

4. The grip of the golfer is tracked using a constrained particle filter. 
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(a)Original Image (b)Person Detection (c)Pose Estimation (d)PSM Tracking (e)Tracking of Swing
 

Figure 3.3.1 Process flow of the proposed algorithm 

 

3.3.1. Position estimation of a golfer 

As the first step, we need to estimate the position of the golf player in the video. In the 

proposed method, we combine the global-pose estimation and local grip tracking for an accurate 

tracking of the golf swing. As a pre-process of the pose estimation, cropping around the are of 

the person is essential, because estimation algorithm assumes that a golf player exists in the  

region of interest (ROI) box. Therefore, precise position estimation is required to achieve 

accurate pose estimation. The position and size of the golfer differ for the sample images as 

shown in Fig. 3.3.2. We assume that an input video stream contains the image of the golf player. 

For the pose estimation, we need to crop the foreground regions around the golf player.  

We use the first frame of the video sequence as the target frame for the position estimation. 

Strictly speaking, because the proposed system is intended for a whole video sequence, the 

estimation process should be conducted for every frame. Considering a golf swing movement, 

the arms, torso, and head move, while the rest of the player’s body dose not. Therefore, we 

assume that the position of the golfer in a video stream does not change during the golf swing. 

In the proposed system, the position-estimation process uses the image of the first frame. The 

detected position is applied for every following frame during the position-estimation process. 

 In addition, using the first frame has one more advantage. Using the first frame of the golfer, 

we can predict the player’s posture. When the golf player starts swing, the player may enter a 

position called an address. This posture is common for many golf players. This means that the 

variety of shapes in the detection target (person) can be reduced. For this issue, one common 

difficulty comes from the variety of golfer position. Simple-shaped models may not achieve good 

results because of the changes in position. In the proposed system, we can expect the shape of 

the person in the first frame to be in an address posture. The human-detection system can 

assume the shape of the player. Therefore, we use this shape for the golfer pose estimation.  
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Figure 3.3.2 Different size and positions of golf players for different samples 
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Figure 3.3.3 Position estimation results 

 

The overall architecture of the position estimation is based on a combination of HOG features 

and the AdaBoost method. As described above, we use the first frame of the video. The classifier 

is trained using the training images in advance. 

Position estimation is performed using the following steps.  

 

1.  The crop detection window is created using a raster scan. 

2.  The HOG features of the detection window are calculated. 

3.  The position with the highest score is estimated after all scans are finished. 

 

3.3.2. Pose estimation 

The framework of the pose-estimation method is based on the silhouette feature [71] and HOG 

features [12]. A golf swing can be divided in eight pose according to the orientation of the golf 

club. Figure 3.3.3 shows typical silhouette image samples. The pose of the golf player can be 

estimated as follows:  

1. Silhouette images are calculated by using the Grabcut method. 

2. The HOG features of the silhouette images are computed.  

3. The AdaBoost classifier is applied. 
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(Preprocessing) 

A filtering process is performed to avoid an incorrect segmentation caused by a small noise 

such as a complex background or clothes wrinkles. However, the edge information should be 

preserved because it contains important features for segmentation. A conventional low-pass 

filter eliminates such edges. Therefore, a bilateral filter [72][73] is applied as a preprocessing. 

This filter can preserve the edge details edges and remove noise simultaneously. The 

parameters of the bilateral filter are set as d=5, σ1=35, and σ2=5 experimentally. Here, d is 

the diameter of each pixel neighborhood, σ1 is the color sigma in the color space, and σ2  is 

the space sigma in the coordinate space, respectively.  

We then crop a rectangular area around the golf player. The silhouette features need to be 

calculated using the image region around the player to avoid any background influence. The 

position and size of the golf player are assigned by hand in advance in the first image frame, 

and the pose estimator applies this location information to each flame. However, this approach 

does not work well on actual scenes. We found that the performance had noticeably declines 

when the player’s arms are extended in a horizontal direction (P2 or P6 in Fig. 3.3.4). Because 

the position of the cropping box is estimated by observing the images in the initial frame, most 

of the player’s arms are out of the cropping box when in these positions. Therefore, the size of 

the cropping box is extended by ten percent in horizontal direction. 
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Figure 3.3.4 Typical silhouette image samples 

 

(Grabcut) 

 To estimate a human pose, foreground and background separation is an important task. To get 

obtain a good pose-estimation performance, a highly precise foreground separation is essential. 

The hand position of the players affects the classification results of the pose estimator.  For 

example, as shown in Fig. 3.3.4, the silhouettes of classes P6 and P7 are very similar, and the 

difference seems to be in the position of the golfer's arms. We can see a similar result in P2 and 

P3. For the P0 class, the arms of the players appear to be missing because the player is in 
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"address" position, and the player’s arms are covered by the torso. The proposed design is 

intended for use on a real scene. Therefore, this problem should noted. 

We used Grabcut [74], which is an effective segmentation method using a energy minimization. 

An energy function is defined so that its minimum should correspond to good segmentation. 

This algorithm combines hard segmentation from iterative graph-cut optimization with boarder 

matting. This an effective method and is widely used. 

In our method, Grabcut is chosen to segment the background and foreground of a golf player to 

generate silhouette features. Figure 3.3.5 (b) shows the segmentation results from this method. 

Note that this method requires both foreground and background information.  

 

 

 

(a) Original image  

 

(b) Segmentation results 

Figure 3.3.5 Segmentation results by using the Grabcut method. (a) original image with user inputs with a 

green colored rectangle (region of interest) , red (foreground) , and blue (background) , and (b) Human 

silhouette. 
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Figure 3.3.6 Segmentation samples 

 

 

(HOG) 

Histogram of Gradients (HOG) [12] achieves outperforming performance compared to other 

features used in human detection. HOG is widely used for such applications as object [40] and 

human detection [12][56][39], as well as human-pose estimation [38]. Qiang et al. integrated the 

cascade-of-detectors approach with HOG for a fast and accurate human detection method [74]. 

For pose detection, a method in combination with randomized trees was proposed [38]. For this 

method, they grow an ensemble of random trees generated based on randomly sampled HOG 

features. 

HOG features are a histogram of gradient orientations of the intensity in local regions that can 

describe the shapes of an objects. They can provide a dense overlapping description of the image 

regions. The basic idea here is evaluating a well-normalized local histogram of the image 

gradient orientations in a dense grid. Similar features are increasingly used. The appearance 

and shape of a local object can be characterized using the distribution of local intensity 

gradients, even without precise knowledge of the corresponding gradient positions. Position 

information is not used in HOG. In practice, this is implemented by dividing the original image 

into small image patches called "cells", and the local histogram gradient directions of each cell 

are accumulated. For better robustness to changes in illumination, a contrast that normalizes 

the local responses is useful. This can be done using larger spatial regions, called "blocks". We 

refer to the normalized descriptor blocks as HOG descriptors. 

A feature is a histogram of adjacent pixel gradients for the local regions. The magnitude and 
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(AdaBoost) 

The AdaBoost algorithm [47] is a classifying method combining multiple weak learners. It is 

adopted to select HOG features from the feature pool and to combine them into a strong 

classifier. The combined strong learner H(x) can be defined as  

 

  ,)()( xhsignxH tt                                    (3.6) 

where αt  are the learned weights of the weak learners, and ht(x) are the weak learners, 

respectively. Training of the AdaBoost classifier is used to determine the weight, αt. 

 

(Class Label) 

We define the class labels to adopt the pose estimation according to the orientation of the 

golfer's club. Figure 3.3.4 shows typical silhouette image samples. We divide the golf swing 

orientation into eight classes as P0 - P7. For instance, the address position corresponds to P0, 

and the position in which the golfer raises the club at the highest corresponds to P4. During the 

golf swing, the following transition of classes is expected as follows: P0 - P1 - P2 - P3 - P2 - P1 - 

P0 - P7- P6 - P5 - P4. Here, P0 is the initial address posture, and P2 is the top position. 

 

3.3.3. PSM 

The pictorial structure model (PSM) [63][74][76] is an efficient framework for a part-based 

appearance recognition of an object. It is commonly used for object recognition and human-pose 

estimation. The basic idea is to represent an object based on a collection of parts arranged in a 

deformable configuration. The appearance of each part is modeled separately, and the 

deformable configuration is described using the spring-like connections of the parts. These 

models allow for descriptions of visual appearance. The model is used for human bodies and 

faces. 

A pictorial structure model for an object is given by a collection of parts with connections. A 

general way to represent such a model is in terms of an undirected graph: 

),( EVG     ,                                 (3.7) 

 

where the vertices  nvvV ,...,1  corresponds to the n parts. There is an edge Evv ji ),(  for 

each pair of connected parts, vi and vj. An object instance is given by the configuration 

),...,( 1 nllL  , where each li specifies the location of part vi. The matching problem of a pictorial 

structure to an image can be defined as an energy function minimization problem. The cost of a 

given configuration depends on two elements: how well each part matches the image data at its 

location, and how well the relative locations of the parts meet the deformable model. Given an 

image, a matching of the model to an image can be naturally defined as 
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where )( ii lm  is a function measuring the degree of mismatch when part vi is placed at 

location li in the image, and ),( jiij lld  is a function measuring the degree of deformation of the 

model when part vi is placed at location li , and part vj is placed at location lj.  

An optimal match is a configuration that minimizes the sum of the match costs mi for each 

part, and the deformation costs dij for connected pairs of parts. This energy function is simple 

and makes intuitive sense.  

In the proposed system, the PSM is used to track the left arm of the golfer. Based on the 

general pictorial structure idea, as shown in Fig. 3.3.8, the player's arm is represented as a joint 

configuration of its parts, i.e. the upper arm and lower arms. In addition, Sx and Sy are the 

positions of the player's shoulder, θ1 is the absolute orientation of the upper arm, θ2  is the  

absolute orientation of the lower arm, Sh is the length of the arm, Sw is the width of the arm, 

and w1 and w2 are the arm positions. 

Here, the score function can be defined as  

 

10 bbS                                         (3.9) 

 ),(' yxIbn                                    (3.10) 
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where b0 and b1 are the score functions of the upper and lower arms, respectively. I(x,y) is the 

RGB color of  the position (x,y) , and μ is the mean color of the target area, respectively. This 

score measures the similarity between the tracking arm target and the golfer's left arm using 

the color information. 

 



 

41 

shoulder

low
er arm

Sh
Sw

w
1

w
2

grip

dist2

(Sx,Sy)

θ 1

θ 2

upper arm

dist1

Sh

Sww1

w2 elbow

 

Figure 3.3.8 Arm model. 

 The posture and position of the golf player is modeled using two jointed rectangles. 

 

(Constrained PSM tracking) 

The purpose of PSM is to track the player's arm precisely. We combine PSM with the pose 

estimator to accurately track the player's arm. Here, the base position of the PSM model is 

defined using the shoulder position (Sx,Sy). In addition, the golf player's shoulder point during a 

golf swing is not fixed. 

Figure 3.3.9 shows a plot of the golf player’s shoulder and grip position movements from 

certain video images. In this figure, the x-y position scale is at the pixel level. According to the 

movement in grip position, the shoulder position is also moves in a circular fashion. The golf 

player’s movement is not only in a simple circular motion, but also in a complex one. Because 

this motion seems to be difficult to model,  we use a look-up-table approach. 

 We estimate the shoulder position using a look-up table (LUT) created based on the mean 

position from a video of a sample swing because the shoulder position rotates during the golf 

swing. Therefore, LUTs fx(l), and fy(l) are built using manually sampled data. The variable l 

indicates the estimated class labels P0 - P7. The LUT stores the normalized shoulder position 

which is not influenced by the size or position of the player. Sx,Sy  can be defined as 

 

xwxx DDlfS  )(                                   (3.12) 

yhyy DDlfS  )(       ,                            (3.13) 
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where Dx ,Dy indicates the top-left location of the golf player area, and Dw, and Dh are the width 

and height of the player, respectively. To avoid a lost tracking, θ1 is constrained. The angle θ2 is 

maintained with θ1 because we assume that the lower and upper arm rotations are 

synchronized.  
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                 (a) Player  A                            (b) Player B 

Figure 3.3.9 Shoulder position plots of a golf swing. 

(red: grip position, blue: shoulder position) 

 

3.3.4. Constrained particle filter 

Recovering from a lost tracking using Particle Filter is not easy. One reason for this is that 

Particle Filter relies on the local feature information. Both local and global features are 

combined to tackle this problem. As mentioned above, course tracking can be conducted using 

PSM. The tracked target is the grip, and it is assumed that the grip is an extension of the 

player's arm. We therefore replace some particles in the extension of the estimated arm. Some 

particles are dismissed during the transition step of the particle filtering process. Here, we 

replace the low-weight particles using the new estimated position. When the tracking is 

operating normally, these replaced particles are dismissed during the transition step. 

Conversely, these replaced particles are selected for a lost tracking. 

We opted for a Sequential Importance Re-sampling (SIR) particle filter [78]. 

Here, we approximate the grip motion using linear motion. The system model can be defined 

as: 

 

tttt BXXAXXAXX 00110220 )()(  
  ,                   (3.14) 

where Xt is the position at time t, ωt  is system noise, and B0,A1, and A2 are constants. 
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As a likelihood function, we use the color similarity as follows: 

  )()(exp kqkpL  ,                             (3.15) 

where p(k) and q(k) are the color histogram of the initial frame and the local patch of each 

particle, respectively, and k is the histogram bin. For a color similarity, we used the 

Bhattacharrya distance [30].  

Here, the following steps are used for p(k) and q(k) calculations. 

 

(1) A 16 pixel x 16 pixel area is clipped around the initial grip tracking area of the golfers, as 

shown in Fig. 3.3.10. 

(2) Conversion into an HSV color space [79]. 
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 (3) The color histogram is calculated. 

  We divide each hue, color, and saturation into ten steps. To choose the grayscale information, 

the grayscale part is added to the color histograms as follows. 

 

  If Vs < STH  , or  VV < VTH ,  then 

VBINNSNHbin   ,                               (3.19) 

else 

hS BINNHBINbin   ,                               (3.20) 

where NH=10, NS=10, NV=10, BINh=Vh・NH/360，BINS=Vs・NS， BINV=VV・NV，STH=0.1, 

and VTH=0.1. 

The dimension of the calculated histograms is NH×NS+NV=110.  

 

(4) The histogram is normalized to calculate the Bhattacharrya distance. 
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Here, p(k) and q(k) are normalized histograms, and p'(k) and q'(k) are the histogram of the 

initial frame and patch histogram of the particles, respectively. 
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misclassification, which allows for adjunct misclassifications. In Table 3.1, the blue labeled cells 

are correct classifications. In addition, we accepted adjunct correction (green cell of Table 3.1). 

Table 3.2 shows the performance rate along the criteria. All matching rates were over 94 

percent. This rate is sufficient for a pose-estimator used in golf swing tracking, and is quite a  

good performance. Note that this evaluation is conducted under the supposition that the golf 

player is within the detection window. 

 

Table 3.1 Confusion matrix of the pose estimator 

 Classifier result 

Test 

class 

 P0 P1 P2 P3 P4 P5 P6 P7 

P0 76 38 0 1 0 1 2 14 

P1 28 131 15 0 0 1 0 6 

P2 7 5 129 55 0 1 2 0 

P3 1 0 6 113 19 0 0 2 

P4 4 2 2 21 209 11 2 3 

P5 2 3 1 1 47 133 14 2 

P6 0 0 0 0 1 24 125 8 

P7 6 0 1 0 2 1 13 133 

 

 

Table 3.2 Pose-estimation matching rate 

 Matches Samples Rate(%) 

P0 128 132 97.0% 

P1 174 181 96.1% 

P2 189 199 95.0% 

P3 138 141 97.9% 

P4 241 254 94.9% 

P5 194 203 95.6% 

P6 157 138 99.4% 

P7 152 156 97.4% 

Average   96.7% 

 

3.4.2. Tracking-performance evaluation 

We evaluated the tracking performance for a video capturing an uncontrolled swing movie. We 

used golf swing videos from an Internet website [80]. These videos were not intended for 

research purposes, and they contain cluttered backgrounds, shadows and wrinkles.  
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 We used six sample movies of different golf players. Initially, we compared the tracking error 

of the proposed system with the particle filter. Eqn. 3.1 shows the evaluation criteria.  





N

i
track idid

N 0
exp )()(1

   ,                              (3.22)

 

where dexp(i) and dtrack(i) are the Euclidean distances from the origin to the true position and 

tracking point, respectively. The true points were manually plotted. N is the frame number of 

the sample video. Table 3.3 shows the tracking errors. The proposed method improves the 

tracking errors. For all the sample players, the result indicates that the proposed method 

outperforms the conventional particle filter.  

 

Table 3.3 Tracking errors 

 Error (pixels) 

 Particle filter Proposed method 

Player A 18.2 8.4 

Player B 49.1 15.3 

Player C 38.7 33.3 

Player D 65.8 25.3 

Player E 22.4 9.1 

Player F 7.7 7.5 

Average 33.66 16.48 

 

 

Figure 3.4.1 shows the result of the tracking-performance evaluation. The expected position is 

manually plotted. The X axis of the graph is the frame number, and the Y axis is the Euclidean 

distance from the left-top base point.  

In general, the head speed varies during the swing movement. In particular, the head speed is 

increasing during a downswing motion. In many cases, the particle filter lost the tracking 

during a down swing. On the other hand, the proposed method could recover the lost tracking.  

(frame #400 of Fig. 3.4.1 (c) and (d), and frame #340 of Fig. 3.4.1 (k) and (l) ). In Fig. 3.4.1(f), the 

tracking is not stable even when using the proposed method. In this case, an occlusion between 

the player’s head and grip occurred, resulting a lost tracking. 
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(a) Particle filter (player A) 

 

(b) Proposed method (player A) 

 

(c) Particle filter (player B) 

 

(d) Proposed method (player B) 

 

(e) Particle filter (player C) 

 

(f) Proposed method (player C) 
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(g) Particle filter (player D) 

 

(h) Proposed method (player D) 

 

(i) Particle filter (player E) 

 

(j) Proposed method (player E) 

 

(k) Particle filter (player F) 

 

(l) Proposed method (player F) 

 

Figure 3.4.1  Tracking-performance comparison.  
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Figure 3.4.2 shows additional sample images. In Frame #72 in Fig. 3.4.2 (b), a PSM tracking 

error occurred which was caused by a color similarity with the complex background. Figure 

3.4.3 shows the moving paths of the tracking result. In many samples, the experimental results 

demonstrated a high tracking recovery performance, compared to a conventional particle filter. 

 

Frame #36 Frame #180 Frame #252 Frame #288 Frame #324 Frame #360  

(a) Indoor scene 

Frame #8 Frame #40 Frame #48 Frame #64 Frame #72 Frame #80  

(b) Outdoor scene 

Figure 3.4.2 Experimental results of swing tracking (red rectangle: upper arm, orange rectangle: lower arm, 

blue dots: particle filter)  

 

 

 

(a) Particle Filter (b) Proposed Method  

Figure 3.4.3 Estimation of player C‟s swing 
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3.5. Conclusion of human-pose tracking 
 

In this section, the proposed human-pose tracking method was described. We focused on a 

tracking problem of a golf swing. Tracking the grip area of a golf player from a video showing an 

uncontrolled golf swing using a monocular camera is not easy. Particle filter based methods are 

widely used for tracking problems. However, tracking one part of a person in a difficult 

uncontrolled and complex background is not easy, because the change in appearance of the 

person and complex background are difficult to resolve. In this section, a novel method that 

combines both global and local features was proposed. The conclusions of this section are 

outlined below. 

 

The proposed method combines both global and local features. As global features, a human 

detection and pose estimation method is used. As local features, a constrained particle filter is 

used. The constraint comes from the global feature, which is the estimated arm location of the 

golf player. The proposed method consists of four steps: Human detection, Pose estimation and 

arm tracking using the PSM, and grip tracking using a particle filter. Human detection is based 

on HOG and AdaBoost. The pose estimation is based on a similar architecture as the human 

detector. We divide a golf swing motion into eight classes. Arm tracking is then performed by 

using the PSM, which is based on an appearance model. Next, a constrained particle filter is 

used for tracking the grip position of the golf player.  

 

The pose estimator was evaluated by using an uncontrolled video sequence taken by a general 

video camera. The evaluation shows over a 94% accuracy in pose-class estimation. 

 

The final tracking performance was evaluated by using uncontrolled video sequences. We 

compared an unconstrained conventional particle filter with the proposed method. The proposed 

method shows a better tracking performance than the unconstrained particle filter for all 

samples. 
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4. Conclusion 

In this thesis, object recognition methods suitable for implementation in small hardware were 

discussed. Robots or home appliances that can comprehend their circumstances through image 

information will be helpful to users. They can provide many services using visual information. 

Such information will provide a user-friendly human interface. For such applications, it is 

necessary to implement an object-recognition method into smaller hardware, but is not an easy 

task. There are many problems to be tackled, such as changes in luminance, complex 

backgrounds, changes in the appearance of the target objects, and occlusions. 

Meanwhile, recent years have seen dramatic increases in computational processing power. 

Therefore, some methods have been proposed for object recognition, which assume huge 

amounts of computational resources and memory. However, such solutions are impractical, that 

is, they are difficult to implement for small robots and home appliances owing to their high 

computational cost and only a few practical methods for such applications have proposed. 

 In this thesis, in order to solve these problems of conventional method, we proposed a 

reduction method of the SIFT feature points for object detection and a human-pose tracking 

method using PSM for body parts detection, and we achieved the following results, respectively. 

 

1. A SIFT feature based object detection algorithm was described. This method is based on a 

similarity count of SIFT feature points of the query and database images. The conventional 

method is robust for changes in orientation and scale, and it is widely used. However, it requires 

a large amount of computational resources because SIFT features produces a large amount of 

feature points and require 128 dimensional vectors per point. Therefore, a straightforward 

implementation into smaller hardware is not practical. Therefore, in the thesis, we proposed a 

reduction of the SIFT feature points before matching. Proposed method removes similar SIFT 

descriptor pairs in the query image in advance. The criteria of similarity are based on the 

location of the SIFT keypoint and similarity of the descriptor. The evaluation results show that 

this method can reduce the amount of memory and processing without sacrificing accuracy.  

In addition, an effective matching method using a pre-trained confidence table is proposed. A 

SIFT descriptor usually produces a few points when applied to texture-less objects. That is, for 

texture-less objects, the matching method is difficult to adopt. To deal with this problem, we 

replaced a binary based decision method with a LUT-based method. In the proposed method, 

two feature pair is picked up using conventional BBF. Then, decision making is performed by 

accumulating confidence score by LUT, which is trained by a log likelihood of histograms of 

positive and negative training sample datasets. The confidence LUT-based matching method 

can improve the recognition performance when applying SIFT feature matching to texture-less 

objects. The evaluation results by using 2432 samples show that the proposed method improved 
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the recognition performance for texture-less objects. 

 

2. A human-pose tracking method was described. Considering the applications of embedded 

object detection, human recognition is a very important task for such products. However, human 

recognition remains an unsolved research area in computer vision. A person has a wide variety 

of appearance changes. In this thesis, we focused on a tracking problem of golf swing, which 

tracks the grip of a golf player from an uncontrolled golf swing video by using a monocular 

camera. Generally speaking, particle filter based methods are widely used for the tracking 

problem. However, tracking a part of a person in difficult uncontrolled and complex background 

is not easy. A novel method that combines both global and local features was therefore proposed. 

A pose estimation is used as the global features and color histogram is used as a local feature. 

The proposed method consists of four steps: a) Human detection, b) Pose estimation, c) Arm 

tracking using the PSM, and d) Grip tracking using a particle filter. As a first step, we find 

human region by using human detection based on HOG and AdaBoost. Then, a pose estimation, 

which estimates player’s posture is performed. After that, arm tracking is performed by using 

the PSM, which is based on parts-based appearance model. Finally, a constrained particle filter 

is used for tracking the grip position of a golf player. The pose estimator was evaluated by using 

an uncontrolled video sequence taken by a general video camera. The evaluation shows over a 

94% accuracy in pose-class estimation. And the final tracking performance of golf swing was 

evaluated by using uncontrolled video sequences. The evaluation results show that the 

combination of the global and local features outperformed the conventional method based on 

particle filter. When we compared an unconstrained conventional particle filter with the 

proposed method, the proposed method showed a better tracking performance for all samples. 

 

 

My future plan is a combination of the proposed methods and a realization of smaller 

hardware-implementation. The implementation of a complete object-recognition system oriented 

for smaller hardware remains unresolved issues, which includes a hardware oriented feature 

detector and a multi-class classifier. The straightforward implementation using conventional 

methods is impractical for smaller hardware because they require high computational cost and 

a large amount of memory. Therefore, in order to realize the complete object-recognition system, 

we would require the hardware oriented feature detector and the multi-class classifier. 
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