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Chapter 1 

General Introduction 

Harvesting energy from the sun is one of the most important ways to prevent exhaustion of 

fossil fuels and global warming. The present solar cells are based on silicon wafer technology. 

Silicon based solar cells, however, have many disadvantages, such as high cost of resource 

materials, heavy weight, and poor flexibility of devices. Recently, organic solar cells have 

attracted much attention, due to their advantages of easy fabrication, simple device structure, 

low cost, light weight, flexibility of preparing devices, transparency, and large-area 

manufacturing compatibility. Dye sensitized solar cells (DSC) and organic thin-film solar cells 

(organic photovoltaics, OPV) are recognized as organic solar cells. Graetzel and co-workers 

reported DSC utilizing ruthenium complex based dye reaching the power conversion efficiency 

(PCE) of 11.2%. 1 However, since DSC requires expensive Ru metal, development of 

expensive transition metal free solar cells are strongly desired. The OPV has now been 

recognized as the most important candidate for the next-generation energy harvesting system. 

Tang reported two-layered cells consisting of p-type semiconductor (copper phthalocyanine 

(CuPC)) and n-type semiconductor (perylene tetracarboxylic derivative (Im-PTC)) achieved 

power conversion efficiency (PCE) of approximately 1% (Figure 1-1). 2  Since then, extensive 

investigation has been carried out to develop OPV and remarkable enhanced PCE has been 

accomplished by the use of bulk heterojunction (BHJ) cells comprising mixture of p-type 

semiconductor and n-type semiconductor as an active layer. 3 Exciton diffusion length in 

organic semiconductor is reported to be 10 – 14 nm; 4 the domain size of the active layer in the 

BHJ is small enough that generated exciton can reach to the p-n interface and it is believed that 

this geometry might contribute to enhance PCE drastically.  
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Figure 1-1. Chemical structures of copper phthalocyanine (CuPC) and perylene 
tetracarboxylic derivative (PV). 
 

 The development of new p-type semiconductors has been one of the key drivers of the 

recent increases in PCE. The best studied p-type semiconductor is poly(3-hexylthiophene) 

(P3HT); however,P3HT absorbs the light up to only around 650nm. Absorbing wavelengths 

longer than 650 nm is expected to enhance short circuit current density (Jsc); therefore great 

effort has been made to develop new low band-gap p-type semiconductors in the past decade.5-

8 

 

 

Figure 1-2. Chemical structures of P3HT, P1,5 P2,6 P3,7 and P48 as examples for p-type 
semiconductors. 
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Changes in the n-type semiconductor are another promising route to increasing PCE. 

Fullerene derivatives are widely used as n-type materials in OPV devices. Fullerenes show high 

electron mobilities and suitable LUMO levels for OPV active layer.  However, it is well known 

that the fullerene generally has a poor solubility in conventional organic solvents and this 

makes it difficult to prepare electric devices based on unsubstituted fullerene using economical 

techniques such as the spin-coating procedure. Therefore, the development of stable fullerene 

derivatives with a sufficient affinity toward organic solvents, whilst retaining a high electron 

mobilities and suitable LUMO level, is desired. Methyl [6,6]-phenyl-C61-butylate ([C60]-

PCBM) 9 is known to be one of the best blending material among fullerene derivatives for 

active layer of OPVs. Hummelen and co-workers synthesised [C60]-PCBM derivatives 

substituting electron-donating or electron-withdrawing groups on the phenyl ring and revealed 

that the substituent influenced the LUMO level of the parent fullerene. They found that 

differences in the LUMO level due to the substituent were enough to cause a change in the 

open circuit voltage of the resulting solar cell by several tens of mV.10 Troshin, Hoppe, and co-

workers also synthesized various types of methanofullerene derivatives and established that 

[C60]-PCBM was the best acceptor to use with P3HT polymer in terms of PCE.11  A further 

class of fullerene derivatives,  the fulleropyrrolidines, are attractive as acceptor materials due 

to their stability under atmospheric conditions and the ease of synthesising various types of 

analogues. 12 Several examples have been reported concerning the use of fulleropyrrolidines as 

the acceptor source of polymer solar cells. However, PCE values of the solar cells using 

fulleropyrrolidine derivatives have remained at an insufficient level.13  

In our group, the design of fulleropyrrolidine derivatives with high solubility in various types 

of organic solvents has been reported.14 It has been confirmed that fabrication of the film using 

the spin-coating method is very easy due to this high solubility.14 Encouraged by the results, 

we conducted a systematic study on the design of fulleropyrrolidine derivatives as the acceptor 
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in OPV devices using P3HT as the polymer. It was thus established that N-

methoxyethoxyethyl-2-(2-methoxyphenyl)fulleropyrrolidine works as a good acceptor partner 

with P3HT.15 

In the present study, we focus our effort on the design of novel fulleropyrrolidines as the 

acceptor in OPV devices using poly(3-hexylthiophene) (P3HT) as the polymer.  

In the Chapter 2, we report the results of an investigation into the effect of thiophene 

derivatives as substituent groups on the fulleropyrrolidine ring: we show five types of 

thiophene-substituted fulleropyrrolidine which work as a good acceptor partner with P3HT, 

with the highest power conversion efficiency (PCE) obtained for 1-(2-(2-

methoxyethoxy)ethyl)-2-(2-thiophen-2-yl)fulleropyrrolidine (2.99 %). This is superior to the 

PCE of devices prepared using methyl [C60]-PCBM under the same experimental conditions.  

In the Chapter 3, the results of molecular design of fullerene derivatives to prevent adverse 

chemical reactions with the PEDOT:PSS hole transport layer are reported. Three types of 2,5-

diarylfulleropyrrolidine derivatives, i. e. 2,5-diphenyl, 2,5-di(thiophen-2-yl), and 2,5-

di(thiophen-3-yl)fulleropyrrolidines were used as acceptor molecules with P3HT in OPV 

devices using two types of ITO electrodes. We show that their PCE depends on both the 

stereochemistry and chemical structure of two aryl substituents on the 2 and 5 positions of the 

pyrrolidine ring. The PCE of the devices using trans-diphenyl or either cis- or trans-

di(thiophen-3-yl) compounds was significantly lowered by using an ITO electrode with 

poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT:PSS), while cis-diphenyl 

isomer was not influenced by PEDOT:PSS. Furthermore, both cis- and trans-2,5-di(thiophen-

2-yl)fulleropyrrolidine displayed a high PCE using PEDOT:PSS. 
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Chapter 2 

Thiophene-substituted Fulleropyrrolidine Derivatives as Acceptor Molecules in a Thin 

Film Organic Solar Cell 

 

2-1. Introduction 

As mentioned in the General Introduction (Chapter 1), fullerene and its derivatives are 

widely used as n-type materials in the active layer of OPVs due to their high electron mobility 

and adequate LUMO level.2,3 Fullerene-based OPV can be fabricated via vapor deposition. 

However, considering the requirement for mass production in order to achieve cost reductions, 

the application of roll-to-roll processing (i.e., the solvent casting method) is highly desirable. 

Therefore, development of stable fullerene derivatives that show both a high PCE and a 

sufficient solubility against organic solvents is strongly desired.1-3 Various types of fullerene 

derivatives for use as OPV n-type materials have thus been developed. A [C60]-PCBM4 is 

known to be the best blending material among these derivatives as an acceptor with 

polythiophene which is a donor partner in polymer solar cells.5-15 Troshin, Hoppe, and co-

workers also synthesized various types of methanofullerene derivatives as acceptors for 

P3HT.15 Recently Matsuo and co-workers reported OPV devices using silylmethylfullerene 

(SIMEF) that showed PCE superior to devices using [C60]-PCBM.16,17 On the other hand, 

several examples have also been reported concerning the use of fulleropyrrolidines as the 

acceptor source of polymer solar cells. Reported PCE values of the solar cells derived from 

fulleropyrrolidine, however, have remained insufficient.18-25 We were fascinated by the 

fulleropyrrolidines from the standpoint of their stable nature under atmospheric conditions and 

the ease of producing various types of analogues,26 and conducted a systematic study of the 

design as an acceptor partner in polymer solar cells.27  
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Figure 2-1. Thiophene-substituted fulleropyrrolidine derivatives and [C60]-PCBM 
 

We found that OPV devices using several fulleropyrrolidine derivatives, in particular 1-(2-

(2-methoxyethoxy)ethyl)-2-(2-methoxyphenyl) fulleropyrrolidine, showed higher PCE 

compared to devices using [C60]-PCBM. Further, we established that the open circuit voltage 
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(Voc) of devices using fulleropyrrolidine derivatives strongly depends on the substituent groups 

on the pyrrolidine ring.27 

Heeger and co-workers reported that the Voc of an OPV device is determined by the 

difference between the HOMO level of the p-type semiconductor and the LUMO level of the 

n-type conductor.8 Therefore, it might be expected that appropriate modification of the 

pyrrolidine ring could enhance the LUMO level, possibly improving the Voc. We hypothesized 

that introduction of a S-conjugated moiety to the fulleropyrrolidine might affect the HOMO-

LUMO level as well as the charge separation process, which could cause significant change in 

OPV properties. We herein report the synthesis of thiophene-substituted fulleropyrrolidine 

derivatives 1-6 and results of their evaluation as acceptor materials with P3HT in solar cells. 

Thus, we have established that the introduction of a thiophene moiety on the pyrrolidine ring 

of fulleropyrrolidines has a favorable effect on the PCE of a solar cell.  

 

2-2. Development of OPV devises using fulleropyrrolidines having thiophene ring(s) as a 

substituent group 

Synthesis of fulleropyrrolidines having thiophene ring(s). 

Thiophene is well known as an electron-releasing substituent group, therefore, it is expected 

that the thiophene group becomes a S-conjugated moiety and thus influences both the light-

absorbing behavior and charge separation process of fullerene molecules. We hypothesized 

that thiophene-substituted fulleropyrrolidine might become a good candidate as acceptor in 

polymer solar cells. Synthesis of a thiophene derivative fulleropyrrolidine (1) was reported 

earlier in our previous publication27. Fulleropyrrolidine derivatives (2-6) were prepared by a 

similar method26,27 originally developed by Prato and co-workers.1a N-Methoxyethoxyethyl 

glycine28 was treated with the [C60]-fullerene in the presence of a thiophene-substituted 

aldehyde in chlorobenzene and the mixture was heated at 130 °C for 3 h. Purification of the 
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desired compounds was accomplished by silica-gel flash column chromatography or silica-gel 

thin layer chromatography; the desired mono adducts were thus obtained in acceptable yields 

from 40% to 78%. We further synthesized bridged type fulleropyrrolidine 6 by the reaction of  

[2,2’:5’,2”-terthiophene]-5,5”-dicarbaldehyde (8) and N-methoxyethoxy glycine in the 

presence of [C60]-fullerene. The desired bridged type compound 6 was obtained as a single 

isomer.  

 

Photovoltaic performance. 

  Using the fulleropyrrolidine derivatives 1-6, we prepared OPV devices and evaluated their 

efficiency as follows. Fulleropyrrolidines were mixed with poly(3-hexylthiophene) (1/1 wt/wt) 

in o-dichlorobenzene, and the resulting solution was spin-coated onto ITO or ITO coated with 

poly(3,4-ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT:PSS)29 as a positive 

electrode. LiF and aluminum were then deposited as a negative electrode. The PCE values 

were measured by taking current-voltage measurements with the devices under illumination 

using a solar simulator (AM1.5G, 100 mW/cm2).  The results are summarized in Table 2-1.  
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Table 2-1. Photovoltaic performances of the P3HT-based organic photovoltaic devices with 
various types of fulleropyrrolidine derivatives. a 

Entry Fullerene derivative PCE 

% 

Jsc 

mA/cm2 

Voc 

Volt 

FF 

1b 1 3.0 7.5 0.61 0.66 

2 2 2.9 7.7 0.62 0.61 

3 3 2.8 7.9 0.61 0.57 

4 4 2.8 6.8 0.64 0.64 

5 5 2.4 6.4 0.65 0.56 

6 6 0.61 3.1 0.65 0.31 

7 [C60]-PCBM 2.5 6.9 0.58 0.63 

a Under the illumination of AM 1.5G, 100 mW/cm2. b Ref. 27. 

  

 The PCE of derivatives 1-4 was higher than that of [C60]-PCBM (Entry 7). The PCE of 

1 was the highest among the three mono-thiophene derivatives (Entries 1-3) due to a 

significantly higher fill factor (FF),  despite slightly lower open-circuit voltage (Voc) and short-

circuit current (Jsc) (Entry 1). The Voc of all three thiophene-substituted fulleropyrrolidine 

devices was higher than that of [C60]-PCBM, which we suggest is due to the electron-donating 

property of thiophene and the resulting higher LUMO. The Jsc and FF of terthiophene 

substituted derivative 5 were lower than devices 1-4, which we propose is a result of its 

reduced solubility compared to the mono-thiophene and bithiophene derivatives. The 

distinctive feature of 5 is  the high Voc (0.65 V) when compared with 1-4 and [C60]-PCBM The 

reason for that will be discussed below using cyclic voltammograms. 

  We previously reported that PCE significantly depended on the position of functional 

group on the benzene ring of the related fulleropyrrolidine derivatives, and high PCE was 

recorded for compounds which have a methoxy or methyl group at the ortho-position of the 
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phenyl group.27  Because the alkyl group is believed to be a moderate electron-donating group, 

we next incorporated an alkyl group to the thiophene ring. As expected, PCE of 2 and 3 was 

higher than that of [C60]-PCBM. However, little difference in OPV performance was found 

between derivatives 2 and 3, suggesting that the choice of methyl or ethyl group at the 5-

position of the thiophene ring has little influence on the PCE (Entries 2 and 3). Derivative 3, 

with the ethyl group, showed a slightly reduced FF, possibly due to the effect of steric 

hindrance on molecular packing (Entry 3). 

Bis-[C60]-PCBM was reported to show higher Voc than [C60]-PCBM, because bis-[C60]-

PCBM possesses a higher LUMO level due to the additional break in the conjugated fullerene 

cage.4 Although the bridged type fulleropyrrolidine 6, also with an additional break in the 

conjugation of the fullerene cage, showed higher Voc than [C60]-PCBM, poor PCE was 

obtained due to its low Jsc and FF (Entry 6).  

 

Influences from PEDOT:PSS on device performance. 

Recently, an ITO electrode coated with poly(3,4-

ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT:PSS)29 has been widely used as the 

hole transport layer (HTL) for a solar cell. This is explained by the sufficient work function for 

hole collection. However, we prepared solar cells using a simple ITO electrode without a 

PEDOT:PSS layer due to concerns that protonation of the nitrogen atom on the pyrrolidine 

ring by PSS might inhibit the electron transfer pathway between fullerene molecules and P3HT. 

Although an investigation on the modification of redox properties of fulleropyrrolidine 

derivatives induced by protonation has been carried out, no detailed report on the photovoltaic 

performance has been reported. 30 To investigate this, we prepared three types of OPV devices 

using ITO electrodes: the first without PEDOT:PSS, the second with PEDOT:PSS, and the 
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third having neutral PEDOT. We then evaluated their efficiency using bithiophene substituted 

fulleropyrrolidine 4 as the acceptor partner with P3HT (Table 2-2).  

 

Table 2-2. Photovoltaic performances of the P3HT-based organic photovoltaic devices with 
bithiophene-substituted fulleropyrrolidine 4 using three ITO electrodes.  

Entry Acceptor PCE 

% 

Jsc 

mA/cm2 

Voc 

Volt 

FF HTL 

1 [C60]-PCBM 2.5 6.7 0.56 0.66 barea 

2 [C60]-PCBM 2.6 7.0 0.56 0.67 PEDOT:PSS b 

3 [C60]-PCBM 2.5 7.2 0.55 0.64 neutral PEDOT c 

4 4 2.8 6.8 0.64 0.64 bare 

5 4 0.10 0.71 0.48 0.29 PEDOT:PSS 

6 4 1.8 5.9 0.54 0.57 neutral PEDOT 

7d 7 3.0 7.6 0.64 0.63 bare 

8 7 0.51 6.5 0.52 0.15 PEDOT: PSS 

a “bare” means a special electrode prepared without HTL. b PEDOT:PSS (AI4083 (pH=1.8)): 
baked at 120°C for 10 min. under air, 44 nm. c Neutral PEDOT: 0.4 wt% diethanolamine, 
2,4,7,9-tetramethyldec-5-yne-4,7-diol (surfactant) 100 ppm ( pH7.5), baked at 120°C for 10 
min. under air, 45 nm. d Ref. 27. 

 

As shown in Table 2-2, the PCE of [C60]-PCBM devices was independent of the use of 

electrode (Entries 1-3). However, as anticipated, using PEDOT:PSS in the electrode with 

isomer 4 caused a significant drop of PCE, mainly due to reduced Jsc (Entry 5). A significantly 

higher PCE was obtained when the cell was prepared with neutral PEDOT (Entry 6), but PCE 

in this case was still lower than in the devices made using a simple ITO electrode without 

PEDOT:PSS (Entry 4).  It was thus found that it was essential to use an electrode lacking 

PEDOT:PSS in order to obtain good PCE for thiophene-substituted fulleropyrrolidine based 
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devices. In addition, a similar significant reduction of photovoltaic performance was recorded 

when 1-(2-(2-methoxyethoxy)ethyl)-2-([1,1'-biphenyl]-2-yl)fulleropyrrolidine (7)27 was used as 

an acceptor (Entry 8). 

It is reported that the protonation of the fulleropyrrolidine by trifluoroacetic acid caused a 

blue shift on the UV-visible spectrum.30 Figure 2-2 shows UV-visible spectra of 

fulleropyrrolidine 4 with and without acids, when trifluoroacetic acid (TFA) and p-

toluenesulfonic acid (p-TsOH) were used as acid. As can be seen, blue shift of the 

fulleropyrrolidine was observed in the presence of both TFA and p-TsOH. Since p-TsOH is 

thought to be a model compound of PSS, it is likely that protonation of the fulleropyrrolidine 

indeed formed when PEDOT:PSS was used as hole transport layer. 

 

 

Figure 2-2. UV-visible spectra of fulleropyrrolidine 4 in the presence and absence of TFA or 
p-TsOH in CS2. (4 : Acid  = 1 : 20 (mol/mol). Concentration of 4 in CS2 is approximately 
0.02mM.) 
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Effect of substituent group on device performance. 

Figure 2-3 shows the UV-visible spectra of the P3HT/1, P3HT/5 and P3HT/[C60]-PCBM. 

All films show a broad S–S* absorption from 400 to 700 nm and the Omax of the three films is 

around 500 nm, which is attributable to the P3HT. The P3HT/5 blend has distinctive broad 

absorption between 350 and 400 nm, which is assumed to be caused by the terthiophene 

moiety on the fulleropyrrolidine molecule. 
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Figure 2-3. UV-visible spectra of 1, 5 and [C60]-PCBM. 

 

External quantum efficiency (EQE) of the P3HT/5 and P3HT/[C60]-PCBM are shown in 

Figure 2-4. Since there is less absorption in the range of 350 - 400 nm in the UV-visible 

spectrum of P3HT/[C60]-PCBM film, the EQE of the film in this range stayed low (EQE = 0.3 

- 0.4). On the other hand, as can be seen on the P3HT/5, the EQE between 350 ‒ 400 nm 

reached around 0.5, thus revealing that the terthiophene moiety of 5 not only absorbed the 

light but also contributed to produce excitons within the range of 350 – 400 nm. 
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Figure 2-4. External quantum efficiency of terthiophene derivative 5 and [C60]-PCBM 

 

Fulleropyrrolidine 6 has a terthiophene bridge, which should have a similar absorption 

spectrum to compound 5. However, the PCE of the device using P3HT/6 was unexpectedly 

low as mentioned above, which indicated that bridged-terthiophene moiety showed poor PCE 

(Entry 6 in Table 2-1). The bridged-terthiophene moiety might be too close to the fullerene 

ring, preventing charge separation. 

 

Electrochemical study. 

The highest Voc was found when mono-thiophene 5 was used as an electron acceptor 

component in the active layer. To understand the reason for the high Voc of 5 compared to 

[C60]-PCBM, the electrochemical properties of terthiophene 5 and [C60]-PCBM were studied 

by cyclic voltammetry. The cyclic voltammograms of the fullerene derivatives in the potential 

range of 1.0 ~ –2.0 V vs. ferrocene Fc/Fc
+ are shown in Figure 2-5. In the negative potential 

range, it can be seen that these derivatives showed three apparent reversible reduction waves 

respectively in the potential range from –0.8 V to –1.8 V. The half-wave potential of the 
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reduction process is defined as E0 = [ Ec + Ea ] / 2 (wherein Ec and Ea are the potential of 

cathodic peak and anodic peak, respectively). The half-wave potentials are summarized in 

Table 2-3. The first (E0
1), second (E0

2) and third (E0
3) reduction potentials of 5 were shifted 

negatively when compared to [C60]-PCBM.  

The LUMO energy levels of the fullerene derivatives were estimated from their first half-

wave potentials (E0
1) indicated in the cyclic voltammograms. The E0

1 of terthiophene 5 and 

[C60]-PCBM were –1.09 and –1.15 V vs. Fc/Fc+, respectively. The LUMO energy levels of the 

fullerene derivatives from the onset reduction potentials were calculated by use of the 

following equation: LUMO (eV) = –(E0
1 + 4.80). The LUMO energy levels of [C60]-PCBM 

and 5 calculated by this method are –3.71 and –3.65 eV, respectively, and are summarized in 

Table 2-3. The LUMO level of 5 is raised by 0.06 eV in comparison with that of [C60]-PCBM. 

The higher LUMO level of 5 is desirable for its application as acceptor in the active layer to 

obtain Voc. 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5

potential (V)

[C60]-PCBM

  5

 

Figure 2-5. Cyclic voltammograms of [C60]-PCBM and 5 in CH3CN (0.1 mM) with 0.1M n-
Bu4NPF6 at a scan rate of 10 mV/s. 
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Table 2-3. Estimated half-wave potentials and LUMO of the fullerene derivatives a 

Entry  E0
1 

V 

E0
2 

V 

E0
3 

V 

LUMO 

eV 

1 [C60]-PCBM –1.09 –1.49 –2.00 –3.71 

2 5 –1.15 –1.53 –2.08 –3.65 

a The potential values in this table are versus Fc/Fc+ 

 

2-3. Conclusions 

In summary, we have carried out the rational design of thiophene-substituted 

fulleropyrrolidine derivatives (1-5) as the acceptor partner with poly(3-hexylthiophene) and 

established that these fulleropyrrolidines work as good acceptor partners with P3HT. A high 

power conversion efficiency was obtained, superior to that of the P3HT-based devices 

including [C60]-PCBM under the same experimental conditions. It was also found that using an 

electrode that lacked PEDOT:PSS was essential to obtain good PCE for fulleropyrrolidine 

based solar cells. The effect from PEDOT:PSS to the active layer containing 

fulleropyrrolidines and will be discussed in Chapter 3 

 

2-4. Experimental section 

General Procedures.  

Photovoltaic devices were prepared by spin-coating the fulleropyrrolidine-polymer blends 

from chlorobenzene onto an indium tin oxide (ITO) glass electrode as follows: To a P3HT (1.0 

wt%) solution of chlorobenzene were added fulleropyrrolidine 1 (equal weight vs. P3HT) and 

silica gel (1.0 wt % vs. P3HT solution), then the mixture was stirred for 12 h at ambient 

temperature. It was then filtered through a Teflon (0.2 Pm) filter. The resulting solution was 

applied to the surface of an ITO plate by the spin-coating method at a thickness of ca. 100 nm, 
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and the surface was washed with acetone and irradiated under UV light and ozone gas for 20 

min to decompose the impurities. After drying under vacuum for 20 min, the resulting plate 

was placed in a vacuum chamber and the surface was coated with the electrode layers of 

lithium fluoride (LiF) (4 nm) and aluminum (100 nm) by evaporation at 10-4 Pa at rt. We 

placed the glass plate on the resulting film and the plate was firmly fixed using a bonding agent 

under an argon atmosphere to produce the solar cell. The PCE values were obtained using the 

solar simulator OTENTO-SUN II (AM1.5G, 100 mW/cm2). Cyclic voltammograms were 

obtained in acetonitrile with 0.1mM tetrabutylammonium hexafluorophosphate (n-Bu4NPF6) as 

a supporting electrolyte using a glassy carbon (1 mm diameter) as a working electrode, a Pt 

counter electrode and Ag/AgCl reference electrode. UV-visible spectra were obtained using 

the spectrophotometer JASCO V-670. 

 

Materials 

The [C60]-fullerene was purchased from Frontier Carbon (nanom purple ST-A) and P3HT 

from Aldrich. The silica gel was purchased from Wako Pure Chemical Industry, Ltd. (Wakogel 

C-300, 45~75 Pm ).  

 

1-(2-(2-methoxyethoxy)ethyl)-2-(2-thiophen-2-yl) fulleropyrrolidine (1)27 

A solution of [C60]-fullerene (500 mg, 0.69 mmol), [2-(2-methoxyethoxy)ethylamino]acetic 

acid26,28  (177 mg, 1.0 mmol), and thiophene-2-carbaldehyde (188 mg, 1.38 mmol) in 

chlorobenzene (100 mL) was stirred for 3 h at 130 °C under argon. The solvent was 

evaporated under reduced pressure and the residue was purified by flash chromatography 

(toluene, then CS2 / ethyl acetate=10:1) affording the product 1 (351 mg, 0.36 mmol) as a dark 

brown solid in 52% yield, and the unreacted fullerene (174 mg) was recovered in 35% yield.  
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Rf 0.61 (toluene/methanol=2/1); 1H NMR (400 MHz, CDCl3, J= Hz) δ 2.87-2.93 (1H, m), 

3.39 (3H, s), 3.49-3.57 (3H, m), 3.60-3.62 (2H, m), 3.92-3.97 (1H, m), 4.00-4.05 (1H, m), 

4.26 (1H, d, J= 9.8 Hz), 5.19 (1H, d, J= 9.8 Hz), 5.47 (1H, s), 6.99 (1H, t, J= 4.9 Hz), 7.31 

(1H, d, J= 5.9 Hz), 7.34 (1H, d, J= 4.0 Hz); 13C NMR (100 MHz, CDCl3) δ 52.25, 58.77, 

67.60, 68.56, 70.41, 70.51, 71.87, 75.82, 77.68, 126.37, 126.44, 127.83, 127.99, 128.6, 

135.27, 135.60, 136.33, 136.74, 139.28, 139.60, 139.84, 139.89, 140.72, 141.28, 141.36, 

141.56, 141.66, 141.71, 141.73, 141.81, 141.83, 141.85, 141.92, 141.94, 142.27, 142.37, 

142.68, 142.83, 144.03, 144.06, 144.32, 144.40, 144.81, 144.89, 144.91, 144.95,145.01, 

145.05, 145.11, 145.17, 145.24, 145.29, 145.45, 145.61, 145.75, 145.78, 145.84, 145.88, 

145.96, 146.00, 146.02, 146.55, 146.96, 152.82, 152.96, 153.77, 155.82; IR (KBr, cm-1) 2864, 

2812, 1462, 1427, 1180, 1107, 839, 768, 700, 527; MALDI-TOF-MS (matrix: SA) found 

947.0978 (calculated for C71H17NO2S, exact mass: 947.0981) 

Reaction of 5-methylthiophene-2-carbaldehyde or 5-ethylthiophene-2-carbaldehyde with C60-

fullerene  gave fulleropyrrolidine 2 or 3 in similar yield in the reaction of 1. 

 

1-(2-(2-methoxyethoxy)ethyl)-2-(5-methylthiophen-2-yl)fulleropyrrolidine (2) 

1H NMR (500 MHz,CDCl3, J= Hz) δ 2.47 (3H, s), 2.89-2.95 (1H, m), 3.44 (3H, s), 3.57-

3.59 (1H, m), 3.61-3.70 (2H, m), 3.77-3.84 (2H, m), 3.98-4.02 (1H, m), 4.04-4.08 (1H,m), 

4.25 (1H, d, J= 9.7 Hz), 5.16 (1H, s), 5.39 (1H, s), 6.06 (1H, dd, J= 3.5, 1.1 Hz), 7.16 (1H, d, 

J= 3.5 Hz); 13C NMR (100MHz,CDCl3)  δ 15.63, 52.16, 59.14, 67.66, 68.91, 70.50, 70.54, 

72.00, 76.15, 78.25, 124.57, 128.36, 135.54, 135.77, 136.60, 138.30, 139.58, 139.84, 140.06, 

140.08, 141.25, 141.53, 141.62, 141.90, 141.93, 141.98, 142.08, 142.12, 142.19, 142.51, 

142.52, 142.62, 142.91, 143.09, 144.32, 144.59, 144.68, 145.17, 145.21, 145.26, 145.30, 

145.45, 145.49, 145.73, 145.87, 145.89, 146.01, 146.05, 146.10, 146.15, 146.24, 146.34, 

146.45, 147.25, 153.39, 153.60, 154.24, 156.27; IR (KBr, cm-1) 2853, 1684, 1458, 1425, 
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1107, 795; MALDI-TOF-MS (matrix: SA) found 961.1138 (calculated for C72H19NO2S, exact 

mass: 961.1138) 

 

1-(2-(2-methoxyethoxy)ethyl)-2-(5-ethylthiophen-2-yl)fulleropyrrolidine (3) 

1H NMR (500 MHz, CDCl3, J= Hz) δ 1.28 (3H, t, J= 7.5 Hz), 2.82 (2H, q, J= 7.5 Hz), 2.90-

2.95 (1H, m), 2.88 (3H, s), 3.58-3.62 (1H, m), 3.63-3.70 (2H, m), 3.78-3.84 (2H, m), 3.99-

4.04 (1H, m), 4.06-4.09 (1H, m), 4.26 (1H, d, J= 9.7 Hz), 5.16 (1H, d, J= 9.8 Hz), 5.40 (1H, 

s), 6.68 (1H, d, J= 3.5 Hz), 7.18 (1H, d, J= 3.5 Hz); 13C NMR (125 MHz, CDCl3) δ 15.70, 

23.60, 52.18, 59.14, 67.66, 68.90, 70.49, 70.54, 72.00, 76.20, 78.31, 122.57, 128.13, 135.55, 

136.61, 136.93, 137.80, 139.52, 139.82, 140.05, 141.86, 141.93, 141.98, 142.09, 142.12, 

142.19, 142.24, 142.51, 142.62, 142.91, 143.10, 144.32, 144.59, 144.67, 145.07, 145.18, 

145.23, 145.29, 145.45, 145.48, 145.73, 145.87, 146.01, 146.04, 146.10, 146.15, 146.23, 

146.26, 146.35, 146.44, 146.95, 147.25, 148.89, 153.39, 153.64, 154.25; IR (KBr, cm-1) 2866, 

1670, 1508, 1458, 1425, 1107, 802; MALDI-TOF-MS (matrix: SA) found 975.1292 

(calculated for C73H21NO2S, exact mass: 975.1294) 

 

1-(2-(2-methoxyethoxy)ethyl)-2-([2,2'-bithiophen]-5-yl)fulleropyrrolidine (4) 

A solution of [C60]-fullerene (500 mg, 0.69 mmol), [2-(2-methoxyethoxy)ethylamino]acetic 

acid26,28  (177 mg, 1.0 mmol), and 5-(thiophen-2-yl)thiophene-2-carbaldehyde31 (268 mg, 1.40 

mmol) in chlorobenzene (100 mL) was stirred for 3 h at 130 °C under argon. The resulting 

mixture was separated by silica gel flash chromatography to give 2 (298 mg, 0.29 mol) in 42% 

yield, and the unreacted fullerene (275 mg) was recovered in 55% yield.  

1H NMR (500 MHz,CDCl3, J= Hz) δ 2.93-3.01 (1H, m), 3.15 (3H, s), 3.60-3.70 (3H, m), 

3.75-3.85 (2H, m), 3.98-4.04 (1H, m), 4.05-4.10 (1H, m), 4.28 (1H, d, J= 9.7 Hz), 5.23 (1H, 

d, J= 9.6 Hz), 5.44 (1H, s), 6.98 (1H, dd, J= 5.5, 3.7 Hz), 7.07 (1H, d, J= 3.7 Hz), 7.15 (1H, 
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dd, J= 3.7, 1.0 Hz), 7.18 (1H, dd, J= 5.7, 1.0 Hz), 7.28 (1H, d, J=3.7 Hz); 13C NMR (125 

MHz, CDCl3) δ 52.35, 59.04, 67.74, 68.87, 70.52, 70.55, 71.99, 76.03, 78.01. 122.89, 123.78, 

124.50, 127.77, 128.90, 135.82, 136.53, 137.08, 137.31, 139.66, 139.87, 139.94, 140.07, 

140.52, 141.59, 141.80, 141.87, 141.95, 142.04, 142.07, 142.14, 142.20, 142.49, 142.60, 

142.89, 143.06, 144.29, 144.54, 144.63, 145.06, 145.15, 145.20, 145.24, 145.35, 145.40, 

145.43, 145.52, 145.67, 145.84, 145.98, 146.03, 146.08, 146.10, 146.22, 146.73, 147.22, 

153.05, 154.01, 156.02; IR (KBr, cm-1) 2864, 1638, 1107, 795; MALDI-TOF-MS (matrix: 

SA) found 1029.0873 (calculated for C75H19NO2S2, exact mass: 1029.0859) 

 

1-(2-(2-methoxyethoxy)ethyl)-2-([2,2':5',2''-terthiophen]-5-yl)fulleropyrrolidine (5) 

(1) To a solution of terthiophene (250 mg, 1.01 mmol) in dichloromethane (CH2Cl2)(5.0 ml) 

was added N,N-dimethylformaldehyde (DMF) (162 mg, 2.21 mmol) under argon, then 0.21 ml 

of POCl3 (2.21 mmol) was added at 0°C and the resulting mixture was stirred at 50°C for 2 hr. 

The reaction was quenched by addition of 1M sodium acetate (NaOAc) aqueous solution then 

extracted with CH2Cl2. After evaporation, silica gel flash coloumn chromatography (CH2Cl2/ 

ethyl acetate= 1:0 to 10:1) to afford [2,2’:5’,2”-terthiophene]-5-carbaldehyde (7)32 (231 mg, 

0.84 mmol, 83 %) and [2,2’:5’,2”-terthiophene]-5,5”-dicarbaldehyde (8)33 (68.0 mg, 0.22 

mmol, 22%), respectively.  

(2) A solution of C60 (250 mg, 0.35 mmol), [2-(2-methoxyethoxy)ethylamino]acetic acid (92 

mg, 0.52 mmol), and [2,2':5',2''-terthiophene]-5-carbaldehyde (7) (192 mg, 0.69 mmol) in 

chlorobenzene (50 mL) was stirred for 3 h at 130 °C under argon. The resulting mixture was 

separated by silica gel flash chromatography to give 3 (157 mg, 0.14 mol) in 41% yield, and 

the unreacted fullerene (118 mg) was recovered in 47% yield. 

1H NMR (500 MHz, CDCl3, J= Hz) δ 2.87-2.93 (1H, m), 3.39 (3H, s), 3.49-3.57 (4H, m), 

3.60-3.62 (2H, m), 3.92-3.97 (1H, m), 4.00-4.05 (1H, m), 4.26 (1H, d, J= 9.8 Hz), 5.19 (1H, 



 

 
27 

d, J= 9.8 Hz), 6.96 (1H, dd, J=5.1 Hz, 3.6 Hz), 7.00 (2H, dd, J=9.2 Hz, 3.6 Hz), 7.03 (d, 1H, 

J=3.6 Hz), 7.09 (1H, dd, J= 3.4Hz, 1.0Hz), 7.15 (1H, dd, J=5.0 Hz, 0.9 Hz), 7.26 (1H, d, 

J=3.7 Hz); 13C NMR (125 MHz, CDCl3) δ 52.40, 58.81, 67.68, 68.67, 70.49, 71.93, 75.83, 

77.94, 122.71, 123.61, 124.17, 124.27, 124.44, 127.69, 128.74, 135.27, 135.65, 135.92, 

136.35, 136.84, 136.94, 138.21, 139.54, 139.74, 139.93, 140.03, 141.37, 141.43, 141.62, 

141.70, 141.79, 141.88, 141.98, 142.01, 142.33, 142.45, 142.74, 142.90, 144.12, 144.40, 

144.46, 144.89, 144.97, 145.03, 145.13, 145.18, 145.21, 145.29, 145.39, 145.50, 145.67, 

145.81, 145.87, 145.94, 146.01, 146.08, 146.54, 147.03, 152.71, 152.81, 153.77, 155.79; IR 

(KBr, cm-1) 2864, 2812, 1462, 1427, 1180, 1107, 839, 768, 700, 527; MALDI-TOF-MS 

(matrix: SA) found 1111.0753 (calculated for C79H21NO2S3, exact mass: 1111.0736) 

 

Bridge type terthiophene fullerobipyrrolidine (6) 

A solution of [C60]-fullerene (630 mg, 0.88 mmol), [2-(2-methoxyethoxy)ethylamino]acetic 

acid (142 mg, 0.80 mmol), and [2,2’:5’,2”-terthiophene]-5,5”-dicarbaldehyde (8) (43 mg, 0.14 

mmol) in chlorobenzene (60 mL) was stirred for 3 h at 130 °C under argon. The solvent was 

evaporated under reduced pressure and the residue was purified by flash chromatography 

(toluene, then CS2 / ethyl acetate= 10:1) affording the product 6 (196mg, 0.16mmol) as a dark 

brown solid in 76% yield, and the unreacted fullerene (174 mg) was recovered in 35% yield. Rf 

0.61 (toluene/methanol=2/1): 1H NMR (500 MHz, ppm, CDCl3, J= Hz) δ 2.91-2.95 (2H, m), 

3.39 (6H, s), 3.56-3.65 (6H, m), 3.72-3.79 (4H, m), 3.94-3.98 (2H, m), 4.01-4.07 (2H, m), 

4.25 (2H, d, J= 10.0 Hz), 5.18 (2H, d, J= 10.0 Hz), 5.41 (2H, s), 7.00 (2H, s), 7.03 (2H, d, J= 

3.7 Hz), 7.25 (2H, d, J= 4.0 Hz); 13C NMR (125 MHz, CDCl3) δ 52.37, 58.86, 67.66, 68.67, 

70.49, 70.58, 71.92, 75.85, 77.92, 122.83, 124.35, 128.78, 135.28, 135.68, 136.23, 136.37, 

136.94, 138.12, 139.54, 139.84, 139.94, 140.18, 141.38, 141.43, 141.62, 141.72, 141.80, 

141.90, 141.99, 142.03, 142.34, 142.46, 142.75, 142.90, 144.11, 144.40, 144.48, 144.90, 
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144.98, 145.04, 145.11, 145.15, 145.19, 145.31, 145.39, 145.50, 145.68, 145.82, 145.87, 

145.95, 146.02, 146.09, 146.53, 147.04, 152.72, 152.79, 153.78, 155.78; IR (KBr, cm-1) 2866, 

1460, 1425, 1105, 727; MALDI-TOF-MS (matrix: SA) found 1255.40 (calculated for 

C86H35N2O4S3 (MH+), Exact Mass: 1255.1765). 
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Chapter 3 

Photovoltaic Properties of OPV Devices using cis- and trans-2,5-

Diarylfulleropyrrolidines as Acceptor Partners with P3HT on an ITO Electrode with 

PEDOT:PSS 

 

3-1. Introduction 

As described in Chapter 2 and reported earlier 1, fulleropyrrolidines have a certain advantage 

over [C60]-PCBM from the standpoint of their stable nature under atmospheric conditions and 

the ease of producing various types of analogues.2 However, it was essential to use a special 

electrode without the commonly-used hole transport layer (HTL) poly(3,4-

ethylenedioxythiophene) :poly(styrenesulfonate) (PEDOT: PSS)3 layer to obtain high PCE.3 

The role of the HTL is believed to be to prevent the leak current from the active layer to the 

ITO electrode, thereby strongly contributing to the enhancement of the OPV performance, 

especially FF and Voc.4 Therefore, we have investigated the interaction between the sulfonic 

acid group of PEDOT:PSS and nitrogen moiety of the fulleropyrrolidine to determine the 

reason why PEDOT:PSS causes the drop in PCE of fulleropyrrolidine based OPV devices. It 

was found that a quaternary ammonium salt was formed on the interface of the active layer 

with PEDOT:PSS and this hindered hole transport.5 Inspired by the results, we hypothesized 

that a good OPV device might be produced using fulleropyrrolidine derivatives if we could 

prevent the formation of such quaternary ammonium salt by PEDOT:PSS. We hypothesized 

that 2,5-diaryl-substiuted fulleropyrrolidine might become a good acceptor material because it 

might be difficult for the sulfonic acid group of PSS to access the nitrogen atom on the 

pyrrolidine ring due to enhanced steric hindrance of the N atom. Formation of the quaternary 

ammonium salt would thus be avoided. In this communication, we report that the performance 

of OPV devices using 2,5-diarylfulleropyrrolidines with P3HT and an ITO electrode with 
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PEDOT:PSS layer significantly depends on the stereochemistry of the two substituents of the 

pyrrolidine ring. 

 

Figure 3-1. Fulleropyrrolidines investigated for their OPV device properties 

 

 

3-2. Development and study of OPV Devices using cis- and trans-2,5-

Diarylfulleropyrrolidines 

 

Synthesis of cis- and trans-2,5-Diarylfulleropyrrolidines 

We have accomplished stereoselective synthesis of cis- and trans-2,5-

diphenylfulleropyrrolidine via the reaction of N-benzyl-2-(2-methoxyethoxy)ethanamine (15)6 

with benzaldehyde (16) in the presence of C60 (Scheme 3-1): (trans)-1-(2-(2-

methoxyethoxy)ethyl)-2,5-diphenylfulleropyrrolidine (10) was obtained when the reaction was 

stopped at 5 h reaction under reflux conditions in o-dichlorobenzene. On the other hand, a 

mixture of 9 and 10 was obtained when the reaction was stopped at 12 h stirring. We found 

that cis isomer 9 was obtained as a sole product after 72 h reaction. Prato and co-workers 

established that a N-substituted imine formed from an amine and an aldehyde can be 

tautomerized to azomethine ylide that readily undergo with C60 fullerene to yield 
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fulleropyrrolidine.7 It is reported that tri-substituted ylide 17’ exists in three conformations: S-

shaped, W-shaped, and U-shaped:8 the [2+3]-cycloaddition of the S-shaped ylide is expected 

to give trans isomer 10 (trans-Ph), while W- and U-shaped ylide 17’ should yield cis isomer 9 

(cis-Ph) (Scheme 3-1). It has also been reported that the S-shaped conformer is more stable 

than the W- and U-shaped geometries.9 In fact, we found that 10 was produced initially and cis 

9 was gradually formed during the reaction, and cis isomer 9 was obtained as a sole product 

after long time stirring under reflux condition at 180°C. This indicates that cis isomer 9 might 

be more thermodynamically stable than trans isomer 10. This is indeed supported by the DFT 

calculation of 9 and 10 at the B3LYP/6-31G* level of theory:10 cis isomer 9 is more 23.9 

kJ/mol stable than trans isomer 10. We suppose that trans isomer might be decomposed during 

the reactions, while thermodynamically stable cis isomer survived under the conditions. 

Reaction of thiophene-2-carbaldehyde or thiophene-3-carbaldehyde with [C60]-fullerene gave 

fulleropyrrolidines 11 (cis-2-thienyl), 12 (trans-2-thienyl), 13 (cis-3-thienyl), and 14 (trans-3-

thienyl) in similar yields, respectively. 

We assigned the stereochemistry of the 2,5-diarylfulleropyrrolidines using 1H NMR analysis, 

because it was report that the signal of methine protons of the trans isomer at 2,5-position of 

the pyrrolidine ring was observed as a singlet peak at lower field ca. 0.6 ppm than the cis 

isomer.9 
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Scheme 3-1. Synthesis of 2,5-diphenylfulleropyrrolidine 9 (cis-Ph) and 10 (trans-Ph) 

 

 

Photovoltaic performance 

OPV devices were prepared using fulleropyrrolidine as acceptor partner with P3HT . Two 

types of OPV devices were fabricated: the first with PEDOT:PSS between ITO and the active 

layer, the second without PEDOT:PSS. Their PCE values were tested according to following 

process: dispersion of a mix of fulleropyrrolidine (5 mg), P3HT (5 mg) and silica gel (5 mg) in 

chlorobenzene (1.0 mL) was filtered through a Teflon (0.2 Pm) filter to obtain a solution. The 

solution was then cast onto the ITO substrate (with or without PEDOT:PSS) by the spin-

coating method at a thickness of ca. 100 nm. After drying under vacuum for 20 min, the 

resulting plate was placed in a vacuum chamber and the surface was coated with electrode 

layers of lithium fluoride (LiF) (4 nm) and aluminum (100 nm) by evaporation at 10-4 Pa at rt. 

The glass plate was firmly encapsulated using a bonding agent under an argon atmosphere to 
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produce a solar cell. PCE values were obtained using a solar simulator at AM1.5G, 100 

mW/cm2. OPV device performance was investigated as summarized in Table 3-1. Current-

voltage characteristics of cis-Ph (9), trans-Ph (10) and [C60]-PCBM  devices with or without 

PEDOT:PSS were shown in Figure 3-2. 
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Figure 3-2. Current-voltage characteristics of cis-Ph, trans-Ph and [C60]-PCBM solar cell 
devices with or without PEDOT:PSS under illumination by an AM 1.5G solar simulated light 
(100 mW/cm2). 
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Table 3-1. Photovoltaic properties of the devices using P3HT and fulleropyrrolidine 
derivatives with or without PEDOT:PSS 

Entry Acceptor PCE 

(%) 

Jsc 

(mA/cm2) 

Voc 

(V) 

FF ITO electrode a 

1 9: cis-Ph 1.73 5.89 0.665 0.441 bare 

2 9: cis-Ph 1.95 6.71 0.679 0.429 PEDOT:PSS 

3 10: trans-Ph 2.90 7.16 0.644 0.628 bare 

4 10: trans-Ph 0.740 6.46 0.602 0.190 PEDOT:PSS 

5 11: cis-2-Th 1.91 6.83 0.590 0.474 bare 

6 11: cis-2-Th 2.04 6.49 0.651 0.482 PEDOT:PSS 

7 12: trans-2-Th 2.48 7.16 0.649 0.535 bare 

8 12: trans-2-Th 2.24 6.11 0.640 0.573 PEDOT:PSS 

9 13: cis-3-Th 2.54 7.14 0.612 0.582 bare 

10 13: cis-3-Th 0.364 4.06 0.563 0.159 PEDOT:PSS 

11 14: trans-3-Th 1.84 6.72 0.566 0.485 bare 

12 14: trans-3-Th 0.092 0.88 0.496 0.210 PEDOT:PSS 

13 [C60]-PCBM 2.44 6.79 0.585 0.614 bare 

14 [C60]-PCBM 2.77 7.30 0.574 0.660 PEDOT:PSS 

15 Ph-FP 2.81 7.32 0.599 0.641 bare 

16 Ph-FP 0.523 2.32 0.582 0.387 PEDOT:PSS 

a “bare” means a special electrode which lacked PEDOT:PSS. “PEDOT:PSS” means ITO 
electrole with PEDOT:PSS (CLEVIOSTMP VP AI4083). 

 

It was found that the PCE values were significantly dependent on the electrode employed 

and on the stereochemistry of the substituent. The device using 10 (trans-Ph) showed a PCE 

of 2.90% without the PEDOT:PSS layer (Entry 3), while it dropped significantly when 
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PEDOT:PSS was used (Entry 4). Especially, FF drastically deteriorated from 0.628 to 0.190. 

On the other hand, increased PCE was observed for using PEDOT:PSS as reported previously 

when [C60]-PCBM was employed as acceptor partner (Entry 14) because this had no nitrogen 

moiety.11 

Similar results were observed when 13 (cis-3-Th) or 14 (trans-3-Th) was used as an n-type 

material in the presence of the PEDOT:PSS layer (Entries 9 - 12). This phenomenon was also 

seen when mono-substituted fulleropyrrolidine Ph-FP1 was used (Entries 15 and 16). As we 

reported earlier, this significant drop was assumed to be caused by quaternization of the 

pyrrolidine ring and sulfonic acid group of PSS.5 Therefore, it is likely that 10 (trans-Ph), 13 

(cis-3-Th) and 14 (trans-3-Th) form a quaternary ammonium salt which might prevent the 

transport of charge from PEDOT:PSS to the ITO electrode. 

The PCE values of 9 (cis-Ph), 11 (cis-2-Th), and 12 (trans-2-Th) were not influenced by the 

electrode (Entries 1, 2, 5-8). It is particularly interesting that the FF values of 11 (cis-2-Th) 

and 12 (trans-2-Th) increased when OPV devices were prepared using the ITO electrode with 

PEDOT:PSS (Entries 6 and 8) more than those without PEDOT:PSS (Entries 5 and 7). This 

would indicate that introduction of the 2-thiophen-2-yl group at 2 and 5-positions of the 

pyrrolidine ring is effective in protecting nitrogen atom from forming quaternary ammonium 

salt by PSS. 

On the other hand, Voc was independent of the electrode and all devices showed a higher or 

similar level of Voc compared to the device using [C60]-PCBM, except for Entry 12 (14: trans-

3-Th with PEDOT:PSS). Since P3HT worked as a p-type material in our devices, we assume 

that the higher Voc might be ascribable to the higher LUMO level of the fulleropyrrolidine than 

that of [C60]-PCBM.  
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Electrochemical study. 

To learn the LUMO level of these fullerene derivatives, cyclic voltammogram (CV) 

experiments were conducted (Table 3-2).12 The CV plots of 9 (cis-Ph) and [C60]-PCBM in 

CH3CN (0.1 mM) with 0.1 M n-Bu4NPF6 are shown in Figure 3-3 and Figure 3-4, respectively. 

In the negative potential range these derivatives showed three apparently reversible reduction 

waves in the potential range from –0.8 to –1.8 V (vs. Fc+/Fc). The half-wave potentials are 

defined as E0 = [ Ec + Ea ] / 2 (wherein Ec and Ea are the potential of cathodic peak and anodic 

peak, respectively).12 The first reduction potentials (E1
0) of 9 to 14 were shifted negatively 

when compared to [C60]-PCBM. The LUMO levels of the fullerene derivatives from the onset 

reduction potentials were determined using the following equation: LUMO(eV) = –(E1
0+4.80). 

These levels are slightly higher than those of [C60]-PCBM. Using di-substituted fullerenes with 

a high LUMO level is expected to achieve high Voc.4 As expected, we confirmed that there 

were no significant differences in LUMO levels between isomers. The gap of the LUMO level 

between 9 (cis-Ph) and 14 (trans-3-Th) determined by CV was only 0.01 eV (Table 3-2), 

whereas the gap of Voc using device using 9 and 14 (Entry 1 and 11 in Table 3-1, respectively) 

was 0.099 V. The reason for this was unclear at the present; we assume that there might be 

some distinctive interactions with ITO and substrate, because these fulleropyrrolidines have 

different substitute groups. 

 

 

 

 

 

 

 



 

 
41 

Table 3-2. LUMO of fullerene derivatives determined by cyclic voltammograms. 

Entry Acceptor E1
0 /V LUMO / eV 

1 9: cis-Ph -1.12 -3.68 

2 10: trans-Ph -1.11 -3.69 

3 11: cis-2-Th -1.12 -3.68 

4 12: cis-2-Th -1.13 -3.67 

5 13: trans-2-Th -1.13 -3.67 

6 14: trans-3-Th -1.11 -3.69 

7 [C60]-PCBM -1.09 -3.71 

a in CH3CN (0.1 mM) with 0.1M n-Bu4NPF6 at a scan rate of 10 mV/s. 

 

 

Figure 3-3. Cyclic voltammogram of 9 (cis-Ph) in CH3CN (0.1 mM) with 0.1 M n-Bu4NPF6 at 
a scan rate of 10 mV/s. LUMO (eV)= –[0.16 + 0.95] + 4.80 = –3.69 eV 
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Figure 3-4. Cyclic voltammogram of [C60]-PCBM in CH3CN (0.1 mM) with 0.1 M n-
Bu4NPF6 at a scan rate of 10 mV/s. LUMP (eV)= -[0.23 + 0.86] + 4.80 = -3.71 eV 

 

Study of UV-visible spectra 

We next measured UV-visible spectra of these fulleropyrrolidines in the presence or absence 

of p-toluene sulfonic acid (PTS) in dichlorobenzene to evaluate the formation of quaternary 

ammonium salt of fulleropyrrolidine derivatives with PSS (Figure 3-5).5 No blue shift was 

observed for 9, 11 or 12 after addition of PTS. However, it was found that the UV spectra of 

the trans isomer of phenyl substituted fulleropyrrolidine 10 and both isomers of thiophen-3-yl 

substituted fulleropyrrolidine 13 and 14 were blue shifted. These results clearly indicate that 

the interaction of fulleropyrrolidine with PSS is determined by the stereochemistry of the 

substituent on the pyrrolidine ring, but that the mode depends on the nature of substituent.  



 

 
43 

650 670 690 710 730 750

Wavelength (nm)

A
bs

or
b
an

ce

9 9 with PTS
10 10 with PTS
11 11 with PTS
12 12 with PTS
13 13 with PTS
14 14 with PTS

9

11

13

10

12

14

 

Figure 3-5. UV-visible spectra of fulleropyrrolidine 9 - 14 in the absence (solid line) and 
presence (dot line) of p-toluene sulfonic acid (PTS) in o-dichlorobenzene (ODCB) 
(fulleropyrrolidine / PTS = 1 : 20 (mol/mol). Concentration of fulleropyrrolidine in ODCB is 
approximately 0.002 mM). 

 

Results of B3LYP/6-31G(d) calculation of 9 and 10 

DFT calculation of cis-2,5-dipehnylfulleropyrrolidine 9 and trans-2,5-

dipehnylfulleropyrrolidine 10 were performed with the Gaussian 09 suite of programs.9 

Geometrical optimization and vibrational analysis were performed at the B3LYP/6-31G(d) 

level of theory.1-3 The vibrational analyses for the compounds in Table 3-3 shows all of the 

optimized structures were energetically stable, because all of the calculated Eigen frequencies 

of molecular vibrations are real. 
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Table 3-3. Calculated values for 1,5-substituted fulleropyrollidine by B3LYP/6-31G(d) level. 

   Optimized molecular energy Orbital 

energy 

Compound 

number 

Substituent at 

2,5-position 

Stereo for 2,5-

position 

E (au) ∆E 

(kJ/mol) 

LUMO  

(eV) 

1 phenyl cis -3229.210996 0.0 -3.0404 

2 phenyl trans -3229.201883 23.9 -3.0499 

 

 

 

Figure 3-6. Optimized structure of cis- and trans-2,5-diphenylfulleropyrrolidine using 
B3LYP/6-31G(d) calculation 

 

To gain insight on the origin of different interactions of pyrrolidine moiety with the PSS 

group between stereoisomers of 2,5-diphenylfulleropyrrolidine, we investigated the stable 

structure of 9 (cis-Ph) and 10 (trans-Ph) by calculating at the B3LYP/6-31G(d) level (Figure 

3-6). The calculation suggested that the cis isomer 9 was more stable than the trans isomer 10. 

Interestingly, as seen in Figure 3-6, it looks that PSS access to the nitrogen atom easier for 

trans than that for the cis isomer. In fact, PCE of the device using trans isomer 10 is strongly 
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influenced by PSS, while that of cis isomer 9 is not dependent on the presence or absence of 

PSS on the electrode. As we hypothesized, due to the protecting effect of the two aryl group, 

formation of quaternary ammonium salt of 9 (cis-Ph) may be avoided. 

 

3-3. Conclusion 

We have shown that PCE values of OPV devices prepared using 2,5-diarylfulleropyrrolidines 

as an acceptor partner with P3HT depend on both the stereochemistry and the chemical 

structure of the substituent. PCE of the devices using trans-2,5-diphenylfulleropyrrolidine 10, 

cis-2,5-di(thiophen-3-yl)fulleropyrrolidines 13 and trans-2,5-di(thiophen-3-

yl)fulleropyrrolidines 14 were significantly lowered by PEDOT:PSS. This was found not to be 

the case for cis-2,5-diphenylfulleropyrrolidine 9 and thiophen-2-yl-substituted compounds 11 

and 12, for which high PCE values were obtained with and without PEDOT:PSS. Among the 

tested compounds, trans-2,5-diphenylfulleroppyrrolidine 10 showed the best PCE, superior to 

that of [C60]-PCBM. These results clearly indicate a rich variety of fulleropyrrolidine type 

acceptors for OPV devices with the potential to show high PCE values. Fulleropyrrolidine 

acceptors thus meritfurther investigation.  
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3-4. Experimental  

 

General Procedures. 

Photovoltaic devices were prepared by spin-coating the fulleropyrrolidine-polymer blends 

from chlorobenzene onto an indium tin oxide (ITO) glass electrode as follows: a mixture of 

fulleropyrrolidine (5 mg), P3HT (5 mg) and silica gel (5 mg) in chlorobenzene (1.0 mL) was 

stirred for 12 h at ambient temperature. It was then filtered through a Teflon (0.2 Pm) filter. 

The resulting solution was applied to the surface of an ITO plate, which was previously 

washed with acetone and irradiated under UV light and ozone gas for 20 min to decompose 

the impurities, by the spin-coating method at a thickness of ca. 100 nm. After drying under 

vacuum for 20 min, the resulting plate was placed in a vacuum chamber and the surface was 

coated with the electrode layers of lithium fluoride (LiF) (4 nm) and aluminum (100 nm) by 

evaporation at 10-4 Pa at rt. We placed the glass plate on the resulting film and the plate was 

firmly fixed using a bonding agent under an argon atmosphere to produce the solar cell. The 

PCE values were obtained using the solar simulator OTENTO-SUN II (AM1.5G, 100 

mW/cm2). Cyclic voltammograms were obtained in acetonitrile with 0.1mM 

tetrabutylammonium hexafluorophosphate (n-Bu4NPF6) as a supporting electrolyte using a 

glassy carbon (1 mm diameter) as a working electrode, a Pt counter electrode and Ag/AgCl 

reference electrode. UV-visible spectra were obtained using the spectrophotometer JASCO V-

670. 

 

Materials 

The [C60]-fullerene was purchased from Frontier Carbon (nanom purple ST-A) and P3HT 

from Aldrich. The silica gel was purchased from Wako Pure Chemical Industry, Ltd. (Wakogel 

C-300, 45~75 Pm ).  
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Synthesis of (cis)-1-(2-(2-methoxyethoxy)ethyl)-2,5-diphenylfulleropyrrolidine (9) 

A solution of [C60]-fullerene (133 mg, 0.21 mmol), N-benzyl-2-(2-

methoxyethoxy)ethanamine (133 mg, 0.633 mmol), acetic acid (0.5 ml) and benzaldehyde (72 

mg, 0.678 mmol) in o-dichlorobenzene (35 mL) was stirred for 72 h at 180 °C under argon. 

The solvent was evaporated under reduced pressure and the residue was purified by flash 

chromatography (toluene, then CS2 / ethyl acetate=10:1) affording the product 9 (cis-Ph) (45 

mg, 0.0437 mmol) as a dark brown solid in 21% yield. Fulleropyrrolidine derivatives showed 

no clear melting point and only caused decomposition. Decomposition point was shown as 

“dp”.  

dp >300°C; 1H NMR (500 MHz, ppm, CDCl3) δ 3.37 (2H, t, J = 5.7Hz, 5.7Hz), 3.41 (3H, 

s), 3.48-3.50 (2H, m), 3.52-3.53 (2H, m), 3.70 (2H, t, J = 5.7Hz, 5.7Hz), 5.81 (2H, s， 

proton at 2,5-position), 7.32-7.35 (4H, m), 7.47 (2H, t, J = 6.9Hz, 6.9Hz), 7.64 (2H, d, J = 

6.9Hz), 8.20 (2H, d, J = 8.0Hz); 13C NMR (125 MHz, ppm, CDCl3) δ 46.80, 58.88, 67.68, 

70.11, 71.97, 74.91, 79.48, 128.13, 128.78, 129.21, 130.23, 136.51, 136.82, 139.12, 141.26, 

141.75, 141.81, 141.97, 142.30, 142.40, 144.87, 144.99, 145.63, 145.89, 145.98, 147.08, 

153.65, 154.01; IR (KBr, cm-1) 2917.1, 2879.6, 1455.7, 1260.2, 1186.1, 1104.9, 737.1, 698.4, 

526.9; MALDI-TOF-MS (matrix: SA) found 1017.1726 (calcd for C79H23NO2, exact mass: 

1017.1729). 

 

Synthesis of (trans)-1-(2-(2-methoxyethoxy)ethyl)-2,5-diphenylfulleropyrrolidine (10) 

A solution of [C60]-fullerene (204 mg, 0.28 mmol), N-benzyl-2-(2-

methoxyethoxy)ethanamine (178 mg, 0.85 mmol), acetic acid (0.5 ml) and benzaldehyde (93 

mg, 0.88 mmol) in o-dichlorobenzene (40 mL) was stirred for 5 h at 180 °C under argon. The 

solvent was evaporated under reduced pressure and the residue was purified by flash 
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chromatography (toluene, then CS2 / ethyl acetate=10:1) affording the product 10 (trans-Ph) 

(54 mg, 0.053 mmol) as a dark brown solid in 19% yield and the unreacted fullerene (89 mg) 

was recovered in 44% yield.  

dp >300°C; 1H NMR (400 MHz, ppm, CDCl3) δ 2.91-2.94 (1H, m), 3.21-3.24 (1H, m), 3.40 

(3H, s), 3.58-3.60 (2H, m), 3.66-3.68 (2H, m), 3.89 (2H, t, J = 6.8Hz), 6.38 (2H, s, proton at 

2,5-position), 7.35 (2H, t, J = 7.8Hz), 7.46 (4H, t, J = 7.8Hz), 7.95 (4H, d, J = 6.8Hz); 13C 

NMR (125 MHz, ppm, CDCl3) δ 45.55, 59.09, 70.34, 70.50, 72.05, 74.49, 77.88, 128.35, 

128.67, 130.17, 135.64, 136.54, 138.69, 139.45, 139.88, 141.53, 141.57, 141.84, 141.94, 

141.97, 142.36, 142.50, 142.98, 144.39, 144.41, 144.97, 145.08, 145.16, 145.32, 145.42, 

145.82, 145.87, 145.97, 146.06, 146.12, 147.24, 153.89, 155.85; IR (KBr, cm-1) 2851.0, 

1452.7, 1428.6, 1187.7, 1106.1, 1027.8, 745.9, 709.5, 527.0; MALDI-TOF-MS (matrix: SA) 

found 1017.1719 (calcd for C79H23NO2, exact mass: 1017.1729). 

 

(cis)-1-(2-(2-methoxyethoxy)ethyl)-2,5-di(thiophen-2-yl)fulleropyrrolidine (11) 

dp >300°C; 1H NMR (400 MHz, ppm, CDCl3) δ 3.40 (3H, s), 3.51 (2H, t, J= 5.8 Hz), 3.52 

(4H, s), 3.76 (2H, t, J= 5.8 Hz), 6.16 (2H, brs, proton at 2,5-position), 7.00 (2H, brs), 7.32 

(4H, brs); 13C NMR (125 MHz, ppm, CDCl3) δ 59.06, 68.06, 72.21, 72.04, 74.62, 135.48, 

139.33, 139.76, 141.41, 141.81, 141.93, 141.97, 142.07, 142.45, 142.52, 142.81, 144.24, 

144.55, 145.00, 145.14, 145.24, 145.39, 145.48, 145.76, 145.98, 146.10, 146.22; IR (KBr, 

cm-1) 2865.2, 1430.0, 1182.7, 1103.7, 699.3, 526.6; MALDI-TOF-MS (matrix: SA) found 

1029.0862 (calcd for C75H19NO2S2 exact mass: 1029.0927). 

 

(trans)-1-(2-(2-methoxyethoxy)ethyl)-2,5-di(thiophen-2-yl)fulleropyrrolidine (12) 

dp >300°C; 1H NMR (400 MHz, ppm, CDCl3) δ 2.99-3.00 (1H, m), 3.27-3.28 (1H, m), 3.37 

(3H, s), 3.59 (2H, brs), 3.71 (2H, brs), 3.87-3.88 (1H, m), 3.95-3.96 (1H, m), 6.62 (2H, s, 
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proton at 2,5-position), 7.06 (2H, s), 7.40 (2H, d, J = 4.9 Hz), 7.44 (2H, d, J = 4.9 Hz); 13C 

NMR (125 MHz, ppm, CDCl3) δ 45.85, 58.91, 70.44, 71.43, 72.03, 73.26, 74.30, 126.54, 

126.92, 129.49, 136.29, 136.86, 139.51, 139.80, 141.01, 141.55, 141.70, 141.99, 142.38, 

142.53, 142.93, 144.42, 144.99, 145.15, 145.87, 146.06, 146.11, 146.12, 147.24, 153.17; IR 

(KBr, cm-1) 2858.0, 1512.6, 1429.6, 1187.70, 1036.9, 698.9, 526.8; MALDI-TOF-MS 

(matrix: SA) found 1029.0864 (calcd for C75H19NO2S2 exact mass: 1029.0927). 

 

(cis)-1-(2-(2-methoxyethoxy)ethyl)-2,5-di(thiophen-3-yl)fulleropyrrolidine (13) 

dp >300°C; 1H NMR (500 MHz, ppm, CDCl3) δ 3.35-3.36(1H, m), 3.42(3H, s), 3.53-

3.56(4H, m), 3.68(2H, t, J= 5.5 Hz), 5.85(2H, s, proton at 2,5-position), 7.34 (2H, s), 7.58-

7.65(2H, m); 13C NMR (125 MHz, ppm, CDCl3) δ 47.69, 58.90, 67.85, 67.99, 70.09, 71.98, 

74.49, 99.67, 125.00, 130.98, 135.44, 136.36, 139.27, 139.14, 141.33, 141.73, 141.78, 

141.82, 141.90, 141.95, 142.34, 142.43, 142.74, 142.95, 144.46, 144.88, 145.06, 145.28, 

145.34, 145.42, 145.66, 145.80, 145.90, 145.99, 146.09, 147.10; IR (KBr, cm-1) 2856.2, 

1462.0, 1420.7, 1182.1, 1104.0, 771.3, 526.3; MALDI-TOF-MS (matrix: SA) found 

1029.0867 (calcd for C75H19NO2S2 exact mass: 1029.0927). 

 

(trans)-1-(2-(2-methoxyethoxy)ethyl)-2,5-di(thiophen-3-yl)fulleropyrrolidine (14) 

dp >300°C; 1H NMR (500 MHz, ppm, CDCl3) δ 2.80-2.85(1H, m), 3.12-3.17(1H, m), 

3.40(3H, s), 3.61-3.62(2H, m), 3.71-3.72(2H, m), 3.84-3.88(1H,m), 3.89-3.94(1H, m), 

6.37(2H, s, proton at 2,5-position), 7.40-7.42(2H, m), 7.66-7.67(4H, m); 13C NMR (125 MHz, 

ppm, CDCl3) δ 45.84, 58.86, 70.51, 71.01, 72.09, 72.72, 74.04, 125.84, 126.30, 128.52, 

135.88, 136.40, 139.32, 139.51, 139.85, 141.58, 141.77, 141.91, 141.93, 141.98, 142.36, 

142.49, 142.93, 144.34, 144.94, 145.08, 145.32, 145.79, 145.84, 146.02, 147.18, 153.78, 
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155.39; IR (KBr, cm-1) 2847.8, 1462.0, 1419.8, 1180.3, 1103.9, 776.0, 7, 526.0; MALDI-

TOF-MS (matrix: SA) found 1029.0865 (calcd for C75H19NO2S2 exact mass: 1029.0927). 

 

Computational Methodologies 

 The DFT calculations of the fulleropyrrolidine derivatives were performed at the 

B3LYP/6-31G* level of theory. All of the calculations were carried out using the Gaussian 03 

suite of programs.10 The computations were performed at the Research Center for 

Computational Science in Okazaki (Japan). 
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General Summary 

In this study, we focused our attention on the fulleropyrrolidine as an n-type semiconductor 

for organic photovoltaic (OPV) cell and discussed the effect of the substituent groups on 

pyrrolidine ring in terms of photovoltaic performance and influence from PEDOT:PSS.  

In  Chapter 2, we reported the results of an investigation into the effect of thiophene 

derivatives as substituent groups on the fulleropyrrolidine ring. We have synthesized 

fulleropyrrolidine derivatives that have thiophene rings and discovered that thiophene groups 

worked to enhance LUMO level of the fulleropyrrolidine and increase the Voc of the device. 

However, it was found that the devices prepared using PEDOT:PSS as HTL showed 

considerably lower PCE values than devices prepared without PEDOT:PSS. Our modeling has 

revealed that this results from protonation of the fulleropyrrolidine with sulfonic acid in PSS In 

the Chapter 3, we reported the results of a molecular design strategy for fullerropyrrolidine 

derivatives to prevent the adverse effect of PEDOT:PSS. We have designed novel 

fulleropyrrolidine derivatives having two aryl substituent groups at the 2,5- positions on the 

pyrrolidine ring. We accomplished stereoselective synthesis of cis- and trans-2,5-

diarylfulleropyrrolidines. Three types of 2,5-diarylfulleropyrrolidine derivatives, i. e. 2,5-

diphenyl, 2,5-di(thiophen-2-yl), and 2,5-di(thiophen-3-yl)fulleropyrrolidines have thus 

prepared and were used as an acceptor partner with P3HT in OPV devices with and without 

PEDOT:PSS.. Their PCE depended on both the stereochemistry and nature of two aryl 

substituents on 2,5-position of the pyrrolidine ring: PCE of the devices using trans-diphenyl or 

both cis- and trans-di(thiophen-3-yl) compounds was significantly lowered  using PEDOT:PSS, 

while cis-diphenyl isomer was not influenced by PEDOT:PSS. In addition, both cis- and trans-

2,5-di(thiophen-2-yl)fulleropyrrolidine displayed high PCE with PEDOT:PSS. Among the 

tested compounds, trans-2,5-diphenylfulleropyrrolidine showed the best PCE,superior to that 

of [C60]-PCBM. These results indicate the rich possibility of fulleropyrrolidine type acceptors 
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for OPV devices with the potential to show high PCE values. Fulleropyrrolidine acceptors thus 

meritfurther investigation. 
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