## 博士論文

# 位置選択的硫酸化グリコサミノグリカンオリゴ糖の合成研究

## 2014年1月

武田 尚子

## 位置選択的硫酸化 グリコサミノグリカンオリゴ糖の 合成研究

## 鳥取大学大学院

工学研究科博士後期課程 化学・生物応用工学専攻

### 2014年1月

## 武田 尚子

| 序論 | 1     |
|----|-------|
| 庁冊 | <br>T |

#### 第一章 ヘパラン硫酸四糖オクチルグリコシドの合成

| 第一節 | 緒言                   | 5  |
|-----|----------------------|----|
| 第二節 | 合成計画                 | 11 |
| 第三節 | 二糖供与体と受容体の合成         | 13 |
| 第四節 | 四糖ユニットの合成            | 16 |
| 第五節 | 四糖ユニットの 0-硫酸化と保護基の除去 | 19 |
| 第六節 | 四糖の <i>N</i> 硫酸化     |    |
| 第七節 | まとめ                  | 25 |
|     |                      |    |

#### 第二章 蛍光発色基をもつへパラン硫酸の合成 I

#### ~Pd-C存在下での加水素分解における蛍光発色基の耐性~

| 第一節 | 緒言                   | 26 |
|-----|----------------------|----|
| 第二節 | 蛍光発色基の選択と標的化合物Ⅱの合成計画 | 32 |
| 第三節 | 標的化合物Ⅱの合成            | 34 |
| 第四節 | 標的化合物Ⅳの合成            | 41 |
| 第五節 | 標的化合物Ⅴの合成            | 47 |
| 第六節 | まとめ                  | 53 |

#### 第三章 蛍光発色基をもつへパラン硫酸の合成Ⅱ

#### ~蛍光発色基の装着検討~

| 第一節 | 緒言                        | .54 |
|-----|---------------------------|-----|
| 第二節 | 標的化合物VIの合成                | .56 |
| 第三節 | 非還元末端にリンカーを導入した標的化合物WIの合成 | .65 |
| 第四節 | グルクロン酸のアミド化の検討            | .73 |
| 第五節 | Piv 基で保護した二糖の合成           | .76 |
| 第六節 | まとめ                       | .82 |

#### 第四章 ケラタン硫酸オリゴ糖の合成

| 第一節 | 緒言          | 84  |
|-----|-------------|-----|
| 第二節 | 合成計画        |     |
| 第三節 | 共通二糖ユニットの合成 | 90  |
| 第四節 | 二糖供与体の合成    | 94  |
| 第五節 | KS 二糖の合成    | 97  |
| 第六節 | 共通四糖の合成     | 101 |
| 第七節 | まとめ         | 105 |

| 実験の部 |  |
|------|--|
| 総括   |  |
| 発表論文 |  |
| 謝辞   |  |

#### 略号

| Ac                | アセチル                                                                     |
|-------------------|--------------------------------------------------------------------------|
| AgOTf             | トリフルオロメタンスルホン酸銀                                                          |
| All               | アリル                                                                      |
| Bn                | ベンジル                                                                     |
| Boc               | tert-ブトキシカルボニル                                                           |
| Bu                | ブチル                                                                      |
| CSA               | (+)-10-カンファースルホン酸                                                        |
| Et                | エチル                                                                      |
| DBU               | 1,8-ジアビシクロ[5,4,0]-7-ウンデセン                                                |
| DDQ               | 2,3-ジクロロ-5,6-ジシアノ <i>-p-</i> ベンゾキノン                                      |
| DIPEA             | N,N-ジイソプロピルエチルアミン                                                        |
| DNS               | ダンシルスルホアミド                                                               |
| DMAP              | N,N-ジメチル-4-アミノピリジン                                                       |
| DMF               | <i>N,N,-ジメチルホルム</i> アミド                                                  |
| DMT • MM          | 4-(4,6-ジメトキシ-1,3,5 トリアジン-2-イル)                                           |
|                   | -4-メチルモルフォリニウムクロリド                                                       |
| EDANS             | エダンス                                                                     |
| Et <sub>2</sub> O | ジエチルエーテル                                                                 |
| FRET              | 蛍光共鳴エネルギー転移                                                              |
| Gal               | ガラクトース                                                                   |
| GalNAc            | <i>N</i> -アセチルガラクトサミン                                                    |
| GAG               | グリコサミノグリカン                                                               |
| GlcA              | グルクロン酸                                                                   |
| GlcN              | グルコサミン                                                                   |
| GlcNAc            | N-アセチルグルコサミン                                                             |
| HexA              | ヘキスロン酸                                                                   |
| HexN              | ヘキソサミン                                                                   |
| HOBt              | 1-ヒドロキシベンゾトリアゾール                                                         |
| HBTU              | <i>O</i> -ベンゾトリアゾール- <i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-テトラメチル |
|                   | ウロニウムヘキサフルオロホスファート                                                       |
| HSPG              | ヘパラン硫酸プロテオグリカン                                                           |
| IdoA              | イズロン酸                                                                    |
| Indole            | インドール                                                                    |
| NAP               | 2-ナフチルメチル                                                                |
| NIS               | N-ヨードコハク酸イミド                                                             |

| Np               | ナフチル                      |
|------------------|---------------------------|
| MBz              | 4-メチルベンゾイル                |
| Me               | メチル                       |
| MP               | <i>p</i> -メトキシフェニル        |
| MS               | モレキュラーシーブス                |
| Ms               | メシル                       |
| PG               | プロテオグリカン                  |
| Ph               | フェニル                      |
| Phth             | フタルイミド                    |
| Piv              | ピバロイル                     |
| PPh <sub>3</sub> | トリフェニルホスフィン               |
| TBDMSOTf         | tert-ブチルジメチルシリルトリフルオロメタン  |
|                  | スルホネート                    |
| TBDPS            | tert-ブチルジフェニルシリル          |
| TEMPO            | 2,2,6,6-テトラメチル-1-ピペリジニロキシ |
|                  | ラジカル                      |
| TFA              | トリフルオロ酢酸                  |
| TfOH             | トリフルオロメタンスルホン酸            |
| THF              | テトラヒドロフラン                 |
| TMS              | テトラメチルシラン                 |
| TMSOTf           | トリメチルシリルトリフルオロメタン         |
|                  | スルホネート                    |
| TsOH             | <i>p</i> -トルエンスルホン酸       |
| Trp              | トリプトファン                   |
| WSCD • HCl       | ウォーターソリューブルカルボジイミド塩酸塩     |
| Xyl              | キシロース                     |
| Ζ                | ベンジルオキシカルボニル              |

#### 序論

細胞外マトリックスの構成成分の一つであるプロテオグリカン(proteoglycan: PG)は, コアタンパク質に一本以上の直鎖多糖であるグリコサミノグリカン (glycosaminoglycan: GAG)が共有結合した複合糖質として存在する. PG は高い粘性や 水分保持などの物理的機能や,細胞間の認識,分化,増殖抑制,基底膜の形成などの生 化学的機能を有している<sup>1,2)</sup>. GAG には, ヘパラン硫酸(Heparan Sulfate: HS), コン ドロイチン硫酸(Chondroitin Sulfate: CS), デルマタン硫酸(Dermatan Sulfate: DS), ケラタン硫酸(Keratan Sulfate: KS)がサブクラスとして存在する. これらの GAG(HS や CS)で構成される PG を HSPG や CSPG などと呼ぶ.

図1に示すように、HSPG、CSPG や DSPG は、コアタンパク質であるポリペプチ ドのセリン残基に、一本以上の HS、CS、DS などの GAG が共有結合した構造をもつ. GAG の還元末端側は、キシロース(Xyl)、二分子のガラクトース(Gal)、グルクロン酸 (GlcA)からなる四糖で構成されており、結合四糖領域とよばれる. GAG の非還元末端 側には、ヘキソサミン(HexN)とヘキスロン酸(HexA)から構成されている繰返し二糖領 域が結合し、コンドロイチン型(CS, DS)とヘパラン型(HS)に分類される. コンドロイチ ン型の二糖領域は、GlcA またはイズロン酸(IdoA)と N-アセチルガラクトサミン (GalNAc)が、ヘパラン型の繰返し二糖領域は、GlcA または IdoA とグルコサミン(GlcN) が繰返し結合している.

KSPG はこれらの GAG とは異なり、コアタンパク質のアスパラギン残基のアミノ基 に結合した *N*-結合型糖鎖である KS-Iと、セリンまたはスレオニン残基の水酸基に 結合した *O*-結合型糖鎖である KS-II、KS-III に分類される. KS-Iは、糖鎖の還 元末端側に二分子の *N*-アセチルグルコサミン(GlcNAc)と三分子のマンノース(Man) からなる糖たんぱく質の母核五糖があり、非還元末端側には GlcNAc と Gal からなる 二糖が繰返し結合している. KS-II は、還元末端側に *N*-アセチルガラクトサミン (GalNAc)と Gal、GlcNAc 結合したムチン型糖鎖の 2 型コア構造があり、非還元末端側 は KS-I 同様 GlcNAc と Gal が繰返し結合した構造をしている. KS-III は、セリン 残基に Man を介して Gal と GlcN が繰返し結合した構造をしている.

PG によって発現される生理活性は、対応するたんぱく質などの分子が、数多く存在 する糖鎖の微細構造を正確に認識していることが近年次第に明らかになってきている.



#### [ヘパラン硫酸]

ヘパラン型である HSPG は、細胞接着、基底膜での構造維持とフィルターとしての 役割<sup>3</sup>などがあげられるほか、加齢黄斑変性病の促進<sup>4)</sup>、線維芽細胞増殖因子(FGFs) と の複合体の形成<sup>5</sup>や、医薬品と使用されているヘパリンのアンチトロンビン III への結 合による抗凝血作用<sup>6</sup>など様々な生理活性について報告されている.また HS は、がん 転移に関する報告が数多くなされている<sup>7)</sup>.がん細胞は血行性転移において、血管内に 侵入するため基底膜を破壊し、血管内に侵入する.その際、基底膜を構成する主成分で ある HSPG が分解されることが報告されている.

HS の繰返し二糖領域は, GlcN-GlcA または GlcN-IdoA が繰返し結合したヘテロな 構造をもつ(図 2). GlcN のアミノ基は, 硫酸化されている場合とアセチル化されている 場合がある.また, 水酸基では GlcN の 3,6 位水酸基, GlcA と IdoA の 2,3 位水酸基が 硫酸化される場合があり, 様々な硫酸化パターンをもち, 極めて複雑な構造をしている. HS によって引き起こされる様々な生理活性は, 糖鎖構造と密接な関係があると考えら れる.



#### [ケラタン硫酸]

KSPGによって引き起こされる生理活性について、これまでに様々な報告がなされている. KS-Iは、角膜に多く含まれており、角膜組織機能の制御に関与しており、斑状角膜ジストロフィーは KS が角膜で正常に合成されないことが原因で起こる<sup>®</sup>. KS-II は、軟骨組織に多く確認されており、マウスの軟骨損傷の抑制と関節炎の改善について 報告されている<sup>®</sup>. また、脳抽出物から得られた KS-III も最近注目されている. 中枢 神経の軸索が損傷した場合、これまで再生されないとされてきた. しかし、近年軸索損 傷周辺のグリア瘢痕に蓄積される PG が原因であることがわかってきている. グリア瘢 痕に蓄積される PG には、CSPG と KSPG がある. 蓄積されている CSPG を、コンド ロイチン分解酵素(コンドロイチナーゼ)で処理することにより、軸索再生が起こること が報告されているが、CS と同様に KSPG も軸索神経伸長阻害に影響を及ぼしているこ とが報告され、注目されている<sup>10</sup>.

KS は, Gal-GlcNAc の二糖繰返し構造をしており, Gal または GlcNAc の 6 位水酸 基はしばしば硫酸化されている(図 3).



図3 KSの構造と硫酸化パターン

現在, PG の生理活性を調べる際に使用されている PG の多くは天然物由来である. しかし, 天然に存在する PG は, 硫酸基の結合する位置や数, 糖鎖長が均一ではない. GlcA と IdoA の出現も規則的ではない. そのため, GAG の糖鎖構造と生理活性の相関 を明らかにするためには, 構造が明確な GAG を得ることが重要となる. 糖残基の立体 化学, 硫酸基の位置や数, 糖鎖の配列が明確なオリゴ糖を天然から量を確保しながら単 離することは不可能である. そのため, 化学合成によって構造が明確な GAG を得るこ とが上策である.

本研究では, GAG の生理活性を分子レベルで明らかにするため, 位置選択的に硫酸 化された HS と KS のオリゴ糖合成を行うこととした.

#### References

- 1) David G, Biochem. Soc. Trans., 19, 816-820 (1991).
- 2) Tumova S, Woods A, Couchman J R, Int. Biochem. Cell. Biol., 32, 269-288 (2000).
- 3) Kanwar Y S, Farquhar M G, J. Cell Biol., 81, 139-153 (1979).
- 4) Park P J, Shukla D, *Exp. Eye Res.*, **110**, 1-9, (2013).
- Vlodavsky I, Korner G, Michaeli R I, Bashkin P, Shavit R B, Fuks Z, Cancer Metastasis Rev., 9, 203-226 (1990).
- Petitou M, Hérault J P, Bemat A, Driguez P A, Duchaussoy P, Lormeau J C, Herbert J M, *Nature*, 398, 417-422 (1999).
- Okada Y, Yamada S, Toyoshima M, Dong J, Nakajima M, Sugahara K, *J. Biol. Chem.*, 45, 42488-42495 (2002).
- Hassell J R, Newsone D A, Krachmer J H, Rodrigues M M, *Proc. Natl. Acad. Sci.* USA., 77, 3705-3709 (1980).
- 9) Ito Z, Shakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu, K, *J. Neurosci.*, **30**, 5937-5947 (2010).
- 10) Imagama S, Sakamoto K, Tauchi R, Shinjo R, Ohgomori T, Ito Z, Zhang H, Nishida Y, Asami N, Takeshita S, Sugiura N, Watanabe H, Yamashita T, Ishiguro N, Matsuyama Y, Kadomatsu K, *J. Neurosci.*, **31**, 17091-17102 (2011).

#### 第一章 ヘパラン硫酸四糖オクチルグリコシドの合成

#### 第一節 緒言

HSPG は細胞表面や細胞外マトリックスに存在し、組織の境界膜としての役割や細胞外骨格となる重要な構成成分である. 組織の境界膜である HSPG は、物質透過の役割を果たしており、巨大分子や正電荷をもつ分子のフィルターとしての役割を担う. 細胞表面 HSPG は常に合成と分解が繰り返されており、その細胞内における分解の律速段階に endo-β-D-glucuronidase であるへパラナーゼが働く. このような HS を特異的に分解するへパラナーゼ活性は正常組織に存在することが発見されている<sup>1)</sup>.

一方,原発巣から血管内に侵入してさらに血流中から血管外へ浸出する血行性転移性 がん細胞や,血管内から周辺組織に浸潤する炎症細胞等により,基底膜は酵素的に破壊 される. Nicolson らは、マウス転移性メラノーマ細胞が臓器特異的な転移をすること を、培養血管内皮細胞と高肺転移性がん細胞との相互作用から調べた. その結果,がん 細胞が血管内皮細胞の下に潜り込み,がん細胞が血管内皮細胞下の基底膜様マトリック スを分解して溶出することを確認した. 主な分解産物は HSPG の糖鎖部分であり、メ ラノーマはヘパラナーゼによる PG 分解活性があることを明らかにした <sup>20</sup>(図 1-1-1).

以上のように、がん転移の際、浸潤するがん細胞から放出されるヘパラナーゼが基底 膜の HSPG を特異的に認識し、分解することが明らかになっている.



図 1-1-1 がん転移による基底膜の分解とヘパラナーゼの放出

2002 年 Okada らは、クローニングされたヒトヘパラナーゼを用いて、ヘパラナーゼ に特異的な HS オリゴ糖の構造を明らかにしている<sup>3)</sup>.表 1-1-1 から Hexa-4, Hexa-7, Hexa-7S, Tetra-1 が特に高い割合で、ヘパラナーゼによって切断されていることがわか る. その中でも特に高い割合で切断されているのは、GlcA-GlcNNS(6S)-GlcA- GlcNS(6S)の構造を持つ基質である.そして、ヘパラナーゼは IdoA-GlcN の糖間を認 識しているのではなく、GlcA-GlcN の糖間を認識していることも報告されている.特 に高い割合で糖間の切断を確認することができた Hexa-4、Hexa-7、Hexa-7S、Tetra-1 のオリゴ糖に、半量のヘパラナーゼを用いて経時的に反応を追跡した結果、ヘパラナー ゼは、Hexa-7>Hexa-7S>Tetra-1>Hexa-4 の順に特異性を示すことも明らかになってい る (表 1-1-2).

| Fraction<br>No. | Structure                                               | Percentage<br>cleavage(%) |
|-----------------|---------------------------------------------------------|---------------------------|
| Hexa-1          | ∆HexA(2S)-GlcNS(6S)-IdoA-GlcNAc(6S)-GlcA + GlcNS(3S,6S) | 26                        |
| Hexa-4          | ∆HexA(2S)-GlcNS(6S)-IdoA-GlcNAc(6S)-GlcA + GlcNS(6S)    | 85                        |
| Hexa-7          | ∆HexA(2S)-GlcNS(6S)-GlcA + GlcNS(6S)-GlcA - GlcNS(6S)   | >95                       |
| Hexa-7S         | ∆HexA-GlcNS(6S)-GlcA - GlcNS(6S)-GlcA - GlcNS(6S)       | >95                       |
| Hexa-8          | ∆HexA(2S)-GlcNS(6S)-IdoA-GlcNAc(6S)-GlcA + GlcNS(3S)    | 60                        |
| Hexa-15         | ∆HexA(2S)-GlcNS(6S)-IdoA-GlcNAc(6S)-GlcA – GlcNS        | 59                        |
| Hexa-16         | ∆HexA(2S)-GlcNS(6S)-IdoA(2S)-GlcNAc-GlcA + GlcNS(6S)    | 30                        |
| Tetra-1         | ∆HexA(2S)-GlcNS(6S)-GlcA + GlcNS(6S)                    | >95                       |
| Teta-6          | ∆HexA(2S)-GlcNS-GlcA → GlcNS(6S)                        | 44                        |
| Tetra-10        | ∆HexA-GlcNAc(6S)-GlcA – GlcNS(3S)                       | 21                        |
| Tetra-28        | ∆HexA-GlcNS(6S)-GlcA – GlcNS(6S)                        | 40                        |
| Tetra-29        | ∆HexA(2S)-GlcNAc(6S)-GlcA ↓ GlcNS(6S)                   | 56                        |
| Hexa-13S        | $\Delta$ HexA-GlcNS-IdoA(2S)-GlcNAc-GlcA-GlcNS          | 0                         |
| Tetra-3         | $\Delta HexA(2S)$ -GlcNS(6S)-IdoA(2S)-GlcNS(6S)         | 0                         |
| Tetra-21        | ∆HexA-GlcNAc-GlcA-GlcNAc                                | 0                         |
| Tetra-22        | ∆HexA-GlcNAc-GlcA-GlcNS                                 | 0                         |
| Tetra-23        | ∆HexA-GlcNS-GlcA-GlcNAc                                 | 0                         |
| Tetra-25        | ∆HexA-GlcNAc(6S)-GlcA-GlcNS                             | 0                         |
| Tetra-26        | $\Delta$ HexA-GlcNS-GlcA-GlcNAc(6S)                     | 0                         |
| Tetra-27        | ∆HexA-GlcNS-IdoA-GlcNAc(6S)                             | 0                         |

表1-1-1 ヒトヘパラナーゼが認識する構造と切断箇所 3)

\* 切断されずに残っている糖鎖の量から算出

反応条件: HS オリゴ糖 0.3 nmol, ヒトヘパラナーゼ 0.88 unit, 37 °C, 21 時間

| Incubation time     | Reacted substrate (%) |     |     |     |  |
|---------------------|-----------------------|-----|-----|-----|--|
| (h)<br>Fraction No. | 1                     | 5   | 10  | 23  |  |
| Hexa-4              | <10                   | <10 | 21  | 42  |  |
| Hexa-7              | 30                    | 77  | >95 | >95 |  |
| Hexa-7S             | 11                    | 54  | 85  | >95 |  |
| Tetra-1             | <10                   | 16  | 44  | 68  |  |

表 1-1-2 ヘパラナーゼによる基質糖鎖の経時変化 3)

反応条件: ヘパラン硫酸オリゴ糖 0.3 nmol, ヒトヘパラナーゼ 0.44 unit, 37 °C

そのため、ヘパラナーゼの活性を測定できれば、がんの早期発見につながると考えられる. ヘパラナーゼ活性を鋭敏に測定できる基質となるヘパラン硫酸が正確かつ均一な構造をもつことは重要であり、化学合成によって正確に合成したヘパラン硫酸基質が必要である.

これまでに、様々なシークエンスの HS オリゴ糖が合成されている.

1993 年に Nilsson らによって、単糖同士を縮合していく段階的な合成方法で、結合 領域付近の HS 四糖: IdoAα1-4GlcNAca1-4GlcAβ1-3Gal が合成されている (図 1-1-2)<sup>4</sup>.



図 1-1-2 Nilsson らの合成した HS 四糖

**2006**年に Seeberger らは, HS と繊維芽細胞増殖因子(FGF)の相互作用を確認するため、マイクロアレイ分析に使用することができる HS オリゴ糖の合成を行っている.彼らは、GlcNAca1-4IdoAa、GlcNAc(6S)a1-4IdoA(2S)a、GlcNSa1-4IdoAa構造をもつ 二糖から六糖の合成を行い、FGF との相互作用の確認を行っている(図 1-1-3)<sup>5)</sup>.

2007年にPolatらは、HS 五糖: GlcNS(6S)α1-4GlcA(2S)β1-4GlcNS(6S)α1-4IdoA(2S) α1-4GlcNS(6S)α-OMe の合成を行っている.オリゴ糖を合成する場合、受容体と供与 体の縮合を繰り返し行う手法がよく用いられている.しかし、この手法では行程数が多 くなる.そのため、Polatらは効率的にヘパラン硫酸を合成するため、異なる反応性を もつチオグリコシル供与体を用いた One-Pot 合成を行っている (図 1-1-4)<sup>6</sup>.



図 1-1-3 Seeberger らの合成した HS オリゴ糖



図 1-1-4 Polat らによる HS 五糖の合成

2008 年に Chen らは, GlcA(2S)β1-4GlcNS(6S)α1-4GlcAβ1-4GlcNS(6S)α-OMe の合成を行っている (図 1-1-5)<sup>7)</sup>.



図 1-1-5 Chen らの合成した HS 四糖

しかし、ヒトヘパラナーゼが特異的に認識する、GlcAβ1-4GlcNS(6S)α1-4GlcAβ1-4 GlcNS(6S)型の四糖は合成されていない. そこで本研究では、ヘパラナーゼを認識でき るこの四糖基質を合成することにした.

#### References

- 1) Nakajima M, Irimura T, Nicolson G L, J. Cell Biol. Chem., 36, 157-167 (1988).
- 2) Höök M, Wasteson A, Oldberg Å, Biochem. Biophys. Res. Commun., 67,

1422-1428 (1975).

- Okada Y, Yamada S, Toyoshima M, Dong J, Nakajima M, Sugahara K, J. Biol. Chem., 45, 42488-42495 (2002).
- 4) Nilsson M, Svahn C M, Westman J, Carbohydr. Res., 246, 161-172 (1993).
- 5) Noti C, Paz J L D, Polito L, Seeberger P H, Chem. Eur. J., 12, 8664-8686 (2006).
- 6) Polat T, Wong C H, J. Am. Chem. Soc., 129, 12795-12800 (2007).
- 7) Chen J, Zhou Y, Chen C, Xu W, Yu B, Carbohydr. Res., 343, 2853-2862 (2008).

#### 第二節 合成計画

本章では, 糖鎖診断薬開発の基礎的検討として, ヘパラナーゼに特異的な硫酸化パ ターンをもつ GlcAβ1-4GlcNS(6S)α1-4GlcAβ1-4GlcNS(6S)をα-オクチルグリコシド で合成することとした(図 1-2-1, 標的化合物 I).



図 1-2-1 標的化合物 I

標的化合物 I を合成するために, 図1-2-2に示すような合成経路を提案し, 合成を行った. GlcN の 6 位水酸基は, 位置選択的に硫酸化する必要があるため, 選択的に保護基 が除去できるように設計する必要がある. そのため, 硫酸化しない水酸基はベンジル (Bn)基で, GlcN6 位水酸基はアセチル(Ac)基で保護することとした. また, GlcN のア ミノ基は水中で硫酸化を行うことで, *N*-硫酸化のみを行うことができる. そこで, ア ミノ基をアジド(N<sub>3</sub>)で保護し, 全ての保護基を除去した後, 硫酸化を行うことにした.

二糖供与体と二糖受容体を効率的に合成するため、本研究では共通二糖を利用することにした.共通二糖は、既知化合物である P1 の 4,6 位水酸基をベンジリデンで保護した後、2,3 位水酸基を Bn 基で保護することによって得る.続いて、二糖受容体を得るため、共通二糖のベンジリデンを除去し、4,6 位に水酸基をもつ P2 へと誘導する.P2 の6 位水酸基のみを選択的に酸化し、メチルエステル化を行うことで二糖受容体を合成する.二糖供与体の合成は、まず初めに共通二糖のベンジリデンの還元開裂を行うことにより、4 位に OBn 基、6 位に水酸基をもつ P3 へと誘導する.続いて、P3 の 6 位水酸基を酸化し、アリルエステル化を行う.そして、1,6-アンヒドロの開裂を行った後、1 位に脱離基を導入することで二糖供与体を合成する.合成した二糖受容体と供与体を縮合し、P4 を合成する.P4 は、1,6-アンヒドロの開裂を行った後、リンカーを縮合することで P5 へと誘導する.最後に、位置選択的な硫酸化と保護基の除去を行い、標的化合物 I へと誘導することを計画した.



図 1-2-2 逆合成経路

#### 第三節 二糖供与体と受容体の合成

第二節の合成計画に従い,標的化合物 I の合成を行った(図 1-3-1).



既知化合物である二糖(A1)を,四糖への縮合に使用する二糖供与体と二糖受容体にそ れぞれ誘導するため,共通二糖ユニットの合成を行った.まず初めに,A1の4,6位水 酸基のベンジリデン化を行い,A2を収率87%で得た.続いて,酸化銀(Ag<sub>2</sub>O)と臭化ベ ンジル(BnBr)を用いてA2の2,3位水酸基にBn基を導入し,共通二糖ユニット(A3)を 収率93%で得た(図1-3-2).



図 1-3-2 共通二糖ユニット(A3)の合成

Reaction conditions: (a) PhCH(OMe)<sub>2</sub>, *p*-TsOH·H<sub>2</sub>O / THF, rt, 87%; (b) Ag<sub>2</sub>O, KI, BnBr / DMF, 0 °C, 93%.

得られた A3 から二糖受容体への誘導を行った.まず, A3 を CSA を用いてベンジリ デンアセタールの除去を行い,収率 92%で A4 を得た. A4 の 6 位水酸基を,TEMPO と NaClO を用いて 0 ℃ で 1 時間反応させ,アルデヒドに変換されたことを確認し, 一旦後処理を行った.続いて,NaClO<sub>2</sub>を用いて室温で反応させ,アルデヒドをカルボ ン酸にした後,TMSCHN<sub>2</sub>を用いてメチルエステル化を行い二糖受容体(A5)を収率 78% で得た(図 1-3-3).





Reaction conditions: (a) CSA / CH<sub>2</sub>Cl<sub>2</sub>–MeOH, 92%; (b) TEMPO, NaClO, NaHCO<sub>3</sub>, *n*–Bu<sub>4</sub>NBr, NaBr / EtOAc, H<sub>2</sub>O; (c) NaCl<sub>2</sub>O, NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O, *tert*–BuOH, 2-methyl-2-butene, H<sub>2</sub>O; (d) TMSCHN<sub>2</sub> / Et<sub>2</sub>O-MeOH-PhMe, 78% (3 steps).

次に,共通二糖ユニット(A3)の酸化とエステル化を行った(図 1-3-4).まず,A3のベ ンジリデンの還元開裂をMe<sub>3</sub>N·BH<sub>3</sub>とAlCl<sub>3</sub>を用いて行いA6とA7を収率75%で得た. 続いて,A4の合成と同様の方法でA7の6位水酸基の酸化を行い,A8を得た.A8に アリルアルコール(AllOH),WSCD·HClとHOBtを反応させ,三行程収率69%でA9 を得ることができた.



図 1-3-4 共通二糖の酸化とエステル化

Reaction conditions: (a) Me<sub>3</sub>N·BH<sub>3</sub>, AlCl<sub>3</sub> / CH<sub>2</sub>Cl<sub>2</sub>–Et<sub>2</sub>O, 75%; (b) TEMPO, NaClO, NaHCO<sub>3</sub>, *n*-Bu<sub>4</sub>NBr, NaBr / EtOAc, H<sub>2</sub>O; (c) NaCl<sub>2</sub>O, NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O, *tert*–BuOH, 2-methyl-2-butene, H<sub>2</sub>O; (d) AllOH, WSCD·HCl, HOBt, DIPEA / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C, 69% (3 steps). 最後に、二糖供与体への誘導を行った(図 1-3-5). **A9** を無水酢酸(Ac<sub>2</sub>O)、酢酸(AcOH) と TFA によって、室温で 1,6-アンヒドロ糖のアセトリシスを行った. 続いて、 H<sub>2</sub>NNH<sub>2</sub>·AcOH で1位 Ac 基を選択的に除去することで**A10**を二行程収率93%で得た. この **A10** に CCl<sub>3</sub>CN と DBU を 0 °C で反応させ、α-イミドイル基をもつ二糖供与体 (**A11**)を収率 87%で得た.また、MeClC=CClNMe<sub>2</sub>を用いることで、収率 89%でクロ ル糖(**A12**)も合成した.四糖の縮合時は、2 つの供与体(**A11**, **A12**)を用いて検討を行った.



```
図 1-3-5 二糖供与体(A11, A12)の合成
```

Reaction conditions: (a) Ac<sub>2</sub>O, AcOH, TFA / 0 °C to rt, 94%; (b) H<sub>2</sub>NNH<sub>2</sub>·AcOH / DMF, 50 °C, 93%; (c) CCl<sub>3</sub>CN, DBU / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 87%; (d) MeClC=CClNMe<sub>2</sub> / CH<sub>2</sub>Cl<sub>2</sub>, rt, 89%.

#### 第四節 四糖ユニットの合成

第三節で合成した二糖受容体(A5)と,二糖供与体(A11, A12)との縮合条件の検討を 行った.

まず初めに、イミドイル基をもつ **A11** で検討を行った. 縮合剤に TMSOTf を、溶媒 に CH<sub>2</sub>Cl<sub>2</sub>を用いた場合, 四糖(**A13α**, **A13**β)をそれぞれ収率 23%と 12%で得られたが、 低収率であり、望むα体の選択性が低かった(α/β=1.9). また、供与体のイミドイル基の 転位体である **A14** も生成された(図 1-4-1, 表 1-4-1, Entry 1).



図 1-4-1 A11 と A5 の縮合 Reaction condition: TMSOTf, MS4Å / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C.

そこで、収率とα選択性を向上させるため、縮合条件の検討を行った. 1999 年に Sinaÿ らは、イミドイル基をもつ 2-アジドグルコース型二糖供与体とウロネート 4 位水酸基 との縮合をトルエン中で、縮合剤として TBDMSOTf を用い縮合を行っている. その結 果、β体を得ることなく収率 75%でα選択的に三糖を得ている(図 1-4-2)<sup>1)</sup>.



図 1-4-2 Sinaÿ らによる三糖合成

そこで本縮合系でも溶媒をトルエンに変更し,TMSOTf を用いて縮合を行った.副 生成物(イミデート転位体,A14)は得られなかったが,A13αとA13βの収率がそれぞれ 29%と14%(α/β=2.1)でほとんど変わらず,溶媒をCH<sub>2</sub>Cl<sub>2</sub>からトルエンに変えることで は収率とα選択性の改善は見られなかった(表 1-4-1, Entry 2).

低収率となる原因として、縮合剤として用いた TMSOTf が、触媒として作用するの ではなく、高い反応性をもつ TMS 基が受容体(A5)と反応し、縮合反応が進行しなくな ると考えた.そこで、受容体水酸基の TMS 化を防ぐため、TMSOTf よりかさ高い TBDMSOTf を縮合剤として用いることにした.その結果、A13αとA13βをそれぞれ収 率 43%と 25%( $\alpha/\beta$ =1.7)で得られ、TMSOTf を縮合剤に用いた時に比べ、収率の向上は 見られたが、選択性は依然低かった(表 1-4-1、Entry 3). SN1 反応を経由すれば、イミ ドイル基が脱離した後にカルボカチオン中間体が形成され、アノマー効果により熱力学 的に安定なα体が優先して形成されると考えられる.しかし、A11 を用いるグリコシル 化ではβ体も多く生成された.この原因として、α-イミデートである A11 では、イミ ドイル基の脱離による SN1 的なα体形成と、二糖受容体(A5)の SN2 反応が競合したため に、β体も生成されたと考えられる.

そこで、脱離基をイミドイル基より脱離しやすい Cl に変更した. クロリド(A12)との 反応では、縮合剤として AgOTf と 2,4,6-コリジンを、溶媒として CH<sub>2</sub>Cl<sub>2</sub> を用いて -20 °C で縮合を行った. その結果、A13αと A13βがそれぞれ収率 48%と 9%で得られ、 イミドイル基のある供与体を用いた場合よりα-グリコシド生成の選択性が向上した ( $\alpha$ /β=5.7)(表 1-4-1, Entry 4). この結果は、脱離基に Cl を用いた場合、ハロゲン化銀 の形成により Cl の脱離が速やかに行われて S<sub>N</sub>1 反応が優勢となり、カルボカチオン中 間体の形成を経て、熱力学的に安定なα体が得られたと考えられる. 収率を向上させる ため、不安定なカルボカチオン中間体の分解を防ぐべく、反応温度を-40 °C に下げて 縮合を行った. その結果、A13αとA13βをそれぞれ収率 65%と 11%で得ることができ、 収率と選択性をいっそう向上させることができた( $\alpha$ /β=5.9)(表 1-4-1, Entry 5).



図 1-4-3 四糖ユニットの合成

| Entry | Deper | Donor Promoter         | Solvent    | Temperature | Yield(%)     |              | a. /0 |
|-------|-------|------------------------|------------|-------------|--------------|--------------|-------|
| Enuy  | Donoi |                        |            | (°C)        | <b>Α13</b> α | <b>Α13</b> β | αβ    |
| 1     | A11   | TMSOTf                 | $CH_2CI_2$ | -20         | 23           | 12           | 1.9   |
| 2     | A11   | TMSOTf                 | toluene    | -20         | 29           | 14           | 2.1   |
| 3     | A11   | TBDMSOTf               | toluene    | -20         | 43           | 25           | 1.7   |
| 4     | A12   | AgOTf, 2,4,6-collidine | $CH_2CI_2$ | -20         | 48           | 9            | 5.3   |
| 5     | A12   | AgOTf, 2,4,6-collidine | $CH_2CI_2$ | -40         | 65           | 11           | 5.9   |

表 1-4-1 四糖合成の縮合条件検討

Reference

 Kovensky J, Duchaussoy P, Bono F, Salmivirta M, Sizun P, Herbert J M, Petitou M, Sinaÿ P, *Bioorg. Med. Chem.*, 7, 1567-1580 (1999).

#### 第五節 四糖ユニットの 0-硫酸化と保護基の除去

第五節では,第四節で合成した四糖ユニットを用いて,6位水酸基の選択的な硫酸化 と保護基の除去を行った.

まず初めに, **A13**αのアンヒドロ糖のアセトリシスを行い収率 90%で **A15** を得た(図 1-5-1). 続いて, アノマー位 Ac 基の除去を行った後, イミデート化することによって 四糖供与体(**A16**)を収率 98%で得た.





Reaction conditions: (a) Ac<sub>2</sub>O, AcOH, TFA / 0 °C to rt, 90%; (b) H<sub>2</sub>NNH<sub>2</sub>·AcOH / DMF, 50 °C, 85%; (c) CCl<sub>3</sub>CN, DBU / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C to rt, 98%.

本研究では、アグリコンとして疎水性基である n-オクチル基を選択した(図 1-5-2). 四糖供与体(A16)とn-オクタノールを CH<sub>2</sub>Cl<sub>2</sub>中、TMSOTf を用いて-20°C から室温 にかけて反応させた結果、 $\alpha$ -と $\beta$ -異性体である A17 $\alpha$ と A17 $\beta$ の収率がそれぞれ 26% と 46%となり、低い $\alpha$ 選択性となった(Pass A). この原因として、低温で反応させたこ とによって、 $\alpha$ -イミデートに対し S<sub>N</sub>2 反応が優勢となり、 $\beta$ -グリコシドが多く得ら れてしまったのではないかと考えられた. そこで、イミドイル基の脱離による S<sub>N</sub>1 反 応を促進させるため、室温で縮合を行った結果、A17 $\alpha$ と A17 $\beta$ の収率がそれぞれ 67% と 20%となり、収率と $\alpha$ 選択性がともに向上した(Pass B).



(Pass B) TMSOTf, MSAW300 / CH<sub>2</sub>Cl<sub>2</sub>, rt, A17α: 67%, A17β: 20%.

単離したα-異性体(**A17**α)を,塩基性条件下でアリルウロネートとメチルウロネート を遊離のウロン酸に変換し,同時に6位Ac基の除去を行った.続いて,SO<sub>3</sub>·NMe<sub>3</sub>を 用いて 60°Cで一晩反応させた後,硫酸基をトリメチルアミン(Et<sub>3</sub>N)塩からNa塩に変 換することで,6位選択的に*O*-硫酸化された**A18**を四行程収率83%で得ることに成 功した(図 1-5-3).





Reaction conditions: (a)aq LiOH / THF, 0 °C to rt; (b)aq NaOH / CH<sub>2</sub>Cl<sub>2</sub>-MeOH, rt; (c)SO<sub>3</sub>·NMe<sub>3</sub> / DMF, 60 °C; (b)Dowex 50wX8 (Na<sup>+</sup> form), 85% (4 steps).

2 つの 6 位が O- 硫酸化された A18 の Bn 基の除去と N<sub>3</sub> の還元を,接触還元によっ て同時に行うことにした. A18 をエタノール(EtOH)に溶解させ,水素雰囲気化,パラ ジウム炭素を用いて一晩反応させた.翌日,極性を上げるため水を追加し,さらに一晩 反応させ,収率 76%で A19 を得た.なお,A18 の 2 つの N<sub>3</sub> がアミンに還元されてい ることは,触媒量の Et<sub>3</sub>N を加えた水中で,Ac<sub>2</sub>O を用いて A19 のアセトアミド化を行 い,A20 を得ることで確認した(図 1-5-4).



図 1-5-4 保護基の除去と NHAc 化

Reaction conditions: (a) H<sub>2</sub>, Pd-C / EtOH, rt, then, H<sub>2</sub>O, 78%; (b) Ac<sub>2</sub>O, Et<sub>3</sub>N / H<sub>2</sub>O, 78%.

#### 第六節 四糖の N-硫酸化

最後に、標的化合物 I を得るため N-硫酸化を行った.

2 つのアミノ基をもつ **A19** を水に溶解し, SO<sub>3</sub>-pyridine を用い, NaOH 水溶液で pH を 9 に保ちながら 2 時間反応させた.<sup>1</sup>H-NMR と質量分析によって, 生成物の構 造確認を行ったところ,標的化合物 I (**A21**):GlcAβ1-4GlcNS(6S)α1-4GlcAβ1-4GlcNS(6 S)αが収率 75%で得られたが,副生成物として GlcN<sup>3</sup>の 3 位水酸基まで *O*-硫酸化され た **A22**:GlcAβ1-4GlcNS(3S,6S)α1-4GlcAβ1-4GlcNS(6S)αが収率25%で得られてしまい, これらを互いに分離することはできなかった(図1-6-1).



図 1-6-1 aq NaOH 中での *N*一硫酸化 Reaction condition: SO<sub>3</sub>-pyridine / aq NaOH, pH 9, **A21**: 75%, **A22**: 25%.

本来,水中で硫酸化を行う際に水酸基は硫酸化されないため,今回の結果は想定外の ケースといえる.

2002 年に Ley らのグループは, **PP1** の axial と equatorial の水酸基の選択的な TBDMS 化を行っている. **PP1**に NaH を反応させた後, TBDMSCl を加えると, **PP3** と **PP4**が 5:1 の割合で得られている<sup>1)</sup>. Ley らは, この選択性が発生する理由として, axial 位の hydroxymethyl 基の水酸基と環上方 methoxy 基の酸素原子, 2,3-butanediacetalの1つの酸素原子が Na<sup>+</sup>と三配位錯体(**PP2**)を形成すると考えた(図 1-6-2). その結果, **PP2**の axial 位の hydroxymethyl 基の水酸基は活性化され, TBDMS 化が促進されたのではないかと報告している.



図 1-6-2 Na+の三配位錯体形成による水酸基の活性化 <sup>1)</sup>

本研究では、N--硫酸化の際に NaOH 水溶液を用いて pH の調整を行っていた. そ のため、大過剰の Na<sup>+</sup>存在下、GlcN<sup>3</sup>の 3 位水酸基とカルボキシル基の酸素原子間で、 Na<sup>+</sup>錯体(A23)を形成していたと考えられる. その結果、GlcN<sup>3</sup>の 3 位水酸基が活性化 され、硫酸化された A22 が得られたと考えられる(図 1-6-3). GlcN<sup>1</sup>の 3 位水酸基が硫 酸化されなかったのは、GlcA<sup>2</sup>は GlcA<sup>4</sup>のように糖鎖末端に位置しないため、GlcA<sup>2</sup>の 立体配座を自由に変えることができず、錯体を形成できなかったことが理由であろう.



図 1-6-3 Na<sup>+</sup>の錯体形成 Reaction condition: (a) SO3-pyridine / aq NaOH, pH 9.

そこで、*N*-硫酸化の際の塩基を、このような錯体を形成しない Et<sub>3</sub>N へ変更することにした. **A19** を水に溶解させ、SO<sub>3</sub>-pyridine を用い、Et<sub>3</sub>N で pH を 10 に保ちながら反応させた. その結果、**A22** を得ることなく、収率 78%で標的化合物 I (**A21**)のみを得ることに成功した.

#### Reference

1) Dixon D J, Ley S V, Reynolds D J, Chem. Eur. J., 8, 1621-1636 (2002).

#### 第七節 まとめ

第一章ではヘパラン硫酸四糖オクチルグリコシドの合成について述べた.

第一節緒言では、がん細胞の転移の際に、基底膜のヘパラン硫酸を切断するために放 出されるヘパラナーゼの基質特異性についてまとめた. ヒトヘパラナーゼは GlcA-GlcNS(6S)の糖間を認識していることが報告されていたため、本研究ではこれま でに合成されていない GlcA-GlcNS(6S)-GlcA-GlcNS(6S)の構造をもつヘパラン硫酸四 糖オクチルグリコシド(標的化合物 I)を合成することとした.

第二節では、標的化合物 I を合成するための合成経路を示した.

第三節では, β-グルコシル-1,6-アンヒドログルコース誘導体(A1)から,二糖供与体(A11, A12)と二糖受容体(A5)の高収率な合成に成功したことについて述べた.

第四節では、二糖供与体(A11, A12)と二糖受容体(A5)の縮合条件の検討を行った.脱 離基にイミドイル基のある A11 を用いると、イミドイル基の脱離が先行する S<sub>N</sub>1 反応 によってα体が形成されるが、二糖受容体(A5)の求核攻撃による S<sub>N</sub>2 反応も競合したた めに、β体も多く生成されたと考えた.しかし、クロル糖供与体(A12)では、低温下で AgOTf により Cl の脱離がイミドイル基の時より速やかに進行したと考えられる.その 結果、S<sub>N</sub>1 反応が優勢となり、収率とα選択性を向上させることに成功した.

第五節では、四糖の還元末端に *n*-オクタノールを高収率かつα選択的に縮合し、6位 水酸基の位置選択的な硫酸化を行った.

第六節では、標的化合物 I を得るため、GlcN の 2 位アミノ基の硫酸化を行った. N -硫酸化の際の pH 調整に aq NaOH を用いた場合、GlcN<sup>3</sup>の 3 位水酸基の硫酸化物が 副生成する問題が発生した.原因として、大過剰の Na<sup>+</sup>存在下では、GlcN<sup>3</sup>の水酸基と GlcA<sup>4</sup>のカルボキシル基の酸素原子間で Na<sup>+</sup>錯体を形成し、活性化された GlcN<sup>3</sup>の 3 位 水酸基が水中での反応にもかかわらず硫酸化されたと考えた.塩基を Et<sub>3</sub>N に変更した 結果、副生成物を得ることなく、標的化合物 I を高収率で得ることに成功した.

25

#### 第二章 蛍光発色基をもつへパラン硫酸の合成 I

~Pd-C存在下での加水素分解における蛍光発色基の耐性~

#### 第一節 緒言

第一章では、ヘパラナーゼに特異的なヘパラン硫酸四糖の合成について報告した.しかし、第一章で合成した標的化合物では、ヘパラナーゼによって糖間が切断されたことを確認することが難しい.そこで、第二章ではヘパラナーゼによって糖間が切断されたことを容易に確認できるヘパラン硫酸オリゴ糖の合成を行うことにした.糖間が切断されたことを確認する方法として、蛍光共鳴エネルギー転移(FRET)の原理を利用することにした.

FRET とは、Donor となる励起状態の分子から、Acceptor となる基底状態の分子へ、 光放射を伴わないエネルギーの移動のことをいう<sup>1)</sup>. FRET の Donor と Acceptor とな る分子は、特定の波長の吸収をすることによって、特定の波長の放出する時に蛍光を示 す分子のことであり、蛍光発色基と呼ばれる分子を使用する. 蛍光発色基は通常安定な 基底状態で存在しているが、光(エネルギー)を吸収することにより通常より高いエネル ギー状態である励起状態の分子になる. 励起状態の分子は不安定な状態のため、安定な 基底状態に戻るためにエネルギーを放出する.

例えば、図 2-1-1 に示す化合物の場合, Donor は Anm の波長を吸収し Bnm の波長 に相当するエネルギーを放出する. 放出された Bnm に相当するエネルギーは, Acceptor に吸収される. エネルギーを吸収することによって Acceptor が励起状態とな り,安定な基底状態に戻るために Acceptor は Cnm の波長を放出する. そのため, Anm の波長を照射した時, Donor が放出する Bnm に相当するエネルギーは検出されず, Acceptor が放出する Cnm の波長のみ検出することができる(図 2-1-1).

FRET の原理を利用するにあたり、重要となってくるのは Donor と Acceptor になる 蛍光発色基の選択と Donor と Acceptor の距離である. FRET が起こると, Donor の放 出する波長は本来検出されないはずである. しかし, Donor と Acceptor の距離が離れ れば, FRET 効率が悪くなり, Donor からの放出波長が検出される. それは, FRET 効率が Donor と Acceptor の距離の6乗に反比例するため, Donor と Acceptor の距離 が遠くなればなるほど FRET 効率が低くなるからである. また, 蛍光発色基の Donor 放出波長と Acceptor の吸収波長の重なりが小さいと FRET が起こりにくく, 検出感度 が下がる.



図 2-1-1 FRET の原理

この原理をがん診断に応用すると、ヘパラナーゼの酵素活性によってヘパラン硫酸基 質が切断されたことが容易に確認できると考えられる.そこで本研究では、ヘパラン硫 酸四糖基質にFRETに利用できる蛍光発色基のDonorとAcceptorを結合させた化合物 を標的化合物とした.標的化合物と血液を混合させた場合、血中ヘパラナーゼ濃度が低 いとヘパラン硫酸の糖間は切断されない.そのため、FRET が起こりAcceptorの放出 する C nm の波長のみが検出されると考えられる(図 2-1-2 左).

一方,標的化合物と血液を混合させたとき,がん患者の血中へパラナーゼ濃度が高け れば,へパラナーゼの酵素活性によってへパラン硫酸基質の糖間が切断される.それに より, Donor から Acceptor の距離が離れてしまう.FRET が起こるには一定の距離中 に Donor と Acceptor が存在しなくてはならないため,糖間が切断され,Donor と Acceptor が離れてしまった状態ではエネルギーの移動が出来ずFRET が起こらない. そのため,Donor が放出する B nm の波長のみ検出されるはずである(図 2-1-2 右).



図 2-1-2 FRET の機能をもつ標的化合物

FRET の起こる蛍光発色基のペアについては、これまでにいくつか報告されている (表 2-1-1)<sup>1)</sup>. FRET の機能をもつ蛍光発色基のペアには、Donor と Acceptor の放出波 長の差と吸収波長の重なりが大きいことと Donor と Acceptor の距離が近いことが条件 となる.

| Donor                                                                                                                                                                                                                                                                                                               | Acceptor                      | Donor<br>吸収波長<br>(nm) | Acceptor<br>放出波長<br>(nm) | R₀<br>(Å) <sup>*</sup> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------|--------------------------|------------------------|
| Tryptophan                                                                                                                                                                                                                                                                                                          | Dansyl                        | · · ·                 |                          |                        |
|                                                                                                                                                                                                                                                                                                                     |                               | 280                   | 520                      | 21-24                  |
| EDANS                                                                                                                                                                                                                                                                                                               | Dabcyl                        |                       |                          |                        |
| H <sub>2</sub> N<br>HN-<br>SO <sub>3</sub> Na                                                                                                                                                                                                                                                                       | Л-СООН                        | 335                   | Quencher                 | 33                     |
| BODIPY 493/503                                                                                                                                                                                                                                                                                                      | Cy5                           |                       |                          |                        |
| $H_{3C} \xrightarrow{COOH} H_{3C} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} H_{3C} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{CH_{3}} H_{3C} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} \xrightarrow{R} R$ | O <sub>3</sub> S<br>N<br>COOH | 500                   | 667                      | 42                     |
| Fluorescein                                                                                                                                                                                                                                                                                                         | TAMRA                         |                       |                          |                        |
| НОСООН                                                                                                                                                                                                                                                                                                              | N COOH                        | 492                   | 576                      | 49-55                  |
| Pyrene                                                                                                                                                                                                                                                                                                              | 7-Hydroxy coumarin            |                       |                          |                        |
|                                                                                                                                                                                                                                                                                                                     | носоо                         | 325                   | 478                      | 39                     |
| 7-Diethylamino coumarin                                                                                                                                                                                                                                                                                             | Fluorescein                   |                       |                          |                        |
|                                                                                                                                                                                                                                                                                                                     | НОСООН                        | 420                   | 520                      | 52                     |
| Naphthalene                                                                                                                                                                                                                                                                                                         | Dansyl                        |                       |                          |                        |
|                                                                                                                                                                                                                                                                                                                     |                               | 280                   | 525                      | 22                     |

| 表 2-1-1 FRET の機能をもつ軍光発色基のへ | 表: | 2-1-1 FRET | の機能を | もつ蛍光発色基のペラ | 7 |
|----------------------------|----|------------|------|------------|---|
|----------------------------|----|------------|------|------------|---|

\*R<sub>0</sub>: FRET 効率が 50%になる Donor と Acceptor 間の距離

これまでに FRET の機能を持つ糖鎖はいくつか報告されている.

1997 年に Armad らは, セルロース四糖に Donor として Indolethanol(Ex 290 nm, Em 365 nm)を, Acceptor として EDANS(Ex 340 nm, Em 490 nm)を結合させた化合物の合成を行い, 20 μM で FRET が起こることを確認している. また, この化合物での FRET 効率は 50%であった<sup>2)</sup> (図 2-1-3).



図 2-1-3 Armad らが合成した FRET の機能をもつセルロース四糖

2000年に Cottaz らは, キチン五糖に Donor として EDANS(Ex 340 nm, Em 490 nm) を, Acceptor として DAB(Ex 474 nm, Em Quencher)を結合させた化合物の合成を行 い, 2  $\mu$ M で FRET の確認を行っている. EDANS が放出する 490 nm の波長はほとん ど検出されなかったため, FRET 効率はとても高い(図 2-1-4)<sup>3</sup>.



図 2-1-4 Cottaz らが合成した FRET の機能をもつキチン五糖

2006 年に Enomoto らは、ヘパラン硫酸プロテオグリカン(HSPG)に Donor である europium cryptate(Ex 337 nm, Em 620 nm)を HSPG に、Acceptor である XL665-SA (Ex 620 nm, Em 665 nm)をコアタンパク質に結合させた HSPG を天然物から合成して いる(図 2-1-5)<sup>4)</sup>. しかし、Enomoto らが合成した FRET の機能をもつ HSPG は、天然 物から単離した HSPG を使用しているため、様々な硫酸化パターンや異性体などが混 在しており、単一な構造でない、そのため、ヘパラナーゼによって HSPG のみが切断 されたことを確認するのは困難である.



図 2-1-5 Enomoto らが合成した FRET の機能をもつ HSPG

2010年に Oka らは, Donor として naphthylmethyl(Ex 290 nm, Em 333 nm)を, Acceptor として Dansyl(Ex 333 nm, Em 580 nm)を結合させたマルトース二糖とマル トース六糖の合成を行った. これらのマルトース二糖と六糖に FRET が確認されてい る. 彼らは $\alpha$ -アミラーゼによって糖間の切断も検討している. マルトース六糖では $\alpha$ -アミラーゼによって $\alpha$ 1-4 結合が切断されたため, 酵素反応前と比較すると naphthylmethyl の放出波長の強度が高く, Dansyl の放出波長の強度は低くなった(図 2-1-6). しかし, マルトース二糖で同様の酵素反応を行った場合, FRET の変化がなかっ た. この論文では, 二糖は糖鎖が短いため, 基質として認識されなかったのではないか と推測している <sup>5</sup>.


図 2-1-6 Oka らが合成した FRET の機能をもつマルトース二糖と六糖

これらの報告から,糖鎖での FRET を利用した酵素反応の検出は,酵素が認識する ことができる長さの基質ならば可能であるといえる.本研究の目的である血液中のヒト ヘパラナーゼを簡便かつ鋭敏検出する方法として FRET は適している.しかし,ヘパ ラナーゼの酵素活性を FRET の機能をもつ単一な構造のヘパラン硫酸オリゴ糖で検出 した報告はなされていない.そこで,第二章では FRET の機能を持つヘパラン硫酸オ リゴ糖を合成することを目的とした.

#### References

- 1) Correa A C, Schultz C, Lab. Tech. Biochem. Mol. Biol., 33, 225-228 (2009).
- Armand S, Drouillard S, Schülein M, Henrissat B, Driguez H, J. Biol. Chem., 277, 2709-2713 (1997).
- 3) Cottaz S, Brasme B, Driguez H, *Eur. J. Biochem.*, **267**, 5593-5600 (2000).
- K. Enomoto, H. Okamoto, Y. Numata, H. Takemoto, *J. Phama. Biomed. Anal.*, 41, 912-917 (2006).
- Oka H, Koyama T, Hatano K, Terunuma D, Matsuoka K, *Bioorg. Med. Chem.* Lett., 20, 1969-1971 (2010).

### 第二節 蛍光発色基の選択と標的化合物Ⅱの合成計画

基質となるへパラン硫酸オリゴ糖の長さは、酵素が認識し易く、FRET 効率が低くない程度が良い. がん細胞の分泌するヒトヘパラナーゼは、GlcA-GlcNS(6S)の糖間を特異的に認識することが知られている.GlcA-GlcNS(6S)二糖構造では,Donor と Acceptorの距離が最も近くなるため FRET 効率が一番良いと考えられる.しかし、糖鎖が短いと酵素が基質を認識しないことが危惧される.そのため、第一章で合成したヘパラン硫酸四糖を用いることにした.また、基質である糖に近い蛍光発色基として、かさ高い化合物を選んだ場合、酵素が GlcA-GlcNS(6S)を認識しにくくなる可能性がある.そのため、蛍光発色基のペアとして本章では Tryptamine(Trp;  $\lambda_{ex}$ =280 nm,  $\lambda_{em}$ =340 nm)とDansyl(DNS;  $\lambda_{ex}$ =336 nm,  $\lambda_{em}$ =520 nm)を用いることとした.

そこで, GlcAβ1-4GlcNS(6S)α1-4GlcAβ1-4GlcNS(6S)αの非還元末端側に Trp を,還 元末端側に DNS を縮合した標的化合物 II を合成することにした(図 2-2-1).



図 2-2-1 標的化合物Ⅱ

標的化合物 Ⅱの逆合成経路を,図 2-2-2 に示す.標的化合物 Ⅱは,第一章で合成した 標的化合物 Ⅰの四糖供与体(A16)を利用し,合成することにした.

まず,**A16**に DNS が結合したリンカーを縮合し **Q2** を合成する.**Q2**の非還元末端の All エステルを選択的に除去した後,**Trp** を結合させ **Q3**へと誘導する.続いて,**Q3**のけん化,*O*−硫酸化と保護基の除去を行い **Q**4へと誘導し,最後に*N*−硫酸化を行うことで,標的化合物 IIを得ることにした.



図 2-2-2 標的化合物Ⅱの逆合成経路

## 第三節 標的化合物Ⅱの合成

FRET の機能をもつへパラン硫酸四糖(標的化合物Ⅱ)の合成を行った(図 2-3-1).



図 2-3-1 標的化合物Ⅱ

初めに、四糖供与体に導入する蛍光発色基である DNS 基をもつエチレングリコール リンカーと Trp の合成と、DNS と Trp の Pd-C を用いた加水素分解での耐性について 検討した.

還元末端に縮合する DNS 基をもつエチレングリコールリンカー(L5)の合成を図 2-3-2 に示す.まず,トリエチレングリコールに,メタンスルホニルクロリド(MsCl)を 用いて,塩基性条件下,CH<sub>2</sub>Cl<sub>2</sub>中で Ms 化を行い,L1 に誘導した.得られたL1 に NaN<sub>3</sub> を 2.5 当量用いて N<sub>3</sub>化した結果,L1 の片側で反応し,二行程収率 67%でL2 を得た. 続いて,L2 の Ms 基をトルエン中,酢酸セシウムと 18-crown-6 を用いて Ac 化を行っ た後,Et<sub>3</sub>N とメタノール(MeOH),H<sub>2</sub>O を用いて Ac 基の除去を行い,L3 を二行程収 率 86%で得た.得られたL3 は接触還元を行い,N<sub>3</sub>を還元させてL4 へと誘導した.そ して,水性アセトン中で DNSCl と NaHCO<sub>3</sub>を用いてアミノ基の DNS 化を行い,DNS 基をもつエチレングリコールリンカー(L5)を合成した.



図 2-3-2 DNS 基をもつエチレングリコールリンカー(L5)の合成 Reaction conditions: (a) MsCl, Et<sub>3</sub>N / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, quant.; (b) NaN<sub>3</sub> / DMF, rt, 67% (2 steps); (c) CsOAc, 18-crown-6 / toluene, reflux, 86%; (d) Et<sub>3</sub>N, MeOH, H<sub>2</sub>O, rt; (e) H<sub>2</sub>, Pd-C / MeOH, rt, quant.; (f) DNSCl, NaHCO<sub>3</sub> / aq acetone, rt, 82% (2 steps). 標的化合物 II の合成では, Bn 基の除去と N<sub>3</sub>の還元に Pd-C を用いた加水素分解を行 う必要がある. そのため, L5 を用いて DNS の触還元条件下での耐性試験を行った(図 2-3-3). MeOH-H<sub>2</sub>O 中, AcOH(1 drop)を加えた Pass A と, AcOH を加えなかった Pass B を, それぞれ Pd-C を触媒として水素雰囲気下で 10 日間激しく撹拌したが, L5 は変化しなかった. そのため, L5 をヘパラン硫酸四糖の還元末端に結合させた後, Pd-C を用いた加水素分解を行っても DNS に影響はないと考えた.



図 2-3-3 L5 の Pd-C を用いた加水素分解の耐性試験 Reaction conditions: (Pass A)H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, AcOH(1 drop), 10 days; (Pass B) H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, 10 days.

続いて、非還元末端に結合させる tryptamine の合成を行った. Tryptamine のイン ドール環のアミンは硫酸化される可能性がある. そこで、FRET には影響しない Me 基 で保護することとした(図 2-3-4). Tryptamine をトルエン中、無水フタル酸と Et<sub>3</sub>N を 加え加熱還流した後、室温で Ac<sub>2</sub>O とピリジンを加え、tryptamine の一級アミノ基を フタロイル(Phth)基で保護した **T1** を収率 66%で得た. 次に、**T1** の二級アミンを NaH と MeI を用いて Me 化を行い、収率 76%で **T2** に誘導した. 最後に、**T2** を H<sub>2</sub>NNH<sub>2</sub>·AcOH を用いて Phth 基の除去を行い、**T3** を定量的に得た.



図 2-3-4 Tryptamine の Me 化

Reaction conditions: (a) phthalic anhydride, Et<sub>3</sub>N / toluene, reflux; then, Ac<sub>2</sub>O, pyridine, 65%; (b) NaH, MeI / DMF, rt, 76%; (d) H<sub>2</sub>NNH<sub>2</sub>·H<sub>2</sub>O / EtOH, reflux, quant.

一方, Trp の Pd-C を用いた加水素分解の耐性試験を, tryptamine の一級アミノ基を
Ac 基で保護した T4 で行った. 図 2-3-3 で示した DNS の耐性試験と同様の反応条件で
加水素分解を行ったが,いずれの条件でも T4 は変化しなかった(図 2-3-5).



図 2-3-5 T4 の Pd-C を用いた加水素分解 Reaction conditions: (Pass A)H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, AcOH(1 drop), 10 days; (Pass B) H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, 10 days.

以上の結果から, DNS と Trp をもつ標的化合物 II 保護体を用いた場合, Pd-C を用いた加水素分解条件によって, DNS も Trp も還元などの影響をうけない見通しが立った. そのため, DNS と Trp を標的化合物 II 保護体に導入する合成経路で実験を行った.

第一章で合成した四糖供与体(A16)の還元末端に L5 を縮合させた(図 2-3-6). A16 と L5 を, Ar 雰囲気下, CH<sub>2</sub>Cl<sub>2</sub>中 MSAW300 存在下で, TMSOTf を用いて室温で1時間 反応させ, α-異性体である B1αを収率 76%で得た.



図 2-3-6 L5 と四糖供与体(A16)の縮合 Reaction condition: TMSOTf, MSAW300 / CH<sub>2</sub>Cl<sub>2</sub>, rt.

続いて、四糖の非還元末端に Trp を導入するため、B1aの非還元末端のアリルウロ ネートを選択的に遊離のウロン酸に変換した.B1aを CH<sub>3</sub>CN 中, [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd, PPh<sub>3</sub>, モルホリンを用いて一晩反応させた. その結果, All 基が選択的に除去された B2 が収 率 76%で得られた. 次に, B2 と T3 を酢酸エチルに溶解させ, DMT-MM と Et<sub>3</sub>N を加 え一晩反応させ, B3 を収率 58%で得た (図 2-3-7).



図 2-3-7 All 基の選択的除去とアミド化

Reaction conditions: (a) [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd, PPh<sub>3</sub>, morpholine / CH<sub>3</sub>CN, rt, 76%; (b)DMT·MM, Et<sub>3</sub>N / EtOAc, rt, 58%.

続いて、6位Ac基の除去とメチルウロネートの遊離のウロン酸への変換を同時に行った. B3 を水性 THF に溶解させ、0 °C から室温に温度を上げながら、LiOH 水溶液で 塩基性に保ちつつ3日間反応させ、B4 を収率 70%で得た. B4 は、DMF 中、60 °C で SO<sub>3</sub> NMe<sub>3</sub> を用いて 6 位水酸基の硫酸化を行い、定量的に B5 を得ることができた(図 2-3-8).



図 2-3-8 けん化と *O*一硫酸化 Reaction conditions: (a) aq LiOH / THF-H<sub>2</sub>O, 0 °C, 70%; (b) SO<sub>3</sub>·NMe<sub>3</sub> / DMF, 60 °C, quant.

得られた B5 の Bn 基の除去と N<sub>3</sub>の還元を行うため、水性 MeOH 中、水素雰囲気下 Pd-C を触媒に用いて B5 の加水素分解を試みた.反応は TLC によって追跡し、スポットが収束するまで反応を続けた.しかし、生成物を <sup>1</sup>H-NMR で確認したところ DNS の芳香環に相当するシグナルが見られなくなった.また、Trp の芳香環のシグナルは Bn 基の芳香環と同じ位置にあるため、Trp が切断または還元されているのか Bn 基の 除去が完全にできていないのか判別できなかったが、Trp の NMe 基と思われるシグナルが見られることから Trp は消失していないと推測した(図 2-3-9, Pass A).

しかし、この条件では Bn 基の除去が完全に行えていない可能性を考慮し、溶媒に触 媒量の AcOH を加えた条件でも同様の実験を行った(図 2-3-9, Pass B). B5 を EtOH に 溶解させ、AcOH(1 drop)と Pd-C を加え、水素雰囲気下で 2 日間激しく撹拌させた後、 極性を上げるため H<sub>2</sub>O を追加し(EtOH: H<sub>2</sub>O = 3:1)、さらに一晩反応させた.反応は TLC によって追跡し、スポットが収束するまで反応を続けた.本来、蛍光発色基を 2 つもつため UV 吸収を鋭敏に検出できる化合物であったが、反応 2 日目に UV 吸収が検 出できなくなった.生成物を <sup>1</sup>H-NMR で確認したところ、Pass A の結果と同様、 <sup>1</sup>H-NMR で Trp のシグナルは判別できなかったが、DNS のシグナルは消失していた(図 2-3-9, Pass B).



図 2-3-9 **B5**の加水素分解 Reaction conditions: (Pass A) H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, 2 days; (Pass B) H<sub>2</sub>, Pd-C / EtOH, AcOH (1 drop), then, H<sub>2</sub>O.

第一章で行ったヘパラン硫酸四糖保護体(A18)の Pd-C を用いた接触還元では, AcOH の有無にかかわらず, Bn 基の除去と N<sub>3</sub>の還元は問題なく行えた. そのため, Pd-C に よる加水素分解や酢酸酸性による加水分解でヘパラン硫酸四糖が分解したとは考えに くい. このことから, Pd-C による加水素分解時に蛍光発色基が切断または還元された のではないかと考えた. それは, 加水素分解時に TLC 分析で UV 吸収が検出できなかっ たことと, <sup>1</sup>H-NMR で DNS のシグナルを確認できなかったからである. しかし, 図 2-3-3 で DNS 基をもつエチレングリコールリンカー(L5)の Pd-C を用いた加水素分解を 行い, DNS が還元されなかったことから, B5 の加水素分解でも DNS が還元されたと は考えにくい. そのため, DNS を含むアグリコン部分のどこかが切断されたと推測し た.

得られた化合物について、<sup>1</sup>H-NMR で DNS リンカーがどの位置で切断されたのかを 確認しようとしたが、エチレングリコールリンカーのピークを正確に確認できなかった. DNS が切断される可能性がある位置を、図 2-3-10 に示す硫酸アミド結合 (矢印 1)か、 グリコシド結合 (矢印 2)と推測した場合、矢印 1 の箇所で脱離が起こる可能性は、図 2-3-3 で示した DNS 基をもつエチレングリコールリンカー(L5)の加水素分解時に変化 しなかったことから考え難い.一方、ポリエチレングリコールリンカーとのグリコシド 結合(矢印 2 の位置)は加水素分解されるとは考えにくいので、一旦は酸による加水分解 を考えた.しかし、加水素分解時に酢酸の有無に関係なく<sup>1</sup>H-NMR で DNS のシグナ ルが確認できなくなっている結果からは酸の影響とも考えにくい.第一章のヘパラン硫 酸四糖オクチルグリコシド(A18)の加水素分解では、アグリコンの切断は起こっていな いことから、反応機構は不明だがリンカーとしてエチレングリコールを用いた場合、糖 骨格からリンカーが切断されたと考えられる.



図 2-3-10 加水素分解によって切断される可能性がある部位

これらの事実から,還元末端側のリンカーに,エチレングリコールではなく,加水素 分解や酸加水分解に影響されないと考えられる炭化水素鎖でDNSと四糖が結合した標 的化合物Ⅲの合成を行うことにした(図 2-3-11).



図 2-3-11 標的化合物Ⅲ

# 第四節 標的化合物IVの合成

第三節では, DNS と Trp が結合したヘパラン硫酸四糖保護体の加水素分解での問題 点について検証し, リンカーをエチレングリコールから炭化水素に変更することを提案 した.第四節では, FRET の機能をもつヘパラン硫酸四糖(標的化合物III)を合成する前 に, FRET の機能をもつ最小単位であるヘパラン硫酸二糖(標的化合物IV)を合成するこ とで, 糖鎖への蛍光発色基の導入を検討することにした.標的化合物IVは, 図 2-4-1 に 示す逆合成経路をもとに合成することにした.



図 2-4-1 標的化合物IVの逆合成経路

まず,水性アセトン中で DNSCl と NaHCO<sub>3</sub>を用いて,5-amino-1-pentanolのアミノ基の DNS 化を行い,アグリコンとなる *N*-5-dansylamino-1-pentanol(**L6**)を収率 96% で得た(図 2-4-2).



図 2-4-2 N-5-dansylamino-1-pentanol(L6)の合成 Reaction condition: DNSCl, NaHCO<sub>3</sub> / aq acetone, rt, 96%.

次に,第一章で四糖を合成する際に使用した二糖供与体(A12)とL6の縮合を行った. A12をCH<sub>2</sub>Cl<sub>2</sub>中,MS4Å存在下,AgOTfと2,4,6-コリジンを用いて-40°Cで1時 間反応させた後,徐々に室温まで上昇させ,都合13時間反応させた.その結果, $\alpha$ -と $\beta$ -異性体であるD1 $\alpha$ とD1 $\beta$ をそれぞれ収率25%と55%で得た( $\alpha$ / $\beta$ =1/2)(Pass A). この方法では,第一章の四糖合成時とは異なり,望む $\alpha$ 体の割合は低くなっている.こ れは,低温で反応させたことにより,Clの脱離よりも $\beta$ 側からの求核攻撃によるSN2反 応が促進されたためと考えた.そこで,Clの脱離を促進すべく,反応温度を室温に上 げ,縮合を行った結果,D1 $\alpha$ とD1 $\beta$ がそれぞれ収率40%と54%で得られ( $\alpha$ / $\beta$ =1/1.4), $\alpha$ 体の収率と $\alpha$ / $\beta$ 比が向上した(Pass B)(図2-4-3).続いて,四糖合成時と同様の方法でD1 $\alpha$ のアリルウロネートの選択的な除去を行った後,T3を結合させ,D2を合成した.得ら れたD2を塩基性条件下でAc基の除去を行うことで,三行程収率77%でD3に誘導す ることができた.D3を,DMF中でSO<sub>3</sub>·NMe<sub>3</sub>を用いて60°Cで2時間反応させ,収 率87%でD4を合成した.次に,D4をMeOH中,水素雰囲気下でLindlar触媒を用い て接触還元後,ピリジン中でSO<sub>3</sub>·NMe<sub>3</sub>を用いて4時間反応させ,D5を収率51%で得 た.





Reaction conditions: (Pass A) AgOTf, 2,4,6-collidine, MS4Å / CH<sub>2</sub>Cl<sub>2</sub>, -40 °C to rt, **D1α**: 25%, **D1β**: 55%; (Pass B) AgOTf, 2,4,6-collidine, MS4Å / CH<sub>2</sub>Cl<sub>2</sub>, rt, **D1α**: 40%, **D1β**: 54%; (a) [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd, PPh<sub>3</sub>, morpholine / CH<sub>3</sub>CN, rt; (b)**T3**, DMT-MM, Et<sub>3</sub>N / EtOAc, rt; (c)aq NaOH / THF, rt, pH 10, 77% (3 steps); (d)SO<sub>3</sub>·NMe<sub>3</sub> / DMF, 60 °C, then, Dowex 50Wx 8 (Na<sup>+</sup> form), 87%; (e) H<sub>2</sub>, Lindlar / MeOH; (f) SO<sub>3</sub>·NMe<sub>3</sub> / pyridine, rt, 51%.

最後に, **D5** を EtOH 中水素雰囲気下で Pd-C を用いて加水素分解を行い,<sup>1</sup>H-NMR で Bn 基の消失を確認した. 生成物の **Trp** と DNS は還元されていなかったが, いくつ

かの Bn 基が除去できていなかった.再反応を行ったが Bn 基を完全に除去できなかった.そこで,触媒量の AcOH(1 drop)と H<sub>2</sub>O を加え,一晩反応させたところ,系が複雑 になってしまい, <sup>1</sup>H-NMR で DNS のシグナルを確認することができなかった (図 2-4-4).



図 2-4-4 **D5**の加水素分解

Reaction condition: (a) H<sub>2</sub>, Pd-C / EtOH; (b) H<sub>2</sub>, Pd-C / EtOH-H<sub>2</sub>O, AcOH(1 drop).

本節では、加水素分解に影響されないと考えられる炭化水素鎖をリンカーにもつ二糖 保護体(D5)で加水素分解を行ったが、<sup>1</sup>H-NMR で DNS のシグナルが消失した. F5 の 加水素分解の結果とあわせて考えると、リンカーの種類に関係なく、加水素分解によっ て DNS または DNS を含むリンカー部分が何らかの影響を受けていると考えられる.

表 2・4・1 に示すように、DNS 基をもつエチレングリコールリンカーのあるアグリコ ン部分(L5)の加水素分解は、AcOH の有無に関わらず DNS の還元は起こらなかった (Entry 1~3). しかし、炭化水素リンカーのあるアグリコン部分(L6)を触媒量の AcOH 存在下で加水素分解を行ったところ、DNS の NMe2基のシグナルが消失していたこと に加え、ナフタレン環の一部が還元された L7 が得られた(Entry 4). D5 の Pd・C を用 いた加水素分解では、AcOH を加えない条件下では DNS は還元されないが、AcOH を 加えた条件下では、<sup>1</sup>H・NMR で DNS のシグナルが消失していたことは、Entry 4 の結 果で支持される. また、DNS と Trp を結合させた DT1 の Pd・C を用いた加水素分解 (Entry 5)では、Trp は還元されなかったが、L6 の加水素分解の時と同様に DNS が変 化し**DT2**が得られた.反応機構は不明だが,これらの結果を考えあわせると,DNSは結合した化合物(エチレングリコールと炭化水素鎖)によって加水素分解に対する反応性が変わると言える.

| Entry | Substrate | Method | Yeild (%) |          |
|-------|-----------|--------|-----------|----------|
|       |           |        | Product   | Recovery |
| 1     |           | А      | -         | 100      |
| 2     | (L5)      | В      | -         | 100      |
| 3     |           | С      | -         | 100      |
| 4     |           | С      |           | 50       |
| 5     |           | С      | (DT2)     | 60       |

表 2-4-1 DNS の Pd-C を用いた加水素分解の耐性試験

Reaction conditions: (Method A)  $H_2$ , Pd-C / MeOH-H<sub>2</sub>O, AcOH(1 drop), 10 days;

(Method B) H<sub>2</sub>, Pd-C / MeOH-H<sub>2</sub>O, 10 days;

(Method C) H<sub>2</sub>, Pd-C / EtOAc, AcOH (1 drop), rt, 10 days.

DNS が結合したエチレングリコールをもつ四糖(B5)の加水素分解では,AcOH の有 無に関係なく<sup>1</sup>H-NMR で DNS のシグナルが確認できなくなったことと,表 2-5-2 で L5 が還元されなかったことから,図 2-4-5 に示すようにリンカーと糖のグリコシド結 合が切断されたと考えられる.

一方,炭化水素鎖に DNS が結合した二糖(D5)では,AcOH を加えない条件では,DNS と Trp は還元されていないが,AcOH を加えた条件では DNS のシグナルが確認できな くなった.そのため,B5 のように糖鎖とリンカーのグリコシド結合が切断されたので はなく,DNS が還元されたため <sup>1</sup>H-NMR で DNS のシグナルが確認できなくなったと 考えられる(図 2-4-6).D5 の加水素分解の結果から,AcOH を加えない条件では DNS は還元されないが,Bn 基を完全に除去することができなかった.そのため,標的化合 物を合成するには AcOH を加えた条件で加水素分解を行う必要がある.いずれにして もこれらの合成経路では標的化合物が得られないことが判明した.

次節では、加水素分解後に DNS を導入できる合成経路で標的化合物を合成すること にした.



図 2-4-5 B5 の加水素分解後の予想生成物

 $Reaction \ conditions; (a) \ H_2, \ Pd\text{-}C \ / \ MeOH-H_2O; (b) \ H_2, \ Pd\text{-}C \ / \ EtOH, \ AcOH(1 \ drop).$ 



図 2-4-6 **D5**の加水素分解後の予想生成物 Reaction condition: (a) Pd-C, H<sub>2</sub> / EtOH; (b) Pd-C, H<sub>2</sub> / EtOH-H<sub>2</sub>O, AcOH(1 drop).

## 第五節 標的化合物 V の合成

第四節の結果から、炭化水素鎖に結合した DNS は Pd-C を用いた加水素分解で還元 されることが判明した.そこで、本節では DNS を加水素分解後に導入する合成経路で、 標的化合物Vを合成することにした.標的化合物Vの逆合成経路を図 2-5-1 に示す. DNS を加水素分解後に導入するため、還元末端側のリンカーを Z 基で保護した Benzyl *N*-(2-hydroxyethyl) carbamate を糖骨格と結合させることにした.Z 基は、加水素分解 によって除去することができるため、DNS を加水素分解後に結合させることが可能で ある.



図 2-5-1 標的化合物 Vの逆合成経路

標的化合物Vを合成するため, **A12** と Benzyl *N*-(2-hydroxyethyl) carbamate の縮合 を行った. CH<sub>2</sub>Cl<sub>2</sub>中, MS4Å 存在下で, AgOTf と 2,4,6-コリジンを縮合剤に用いて, -40 °C で 1 時間反応後,一晩かけて室温まで上昇させた. その結果, α-異性体であ る**D6α**とβ-異性体である**D6**βをそれぞれ収率42%と32%で得た(α/β=1/1.3) (図 2-5-2).



図 2-5-2 Benzyl N-(2-hydroxyethyl) carbamate の縮合 Reaction condition: AgOTf, 2,4,6-collidine, MS4Å / CH<sub>2</sub>Cl<sub>2</sub>, -40 °C to rt, o.n.

続いて,第二章第三節の B2 の合成と同様の方法で D6αの All 基の選択的な除去を 行った後,T3 を結合させ,D7 へと誘導した.塩基性条件下でD7 の Ac 基の除去を行 い,D8 を三行程収率 40%で得た.D8 の 6 位水酸基を,DMF 中で SO<sub>3</sub>·NMe<sub>3</sub>を用い て 60 °C で 1 時間反応させ,D9 を定量的に得た(図 2-5-3).



#### 図 2-5-3 D9 の合成

Reaction conditions: (a) [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd, PPh<sub>3</sub>, morpholine / CH<sub>3</sub>CN, rt; (b) **T3**, DMT·MM, Et<sub>3</sub>N / EtOAc, rt; (c) aq NaOH / THF, rt, pH 10, 40% (3 steps); (d) SO<sub>3</sub>·NMe<sub>3</sub> / DMF, 60 °C, then, Dowex 50Wx 8 (Na<sup>+</sup> form), quant. 次に, **D**9 を MeOH 中,水素雰囲気下で Lindlar 触媒を加え 4 時間反応させたところ,目的とする 2 位 N<sub>3</sub>がアミノ基に還元された **D**10 の他に,リンカーの末端の Z 基までが還元除去された **D**11 が,**D**10 と同等の割合で得られた(図 2-5-4).



図 2-5-4 Lindlar 触媒を用いた接触還元 Reaction condition: H<sub>2</sub>, Lindlar / MeOH, rt.

Lindlar 触媒は、鉛で Pd を被毒させた試薬のため、Pd-C より活性が低くなり、一般 的に N<sub>3</sub>は還元できるが Z 基は還元されないとされている. しかし、今回の実験では Z 基も還元されていた. これは、使用した Lindlar 触媒のロットに問題があったのではな いかと考え、他のロットや他社製品でも検討したが、結果は同じであった. さらに意外 なことに、Lindlar 触媒では還元されないとされる All 基と Z 基をもつ二糖でも検討し た結果、All 基まで還元されていた(図 2-5-5).



図 2-5-5 Lindlar 触媒による All 基と Z 基の耐性試験 Reaction condition: H<sub>2</sub>, Lindlar / MeOH, rt.

Lindlar 触媒は、ロットによって被毒の程度が微妙に異なるかもしれない.そのため、 被毒が弱く Pd-C の活性が高い製品を使用してしまった場合、Z 基や All 基も還元され ると考えられる.製品によって安定した結果が得られないため、Z 基が存在する化合物 での Lindlar 触媒による  $N_3$ の還元は避けることにした.

**D10** と **D11** は互いに分離できなかったため、次のステップでの分離を期待して、こ れらの混合物の *N*-硫酸化を行った. **D10** と **D11** をピリジンに溶解し、SO<sub>3</sub>·NMe<sub>3</sub> と 反応させ、目的物である **D12** と、還元末端アミノ基も硫酸化された **D13** を得た. これ らは互いに分離可能で、目的物である **D12** は二行程収率 30%で得られた(図 2-5-7). 得 られた **D12** を MeOH に溶解させ、触媒量の AcOH(1 drop)を加え、水素雰囲気下で Pd-C を用いて一晩激しく撹拌した. 反応後 <sup>1</sup>H-NMR で構造を確認したところ、芳香環のシ グナルが消失していた. そのため、Bn 基の除去は完全に行えたが、Trp のインドール 環に水素付加した **D14** が得られたと考えられる.



図 2-5-6 N-硫酸化と **D12**の接触還元による Trp 基の水素付加 Reaction conditions: (a) SO<sub>3</sub>·NMe<sub>3</sub> / pyridine, rt, 30%; (b) H<sub>2</sub>, Pd-C / MeOH, AcOH (1 drop), 3 days.

Trp のようなインドール環をもつ化合物は、本来 Pd-C による加水素分解では、水素 付加しないと考えていた. DNS と Trp をもつ本章第三節の四糖保護体(F5)と、本章第 四節の二糖保護体(D5)の Pd-C を用いた加水素分解では、加水素分解後<sup>1</sup>H-NMR で確 認した際、系が複雑になっていたため Trp のシグナルが確認し難く判別できていなかっ た.しかし、第五節で行った Pd-C を用いた加水素分解における蛍光発色基の耐性試験 では、Trp は還元されなかった.そのため、本節の合成経路では加水素分解前に Trp を 結合させている.しかし、D12 の Pd-C を用いた加水素分解後、<sup>1</sup>H-NMR で Trp のシ グナルが確認できなかったため、Trp は還元されたと考えられる.これらの結果から、 DNS と Trp をもつ四糖保護体(F5)と二糖保護体(D5)でも、Trp は還元されていた可能 性がある(図 2-5-7, 2-5-8).



図 2-5-7 F5 の加水素分解後の予測生成物



図 2-5-8 D5 の加水素分解後の予測生成物

この問題を回避するためには、Trpの様なインドール環をもつ蛍光発色基も DNS と 同様に、加水素分解後に結合させる必要があると考えられる.そのため、次章では N<sub>3</sub> を Lindlar 触媒以外の方法で行うことと、蛍光発色基を Pd-C を用いた加水素分解後に 結合させる合成経路で標的化合物の合成を行った.

### 第六節 まとめ

第二章では, 蛍光発色基をもつへパラン硫酸合成時の, Pd-C 存在下での加水素分解 における蛍光発色基の耐性について検討した.

第一節緒言では、ヘパラナーゼによって糖間が切断されたことを鋭敏に検出する方法 として FRET に注目したことについて述べ、これまでに報告されている FRET の機能 をもつ蛍光発色基のペアと糖鎖の合成例について示した.

第二節では, FRET の機能をもつへパラン硫酸四糖の合成を行うため, 蛍光発色基の 選択と標的化合物Ⅱの合成経路を示した.

第三節では, DNS をもつポリエチレングリコールが結合したヘパラン硫酸四糖保護 体(F5)で,加水素分解後, DNS が結合したエチレングリコールリンカーが糖骨格から 切断されたことについて考察した. 解決策として炭化水素鎖に変更することを提案した.

第四節では、DNS が炭化水素鎖に結合したヘパラン硫酸二糖保護体(D5)での加水素 分解を行ったが、第三節と同じく、<sup>1</sup>H-NMR で DNS のシグナルが消失していたことに ついて述べた. この理由として、DNS が加水素分解によって還元されたと考えた. そ こで、DNS をもつ簡単な化合物に対して加水素分解を行ったところ、エチレングリコー ルに結合している DNS では還元は起こらなかったが、炭化水素鎖と Trp に結合してい る DNS は NMe2基が消失し、DNS のナフタレン環の一部が還元されていたことを明 らかにした. DNS は結合している化合物の違いによって反応性が変わると推測し、DNS は加水素分解後に結合させることが望ましいという結論に至った.

第五節では、還元末端側に Z 基をもつ二糖を用いて、DNS を加水素分解後に結合させて FRET の機能をもつ標的化合物 V の合成を行うことにした.しかし、Pd-C を用いた加水素分解では、Trp のインドール環も還元されていることが判明した.最終的に、Trp も DNS 同様加水素分解後に結合させる経路を提案した.

53

### 第三章 蛍光発色基をもつへパラン硫酸合成 II~蛍光発色基の装着検討~

### 第一節 緒言

第二章では、蛍光発色基である Trp や DNS が結合したへパラン硫酸二糖保護体また は四糖保護体で Pd-C を用いた加水素分解を行い、Bn 基や N<sub>3</sub>の還元を試みた.しかし、 Pd-C を用いた加水素分解では Trp と DNS が還元されることが判明した.そのため、 加水素分解時における蛍光発色基の還元を回避するため、蛍光発色基を加水素分解後に 導入することで、FRET の機能をもつへパラン硫酸オリゴ糖を合成することにした.

これまで使用していた Trp は末端がアミンであるため, Z 基を除去した還元末端のア ミンに結合させることができない. 糖鎖構造を変えると大がかりな合成経路の変更にな るので, Trp とほぼ同じ放出波長と吸収波長をもつ Indole を結合させることにした. 還元末端に Indole(Ex 290 nm, Em 365 nm)を結合させると, 非還元末端に FRET にお ける Acceptor となる蛍光発色基を結合させる必要がある.そこで, 現在 Trp との FRET が起こるペアとして使用している DNS の代わりに, 非還元末端のカルボキシル基と結 合させることができる EDANS(Ex 340 nm, Em 490 nm)を, Indole とのペアとして用 いることにした(表 3-1-1).

| Donor                 | Acceptor                                | Donor<br>吸収波長(nm) | Acceptor<br>吸収波長(nm) |
|-----------------------|-----------------------------------------|-------------------|----------------------|
| Tryptamine            | Dansyl                                  |                   |                      |
| Me<br>NH <sub>2</sub> |                                         | 280               | 520                  |
| Indole                | EDANS                                   |                   |                      |
| Me<br>N<br>OH         | H <sub>2</sub> N, HN-SO <sub>3</sub> Na | 290               | 490                  |

表 3-1-1 蛍光発色基(Trp, DNS, Indole, EDANS)

本章では、蛍光発色基として Trp と DNS のペアに代わり、Indole と EDANS のペ アが結合した標的化合物VIを合成することにした.標的化合物を合成するにあたり、図  $3\cdot1\cdot1$  に示す合成経路に従って合成を行うことにした.まず初めに、二糖供与体(A12) に 5-benzyloxycarbonylamino-1-pentanol を縮合し Q11 を合成する.続いて、Q11 の N<sub>3</sub>の還元と *N*-硫酸化を行った後、けん化と *O*-硫酸化を行うことで Q12 へと誘導す る. **Q12** を Pd-C を用いた加水素分解後,還元末端に Indole を導入することで **Q13** へ と誘導する.そして,最後に EDANS を非還元末端に結合させることによって,標的 化合物VIを得ることにした.次節では,図 3-1-1 の合成経路に従い標的化合物VIの合成 を行うことにした.



図 3-1-1 標的化合物VIの逆合成経路

## 第二節 標的化合物VIの合成

第一節で述べたように、本節では Pd-C を用いた加水素分解後に蛍光発色基を導入する合成経路で、標的化合物 VIの合成を行うこととした(図 3-2-1).



図 3-2-1 標的化合物VI

二糖供与体である A12 と 5-benzyloxycarbonylamino-1-pentanol を, CH<sub>2</sub>Cl<sub>2</sub>中 MS4Å存在下で, AgOTf と 2,4,6-コリジンを縮合剤に用いて,室温で 3 時間反応させ た. その結果,アノマー異性体である E1αと E1βをそれぞれ収率 20%と 45%で得た ( $\alpha/\beta=1/2.3$ ). この方法では, $\beta$ -異性体が多く得られたため,SN2 反応が優勢だったと 考えられる. そこで,SN2 反応を抑制させ SN1 反応を有利に行うため,溶媒量を増や し,反応基質の濃度を 8 分の 1 にした. さらに,SN1 反応中のカチオンを安定させるた め, CH<sub>2</sub>Cl<sub>2</sub>から極性溶媒である Et<sub>2</sub>O に変更した. Et<sub>2</sub>O 溶媒中, -40 °C で 1 時間反 応させたが反応が進行しなかったため,徐々に室温まで上昇させ 2 日間反応させた結果, E1αを収率 50%, E1βを収率 30%で得ることができ, $\alpha/\beta$ は 1/0.6 に向上した(図 3-2-2).



図 3-2-2 **A12** と 5-benzyloxycarbonylamino-1-pentanol の縮合 Reaction conditions: (Pass A) AgOTf, 2,4,6-collidine, MS4Å / CH<sub>2</sub>Cl<sub>2</sub>, rt, **E1a**: 20%, **E1β**: 45%; (Pass B) AgOTf, 2,4,6-collidine, MS4Å / Et<sub>2</sub>O, -40 °C, **E1a**: 50%, **E1β**: 30%.

続いて、**E1** $\alpha$ の N<sub>3</sub>の還元を行った.第二章第六節で、Z 基をもつ二糖(**D6**)で Lindlar 触媒を用いた N<sub>3</sub>の還元を行った際には、Z 基まで除去された.そのため、本章では Staudinger 反応によって N<sub>3</sub>の還元を行うことにした.**E1** $\alpha$ を THF と H<sub>2</sub>O に溶解し、 PPh<sub>3</sub> と silica gel<sup>1)</sup>を加え 3 日間反応させた.その結果、Z 基は影響されることなく **E2** が収率 89%で得られた.続いて、**E2** の *N*-硫酸化を行うため、ピリジン中で SO<sub>3</sub>·Me<sub>3</sub>N を用いて室温で撹拌し、0.5 M NaOH で pH を 8~9 に保ちつつ一晩反応させた.反応 は TLC によって追跡し、スポットが収束するまで反応を継続し、ゲルろ過クラマトグ ラフィーによって精製後、イオン交換(Dowex 50Wx8, Na<sup>+</sup> form)を行った.この反応で は、反応終了時に TLC によって出発物質である **E2** のスポットが消失し、生成物のス ポットが単一であることを確認していた.しかし、イオン交換後、精製物を MeOH に 溶解させると、徐々に新たなスポットが一つ増えていった.得られた 2 つの生成物を <sup>1</sup>H・NMR で確認したところ、目的物である **E3** と、*N*一硫酸化されているかは不明だが All 基が除去された **E4** であった(図 3-2-3).





図 3-2-3 **E2**の*N*-硫酸化後のTLCのスポットの推移 TLCの展開溶媒 EtOAc/MeOH = 10/1 + 5% Et<sub>3</sub>N

得られた **E3** と **E4** の混合物を水性 THF 中,0 ℃ で 1.25 M LiOH を加え一晩反応さ せた. 生成物をそれぞれ分離して,<sup>1</sup>H-NMR と MALDI TOF-MS で確認したところ, 目的物である **E5** と *N*−硫酸化されていない **E6** であることがわかった. けん化で *N*− 硫酸基が除去されるとは考えられないため, **E4** は *N*−硫酸化時にアミンのままであっ たと考えられる. (図 3-2-4).



図 3-2-4 **E1**の Staudinger 反応, *N*一硫酸化とけん化 Reaction conditions: (a) PPh<sub>3</sub>, silica gel / aq THF, rt, pH 4; (b) SO<sub>3</sub>·NMe<sub>3</sub> / pyridine, 0.5 M NaOH, pH 8~9, rt; (c) 1.25 M LiOH / aq THF, 0 °C.

E2の N-硫酸化では、反応時に TLC 上で 2 つの化合物のスポットが重なっていた ため、単一に見えていた.しかし、精製後に MeOH 中で 2 つのスポットに変化した. これは、N-硫酸化の塩基性条件下で All 基が除去され、その結果生じるカルボキシル 基に硫酸化試薬が反応したため、混合酸無水物になり、精製後 MeOH に溶解した時に カルボン酸が遊離して E4 が生じたと考えられる(図 3-2-5).ここで問題となるのは、遊 離のカルボン酸となったとき、なぜかアミノ基が硫酸化されないことである.



 $H_2SO_4$ 

図 3-2-5 混合酸無水物を経由するカルボン酸の生成機構予想図

同様に遊離のカルボン酸をもつ E6 でも, E2 の N-硫酸化と同条件で N-硫酸化を 試みた(図 3-2-6).反応中 TLC のスポットは,目的物である N-硫酸化された E5(別途 合成して確認)と同じ位置に収束した.しかし,精製後 MeOH に溶解し TLC で確認し た結果,1時間で反応前の化合物である E5 と同じ位置にスポットが移動し,液性が酸 性(pH 4)になった(図 3-2-7).この結果から,E4 の場合と同様に,図 3-2-6 に示す反応 が起こったと推測した.溶液の酸性は発生する硫酸に由来すると考えられる.

反応を塩基性に保つために NaOH 水溶液を加えているので,アミンのプロトン化は ない.第一章第六節では,無保護の四糖(A19)のアミノ基の硫酸化は,塩基性水溶液中 で進行している. E4 や E6 と第一章で用いた四糖(A19)との大きな違いは,E4 や E6 が Bn 基による保護体であることである.おそらく,E4 や E6 の混合酸無水物では,水 中で硫酸基とアミノ基が内側,Bn 基が外側になるようなミセルを形成して,内側にあ るアミノ基が硫酸化試薬と反応できず,反応が進行しなかったと結論した.





Reaction condition: SO3 NMe3 / pyridine, 0.5 M NaOH, pH 8~9, rt.





TLC の展開溶媒 CHCl<sub>3</sub> / MeOH = 5/1 + 5% AcOH

図 3-2-5 で, E2 の *N*-硫酸化中に生じるであろう混合酸無水物は,目的物である E3 と TLC 上では区別できないため,反応中に E3 と E4 どちらが生成されているか判断す ることは困難であった.このように,カルボキシル基のある化合物の *N*-硫酸化は,単離するまで硫酸化が正常に進行しているか判断できず,安定した収率を得ることができない.これらの問題を回避するため,他の方法で *N*-硫酸化を行うことにした.

2009年にIngramらは、トリクロロエチル基で保護した硫酸化試薬を用いて*N*, *O*-硫酸化を行っている<sup>2)</sup>. そこで、本研究ではtrichloroethoxysulfuryl dimethylimidazolium triflate(**X1**)を使用して*N*-硫酸化を行うことにした.

**E2** を CH<sub>2</sub>Cl<sub>2</sub>に溶解し, **X1** と 1,2-dimethylimidazole を加え,0°C で 1 時間反応さ せた結果, *N*-保護硫酸化された **E7** を定量的に得ることができた.得られた **E7** は, 塩基性条件下で Ac 基と All 基の除去を行い,二行程収率 70%で **E8** へと誘導すること ができた(図 3-2-8).



図 3-2-8 保護硫酸化試薬(X1)による N-保護硫酸化とけん化

Reaction conditions: (a) **X1**, 1,2-dimethylimidazole /  $CH_2Cl_2$ , 0 °C; (b) 1.25 M LiOH / aq THF, 0 °C.

次に, **E8**の *O*−硫酸化を行った. DMF に **E8** を溶解し, SO<sub>3</sub>·NMe<sub>3</sub>を用いて 60 °C で撹拌しつつ, 1時間反応させ, TLC で **E8** のスポットが消失し, 新しいスポットに収 束したことを確認した. しかし, 精製後 TLC で確認した結果, 生成物がすべて **E8** の スポットと同じ位置に戻っていた. そのため, *N*−硫酸化の時と同じく混合酸無水物

(EX1)が生成されていたと考えられる(図 3-2-9).

そこで、E8の O-硫酸化を4日間に延長した.反応開始1時間でTLC上のE8のス ポットがなくなりEX1と同じ位置にスポットが収束した.その後TLC上のスポットの 位置に変化はなかった.反応4日後に精製した結果、E8は得られず、6位水酸基が硫 酸化されたE9を収率58%で得ることができた.そのため、EX1とEX2はTLC上の スポットが同じ可能性がある.また、副生成物として保護硫酸基のトリクロロエチル基 が欠如したE10も得られた.E10は反応中には確認されていなかったが、ゲルろ過精 製直後に生じた.ゲルろ過精製時に保護硫酸基のトリクロロエチル基が脱保護されると は考えにくいため、反応中にEX2の保護硫酸化アミノ基がさらにN-硫酸化された EX3が生成されたと推測した.EX3はゲルろ過精製時のMeOHにより保護硫酸基また は硫酸基が脱離し、E10が得られたと考えられる.



図 3-2-9 カルボキシル基の混合酸無水物の形成と O-硫酸化の予想経路

**E9** を EtOH に溶解し, 触媒量の AcOH と Pd-C を用いて, 水素雰囲気下で一晩激し く撹拌した後, 極性を上げるため H<sub>2</sub>O を加えさらに一晩反応させて **E11** を定量的に得 た(図 3-2-10).



図 3-2-10 **E11**の加水素分解 Reaction condition: H<sub>2</sub>, Pd-C / EtOH, o.n., then H<sub>2</sub>O, o.n.

得られた **E11** を 1 M NaPO<sub>4</sub> と 0.15 M NaCl 水溶液に溶解し, DMF に溶解したスク シンイミド化した Indole(**Y1**)と室温で 4 時間反応させ, **E12** を定量的に得た. しかし, **E12** と EDANS を DMF-H<sub>2</sub>O に溶解し, Et<sub>3</sub>N と DMT-MM を加え 3 日間反応させて も, **E12** を回収するに終わった. 試薬を HBTU と HOBt に変更しても同様の結果であっ た (図 3-2-11).



図 3-2-11 E11 への Indole と EDANS の導入

Reaction conditions: (a) 1 M Na<sub>3</sub>PO<sub>4</sub>, 0.1 M NaCl, aq DMF, rt ; (b) EDANS, DMT-MM, Et<sub>3</sub>N / aq DMF; (c) EDANS, HBTU, HOBt, DIPEA / DMF, rt.

ここまでに,保護基を除去した二糖(E11)の還元末端側に Indole を導入することには 成功したが,非還元末端のカルボキシル基に EDANS を導入することができなかった. 第二章では,水酸基が保護された二糖(D1)や四糖(B2)のグルクロン酸に対して Trp をア ミド化することに成功している.しかし,本節の基質のように水酸基が保護されていな いグルクロン酸でのアミド化は進行しなかった.そのため,周囲の水酸基が保護されて いない状態では,カルボキシル基が求核反応を受けにくいと思われる.そこで,非還元 末端にカルボキシル基をもつリンカーを結合すれば,カルボキシル基が求核攻撃されや すくなると考えた.次節ではグルクロン酸のカルボキシル基と EDANS の間にリンカー を装着した標的化合物VIIを合成することによって,アミド化の際の反応を容易にするこ とにした(図 3-2-12).



図 3-2-12 リンカーを結合させた標的化合物₩

References

- 1) Chen J, Zhou Y, Chen C, Xu W, Yu B, Carbohydr. Res., 343, 2853-2862 (2008).
- 2) Ingram L J, Desoky A, Ali A M, Taylor S D, J. Org. Chem., 74, 6479-6485 (2009).

#### 第三節 非還元末端にリンカーを導入した標的化合物VIIの合成

第二節では、水酸基が保護されていないグルクロン酸と EDANS のアミド化ができ なかったことについて述べた. その理由として、グルクロン酸のカルボキシル基が糖鎖 骨格に近く、EDANS の求核反応を受けにくいためと考えた. そこで本節では、水酸基 が保護された二糖の非還元側に末端にカルボキシル基をもつリンカーを結合させ、 Pd-C による加水素分解後に EDANS を結合させる標的化合物 VIIを合成することにした. 標的化合物 VIIは、還元側にインドール環をもつので、非還元末端の 5-aminopentanoic acid リンカーと EDANS を結合させることで、FRET の機能をもつ. 第二節の結果か ら、糖鎖の水酸基が保護されていればグルクロン酸とのアミド化は問題なく行えるので、 5-aminopentanoic acid は糖鎖の水酸基が保護された状態で導入し、加水素分解後にリ ンカー末端カルボキシル基と EDANS のアミド化を行うことにした. 標的化合物 VIIの 逆合成経路を、図 3-3-1 に示す.



図 3-3-1 標的化合物VIIの逆合成経路

まず、グルクロン酸のカルボキシル基に結合させる 5-aminopentanoic acid の合成を 行った(図 3-3-2). 市販の 5-benzyloxycarbonylamino-1-pentanol を酢酸エチルに溶解 し、TEMPO と NaClO を用いて 0 °C で 1 時間反応させ、アルデヒドに変換した後、一 旦後処理を行った. 続いて、NaClO<sub>2</sub>を用いて室温で一晩反応させ、アルデヒドをカル ボン酸にした後、TMSCHN<sub>2</sub>を用いてメチルエステル化を行い、L8 を得た. 得られた L8 の Z 基を除去するため、L8 を EtOH に溶解し、1 M HCl と Pd-C を加え、水素雰 囲気下で 1 時間激しく撹拌し、L9 を得た. しかし、副生成物としてδ-カプロラクタム (L10)が L9 と同じ割合で得られてしまった. 酸性条件にすることで、アミンがプロト ン化され、δ-カプロラクタム(L10)の生成を抑制できると考えていたが、この結果は、 酸では抑えきれない高い求核性と生成物の安定性(六員環)によるものと考えている. L10 は以後の反応に不活性であるため、以後の工程での分離を考え、L9 と L10 の混合 物を用いて E7 とのアミド化を行うことにした.



図 3-3-2 メチルエステルリンカーの合成

Reaction conditions: (a) TEMPO, NaClO, NaHCO<sub>3</sub>, *n*–Bu<sub>4</sub>NBr, NaBr / EtOAc, H<sub>2</sub>O; (b) NaClO<sub>2</sub>, NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O, *tert*–BuOH, 2-methyl-2-butene, H<sub>2</sub>O; (c) TMSCHN<sub>2</sub> / Et<sub>2</sub>O–MeOH–toluene, **L8**: 89%; (d) Pd-C, H<sub>2</sub> / EtOH, 1 M HCl.

まず, E8 と L9 のアミド化を行った. 二糖(E8)を CH<sub>2</sub>Cl<sub>2</sub>に溶解し, HOBt, L9 と L10 の混合物, DIPEA, WSCD·HCl を加え−20 °C から徐々に室温に温度を上昇させ, 4 時間反応し, E13 を定量的に得た. 続いて E13 の 6 位水酸基の硫酸化を行った. SO<sub>3</sub>·NMe<sub>3</sub>のような硫酸化試薬を用いた場合,混合酸無水物が生成される可能性と硫酸 アミドが生成される可能性があった. そのため,保護硫酸化試薬(X1)を用いて E13 の 6 位水酸基の *O*-保護硫酸化を行った. CH<sub>2</sub>Cl<sub>2</sub>中で X1 を用いて 2 日間反応させ, E14 を二行程収率 34%で得た (図 3·3·3).


図 3-3-3 メチルエステルリンカーのアミド化と *O*一硫酸化 Reaction conditions: (a) WSCD·HCl, HOBt, DIPEA / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C, 5 h; (b) **X1**, 1,2-dimethylimidazole / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C.

次に、**E14**の保護基の除去を行った. **E14**を EtOH に溶解し、Pd-C と触媒量の AcOH を用いて水素雰囲気下で一晩激しく撹拌した後、H<sub>2</sub>O を追加し 3 日間反応させ、メチ ルエステル以外の全ての保護基が除去された **E15**を得た. **E15**を1 M Na<sub>3</sub>PO<sub>4</sub>と 0.15 M NaCl 水溶液中で、室温で DMF に溶解させたスクシンイミド化した Indole(Y1)と 4 時 間反応させ、**E16**を得た. 続いて、**E16**の非還元末端を保護していた Me 基を除去する ため、水中で 0.05 M NaOH を加え pH 8~9 に保ち、0 °C で 2 日間反応させた. しかし、 反応が進まなかったため、精製後 Et<sub>3</sub>N, MeOH, H<sub>2</sub>O を加え再度けん化を行ったが反 応しなかった. また、ピリジン中、LiI を加え 60 °C<sup>1)</sup>で反応させても、けん化されなかっ た. この理由として, 第二節の E6 の N-硫酸化の時とは逆に, E12 が非極性部分を内 側にするようなミセルを形成することによってエステル部分が内側に包み込まれ, けん 化されなかったのではないかと考えている(図 3-3-4).



図 3-3-4 保護基の除去と Indole 化

Reaction conditions: (a) H<sub>2</sub>, Pd-C / aq EtOH; (b) 1 M Na<sub>3</sub>PO<sub>4</sub>, 0.1 M NaCl, aq DMF, rt; (c) 0.05 M NaOH / pH 8~9, 0 °C, 2 days; (d) Et<sub>3</sub>N, MeOH, H<sub>2</sub>O / rt, 6 h; (e) LiI / pyridine, 60 °C, o.n..

以上の結果をもとに、非還元側リンカーの末端カルボン酸の保護基を、加水素分解時 に除去できるベンジルエステルに変更することにした.まず、ベンジルエステルリン カーの合成を行った.前述のように、5-benzyloxycarbonylamino-1-pentanol 誘導体の 加水素分解による Z 基の除去では、 $\delta$ -カプロラクタムが生成されてしまう可能性があ る.そこで、アミンの保護基として Boc 基を選択した.Boc 基は強酸である TFA で除 去できるので、 $\delta$ -カプロラクタムが発生しないと考えた.まず、5-amino-1-pentanol の *N*Boc 化を行い、L11を得た.続いて、L7を得た時と同様の方法で酸化を行った後、 ベンジルエステル化を行い、L12を得た.最後に、L12を CH<sub>2</sub>Cl<sub>2</sub>に溶解し、TFA を加 え 5 分間反応させることによってベンジルエステルリンカー(L13)を五行程で定量的に 得た.酸性条件下での Boc 基の除去は、L7 の合成時とは異なり $\delta$ -カプロラクタムは生 成されなかった(図 3-3-5).



図 3-3-5 ベンジルエステルリンカーの合成

Reaction conditions: (a) Boc<sub>2</sub>O / MeOH, rt; (b) TEMPO, NaClO, NaHCO<sub>3</sub>, *n*-Bu<sub>4</sub>NBr, NaBr / EtOAc, H<sub>2</sub>O; (b) NaClO<sub>2</sub>, NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O, *tert*-BuOH, 2-methyl-2-butene, H<sub>2</sub>O; (d) BnOH, WSCD·HCl, HOBt, DIPEA / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C to rt; (e) TFA / CH<sub>2</sub>Cl<sub>2</sub>, rt, quant.(5 steps).

得られたベンジルエステルリンカー(L13)と二糖(E8)のアミド化と *O*-保護硫酸化を, E14 を合成した時と同条件で行い,二行程収率 45%で E17 を得た.続いて,E17 の加 水素分解を行い,全ての保護基を除去した E18 を収率 90%で得た.

続いて, **E18** の還元末端に Indole を結合させ, **E19** を収率 85%で得た. 最後に, **E19** と EDANS をアミド化するため, **E19** を DMF-H<sub>2</sub>O に溶解し, EDANS, DMT-MM, Et<sub>3</sub>N を加え, 室温で 4 日間反応させたが,反応は進行しなかった(図 3-3-6).

以上のように、非還元末端にリンカーを導入し、EDANSと反応するカルボキシル基の位置をグルクロン酸から離しても、アミド化することができないことが分かった.



図 3-3-6 **E19** の合成 Reaction conditions: (a)WSCD·HCl, HOBt, DIPEA / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C, 5 h; (b) **X1**, 1,2-dimethylimidazole / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C; (c) H<sub>2</sub>, Pd·C / aq EtOH; (d) 1 M Na<sub>3</sub>PO<sub>4</sub>, 0.1 M NaCl, aq DMF, rt; (e) EDANS, DMT-MM, Et<sub>3</sub>N / aq DMF, rt, 4 days.

本研究でグルクロン酸のカルボキシル基のアミド化が成功している化合物は,全て水酸基が Bn 基で保護されているものであった(図 3-3-7). 詳細はわからないが,周囲の水酸基が保護されていないグルクロン酸では,遊離となった水酸基が何らかの影響を及ぼし,カルボキシル基の反応性を低下させているのではないかと考えた.そのため, EDANS をアミド化させる場合,水酸基が保護された状態でアミド化を行うことが望ましいと考えられる.



図 3-3-7 これまでのグルクロン酸のカルボキシル基のアミド化の例

しかし,現在グルクロン酸の水酸基は全て Bn 基で保護されているため,Pd-C を用 いた加水素分解が必要となる.第二章で述べたように,蛍光発色基を加水素分解前に結 合させてしまうと還元されてしまうため,加水素分解後に蛍光発色基は結合させなくて はならない.そこで,図 3-3-8 に示すように,Indole を結合後,グルクロン酸の水酸基 をアシル基で保護し,EDANS とアミド化した後,けん化することによって標的化合物 VIを得ることを考えた.次節では,グルクロン酸の 2~4 位水酸基の保護基について検 討することにした.



図 3-3-8 グルクロン酸水酸基の保護の順序 (R = acyl)

# Reference

1) Lepage O, Kattnig E, Fürstner A, J. Am. Chem. Soc., 126, 15970-15971 (2004).

## 第四節 グルクロン酸のアミド化の検討

第三節までの結果から、グルクロン酸のカルボキシル基のアミド化では、全ての水酸 基が Bn 基で保護されている状態では成功するが、水酸基が保護されていないグルクロ ン酸では反応が進行しないことがわかった.このことから、第三節で述べたようにグル クロン酸の水酸基をアシル基で保護すれば、EDANS とのアミド化が可能と考えた.ア シル基は塩基性条件下で除去することができるため、EDANS や Indole に影響を与え ない.

まず,メトキシフェニル β-D-グルクロン酸(**M1**)で水酸基の Ac 化を試みた. **M1** を I<sub>2</sub> と Ac<sub>2</sub>O を用いて Ac 化を試みたが,カルボニル基が活性化され 3,6-ラクトン(**M2**) が生成された(図 3-4-1).



図 3-4-1 M1 のヨウ素による Ac 化 Reaction condition: Ac<sub>2</sub>O, I<sub>2</sub>.

この結果から、カルボキシル基が遊離のグルクロン酸の水酸基の保護は困難であることが判明し、グルクロン酸残基は予めアシル基で保護することにした.そこで予備実験として、グルクロン酸の水酸基をピバロイル(Piv)基で保護した単糖(M6)に対しEDANSとのアミド化と Piv 基の除去の検討を行った.

まず, 既知化合物である **M3** と 1-dodecanethiol を MSAW300 存在下 1,2-ジクロロ エタン中, TMSOTf を用いて室温で 7 時間反応させ, アノマー異性体である **M4α**と **M4β**をそれぞれ収率 48%と 22%で得た. これらの 2:1 混合物(**M4αβ**)を MeOH 中, NaOMe を用いて Ac 基の除去を行った後, pyridine 中 60 °C で PivCl を用いて一晩反 応させ, 二行程収率 54%で **M5αβ**を得た. 続いて, **M5αβ**を THF 中, 0 °C で LiOH と H<sub>2</sub>O<sub>2</sub><sup>1)</sup>を加え一晩反応させ, 選択的にメチルエルテルが除去された **M6αβ**を収率 52%で 得た (図 3-4-2).





Reaction conditions: (a) 1-dodecanethiol, TMSOTf, MSAW300 / (CH<sub>2</sub>Cl)<sub>2</sub>, rt, **M4α**: 48% **M4β**: 22%; (b) NaOMe / MeOH, rt; (c) PivCl / pyridine, 60 °C, 54% (2 steps); (d) LiOH, H<sub>2</sub>O<sub>2</sub> / THF, rt, 52%.

次に, M6αβと EDANS のアミド化を行った. DMF 中, M6αβに HOBt と HBTU を 加え, -20 °C で 30 分間撹拌した後, EDANS と DIPEA を加え, 室温で 1 時間反応さ せ, M7αβを収率 90%で得た(図 3·4·3). この結果から, グルクロン酸のアミド化は水酸 基を Piv 基で保護した状態でも行えることがわかった. 最後に, M7αβを MeOH 中, NaOMe で pH 10 に保ち 3 日間反応させ, M8αβを得た.



図 3-4-3 M6 と EDANS のアミド化

Reaction conditions: (a) EDANS, HBTU, HOBt / DMF, rt, 90%; (b) NaOMe / MeOH, rt, pH 10, 3 days.

これまで問題となっていたグルクロン酸のカルボキシル基と EDANS との結合は, Bn 基同様,水酸基を Piv 基で保護している場合でも可能であった.そこで,次節では グルクロン酸の水酸基を Piv 基で保護した二糖を用いて,標的化合物VI(図 3-4-4)の合 成を行うことにした.



# Reference

 Boger D L, Yohannes D, Zhou J, Patane M A, J. Am. Chem. Soc., 115, 3420-3430 (1993).

# 第五節 Piv 基で水酸基を保護した二糖の合成

第四節での成功を受け、水酸基を Piv 基で保護した二糖を利用して、標的化合物VIを 合成することにした.





図 3-5-1 Piv 基を利用した標的化合物VIの逆合成経路

まず, **M5**αβと **F1** を, 1,2-ジクロロエタン-Et<sub>2</sub>O 中 NIS と TfOH を用いて室温で5 時間反応させ, **F2** を収率 95%で得た. **F2** を Ac<sub>2</sub>O, AcOH と TFA を用い 1,6-アンヒ ドロ糖のアセトリシスを行った. 続いて, H<sub>2</sub>NNH<sub>2</sub>·AcOH で 1 位 Ac 基を選択的に除去 することで **F3** を二行程収率 83%で得た. この **F3** に MeClC=CClNMe<sub>2</sub>を用いること で, 収率 77%でクロル糖(**F4**)を合成した(図 3-5-2).



図 3-5-2 二糖供与体(F4)の合成

Reaction conditions: (a) NIS, TfOH, MSAW300 / (CH<sub>2</sub>Cl)<sub>2</sub>–Et<sub>2</sub>O, rt, 95%; (b) Ac<sub>2</sub>O, AcOH, TFA / 0 °C to rt; (c) H<sub>2</sub>NNH<sub>2</sub>·AcOH / DMF, 50 °C, 83% (2 steps); MeClC=CClNMe<sub>2</sub> / CH<sub>2</sub>Cl<sub>2</sub>, rt, 77%. 続いて、二糖供与体(**F4**)と 5-benzyloxycarbonylamino-1-pentanol を、Et<sub>2</sub>O 中 MS4Å 存在下で、AgOTf と 2,4,6-コリジンを縮合剤に用いて、-40 °C で 1 時間反応させた後 徐々に室温にまで上昇させ、5 日間反応させた.その結果、アノマー異性体である **F5**α と **F5**βをそれぞれ収率 52%と 16%で得た(α/β=3.3/1)(図 3-5-3).



図 3-5-3 F4 と 5-benzyloxycarbonylamino-1-pentanol の縮合 Reaction condition: AgOTf, 2,4,6-collidine, MS4Å / Et<sub>2</sub>O, -40 °C to rt, 5 days, F5a: 52%, F5β: 16%.

Staudinger 反応により **F5**αのアジドを還元した後,アミンを保護硫酸化試薬(**X1**)を 用いて *N*−保護硫酸化することで,**F6** を二行程収率 47%で得た.次に,LiOH と H<sub>2</sub>O<sub>2</sub> を用いて選択的なメチルエステルの除去を行い,収率 36%で **F7** を得た.第二節で述べ たように,GlcN の 6 位水酸基の *O*−硫酸化を行う際,遊離のカルボキシル基をもつ基 質での *O*−硫酸化は混合酸無水物が形成される可能性がある.そこで,カルボキシル基 を Pd-C を用いた加水素分解時に除去できる Bn 基で保護することにした.**F7** の CH<sub>2</sub>Cl<sub>2</sub> 溶液に BnOH, HOBt と DIPEA を加え, −20 °C で 30 分間撹拌した後,WSCD·HCl を加え 2 日間反応させ,**F8** を収率 53%で得た.続いて **F8** の *O*−保護硫酸化を CH<sub>2</sub>Cl<sub>2</sub> 中で **X1** を用いて行い,収率 18%で **F9** を得た.

次に, EtOH 中 F9 を触媒量の AcOH と Pd-C 存在下, 加水素分解し, F10 を収率 54% で得た. そして, DMF 中 F10 に 1 M NaPO<sub>4</sub> と 0.15 M NaCl 水溶液を加え, スクシン イミド化した Indole(Y1)と室温で一晩反応させ, 定量的に F11 を得ることに成功した (図 3-5-4).





Reaction conditions: (a) PPh<sub>3</sub>, silica gel / aq THF, rt, pH 4; (b) **X1**, 1,2-dimethylimidazole / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 47% (2 steps); (c) LiOH, H<sub>2</sub>O<sub>2</sub> / aq THF, rt, 36%; (d) BnOH, WSCD·HCl, HOBt, DIPEA / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C, 53%; (e) **X1**, 1,2-dimethylimidazole / CH<sub>2</sub>Cl<sub>2</sub>, 0 °C, 18%; (f) H<sub>2</sub>, Pd-C / EtOH, AcOH (1 drop), 54%; (g) **Y1** / 1 M Na<sub>3</sub>PO<sub>4</sub>, 0.1 M NaCl, aq DMF, rt, quant..

最後に, **F11** と EDANS のアミド化を HBTU と HOBt を用いて行ったが, EDANS を結合させることはできなかった(図 3-5-5).



図 3-5-5 **F11** と EDANS のアミド化 Reaction condition: HBTU, HOBt, DIPEA / DMF, -20 °C to rt.

これまでの操作を省みると、予備実験では成功しても実際の基質では異なる結果を与えている.両者の基質の最も大きな違いは硫酸エステルの有無であり、硫酸エステルの存在が反応を妨げている可能性がある.しかしながら、2種の蛍光発色基を装着したうえで、位置選択的な *N*, *O*-硫酸化の経路をみつけることができなかった.

本研究では、FRET の機能をもつへパラン硫酸オリゴ糖を合成するため、還元末端と 非還元末端に異なる蛍光発色基の導入を試み、還元末端側のアミノリンカーには蛍光発 色基を導入できたが、非還元末端側のカルボキシル基に蛍光発色基を導入できなかった。 第二章から第三章では、非還元末端側は全てカルボキシル基に対して蛍光発色基のアミ ノ基を結合させることを検討した、還元末端側のアミノリンカーに対して蛍光発色基を 結合させることには成功しているため、非還元末端側にもアミノ基をもつリンカーを装 着すれば、蛍光発色基を結合させることができるのではないかと考えている、そのため、 還元末端側と非還元末端側のアミノ基を異なる条件で除去できる保護基で保護する合 成経路で標的化合物の合成を検討していくことを考えている(図 3-5-6). いずれにして も大幅な経路の変更と基質の別途合成が必要となる.



図 3-5-6 非還元末端と還元末端側のアミノ基を異なる保護基で保護した合成経路

## 第六節 まとめ

第三章では,第二章の結果を受け,蛍光発色基を加水素分解後に導入する方法で標的 化合物の合成を行うとともに,グルクロン酸のカルボキシル基のアミド化の検討を行った.

第一節では、蛍光発色基を加水素分解後に導入するため、FRET が起こる蛍光発色基 を Trp と DNS のペアから Indole と EDANS のペアに変更した標的化合物VIの合成経 路を示した.

第二節では、標的化合物VIの合成を行った. 遊離のカルボキシル基をもつ基質の硫酸 化では、カルボキシル基に硫酸化試薬が反応して混合酸無水物を形成し、その一方でア ミノ基が硫酸化されないことが判明した. これを避けるためアミノ基を保護硫酸化した. *O*-硫酸化では、カルボキシル基が混合酸無水物を形成するが、長時間反応させること で 6 位水酸基の硫酸化に成功した. しかし、すべての保護基の除去後、還元末端側に Indole を結合させることはできたが、EDANS を非還元末端側のカルボキシル基に結合 させることができなかった. 第二章では、Bn 基で水酸基が保護されているグルクロン 酸に対して Trp とのアミド化に成功していたため、水酸基が保護されていない状態では カルボキシル基が求核反応を受けにくいと考え、カルボキシル基が求核攻撃されやすい よう、グルクロン酸にリンカーを装着し、EDANS と反応するカルボキシル基の位置を 離してアミド化することを提案した.

第三節では、水酸基が Bn 基で保護された状態でグルクロン酸のカルボキシル基にリ ンカーをアミド結合することに成功した.そして、*N*, *O*-保護硫酸化を行い、加水素分 解によって全ての保護基を除去した後、還元末端側に Indole を導入することに成功し た.しかし、グルクロン酸のリンカーへ EDANS を結合することはできなかった.第 二節と第三節の結果から、リンカーが糖から離れていても、水酸基が遊離ではリンカー 末端でアミド化ができないことが判明したので、グルクロン酸の水酸基をアシル基で保 護することを提案した.

第四節では、グルクロン酸の水酸基をピバロイル(Piv)基で保護した単糖(M6) と EDANS とのアミド結合の形成は、水酸基を Piv 基で保護した場合でも可能であること が明らかになり、Piv 基の除去も行うことができた.

第五節では、水酸基を Piv 基で保護した二糖(**F5**)を用いて、標的化合物の合成を行った.水酸基を Piv 基で保護した二糖(**F5**)での、*N, O*-保護硫酸化後、加水素分解を行い、 還元末端側に Indole を結合させることには成功した. しかし、EDANS を結合させる ことができなかった. 現段階では、二種類の蛍光発色基を装着したオリゴ糖に対し、位 置選択的な *N*, *O*-硫酸化の経路をみつけることができなかった.

本研究では、非還元末端のカルボキシル基に対して蛍光発色基を導入することができなかった.しかし、還元末端側のアミノ基には蛍光発色基を導入できたことから、非還

元末端をアミノ基に変更すれば蛍光発色基を結合させることができるのではないかと 考え、今後検討していくことを考えている.

### 第四章 ケラタン硫酸オリゴ糖の合成

## 第一節 緒言

損傷を受けた中枢神経の軸索は、末梢神経とは異なり再生しないとされてきた.しかし、近年軸索が再生されない原因として損傷神経周辺のグリア瘢痕に蓄積されるプロテオグリカン(PG)やミエリン由来のタンパク質などの再生阻害物質が原因であることがわかってきている.グリア瘢痕に蓄積される PG の GA は、コンドロイチン硫酸(CS) やケラタン硫酸(KS)である.

2001 年に Moon らは, CS が軸索伸長作用に影響を与えることを報告した<sup>1)</sup>. 彼らの 実験では,黒質線条体軸索損傷マウスの軸索損傷部位に, CS 分解酵素であるコンドロ イチナーゼで処理することで,軸索が再生された.

一方,2010 年に Ito らは,*N*-acetylglucosamine 6-*O*-sulfotransferase-1 欠損 (GlcNAc6ST-1-/-)マウスを用いて軸索神経再生と KS の関係について述べている<sup>2)</sup>. 野 生型のマウスでは,脊髄損傷部周辺に KS の発現が確認されるが,GlcNAc6ST-1-/-マウ スでは,KS が発現されていない.脊髄損傷後の運動機能回復テストでは, GlcNAc6ST-1-/-マウスは野生型のマウスより回復するなど,KSPG が軸索神経再生に 影響していた.さらに,マウスの脳から取り出した初代神経細胞で,プレート上での神 経伸長を確認したところ,プレート上の PG が塗布してある部分には神経突起が伸長し なかったが,PG に対してケラタナーゼ処理を行うと,神経突起が伸長した.

また,2011 年に Imagama らは,脊髄損モデルラットの損傷部位に KS を分解酵素 であるケラタナーゼによって処理すると,CS の分解処理と同等の軸索再生が起こることを報告している<sup>3)</sup>.

このように、軸索再生阻害作用には CS だけでなく KS も密接に関与していることが わかってきたが、どのような KS 構造が軸索再生阻害作用に影響を与えているか詳細は 明らかでない.

KS オリゴ糖は、 $\beta$ -ガラクトース(Gal)と $\beta$ -N-アセチルグルコサミン(GlcNAc)で構成された二糖繰返し構造をもつ. KS オリゴ糖は、Gal と GlcNAc の 6 位水酸基がしばしば硫酸化されている.しかし、軸索再生阻害作用に影響を与えている KS オリゴ糖の硫酸化パターンや糖鎖長は明らかになっていない.そのため本章では、軸索再生阻害作用に関与する KS 構造を明らかにするため、位置選択的に硫酸化された KS オリゴ糖を系統的に精密化学合成することにした.そこで、①~④の内容を視野に入れた合成計画が必要となった.

- 軸索再生阻害作用をもつ KS オリゴ糖の硫酸化パターンを明確にするため、4 種類の硫酸化パターンをもつ二糖を合成し、活性を確認する(図 4-1-1). なお、二糖で活性が見られない場合は糖鎖を伸長する.
- ② 軸索再生阻害作用が発現する硫酸化パターンが判明後、単一な硫酸化パターンの KSオリゴ糖で最適な糖鎖長の検討を行う。
- ③ 天然に存在する KS オリゴ糖は単一な硫酸化パターンのみで構成されていない. GAG のどの位置の糖鎖が認識されているかも明らかにするため、2 種類以上の硫酸 化パターンで構成されたハイブリッド型 KS オリゴ糖の合成を行う.
- ④ これらの検証には、糖鎖の還元末端側にアミノ基をもつリンカーを結合させることでビオチンを結合させ、糖鎖を固相担体に固定化することや、蛍光発色基を結合させることも可能な構造とする.



図 4-1-1 KS 二糖の 4 種類の硫酸化パターン

これらの条件をもとに、軸索再生阻害作用に影響を与える KS オリゴ糖の構造を明確 にするため、本章では還元末端にリンカーを介してビオチンを導入した4種類の硫酸化 パターンをもつ KS オリゴ糖を効率的に合成することにした.

References

- Moon L D F, Asher R A, Rhoodes K E, Fawcett J W, *Nat. Neurosci.*, 4, 465-466 (2001).
- 2) Ito Z, Shakamoto K, Imagama S, Matsuyama Y, Zhang H, Hirano K, Ando K, Yamashita T, Ishiguro N, Kadomatsu, K, *J. Neurosci.*, **30**, 5937-5947 (2010).
- 3) Imagama S, Sakamoto K, Tauchi R, Shinjo R, Ohgomori T, Ito Z, Zhang H, Nishida Y, Asami N, Takeshita S, Sugiura N, Watanabe H, Yamashita T, Ishiguro N, Matsuyama Y, Kadomatsu K, *J. Neurosci.*, **31**, 17091-17102 (2011).

# 第二節 合成計画

第一節で述べたように、本研究では、還元末端にリンカーを介してビオチンを導入した 4 種類の硫酸化パターンをもつケラタン硫酸オリゴ糖を効率的に合成することにした(図 4-2-1).



図 4-2-1 標的化合物

これまでの先行研究で, 1989 年 Ogawa らによって KS 四糖: GlcNAc(6S)β1-3Gal(6S)β 1-4GlcNAc(6S)β1-4Gal の合成が行われている <sup>1,2)</sup>(図 4-2-2). また, 2004 年 Misra らに よって *N*-アセチルラクトサミンのオクチルグリコシド: Gal(6S)β1-4GlcNAc, Galβ1-4GlcNAc(6S)の合成が報告されている <sup>3</sup>(図 4-2-3).



図 4-2-2 Ogawa らの合成した KS オリゴ糖



図 4-2-3 Misra らの合成した N-アセチルラクトサミンのオクチルグリコシド

しかし、これらの合成方法では、Gal または GlcNAc の 6 位を選択的に硫酸化し、複数の硫酸化パターンを持つ KS オリゴ糖を系統的に合成することが難しい. 軸索と相互 作用をもつ KS オリゴ糖の構造と糖鎖長を知るには、多くの種類の KS オリゴ糖を合成 しなくてはならない. そこで、本研究では糖鎖伸長の際の受容体にも供与体にも誘導で きる二糖中間体から 4 種類の KS オリゴ糖を効率的に合成することにした.

4 種類の硫酸化パターンをもつ KS オリゴ糖を効率的に合成するためには,①6 位水酸基の保護基の選択的な除去,②縮合の際の立体選択性,③糖鎖伸長の際の受容体と供与体の合成が重要となる.

水酸基の保護基の選択

Gal と GlcNAc の 6 位水酸基を位置選択的に硫酸化するためには, それぞれの 6 位 保護基を選択的に除去しなくてはならない. そのため, 本研究では NAP 基と TBDPS 基に注目した. NAP 基は DDQ で, TBDPS 基は *n*-Bu<sub>4</sub>NF(TBAF)でそれぞれ選択的 に脱保護が可能である. 他の水酸基には, DDQ と TBAF で脱保護されない保護基を 導入することとした.

② 縮合の際の立体選択性

縮合の際の立体選択性の制御では,β-グリコシドを得るため,2 位アミノ基に隣 接基効果を持つ保護基を導入する必要がある.そこで,2位アミノ基の保護基として アシル基であるフタロイル(Phth)を用いることにした.

#### ③ 糖鎖伸長の際の受容体と供与体

糖鎖伸長のための受容体と供与体をそれぞれ合成していては手間がかかる.そこで, 共通の二糖ユニットから受容体と供与体を合成することにした.さらに,受容体とな る二糖のアノマー位に脱離基を導入することにより,供与体にも利用することができ るように設計することで,実験行程数を減らすことにした.そのため,共通二糖ユニッ トの還元末端はチオール基を結合させること考えた.脱離基としてドデシルチオ基 (SC12H25)を用いることにした.

上記の事を考慮し, KS の最小単位である KS 二糖の逆合成経路を図 4-2-4 に, KS オ リゴ糖の逆合成経路を図 4-2-5 に示す.



図 4-2-4 KS 二糖の逆合成経路



図 4-2-5 KS オリゴ糖の逆合成経路

## References

- 1) Kobayashi M, Yamazaki F, Ito Y, Ogawa T, Carbohydr. Res., 201, 51-67 (1990).
- Kobayashi M, Ymazaki F, Ito Y, Ogawa T, *Tetrahedron Lett.*, **30**, 4547-4550 (1989).
- Misra A K, Agnihotri G, Madgusudan S K, Tiwari P, J. Carbohydr. Chem., 23, 191-199 (2004).

## 第三節 共通二糖ユニットの合成

第二節の合成計画に従って、GlcN 単糖受容体の合成を行った.まず、既知化合物で ある **K1**<sup>1)</sup>を Zemplén 反応によって Ac 基の除去を行った後, benzaldehyde dimethylacetal を用いて 4,6 位水酸基をベンジリデンで保護し、**K2**を収率 78%で得た. 続いて、3 位水酸基のベンジル化を NaH を用いて行い、収率 86%で **K3** に誘導した. **K3** のベンジリデンを除去した後、6 位水酸基を TBDPS 化することによって収率 69% で単糖受容体(**K4**)を得た(図 4-3-1).





Reaction conditions: (a) NaOMe / MeOH; (b) PhCH(OMe)<sub>2</sub>, *p*-TsOH·H<sub>2</sub>O / CH<sub>3</sub>CN, 78% (2 steps); (c) BnBr, NaH / DMF, 0 °C-rt, 86%; (d) CSA / CH<sub>2</sub>Cl<sub>2</sub>–MeOH; (e) TBDPSCl, imidazole / DMF, 69% (2 steps).

続いて、二糖ユニットの合成を行った.単糖受容体(K4)と既知化合物である単糖供与体(K5)を、TMSOTf (0.5 eq)を用いて-20 °C で縮合させた.その結果、二糖(K6)は収率 2%しか得られず、K4 のドデシルチオ基が K5 へ分子間転移した K7 のα体とβ体が収率 34%と 64%で得られてしまった(図 4-3-2).



図 4-3-2 二糖ユニットの合成とドデシルチオ基の分子内転移 Reaction condition; TMSOTf, MASW300 / CH<sub>2</sub>Cl<sub>2</sub>, -20 °C, **K6**: 2%, **K7a**: 34%, **K7β**: 64%.

これまでに、イミドイル基をもつ供与体とチオグリコシド糖の受容体との縮合で、チオール基の分子間転移がいくつか報告されている. 2000年にYuらのグループは、イミドイル基をもつ供与体とチオグリコシド糖の受容体との縮合でTMSOTf(0.05 eq)を用いて縮合した時、-10 °Cでは本研究と同様のチオール転移物が生成されるが、 -78 °Cではチオール転移物が生成されなかったことを報告している(図 4-3-3)<sup>2</sup>.



図 4-3-3 Yu らによるイミドイル基をもつ供与体とチオグリコシド糖の受容体との 縮合<sup>2)</sup>

本研究では、Yuらの研究に比べTMSOTfの当量が多かったことや、反応温度が高かったため、ドデシルチオ基の硫黄原子が活性化され、ドデシルチオ基が分子間転移したのではないかと考えた.そこで、Yuらの反応条件を参考に、反応温度を-78 °Cに下げ、TMSOTfの当量を0.05 当量に減らし縮合を行った.その結果、分子間転移物である K7を得ることなく二糖(K6)を得ることができた.しかし、この条件では酸性度が低く、 K6の他にオルトエステル(K8)も得られてしまった.そこで、オルトエステルの生成を 抑制するためTMSOTfを0.1 eqに増やしたところ、K8の生成が減少した(図4-3-4). しかし、縮合時の精製では、K6とK8を分離することができなかったため、Ac基の除 去後に分離することにした.



図 4-3-4 二糖ユニットの合成 Reaction condition; TMSOTf, MA4Å / CH<sub>2</sub>Cl<sub>2</sub>, -78 °C.

二糖(K6)とオルトエステル(K8)の混合物について,MeOH中で NaOMe を用いて Ac 基の除去を行った.反応終了後,Dowex 50Wx8 (H<sup>+</sup> form)で中和し,脱Ac 化された二 糖(K9)を収率 60% (2 行程)で得たほか,K4 も得られた.反応中は TLC 上で K4 が確認 されず,中和後 K4 が確認された.そのため,K6 と K8 を NaOMe を用いて Ac 基の除 去を行っている際はオルトエステル体(K10)だが,中和に用いたイオン交換樹脂の酸性 によって加水分解が起こり,K4 が得られたと考えられる.また,イオン交換樹脂を取 り除く際のろ過では,MeOH のみで洗浄を行うと加水分解したガラクトースはイオン 交換樹脂に吸着し,K10 と K4 のみ得ることができたため,ガラクトースとの分離が容 易になった.ガラクトースが吸着したイオン交換樹脂は水で洗浄することで繰り返し使 用することが可能である(図 4-3-5).



図 4-3-5 Ac 基の除去と精製

Reaction condition: NaOMe / MeOH, then, Dowex 50Wx8 (H+ form).

続いて, 脱 Ac 化した二糖(**K9**)の Gal の 4,6 位水酸基を, 酸性条件下で 2-naphthaldehyde を用いてナフチリデン化を行い, 共通二糖ユニット(**K10**)を収率 89%で得た(図 4-3-6).



図 4-3-6 共通二糖ユニットの合成 Reaction condition: 2-naphthaldehyde, p-TsOH H<sub>2</sub>O / CH<sub>3</sub>CN, rt, 89%.

References

- 1) Son S -H, Tano C, Furuike T, Sakairi N, Carbohydr. Res., 344, 285-290 (2009).
- Yu H, Yu B, Wu X, Hui Y, Han X, J. Chem. Soc., Perkin Trans. 1, 1445-1453 (2000).

### 第四節 二糖供与体の合成

第三節で合成した共通二糖ユニット(**K10**)から,二糖供与体 I と二糖供与体 II の合成 を行った.

まず,二糖供与体 I の合成を行うため,2,3 位水酸基を *p*-methylbenzoyl (MBz)基で 保護することにした. **K10** をピリジン-CH<sub>2</sub>Cl<sub>2</sub>中, DMAPを用いて MBzCl と反応させ、 定量的に **K11** を得た.また,二糖供与体 II を合成するため,Gal の 3 位水酸基の選択 的な All 化を行った.DMF 中 **K10** に NaH と臭化アリル(AllBr)の当量を制限して反応 させることにより,反応性が高い 3 位水酸基のみ All 化された **K12** を収率 40%, 2,3 位がどちらも All 化された **K13** を収率 6%で得た(図 4-4-1).



図 4-4-1 Gal の 2,3 位水酸基の保護

Reaction conditions: (a) MBzCl, DMAP / pyridine-CH<sub>2</sub>Cl<sub>2</sub>, rt, quant; (b) AllBr, NaH / DMF, 0 °C to rt.

続いて,**K11** と **K12** のナフチリデンの還元開裂を行い 6-ONAP 体を得ることにした.

1983年に Garegg らは、4,6 位水酸基をベンジリデンで保護したガラクトース誘導体 を、トルエンまたは THF 中 Me<sub>3</sub>N·BH<sub>3</sub> (6 eq)と AlCl<sub>3</sub> (6 eq)を用いて還元開裂を行い、 トルエン中では 4-OBn 体を、THF 中では 6-OBn 体を選択的に得られることを報告 している<sup>1)</sup>.本来、アルミニウムのような大きなカチオンを用いた場合、立体的にすい ている 6 位に配位して 4-OBn 体が得られ、H+を用いた場合は電気陰性度の高い 4 位 水酸基に配位して 6-OBn を得ることができることが知られている.彼らは、溶媒に よって位置選択性が異なったのは、THF の溶媒和によりアルミニウムのカチオンが 6 位に配位できなくなり、6-OBn 体が得られたと考えている(図 4-4-2).



図 4-4-2 Garegg らによるベンジリデンの還元開裂<sup>1)</sup>

そこで本研究でもこの方法を参考にし、THF 中 Me<sub>3</sub>N·BH<sub>3</sub>(6 eq)と AlCl<sub>3</sub>(6 eq)を用 いて6-ONAP体を選択的に得るナフチリデンの還元開裂を行った(図4-4-3,表4-4-1). その結果, K12 から収率 62%で選択的に 6-ONAP(K14)のみを得ることができた(表 4-4-1, Entry 1). しかし, K11 では, 6-ONAP(K15)のみを選択的に得ることはできた が、収率が約 30%であったうえ、未反応の K11 が多く残ってしまった(表 4-4-1, Entry 2).

2003 年に Nifantiev らのグループは、この系に H<sub>2</sub>O を加えることで、AlCl<sub>3</sub>のみの 時より反応時間が短縮されたことと収率が向上したことについて報告している(図 4-4-4)<sup>2)</sup>. そこで, K11 の還元開裂に対しても H<sub>2</sub>O(1 drop)を加えたところ, 収率 92% で 6-ONAP のみを得ることに成功した(表 4-4-1, Entry 3). 触媒量の水を加えること により発生したルイス酸となる H+により反応が促進され,還元開裂の位置選択性も維 持され、収率が向上したと考えられる.



図 4-4-3 ナフチリデンの環元開裂

|       |        |           |                 |                 | Yield(%) |        |          |
|-------|--------|-----------|-----------------|-----------------|----------|--------|----------|
| Entry | Method | Substrate | OR <sup>1</sup> | OR <sup>2</sup> | 6-ONAP   | 4-ONAP | Recovery |
| 1     | А      | K12       | Н               | All             | 59       | -      | -        |
| 2     | А      | K11       | MBz             | MBz             | 30       | -      | 60       |
| 3     | В      | K11       | MBz             | MBz             | 92       | -      | -        |

表 4-4-1 ナフチリデンの還元開裂の反応条件と収率

Method A:  $Me_3N \cdot BH_3$  (6 eq),  $AlCl_3$  (6 eq), MS4Å / THF under a dry Ar.

Method B: Me<sub>3</sub>N·BH<sub>3</sub> (6 eq), AlCl<sub>3</sub> (6 eq), H<sub>2</sub>O (1 drop) / THF.



図 4-4-4 Nifantiev らによるベンジリデンの還元開裂 <sup>2)</sup> Reaction conditions: (a) Me<sub>3</sub>N·BH<sub>3</sub> (6 eq), AlCl<sub>3</sub> (6 eq) / THF, rt, 48 h, 13%; (b) Me<sub>3</sub>N·BH<sub>3</sub> (6 eq), AlCl<sub>3</sub> (6 eq), H<sub>2</sub>O (2 eq) / THF, rt, 5 h, 91%.

次に、二糖供与体 I と II の合成を行った. K14 は Gal の 4 位水酸基を MBz で保護 することで,収率 98%で二糖供与体 I(K16)へと誘導した.また,Gal の 3 位水酸基を 選択的に脱保護することが可能な All 基で保護した K15 は,Gal の 2,4 位水酸基を MBz 基で保護することで,二糖供与体 II(K17)へと誘導した(図 4-4-5).



図 4-4-5 二糖供与体 I, II の合成 Reaction condition: MBzCl, DMAP / pyridine-CH<sub>2</sub>Cl<sub>2</sub>, rt.

# References

- Ek M, Garegg P J, Hultberg H, Oscarson S, J. Carbohydr. Chem., 2, 305-3011 (1983).
- 2) Sherman A A, Mironov Y V, Yudina O N, Nifantiev N E, *Carbohydr. Res.*, **338**, 697-703 (2003).

## 第五節 KS 二糖の合成

本節では,第四節で合成した二糖供与体 1(K22)を用いて,KS オリゴ糖の最小単位で 異なる硫酸化パターンをもつ KS 二糖(KS-1~4)の合成を行う(図 4-5-1).



図 4-5-1 標的化合物(KS-1~4)

初めに,二糖供与体 I(**K16**)と Benzyl *N*-(2-hydroxyethyl)carbamate を Et<sub>2</sub>O-1,2-ジクロロエタンに溶解し,NIS と TfOH を加え,室温で 6 時間反応させ,**K18** を定量 的に得た.得られた **K18** を THF 中, TBAF と AcOH を加え 13 日間反応させることで, TBDPS 基を除去した **K19** を二行程収率 79%で得た(図 4-5-2).



## 図 4-5-2 リンカーとの縮合と TBDPS 基の除去

Reaction conditions: (a) Benzyl N-(2-hydroxyethyl)carbamate, NIS, TfOH, MSAW300 / Et<sub>2</sub>O -(CH<sub>2</sub>Cl)<sub>2</sub>, rt; (b) 1 M TBAF, AcOH / THF, rt, 79% (2 steps).

**K19** を合成中間体として異なる硫酸化パターンをもつ 4 種類の KS 二糖(**KS**-1~4)を 得るため, Gal または GlcN の 6 位の選択的な保護基の除去, *O*-硫酸化, 全ての保護 基の除去を経て, ビオチンリンカーの装着を行った.

Gal の 6 位のみ *O*-硫酸化を行うため, **K19** の GlcN の 6 位水酸基を Ac 基で保護し, CH<sub>2</sub>Cl<sub>2</sub>-MeOH 中, DDQ と触媒量の H<sub>2</sub>O を加え,3日間反応させ,二行程収率 84% で **K20** を得た.一方,Gal と GlcN の 6 位を *O*-硫酸化するため,**K19** の Gal の 6 位 NAP 基も DDQ で除去し,収率 78%で **K21** を得た.こうして得た,**K19~K21** を DMF 中,SO<sub>3</sub>·NMe<sub>3</sub>を用いて 60 °C で 1~3 時間反応させ,位置選択的に *O*-硫酸化された **K22~K24** を高収率で得た.続いて,Phth 基と MBz 基を除去するため,**K19,K22~**  **K24** を EtOH に溶解し、1,3-diaminopropane を加え一晩加熱還流を行った後、MeOH 中, Ac<sub>2</sub>O と Et<sub>3</sub>N を加えた. 硫酸基を Na 塩に変換するため, MeOH または 50% MeOH 水溶液中, NaOH 水溶液を加え 4~9 時間加熱還流することで, **K25~K28** に誘導した (図 4-5-3).

**K25~K28**のZ基, Bn 基と NAP 基を除去するため, Pd-black を用いて加水素分解 を行った. 最後に, 還元末端側のアミンにビオチンリンカーを結合させることによって, 異なる硫酸化パターンをもつ KS 二糖(KS-1~4)を合成することに成功した(図 4-5-4).



図 4-5-3 K19 の位置選択的な O-硫酸化

Reaction conditions: (a) Ac<sub>2</sub>O, pyridine, quant.; (b) DDQ, cat. H<sub>2</sub>O / CH<sub>2</sub>Cl<sub>2</sub>–MeOH, 84% for **K20** (2 steps), 78% for **K21**; (c) SO<sub>3</sub> · NMe<sub>3</sub> / DMF, 60 °C, 88% for **K22**, quant. for **K23**, 90% for **K24**; (d) 1,3-diaminopropane / EtOH, reflux; (e) Ac<sub>2</sub>O, Et<sub>3</sub>N / MeOH; (f) NaOH / MeOH (for **K26**, **K27**), 50% MeOH (for **K28**), reflux.



図 4-5-4 保護基の除去とビオチンリンカーの結合

Reaction conditions: (a) H<sub>2</sub>, Pd-black / aq EtOH + dil AcOH (for **K25**), H<sub>2</sub>, Pd-black / aq 2-PrOH + dil AcOH (for **K26**, **K27**), H<sub>2</sub>, Pd-black / dil AcOH (for **K28**); (b) NHS-PEG<sub>4</sub>-biotin, 1 M Na<sub>3</sub>PO<sub>4</sub>, 0.15 M NaCl.

# 第六節 共通四糖の合成

本節では, 硫酸化パターンの異なる KS 四糖を合成するための共通四糖(図 4-6-1)の 合成を検討した.



図 4-6-1 共通四糖の構造

二糖供与体 II(K17)と benzyl *N*-(2-hydroxyethyl)carbamate を NIS-TfOH (Pass A) または NIS-AgOTf (Pass B)を用いて,室温で反応させた. Pass A では,K29 を得る ことができたが,低収率(35%)であった.この原因として,反応系内で発生した I+が All 基に付加した副生成物が生成されたことが考えられる.一方,Pass B では K29 を定量 的に得ることができた.この系では Ag+が All への I+の配位を阻害したと考えられる. 続いて,(1,5-Cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) PF6を用いて K29 の All 基を,ビニル基に転位した後,I2で加水分解を行い,二糖受容体 I(K30)を定量的に 得た(図 4-6-2).



図 4-6-2 二糖受容体 I(K30)の合成

Reaction conditions; (a) (Pass A) benzyl N-(2-hydroxyethyl)carbamate , NIS, TfOH / CH<sub>2</sub>Cl<sub>2</sub>, rt, 1 h, 35%; (PassB) benzyl N-(2-hydroxyethyl)carbamate , NIS, AgOTf / CH<sub>2</sub>Cl<sub>2</sub>, rt, 1 h, quant.; (b) (1,5-cyclooctadiene)bis(methyldiphenylphosphine)iridium(I) PF<sub>6</sub> / THF, rt, 1 h, then I<sub>2</sub>, NaHCO<sub>3</sub>, H<sub>2</sub>O, 2 h, quant. (2 steps).

次に、二糖供与体 I(**K16**)と二糖受容体 I(**K30**)の縮合の最適化を行った(図 4-6-3, 表 4-6-1). Entry 1, 2 では、縮合剤に NIS と AgOTf または TMSOTf を、溶媒に CH<sub>2</sub>Cl<sub>2</sub> を用いた. その結果、四糖(**K31**)はβ選択的に得られたが、低収率(約 20%)であり、1,2 -脱離物(**K32**)が収率 70%程度で得られてしまった.一方、二糖受容体 I(**K30**)を合成し た際は相当する 1,2-脱離物は得られなかった. このことは,四糖合成における K30 の Gal 残基は,2,4 位を電子求引性基である MBz 基で保護しているので,benzyl N-(2-hydroxyethyl)carbamate に比べ,3 位水酸基の反応性は低いと考えられる.その ため,K30 とのグリコシル化より早く脱離が起こったと考えられる.

1989 年 Nunomura らは、GalNPhth が還元側にある二糖供与体と三糖受容体の縮合 を、縮合剤に CuBr<sub>2</sub>-AgOTf-*m*-Bu<sub>4</sub>NBr を、溶媒に CH<sub>3</sub>NO<sub>2</sub>を用いて、収率 65%(α/β=1/8) で目的とする五糖を得ている.ただし、溶媒に(CH<sub>2</sub>Cl)<sub>2</sub>を用いた場合は、本研究と同様 に、供与体に対して収率 72%で 1,2-脱離物が得られていた<sup>1)</sup>.この条件を本縮合系に 適用した結果(表 4-6-1, Entry 3)、四糖(**K31**)が収率 81% (α/β=60/40)で得られ、脱離物 (**K32**)と加水分解物(**K33**)をどちらも収率 10%未満に抑えることができた.

Entry 3 のように、CH<sub>3</sub>NO<sub>2</sub>中での縮合では、1,2-脱離物の生成を抑制することが できたため、Entry 1 の系を CH<sub>3</sub>NO<sub>2</sub>中で行えば、 $\beta$ -異性体を高収率で得られると考 えた.しかし、四糖 (K31)の収率が 30%( $\alpha$ / $\beta$ =60/40)で $\beta$ 選択性が低下し、さらに 1,2-脱離物が収率約 50%で得られてしまった(表 4-6-1, Entry 4). この結果から、縮合剤で はなく溶媒が、生成するアノマーの選択性に影響を与えたと考えられる.

非極性溶媒の場合, Phth 基の隣接基効果で非局在化カチオン(**Z2**)が形成されるため, SN2 反応が起こり,  $\beta$ 選択的にグリコシル化することができた. しかし, 極性溶媒を用 いた場合,  $\alpha$ -異性体が多く得られている. この原因として, 非局在化カチオンは形成 されるが, この場合, CH<sub>3</sub>NO<sub>2</sub>がアノマー炭素と反応して新たなカルボカチオン中間体 を形成していると考えられる(図 4-6-4). 極性分子である CH<sub>3</sub>NO<sub>2</sub>がβ位に配位すること によって **Z2** を形成し, SN2 反応を阻害したと考えられる. そのため平衡が左に寄り, **Z1** のアノマー位で受容体が SN1 的に反応し,  $\alpha$ 体の四糖(**K31**)が優勢に得られたと推測 した.

Entry 5 では脱離基にイミドイル基をもつ K34 を用いて, 非極性溶媒中(CH<sub>2</sub>Cl<sub>2</sub>)でグ リコシル化を行った.ここでは脱離物が生成されることを考慮し, K34 を過剰に加えた. その結果, 脱離物(K32)も得られたが, 四糖(K31)をβ選択的に収率 75%で得ることに成 功した.

102


図 4-6-3 共通四糖(K31)の合成

| Entry | Donor             | Promoter                | Solvent                         | Temperature             | Time - | Yield (%)    |           |           |
|-------|-------------------|-------------------------|---------------------------------|-------------------------|--------|--------------|-----------|-----------|
|       | (eq) <sup>#</sup> | (eq) <sup>\$</sup>      |                                 |                         |        | (K31)        | (K32)*    | (K33)*    |
| 1     | K16               | NIS (2.0)               | CH <sub>2</sub> Cl <sub>2</sub> | -20 °C $\rightarrow$ rt | 4 h    | β 23         | ~70       | 0         |
|       | (1.2)             | AgOTf (0.5)             |                                 |                         |        |              |           |           |
| 2     | K16               | NIS (2.0)               | CH <sub>2</sub> Cl <sub>2</sub> | -40 °C $\rightarrow$ rt | 3 h    | β <b>17</b>  | ~70       | 0         |
|       | (1.5)             | TMSOTf (0.04)           |                                 |                         |        |              |           |           |
| 3     | K16               | CuBr <sub>2</sub> (1.5) |                                 |                         |        | or <b>10</b> |           |           |
|       | (1 5)             | <i>n</i> -Bu₄NBr (0.16) | $CH_3NO_2$                      | –20 °C $\rightarrow$ rt | o.n.   | 0.49         | $\sim$ 10 | $\sim$ 10 |
|       | (1.5)             | AgOTf (1.5)             |                                 |                         |        | β <b>32</b>  |           |           |
| 4     | K16               | NIS (2.0)               | CH <sub>3</sub> NO <sub>2</sub> | -20 °C $\rightarrow$ rt | 0.N.   | α 18         | $\sim$ 50 | 0         |
|       | (1.5)             | AgOTf (0.5)             |                                 |                         |        | β <b>12</b>  |           |           |
| 5     | K34               | TMSOTf (0.6)            | CH <sub>2</sub> Cl <sub>2</sub> | -40 °C $\rightarrow$ rt | 1 h    | β 75         | $\sim$ 50 | 0         |
|       | (3.0)             |                         |                                 |                         |        |              |           |           |

表 4-6-1 K31 の合成の反応条件

#Acceptor に対する当量 \* Donor に対する当量 \* Donor に対しての収率



図 4-6-4 2-NPhth をもつグリコシル供与体を用いる CH<sub>3</sub>NO<sub>2</sub>中での結合の 反応経路予想

#### Reference

1) Nunomura S, Mori M, Ito Y, Ogawa T, Tetrahedron Lett., 30, 5619-5622 (1989).

#### 第七節 まとめ

第四章ではケラタン硫酸オリゴ糖の合成について述べた.

第一節では、軸索再生阻害作用とケラタン硫酸の関係についてまとめ、軸索再生阻害 作用に影響を与えるケラタン硫酸の構造を明確にするため、4 種類の硫酸化パーンをも つケラタン硫酸オリゴ糖の系統的な合成計画について述べた.

第二節では、4種類の硫酸化パターンをもつケラタン硫酸オリゴ糖を効率的に得るための合成経路を示した。

第三節では、アミノ基を Phth、水酸基を Ac 基で保護したドデシルチオグリコシル ーグルコサミン誘導体(K1)から単糖受容体(K4)へと誘導した. K4 と単糖供与体(K5)と の縮合では、-20 °C では K4 のドデシルチオ基の分子間転移が起こり、目的物が得ら れないが、-78 °C では高収率で二糖の立体選択的な縮合に成功し、共通二糖ユニット (K10)へと誘導した.

第四節では、共通二糖ユニット(K10)のナフチリデンの還元開裂を検討し、二糖供与体 I と二糖供与体 II の合成を行った. K11 と K12 のどちらからも 6-ONAP を選択的 に得られたが、K12 の非水系の還元開裂は低収率であった. しかし、H<sub>2</sub>O を加えるこ とでルイス酸となる H+が発生し反応が促進され、位置選択性を維持したまま収率が向上した.

第五節では、ケラタン硫酸二糖の位置選択的脱保護と*O*ー硫酸化を行い、還元末端に ビオチンリンカーが結合した 4 種類の硫酸化パターンをもつケラタン硫酸二糖を系統 的に得ることに成功した.

第六節では,脱離基の異なる二糖供与体(ドデシルチオグリコシド: K16,トリクロロ アセトイミデート: K34)と二糖受容体(K30)の縮合条件の検討を行った. 二糖供与体 (K16, K34)を非極性溶媒(CH<sub>2</sub>Cl<sub>2</sub>)中で縮合を行った場合,K34では収率 75%でβ選択的 に四糖を得ることができたが,K16ではβ四糖の収率が 23%となり 1,2-脱離物が多く 得られたため低収率となった.極性溶媒(CH<sub>3</sub>NO<sub>2</sub>)の場合,1,2-脱離物の生成は抑制で きたがβ選択性が低下した.非極性溶媒の場合,Phth基の隣接基効果で非局在型カチオ ンが形成されて S<sub>N</sub>2 反応が起こり,β選択的に四糖を得ることができたと考えられる. しかし,極性溶媒の場合非局在化カチオンであるアノマー炭素と CH<sub>3</sub>NO<sub>2</sub>がβ位で結合 し,  $\alpha$ 方向からの求核攻撃を誘導し, $\alpha$ 体が優勢に得られたと考えた.得られた四糖の 位置選択的な脱保護,O-硫酸化,ビオチン化や,糖鎖伸長が今後の課題である.

105

#### General methods

<sup>1</sup>H-NMR 及び HH-cosy スペクトルは JEOL·JNM-ECP500 MHz または Bruker ADVANCE II 600 MHz により測定した.特に断らない限り, CDCl<sub>3</sub> と CD<sub>3</sub>OD 中での 測定には Me<sub>4</sub>Si(0 ppm)を基準物質に用いた.化学シフトはδ(ppm)で,結合定数は J(Hz) で示した. MALDI-TOF-MS は BRUKER AutoFlex-T2 で測定した.マトリックスには 2,5-Dihydroxybenzoic acid(DHB)を用いた.ESI-HRMS は Thermo Scientific Exactive Plus で測定した.旋光度は 0.5 dm のセルを用いて, JASCO polarimeter DIP-18-1 で 測定した.

シリカゲルカラムクロマトグラフィーと薄層クロマトグラフィー(TLC)には Silica Gel 60 (Merck)と Silica Gel 60N (中性; 関東化学)を用いた. ゲルろ過担体には Sephadex LH-20(GE Healthcare) と S-X1(Bio·Rad)を, オクタデシル逆相クロマトグラフィーには (BOND ELUT, Agilent Technologies)を用いた. モレキュラシーブス 4Å と AW300 (GL Sience Inc.)は反応前に 200 °C で 2 時間減圧乾燥して用いた. すべての無水条件の有機反 応はモレキュラシーブス上で乾燥した溶媒を使い, Ar 雰囲気下にて行った.

反応終了後,反応液を CHCl<sub>3</sub> または EtOAc で抽出し,有機層を飽和重曹水と飽和食 塩水で洗浄し,無水硫酸マグネシウムで乾燥させ,ろ過,濃縮した.これを反応後処理 の常法とした.

#### 第一章

4,6-O-Benzylidene- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ -1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (A2)

A1(1.80 g, 1.81 mmol)を THF(9 mL)に溶解し, benzaldehyde dimethylacetal (1.4 mL, 9.1 mmol)と触媒量の *p*-TsOH·H<sub>2</sub>O を pH 3 以下になるまで加え, 終夜撹拌した. 反応液 は Et<sub>3</sub>N で中和後, 濃縮した. 濃縮残渣はシリカゲルカラム(3:1–1:5 *n*-hexane–EtOAc)で 精製し, A2(829.5 mg)を収率 87%で得た.  $[\alpha]_D$  –9.0 (*c* 0.49, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.50–7.31 (m, 10H, Ar H), 5.53 (s, 1H, PhC<u>H</u>), 5.50 (s, 1H, H-1<sup>1</sup>), 4.70 (m, 1H, H-5<sup>1</sup>), 4.65, 4.59 (ABq, 2H, *J* = 12.00 Hz, PhC<u>H</u><sub>2</sub>), 4.51 (d, 1H, *J*<sub>1,2</sub> = 7.62 Hz, H-1<sup>II</sup>), 4.23 (dd, 1H, *J*<sub>5,6b</sub> = 4.98 Hz, *J*<sub>gem</sub> = 10.50 Hz, H-6a<sup>II</sup>), 4.16 (d, 1H, *J*<sub>gem</sub> = 7.23 Hz, H-6a<sup>II</sup>), 3.84 (br s, 1H, H-3<sup>I</sup>), 3.82 (br t, 1H, *J* = 9.23 Hz, H-3<sup>II</sup>), 3.80 (m, 2H, H-4<sup>I</sup>, 6b<sup>II</sup>), 3.75 (br t, 1H, *J* = 10.26 Hz, H-6b<sup>III</sup>), 3.57 (dd, 1H, *J*<sub>2,3</sub> = 8.94 Hz, H-2<sup>III</sup>), 3.56 (br t, 1H, *J* = 9.27 Hz, H-4<sup>II</sup>), 3.39 (dr t, 1H, H-5<sup>II</sup>), 3.23 (s, 1H, H-2<sup>II</sup>). Anal. Calcd for C<sub>26</sub>H<sub>29</sub>N<sub>3</sub>O<sub>9</sub>·H<sub>2</sub>O: C, 57.23; H, 5.74. Found: C, 57.28; H, 5.46.

# 2,3-Di-O-benzyl-4,6-O-benzylidene- $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 4)-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (A3)

A2(809.3 mg, 1.53 mmol)を DMF (30 mL) に溶解し、Ag<sub>2</sub>O(1.43 g, 6.12 mmol)、KI (515.5 mg, 3.06 mmol)、BnBr (0.70 mL, 6.12 mmol)を加え、0°C で 6 時間撹拌した.反応 液は EtOAc で希釈し、セライトろ過した. 有機層は 1 M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> で洗浄した後、常法に 従い後処理を行い、濃縮した. 濃縮残渣はシリカゲルカラム(7:1–2:1 *n*-hexane–EtOAc) で精製し、収率 93%で A3(1.00 g)を得た.  $[\alpha]_D$  –16 (*c* 0.65, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.50–7.21 (m, 20H, Ar H), 5.56 (s, 1H, PhC<u>H</u>), 5.51 (s, 1H, H-1<sup>1</sup>), 4.96, 4.79 (ABq, 2H, J = 10.54 Hz, PhC<u>H</u><sub>2</sub>), 4.92, 4.81 (ABq, 2H, J = 11.46 Hz, PhC<u>H</u><sub>2</sub>), 4.67, 4.62 (ABq, 2H, J = 11.91 Hz, PhC<u>H</u><sub>2</sub>), 4.58 (br d, 1H, J = 6.42 Hz, H-5<sup>1</sup>), 4.54 (d, 1H,  $J_{1,2} = 7.33$  Hz, H-1<sup>II</sup>), 4.20 (dd, 1H,  $J_{5,6a} = 5.04$  Hz,  $J_{gem} = 10.54$  Hz, H-6a<sup>II</sup>), 3.74 (br t, 1H, J = 11.00 Hz, H-6b<sup>II</sup>), 3.72 (s, 1H, H-4<sup>I</sup>), 3.72 (br t, 1H, J = 8.71 Hz, H-3<sup>II</sup>), 3.68 (t, 1H,  $J_{3,4} = J_{4,5} = 9.16$  Hz, H-4<sup>II</sup>), 3.55 (br t, 1H, J = 8.03 Hz, H-2<sup>II</sup>), 3.30 (dd, 1H, H-5<sup>II</sup>), 3.27 (s, 1H, H-2<sup>I</sup>). Anal. Calcd for C<sub>40</sub>H<sub>41</sub>N<sub>3</sub>O<sub>9</sub>: C, 67.87; H, 5.85; N, 5.94. Found: C, 67.95; H, 5.82; N, 5.64.

# 2,3-Di-O-benzyl- $\beta$ -D-glucopyranosyl- $(1 \rightarrow 4)$ -1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (A4)

A3(2.89 g, 4.10 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(40 mL)と MeOH(40 mL)に溶解し, CSA(0.3 g, 1.3 mmol) を加え, 2日間撹拌した.反応液は Et<sub>3</sub>N で中和し,濃縮した.濃縮残渣はシリカゲル

カラム(3:1-1:4 *n*-hexane-EtOAc)で精製し, A4(2.25 g)を収率 92%で得た. この化合物は これ以上精製することなく次の反応に用いた.

(Methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (A5)

A4(122.0 mg, 0.172 mmol)を EtOAc(3 mL)に溶解し, TEMPO(0.4 mg, 5 µmol), KBr(2.6 mg, 22 µmol), *n*-Bu<sub>4</sub>NBr(4.0 mg, 12 µmol), 飽和重曹水(1.7 mL)を加え, 0 °C に冷却した後, 4% NaClO (3 mL)を加え, 撹拌した. 1 時間後, 1 M HCl と 1 M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, 飽和食塩水, CHCl<sub>3</sub>を加えた. 有機層は, 常法に従い後処理し, 濃縮した. 濃縮残渣をトルエン (0.25 mL) – MeOH(0.75 mL)に溶解し, TMSCHN<sub>2</sub>を加え, 撹拌し, 濃縮した. 濃縮残渣 はシリカゲルカラム(8:1–1:2 *n*-hexane–EtOAc)で精製し, A5(99.5 mg)を二行程収率 78% で得た.  $[\alpha]_D$  +12 (*c* 0.58, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.39–7.26 (m, 15H, Ar H), 5.52 (s, 1H, H-1<sup>1</sup>), 5.01, 4.74 (ABq, 2H, *J* = 10.54 Hz, PhC<u>H</u><sub>2</sub>), 4.92, 4.83 (ABq, 2H, *J* = 11.23 Hz, PhC<u>H</u><sub>2</sub>), 4.67, 4.64 (ABq, 2H, *J* = 11.69 Hz, PhC<u>H</u><sub>2</sub>), 4.60 (br d, 1H, *J* = 5.04 Hz, H-5<sup>1</sup>), 4.57 (d, 1H, *J*<sub>1,2</sub> = 7.33 Hz, H-1<sup>II</sup>), 4.09 (d, 1H, *J*<sub>5,6a</sub> = 0.91 Hz, *J*<sub>gem</sub> = 7.33 Hz, H-6a<sup>1</sup>), 3.96 (t, 1H, *J*<sub>2,3</sub> = *J*<sub>3,4</sub> = 1.60 Hz, H-3<sup>1</sup>), 3.90 (ddd, 1H, *J*<sub>3,4</sub> = 8.71 Hz, *J*<sub>4,5</sub> = 9.62 Hz, *J*<sub>4,0H</sub> = 2.53 Hz, H-4<sup>II</sup>), 3.79–3.74 (m, 6H, H-4<sup>I</sup>, 6b<sup>I</sup>, 5<sup>II</sup>, COOMe), 3.56 (dd, 1H, *J*<sub>2,3</sub> = 9.73 Hz, H-2<sup>II</sup>), 3.51 (br t, 1H, *J* = 8.94 Hz, H-3<sup>II</sup>), 3.21 (s, 1H, H-2<sup>I</sup>), 2.91 (d, 1H, OH-4<sup>II</sup>). Anal. Calcd for C<sub>34</sub>H<sub>37</sub>N<sub>3</sub>O<sub>10</sub>: C, 63.04; H, 5.77; N, 6.49. Found: C, 62.89; H, 5.78; N, 6.14.

# (Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (**A8**)

CH<sub>2</sub>Cl<sub>2</sub>(43 mL)-Et<sub>2</sub>O(8.6 mL)に溶解した A3(2.28 g, 3.23 mmol)に, MS4Å(2.85 g)存在下, BH<sub>3</sub>·NMe<sub>3</sub>(4.72 g, 64.6 mmol)を加え, 0 ℃ で 30 分間撹拌した後, Et<sub>2</sub>O(13 mL)に溶かし た AlCl<sub>3</sub> (1.75 g, 12.9 mmol)を加えて撹拌した.反応液は, 1 M H<sub>2</sub>SO<sub>4</sub>を加え中和後, セ ライトろ過した. 有機層は常法に従い後処理し, 濃縮した. 濃縮残渣はシリカゲルカラ ム(10:1-1:1 *n*-hexane-EtOAc)で精製し, A6 と A7 の混合物(1.72 g)を得た.

A6 と A7 の混合物の一部(360.3 mg, 0.51 mmol)を EtOAc(12 mL)と H<sub>2</sub>O(2 mL)に溶解し, TEMPO(24.0 mg, 0.15 mmol), 1 M NaBr(0.3 mL), 1 M *n*-Bu<sub>4</sub>NBr(0.5 mL), 飽和重曹水(1.4 mL)を加え, 0 °C に冷却した後, 4% NaClO (1.7 mL)を加え, 1 時間撹拌した.反応液を 1 M HCl で中和したのち, *t*-BuOH(13 mL), 2-methyl-2-butene(5.5 mL), H<sub>2</sub>O(13 mL), NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O(1.37 g), NaClO<sub>2</sub>(1.37 g)を加え, 3 時間撹拌した.反応液は EtOAc で希釈 し,常法に従い後処理し,濃縮した.濃縮残渣はシリカゲルカラム(15:1–1:3 toluene– EtOAc)で精製し, A8 と A6 の混合物(381.0 mg) を得た.これを CH<sub>2</sub>Cl<sub>2</sub>(26 mL)に溶解し, AllOH(0.1 mL, 1.6 mmol), DIPEA (92 µL, 0.53 mmol)と HOBt(216.3 mg, 1.59 mmol)を加え, -20 °C で 30 分間撹拌後,WSCD·HCl(203.2 mg, 1.06 mmol)を加え,終夜撹拌した.反応

液は CHCl<sub>3</sub>で希釈し, 有機層を常法に従って後処理し, 濃縮した. 濃縮残渣をシリカゲ ルカラム(15:1-1:1 n-hexane-EtOAc)で精製し, A9(268.6 mg)を二行程収率 69%で得た. また, A6(82.4 mg)はこの反応では変化せず, 収率 23%で得られた. A9: [α]<sub>D</sub>+11 (c 0.91, CHCl<sub>3</sub>); <sup>1</sup>H NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.37–7.21 (m, 20H, Ar H), 5.84 (m, 1H, All), 5.51 (s, 1H, H-1<sup>I</sup>), 5.30 (d, 1H, J = 17.18 Hz, All), 5.19 (d, 1H, J = 10.31 Hz, All), 5.03, 4.73 (ABq, 2H, J = 10.54 Hz, PhCH<sub>2</sub>), 4.94, 4.81 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.81, 4.63 (ABq, 2H,  $J = 11.00 \text{ Hz}, \text{PhC}_{\underline{\text{H}}_2}$ , 4.64–4.56 (m, 6H, H-5<sup>I</sup>, 1<sup>II</sup>, All, PhC $\underline{\text{H}}_2$ ), 4.08 (d, 1H,  $J_{\text{gem}} = 7.33 \text{ Hz}$ , H-6a<sup>I</sup>), 3.91–3.87 (m, 2H, H-4<sup>I,II</sup>), 3.90 (s, 1H, H-3<sup>I</sup>), 3.76 (m, 1H, H-5<sup>II</sup>), 3.75 (m, 1H, H-6b<sup>I</sup>), 3.66 (t, 1H,  $J_{2,3} = J_{3,4} = 8.94$  Hz, H-3<sup>II</sup>), 3.61 (t, 1H,  $J_{1,2} = 8.94$  Hz, H-2<sup>II</sup>), 3.26 (s, 1H, H-2<sup>I</sup>). Anal. Calcd for C<sub>43</sub>H<sub>45</sub>N<sub>3</sub>O<sub>10</sub>·0.4H<sub>2</sub>O: C, 67.00; H, 6.17. Found: C, 67.34; H, 5.93.  $(2,3,6-Tri-O-benzyl-\beta-D-glucopyranosyluronic acid-(1 \rightarrow 4)-1,6-anhydro-2-azido-3-O-benzyl-$ 2-deoxy-β-D-glucopyranose (A6):  $[\alpha]_D$  +9.4 (c 0.98, CHCl<sub>3</sub>); <sup>1</sup>H NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.39–7.21 (m, 20H, Ar H), 5.50 (s, 1H, H-1<sup>1</sup>), 5.04, 4.73 (ABq, 2H, J = 10.87 Hz, PhCH<sub>2</sub>), 4.96, 4.73 (ABq,  $2H, J = 11.53 Hz, PhCH_2$ ,  $4.58 (m, 3H, H-5^{I}, PhCH_2)$ , 4.53, 4.50 (ABq, 2H, J = 11.95 Hz, J)PhCH<sub>2</sub>), 4.52 (d, 1H,  $J_{1,2} = 7.68$  Hz, H-1<sup>II</sup>), 4.06 (dd, 1H,  $J_{5.6a} = 0.60$  Hz,  $J_{gem} = 7.38$  Hz, H-6a<sup>I</sup>), 3.96 (br t, 1H, J = 1.57 Hz, H-3<sup>1</sup>), 3.74 (s, 1H, H-4<sup>1</sup>), 3.71 (dd, 1H,  $J_{5.6a} = 6.84$  Hz,  $J_{\text{gem}} = 10.38 \text{ Hz}, \text{H-6a}^{\text{II}}$ ), 3.70 (dd, 1H,  $J_{5,6b} = 3.00 \text{ Hz}, \text{H-6b}^{\text{I}}$ ), 3.66 (dd, 1H,  $J_{5,6b} = 5.76 \text{ Hz}$ , H-6b<sup>II</sup>), 3.57 (br t, 1H, J = 9.27 Hz, H-4<sup>II</sup>), 3.52 (dd, 1H,  $J_{2,3} = 9.18$  Hz, H-2<sup>II</sup>), 3.44 (br t, 1H,  $J = 8.89 \text{ Hz}, \text{ H-3}^{II}$ , 3.42 (m, 1H, H-5<sup>II</sup>), 3.20 (s, 1H, H-2<sup>I</sup>). Anal. Calcd for C<sub>40</sub>H<sub>43</sub>N<sub>3</sub>O<sub>9</sub>: C, 67.68; H, 6.12; N, 5.92. Found: C, 67.59; H, 6.26; N, 5.70.

# (Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-D-glucopyranose (A10)

**A9**(502.7 mg, 0.66 mmol)を0°C でAcOH(0.4 mL), Ac<sub>2</sub>O(7.6 mL), TFA(1.1 mL)に溶解 し, 徐々に室温に上昇させて終夜撹拌した.反応液に氷を加えて, 濃縮残渣は,シリカ ゲルカラム(10:1-8:1 *n*-hexane-EtOAc)で精製し, 1-アセテート(534.5 mg)を収率 94%で得 た.この1-アセテート(1.41 g, 1.63 mmol)をDMF(10.8 mL)に溶解し, H<sub>2</sub>NNH<sub>2</sub>·AcOH(226.0 mg, 2.45 mmol)を加え, 50°C で1時間撹拌した.反応液はEtOAc で希釈し, 有機層を 常法に従い後処理し, 濃縮した. 濃縮残渣はシリカゲルカラム(10:1-2:1 toluene-EtOAc) で精製し, A10(1.24 g)を収率 93%で得た.

(Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyltrichloroacetimidate (A11)

**A10**(729.5 mg, 0.89 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(32 mL)に溶解し, CCl<sub>3</sub>CN(2.7 mL, 27 mmol) と DBU(68 µL, 0.5mmol)を加え, 0 ℃ で 2 時間撹拌した. 反応液は, そのままシリカゲル カラム(30:1–1:4 *n*-hexane–EtOAc)で精製し, **A11**(742.8 mg)を収率 87%で得た. この化合 物はこれ以上精製することなく次の反応に用いた. <sup>1</sup>H NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 8.73 (s, 1H, NH), 7.30–7.26 (m, 20H, Ar H), 6.33 (d, 1H,  $J_{1,2} = 3.67$  Hz, H-1<sup>1</sup>), 5.77 (m, 1H, All), 5.27 (m, 1H, All), 5.15 (m, 1H, All), 4.86, 4.83 (ABq, 2H, J = 11.00 Hz, PhC<u>H</u><sub>2</sub>), 4.80 (s, 2H, PhC<u>H</u><sub>2</sub>), 4.78, 4.68 (ABq, 2H, J = 10.44 Hz, PhC<u>H</u><sub>2</sub>), 4.78, 4.60 (ABq, 2H, J = 10.77 Hz, PhC<u>H</u><sub>2</sub>), 4.48 (m, 3H, H-1<sup>II</sup>, All), 4.37 (d, 1H,  $J_{gem} = 12.37$  Hz, H-6a<sup>I</sup>), 4.31 (d, 1H,  $J_{5,6b} = 2.29$  Hz, H-6b<sup>I</sup>), 4.00 (m, 2H, H-4<sup>I</sup>, 5<sup>I</sup>), 3.95 (m, 1H, H-3<sup>I</sup>), 3.88 (m, 2H, H-4<sup>II</sup>, 5<sup>II</sup>), 3.69 (br t, 1H, J = 8.60 Hz, H-3<sup>II</sup>), 3.62 (dd, 1H,  $J_{2,3} = 9.62$  Hz, H-2<sup>I</sup>), 3.50 (br t, 1H, J = 8.48 Hz, H-2<sup>II</sup>), 2.02 (s, 3H, Ac).

# (Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyl chloride (A12)

A10(218.4 mg, 0.27 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(2 mL)に溶解し,

1-chloro-*N*,*N*,2-trimethylpropenylamine (40 µL, 0.30 mmol)を加え撹拌し、1 時間後にこの試 薬を 71 µL、3 時間後に 54 µL 追加した.反応液は濃縮し、濃縮残渣をシリカゲルカラ ム(15:1–1:2 *n*-hexane–EtOAc)で精製し、**A12**(203.2 mg)を収率 89%で得た.生成物はこれ 以上精製せず、次の反応に使用した.<sup>1</sup>H NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.43–7.20 (m, 20H, Ar H), 6.00 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>1</sup>), 5.76 (m, 1H, All), 5.26 (m, 1H, All), 5.16 (m, 1H, All), 5.12, 4.63 (ABq, 2H, J = 10.54 Hz, PhC<u>H</u><sub>2</sub>), 4.89, 4.82 (ABq, 2H, J = 11.00 Hz, PhC<u>H</u><sub>2</sub>), 4.84, 4.77 (ABq, 2H, J = 11.46 Hz, PhC<u>H</u><sub>2</sub>), 4.78, 4.60 (ABq, 2H, J = 10.54 Hz, PhC<u>H</u><sub>2</sub>), 4.47 (m, 2H, All), 4.45 (d, 1H,  $J_{1,2}$  = 8.02 Hz, H-1<sup>II</sup>), 4.38 (dd, 1H,  $J_{5,6a}$  = 1.60 Hz,  $J_{gem}$  = 12.60 Hz, H-6a<sup>I</sup>), 4.30 (dd, 1H,  $J_{5,6b}$  = 3.41 Hz, H-6b<sup>I</sup>), 3.96 (m, 1H, H-5<sup>II</sup>), 3.92 (t, 1H,  $J_{3,4}$  =  $J_{4,5}$  = 8.02 Hz, H-4<sup>II</sup>), 3.90 (br t, 1H, J = 9.16 Hz, H-4<sup>II</sup>), 3.50 (br t, 1H, J = 8.48 Hz, H-2<sup>II</sup>), 2.04 (s, 3H, Ac).

(Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$  and  $\beta$ -D-glucopyranosyl)-(1 $\rightarrow$ 3)-(methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (A13a and A13 $\beta$ )

MS4Å(799 mg), AgOTf(1.10 g, 4.26 mmol), 2,4,6-コリジン(0.4 mL, 2.8 mmol)に, A12(233.0 mg, 0.360 mmol)の CH<sub>2</sub>Cl<sub>2</sub>(10.5 mL)溶液を加え, 室温で1時間撹拌した後, -40 °C に冷却後, A5(593.9 mg, 0.705 mmol)の CH<sub>2</sub>Cl<sub>2</sub>(5.0 mL)溶液を加え, 室温に上昇さ せつつ終夜撹拌した. 反応液に飽和重曹水と飽和食塩水を加え, セライトろ過し, 有機 層を常法に従い後処理し, 濃縮した. 濃縮残渣をゲルろ過カラム(S-X1, toluene)とシリ カゲルカラム(15:1–3:1 *n*-hexane–EtOAc)で精製し, A13a(340.3 mg)を収率 65%, A13β(57.0 mg)を収率 11%で得た. A13a: [α]<sub>D</sub>+34 (*c* 0.60, CHCl<sub>3</sub>); <sup>1</sup>H NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.42–7.12 (m, 35H, Ar H), 5.88 (m, 1H, All), 5.51 (m, 2H, H-1<sup>1</sup>, 1<sup>III</sup>), 5.25 (m, 1H, All), 5.15 (m, 1H, All), 5.10, 4.62 (ABq, 2H, *J* = 10.77 Hz, PhC<u>H<sub>2</sub></u>), 5.03, 4.80 (ABq, 2H, *J* = 13.75 Hz,

PhCH<sub>2</sub>), 5.03, 4.69 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.91, 4.79 (ABq, 2H, J = 11.46 Hz, PhCH<sub>2</sub>), 4.83, 4.78 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.77, 4.58 (ABq, 2H, J = 7.33 Hz, PhCH<sub>2</sub>), 4.61, 4.58 (ABq, 2H, J = 11.69 Hz, PhCH<sub>2</sub>), 4.58 (d, 1H,  $J_{1,2} = 7.56$  Hz, H-1<sup>II</sup>), 4.58 (br d, 1H,  $J = 12.14 \text{ Hz}, \text{H-5}^{\text{I}}$ , 4.47 (m, 1H, All), 4.47 (d, 1H,  $J_{12} = 8.02 \text{ Hz}, \text{H-1}^{\text{IV}}$ ), 4.46 (m, 1H, All), 4.41 (dd, 1H,  $J_{5,6a}$  = 2.06 Hz,  $J_{gem}$  = 12.60 Hz, H-6a<sup>III</sup>), 4.35 (dd, 1H,  $J_{5,6b}$  = 2.98 Hz, H-6b<sup>III</sup>), 4.11 (dd, 1H,  $J_{34} = 8.71$  Hz,  $J_{45} = 9.62$  Hz, H-4<sup>II</sup>), 4.07 (d, 1H,  $J_{56a} = 6.64$  Hz, H-6a<sup>I</sup>), 3.91 (d, 1H, H-5<sup>II</sup>), 3.88 (m, 1H, H-4<sup>IV</sup>), 3.87 (m, 1H, H-4<sup>III</sup>), 3.86 (br s, 1H, H-4<sup>I</sup>), 3.85 (d, 1H,  $J_{4,5} = 5.04$  Hz, H-5<sup>IV</sup>), 3.78 (br t, 1H,  $J_{2,3} = 10.31$  Hz,  $J_{3,4} = 8.71$  Hz, H-3<sup>III</sup>), 3.75 (m, 1H, H-6b<sup>I</sup>), 3.74 (m, 1H, H-3<sup>I</sup>), 3.73 (m, 1H, H-3<sup>II</sup>), 3.67 (br t, 1H, J = 8.94 Hz, H-3<sup>IV</sup>), 3.66 (d, 1H,  $J_{45} = 8.71$  Hz, H-5<sup>III</sup>), 3.61 (dd, 1H,  $J_{23} = 8.94$  Hz, H-2<sup>II</sup>), 3.47 (dd, 1H,  $J_{23} = 8.94$  Hz, H-2<sup>IV</sup>), 3.43 (s, 3H, COOMe), 3.22 (br s, 1H, H-2<sup>I</sup>), 3.20 (dd, 1H,  $J_{1,2}$  = 3.90 Hz, H-2<sup>III</sup>), 2.06 (s, 3H, Ac). Anal. Calcd for C<sub>79</sub>H<sub>84</sub>N<sub>6</sub>O<sub>21</sub>: C, 65.28; H, 5.82; N, 5.78. Found: C, 65.25; H, 5.60; N, 5.40. **A136**:  $[\alpha]_D = 0.32$  (c 0.62, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.41–7.19 (m, 35H, Ar H), 5.80–5.72 (m, 1H, All), 5.49 (s, 1H, H-1<sup>I</sup>), 5.25 (d, 1H, J = 17.41 Hz, All), 5.15 (d, 1H, J = 10.31 Hz, All), 4.99, 4.62 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.95, 4.70 (ABq, 2H, J = 11.55 Hz, PhCH<sub>2</sub>), 4.89, 4.64 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.85, 4.78 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.77, 4.57  $(ABq, 2H, J = 10.77 \text{ Hz}, PhCH_2), 4.75 (s, 2H, PhCH_2), 4.61 (m, 2H, PhCH_2), 4.56 (m, 1H, H-5<sup>1</sup>),$ 4.55 (d, 1H,  $J_{1,2} = 9.79$  Hz, H-1<sup>II</sup>), 4.47 (br t, 2H, J = 4.81 Hz, All), 4.38 (d, 1H,  $J_{1,2} = 7.79$  Hz, H-1<sup>IV</sup>), 4.37 (d, 1H,  $J_{1,2} = 7.56$  Hz, H-1<sup>III</sup>), 4.24 (d, 1H,  $J_{\text{sem}} = 10.77$  Hz, H-6a<sup>III</sup>), 4.15 (dd, 1H,  $J_{5,6b} = 3.66$  Hz, H-6b<sup>III</sup>), 4.14 (t, 1H,  $J_{3,4} = J_{4,5} = 8.94$  Hz, H-4<sup>II</sup>), 4.05 (d, 1H,  $J_{gem} = 7.33$  Hz, H-6a<sup>I</sup>), 3.91 (d, 1H, H-5<sup>II</sup>), 3.87 (br s, 1H, H-4<sup>I</sup>), 3.86 (t, 1H,  $J_{3,4} = J_{4,5} = 8.94$  Hz, H-4<sup>IV</sup>), 3.81 (d, 1H, H-5<sup>IV</sup>), 3.80 (t, 1H,  $J_{3,4} = J_{4,5} = 9.39$  Hz, H-4<sup>III</sup>), 3.78 (s, 3H, COOMe), 3.74 (d, 1H, H-6b<sup>I</sup>), 3.73 (s, 1H, H-3<sup>I</sup>), 3.64 (t, 1H, H-3<sup>IV</sup>), 3.58 (t, 1H, H-3<sup>II</sup>), 3.52 (t, 1H, H-2<sup>II</sup>), 3.43 (br t, 1H,  $J = 8.14 \text{ Hz}, \text{H}-2^{\text{IV}}$ , 3.28 (br t, 1H,  $J = 9.51 \text{ Hz}, \text{H}-3^{\text{III}}$ ), 3.25 (br t, 1H,  $J = 8.70 \text{ Hz}, \text{H}-2^{\text{III}}$ ), 3.23 (m, 1H, H-5<sup>III</sup>), 3.19 (s, 1H, H-2<sup>I</sup>), 1.83 (s, 3H, Ac). Anal. Calcd for  $C_{79}H_{84}N_6O_{21}$ : C, 65.28; H, 5.82; N, 5.78. Found: C, 65.22; H, 5.85; N, 5.39.

(Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyl)-(1 $\rightarrow$ 3)-(methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-1,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-D-glucopyranose (A15)

**A13** $\alpha$ (106.1 mg, 68.2 µmol)を AcOH(74 µL)と Ac<sub>2</sub>O(1.4 mL)に溶解し、0 °C に冷却後、 TFA(215 µL)を加え、室温に上昇させつつ終夜撹拌した.反応液に氷を加えた後、濃縮 した.濃縮残渣はシリカゲルカラム(50:1–9:1 toluene–EtOAc)で精製し、**A15**(101.9 mg) を収率 90%で得た.<sup>1</sup>H NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 7.43–7.19 (m, 35H, Ar H), 6.16 (d, 0.6H,  $J_{1,2} = 3.72$  Hz, H-1 $\alpha^{I}$ ), 5.78–5.71 (m, 1H, All), 5.46 (d, 1H,  $J_{1,2} = 3.90$  Hz, H-1<sup>III</sup>), 5.39 (d, 0.4H,  $J_{1,2} = 8.47$  Hz, H-1 $\beta^{I}$ ), 5.26–5.23 (m, 1H, All), 5.15–5.13 (m, 1H, All), 5.10, 4.63 (ABq, 2H,  $J = 10.50 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 5.10, 4.61 \text{ (ABq, 2H, } J = 10.38 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.95, 4.84 \text{ (ABq, 2H, } J = 10.63 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.89, 4.77 \text{ (ABq, 2H, } J = 11.48 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.83, 4.78 \text{ (ABq, 2H, } J = 10.80 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.81, 4.78 \text{ (ABq, 2H, } J = 11.40 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.77, 4.59 \text{ (ABq, 2H, } J = 10.74 \text{ Hz}, \text{PhC}\underline{\text{H}}_2), 4.46 \text{ (m, 4H, H-1}^{II,IV}, \text{All}), 4.41 \text{ (dd, 1H, } J_{5,6a} = 1.60 \text{ Hz}, J_{gem} = 12.48 \text{ Hz}, \text{H-6a}^{III}), 4.34 \text{ (dd, 1H, } J_{5,6b} = 1.92 \text{ Hz}, \text{H-6b}^{II}), 4.33 \text{ (d, 1H, } J_{5,6a} = 2.88 \text{ Hz}, J_{gem} = 12.30 \text{ Hz}, \text{H-6a}^{I}), 4.25 \text{ (dd, 1H, } J_{5,6b} = 3.90 \text{ Hz}, \text{H-6b}^{I}), 4.09 \text{ (t, 1H, } J_{3,4} = J4,5 = 9.24 \text{ Hz}, \text{H-4}^{II}), 3.90-3.83 \text{ (m, 5H, H-4}^{I,III,IV}, 5^{II,IV}), 3.78-3.72 \text{ (m, 2H, H-3}^{I,III}), 3.74 \text{ (br t, 1H, } J = 8.94 \text{ Hz}, \text{H-3}^{II}), 3.70 \text{ (m, 1H, H-5}^{III}), 3.67 \text{ (t, 1H, } J_{2,3} = J_{3,4} = 8.91 \text{ Hz}, \text{H-3}^{IV}), 3.62 \text{ (m, 1H, H-5}^{I}), 3.53 \text{ (dd, 0.6H, } J_{2,3} = 10.14 \text{ Hz}, \text{H-2}\alpha^{I}), 3.50-3.45 \text{ (m, 2.4H, H-2}\beta^{I}, 2^{II,IV}), 3.24 \text{ (dd, 1H, } J_{2,3} = 10.44 \text{ Hz}, \text{H-2}^{III}), 3.23 \text{ (s, 3H, COOMe)}, 2.18, 2.06, 2.04 \text{ (3 s, each 3H, 3Ac)}. Anal. Calcd for C_{83}H_{90}N_6O_{24}: C, 64.07; \text{H, 5.84}; \text{N, 5.40}. Found: C, 64.02; \text{H, 5.78}; \text{N, 5.04}.$ 

(Allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyl)-(1 $\rightarrow$ 3)-(methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyl trichloroacetimidate (A16)

**A15**(141.6 mg, 91.0 µmol)を DMF(2 mL)に溶解し, H<sub>2</sub>NNH<sub>2</sub>·AcOH(17.4 mg, 189 µmol)を 加え, 50 ℃ で 3 時間撹拌した. 反応液は EtOAc で希釈し, 有機層を常法に従い後処理 後, 濃縮した. 濃縮残渣はシリカゲルカラム(50:1–3:1 toluene–EtOAc)で精製し, ヘミア セタール(126.1 mg)を収率 92%で得た.

このヘミアセタール(173.3 mg, 114 µmol)と CCl<sub>3</sub>CN(0.36 mL, 3.6 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(7.2 mL)に溶解し, DBU(9µL, 0.06 mmol)を加え, 0 °C で 2 時間撹拌した後, 室温でさらに 2 時間撹拌した.反応液はそのままシリカゲルカラム(100:1-6:1 toluene-EtOAc)で精製し, A16(188.4 mg)を収率 98%で得た. 生成物はこれ以上精製することなく次の反応に進め t. <sup>1</sup>H NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 8.74 (s, 1H, NH), 7.42–7.19 (m, 35H, Ar H), 6.33 (d, 1H,  $J_{1,2} = 3.67$  Hz, H-1<sup>I</sup>), 5.81–5.72 (m, 1H, All), 5.47 (d, 1H,  $J_{1,2} = 3.90$  Hz, H-1<sup>III</sup>), 5.27–5.23 (m, 1H, All), 5.16–5.14 (m, 1H, All), 5.14, 4.66 (ABq, 2H, J = 10.54 Hz, PhCH<sub>2</sub>), 5.10, 4.62 (ABq, 2H, J = 10.76 Hz, PhCH<sub>2</sub>), 4.99, 4.86 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.91, 4.78 (ABq, 2H, J = 11.46 Hz, PhCH<sub>2</sub>), 4.83, 4.78 (ABq, 2H, J = 11.23 Hz, PhCH<sub>2</sub>), 4.78, 4.59 (ABq, 2H,  $J = 11.00 \text{ Hz}, \text{PhC}_{\underline{\text{H}}_2}$ , 4.77 (m, 2H, PhC $\underline{\text{H}}_2$ ), 4.48 (d, 1H, H-1<sup>II</sup>), 4.46 (d, 1H, H-1<sup>IV</sup>), 4.46 (m, 2H, All), 4.41 (d, 1H,  $J_{gem} = 12.37$  Hz, H-6a<sup>III</sup>), 4.36 (d, 1H,  $J_{gem} = 11.91$  Hz, H-6a<sup>I</sup>), 4.34 (dd, 1H,  $J_{5.6b} = 2.75$  Hz, H-6b<sup>III</sup>), 4.26 (dd, 1H,  $J_{5.6b} = 3.44$  Hz, H-6b<sup>I</sup>), 4.10 (br t, 1H, J = 9.28 Hz, H-4<sup>II</sup>), 3.97 (m, 1H, H-3<sup>I</sup>), 3.94 (m, 1H, H-4<sup>I</sup>), 3.87 (m, 4H, H-5<sup>II,IV</sup>, 4<sup>III,IV</sup>), 3.77 (br t, 1H, J = 9.28 Hz, H-3<sup>III</sup>), 3.75 (br t, 1H,  $J_{2,3} = J3, 4 = 8.71$  Hz, H-3<sup>II</sup>), 3.67 (br t, 1H, J = 8.78 Hz, H-3<sup>IV</sup>), 3.63 (m, 1H, H-2<sup>I</sup>, 5<sup>I, III</sup>), 3.50 (br t, 1H, J = 8.85 Hz, H-2<sup>II</sup>), 3.47 (br t, 1H, J = 8.37 Hz, H-2<sup>IV</sup>), 3.24 (s, 3H, COOMe), 3.23 (m, 1H, H-2<sup>III</sup>), 2.06, 2.02 (2 s, each 3H, 2Ac).

Octyl (allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(6-O-acetyl-2-azido-3-Obenzyl-2-deoxy- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(methyl 2,3-di-O-benzyl- $\beta$ -Dglucopyranosyluronate)- $(1 \rightarrow 4)$ -6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$  and  $\beta$ -Dglucopyranoside (A17 $\alpha$  and A17 $\beta$ )

MSAW 300(556 mg) C A16(188.4 mg,114 μmol) 2 *n*-octanol(94 μL, 0.60 mmol) CH<sub>2</sub>Cl<sub>2</sub>(26 mL)溶液を加え,室温で 30 分撹拌後,TMSOTf(15 µL, 83 µmol)を加え,40 分 間撹拌した.反応液に、DIPEA(29 μL)を加え中和後、CHCl<sub>3</sub>で希釈し、セライトろ過し た. 有機層は、常法に従い後処理後、濃縮した. 濃縮残渣はシリカゲルカラム(50:1-10:1 toluene-EtOAc)で精製し, A17a(119.1 mg)を収率 67%, A17B(35.1 mg)を収率 20%で得た. A17 $\alpha$ :  $[\alpha]_D$  +49 (c 0.77, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.47–7.19 (m, 35H, Ar H), 5.74 (m, 1H, All), 5.47 (d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>III</sup>), 5.24 (m, 1H, All), 5.14 (m, 1H, All), 5.10, 4.62 (ABq, 2H, J = 10.54 Hz, PhCH<sub>2</sub>), 5.09, 4.61 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.98, 4.84 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.94, 4.78 (ABq, 2H, J = 11.46 Hz, PhCH<sub>2</sub>), 4.80 (m, 4H, 2PhCH<sub>2</sub>), 4.77, 4.59 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.82 (d, 1H, H-1<sup>1</sup>), 4.46 (m, 4H, H-1<sup>II,IV</sup>, All), 4.40 (dd, 1H,  $J_{5.6a} < 1.0$  Hz,  $J_{gem} = 12.37$  Hz, H-6a<sup>III</sup>), 4.36 (d, 1H,  $J_{5.6a} = 2.06$  Hz,  $J_{gem} = 12.37$  Hz, H-6a<sup>II</sup>), 4.33 (dd, 1H,  $J_{5.6b} = 2.75$  Hz, H-6b<sup>III</sup>), 4.25 (dd, 1H,  $J_{5.6b} = 3.90$  Hz, H-6b<sup>I</sup>), 4.09 (br t, 1H, J = 9.28 Hz, H-4<sup>II</sup>), 3.88 (m, 1H, H-4<sup>IV</sup>), 3.87 (m, 1H, H-4<sup>III</sup>), 3.85 (m, 3H, H-3<sup>I</sup>, 5<sup>II,IV</sup>), 3.80 (br t, 1H, J = 9.46 Hz, H-4<sup>I</sup>), 3.76 (m, 1H, H-3<sup>III</sup>), 3.74 (m, 1H, H-3<sup>II</sup>), 3.73 (m, 1H, H-5<sup>I</sup>), 3.66 (br t, 1H, J = 8.82 Hz, H-3<sup>IV</sup>), 3.62 (m, 2H, H-5<sup>III</sup>, 1/2OCH<sub>2</sub>), 3.50 (br t, 1H, J = 8.25 Hz, H-2<sup>II</sup>), 3.46 (br t, 1H, J = 8.71 Hz, H-2<sup>IV</sup>), 3.44 (m, 1H, 1/20CH<sub>2</sub>), 3.26 (dd, 1H,  $J_{1,2} = 3.67$  Hz,  $J_{2,3} = 9.85$  Hz, H-2<sup>I</sup>), 3.23 (dd, 1H,  $J_{2,3} = 8.48$  Hz, H-2<sup>III</sup>), 3.22 (s, 3H, COOMe), 2.05, 2.03 (2 s, each 3H, 2Ac), 1.63 (m, 2H, CH<sub>2</sub>), 1.38 (m, 2H, CH<sub>2</sub>), 1.28 (m, 8H, CH<sub>2</sub>), 0.86 (m, 3H, CH<sub>3</sub>). Anal. Calcd for C<sub>89</sub>H<sub>104</sub>N<sub>6</sub>O<sub>23</sub>: C, 65.74; H, 6.46; N, 5.17. Found: C, 65.77; H, 6.45; N, 5.09. **A17β**:  $[α]_D$  +16 (*c* 0.77, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.42–7.19 (m, 35H, Ar H), 5.75 (m, 1H, All), 5.47 (d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>III</sup>), 5.25 (m, 1H, All), 5.15 (m, 1H, All), 5.10, 4.61 (ABq, 2H, J = 10.54 Hz, PhCH<sub>2</sub>), 4.97, 4.64 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.96, 4.83 (ABq, 2H, J = 10.77 Hz, PhCH<sub>2</sub>), 4.90, 4.78 (ABq, 2H, J = 11.46 Hz, PhCH<sub>2</sub>), 4.83, 4.78 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.78, 4.73 (ABq, 2H, J = 11.46 Hz, PhCH<sub>2</sub>), 4.77, 4.59 (ABq, 2H, J = 11.00 Hz, PhCH<sub>2</sub>), 4.46 (m, 4H, H-1<sup>II,IV</sup>, All), 4.42 (dd, 1H,  $J_{5.6a} = 2.06$  Hz,  $J_{eem} = 12.37$  Hz, H-6a<sup>III</sup>), 4.40 (br d, 1H, J = 9.62 Hz, H-6a<sup>I</sup>), 4.33 (br dd, 1H, J = 2.98 Hz, H-6b<sup>I</sup>), 4.20 (dd, 1H,  $J_{5,6b} = 4.81$  Hz, H-6b<sup>III</sup>), 4.18 (d, 1H,  $J_{1,2} = 8.02$  Hz, H-1<sup>I</sup>), 4.08 (br t, 1H, J = 9.28 Hz, H-4<sup>II</sup>), 3.89 (m, 1H, H-4<sup>IV</sup>), 3.87 (m, 1H, H-4<sup>III</sup>), 3.85 (m, 1H, H-5<sup>II</sup>), 3.83 (m, 2H, H-5<sup>IV</sup>, 1/2OCH<sub>2</sub>), 3.77 (m, 2H, H-4<sup>I</sup>, 3<sup>III</sup>), 3.73 (t, 1H,  $J_{23} = J_{34} = 8.94$  Hz, H-3<sup>II</sup>), 3.67 (t, 1H,  $J_{23} = J_{34} = 8.94$  Hz, H-3<sup>IV</sup>), 3.63 (m, 1H, H-5<sup>III</sup>), 3.47 (t, 1H,  $J_{1,2} = 8.94$  Hz, H-2<sup>IV</sup>), 3.46 (t, 1H,  $J_{1,2} = 8.94$  Hz, H-2<sup>II</sup>), 3.47 (m, 1H, 1/2OCH<sub>2</sub>), 3.34 (dd, 1H,  $J_{2,3} = 9.85$  Hz, H-2<sup>I</sup>), 3.29 (br t, 1H, J = 9.74 Hz, H-3<sup>I</sup>), 3.27 (m, 1H, H-5<sup>I</sup>), 3.25 (s, 3H, COOMe), 3.23 (dd, 1H,  $J_{23} = 10.31$  Hz, H-2<sup>III</sup>), 2.06, 2.02 (2 s,

each 3H, 2Ac), 1.61 (m, 2H, CH<sub>2</sub>), 1.34 (m, 2H, CH<sub>2</sub>), 1.27 (m, 8H, CH<sub>2</sub>), 0.87 (m, 3H, CH<sub>3</sub>). Anal. Calcd for C<sub>89</sub>H<sub>104</sub>N<sub>6</sub>O<sub>23</sub>: C, 65.74; H, 6.46; N, 5.17. Found: C, 65.73; H, 6.41; N, 4.93.

Octyl (sodium 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-azido-3-O-benzyl-2deoxy-6-O-sulfo- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(sodium 2,3-di-O-benzyl- $\beta$ -Dglucopyranosyluronate)- $(1 \rightarrow 4)$ -2-azido-3-O-benzyl-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (A18)

A17a(24.4 mg, 15.0 µmol)を THF(1.5 mL)と H<sub>2</sub>O(0.3 mL)に溶解し, 0 °C に冷却後, 1.25 M LiOH(0.5 mL)を加え、室温に上昇させつつ終夜撹拌した.反応液を濃縮後, MeOH(1.0 mL)と CH<sub>2</sub>Cl<sub>2</sub>(0.3 mL)に溶解し、0 ℃ に冷却後、0.5 M NaOH(0.6 mL)を加えて4時間撹 拌した.反応液に 50%AcOH を加え、中和して濃縮した.濃縮残渣はゲルろ過カラム (LH-20, 1% AcOH)で精製した. 生成物(23.1 mg)を DMF(1.5 mL)に溶解し, SO3 · NMe3(48.9 mg)を加え, 60 ℃ で終夜撹拌した. 反応液をそのままゲルろ過カラム(LH-20, 1:1 CHCl-MeOH)とイオン交換カラム[Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製し, A18(22.4 mg)を四行程収率 85%で得た. 生成物はこれ以上精製することなく次の反応に 進めた. <sup>1</sup>H NMR  $\delta_{\rm H}$ (CD<sub>3</sub>OD) (selected): 5.31 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 4.91 (m, 1H, H-1<sup>IV</sup>), 4.90 (m, 1H, H-1<sup>II</sup>), 4.74 (d, 1H,  $J_{1,2} = 3.21$  Hz, H-1<sup>I</sup>), 4.46 (m, 1H, H-6a<sup>III</sup>), 4.44 (m, 1H, H-6a<sup>1</sup>), 4.14 (br d, 1H, J = 10.99 Hz, H-6b<sup>1</sup>), 4.04 (d, 1H,  $J_{4.5} = 9.63$  Hz, H-5<sup>IV</sup>), 3.96 (m, 1H,  $H-5^{II}$ ), 3.95 (m, 2H,  $H-4^{III}$ , 6b<sup>III</sup>), 3.94 (m, 2H,  $H-4^{I}$ ,  $4^{IV}$ ), 3.90 (m, 1H,  $H-5^{III}$ ), 3.83 (br t, 1H,  $J = 9.05 \text{ Hz}, \text{H}-3^{\text{IV}}$ , 3.75 (m, 1H, H-3<sup>I</sup>), 3.72 (m, 1H, H-3<sup>II</sup>), 3.67 (br t, 1H,  $J = 9.16 \text{ Hz}, \text{H}-3^{\text{III}}$ ), 4.66 (m, 1H, H-4<sup>II</sup>), 3.60 (m, 1H, H-5<sup>I</sup>), 3.57 (m, 1H, 1/20CH<sub>2</sub>), 3.39 (br t, 1H, J = 8.48 Hz,  $H-2^{IV}$ ), 3.35 (m, 1H, 1/2OCH<sub>2</sub>), 3.30 (m, 1H,  $H-2^{II}$ ), 3.25 (dd, 1H,  $J_{2,3} = 10.54 \text{ Hz}$ ,  $H-2^{III}$ ), 3.14  $(dd, 1H, J_{2,3} = 10.31 Hz, H-2^{I}), 1.52 (m, 2H, CH_2), 1.30 (m, 2H, CH_2), 1.17 (m, 8H, CH_2), 0.79$ (m, 3H, CH<sub>3</sub>).

Octyl (sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-amino-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -2-amino-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (A19)

**A18**(22.4 mg, 12.9 μmol)を EtOH(3 mL)に溶解し,触媒量の Pd-C を加え,水素雰囲気 下で終夜激しく撹拌した.翌日 H<sub>2</sub>O(2 mL)を追加し,さらに終夜撹拌した.反応液は, セライトろ過後,ろ液を濃縮し,逆相カラム(C8: H<sub>2</sub>O to 1:4 H<sub>2</sub>O–MeOH)で精製し, **A19**(10.3 mg)を収率76%で得た.生成物はこれ以上精製することなく次の反応に進めた.

Octyl (sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-acetamido-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -2-acetamido -2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (A20)

**A10**(10.5 mg, 10.0 µmol)を H<sub>2</sub>O(1.0 mL)に溶解し、Ac<sub>2</sub>O(1 drop)と Et<sub>3</sub>N(10 µL)を加え、 終夜撹拌した. 反応液は濃縮し、イオン交換カラム[Dowex 50Wx8 (Na<sup>+</sup> form), H<sub>2</sub>O]で精 製し、**A20**(8.9 mg)を収率 78%で得た. [ $\alpha$ ]<sub>D</sub> +49 (c 0.88, H<sub>2</sub>O); <sup>1</sup>H NMR  $\delta_{H}(D_{2}O)$ : 5.27 (d, 1H,  $J_{1,2} = 3.72$  Hz, H-1<sup>III</sup>), 4.73 (d, 1H,  $J_{1,2} = 3.12$  Hz, H-1<sup>I</sup>), 4.42 (d, 1H,  $J_{1,2} = 7.80$  Hz, H-1<sup>II</sup>), 4.41 (d, 1H,  $J_{1,2} = 7.86$  Hz, H-1<sup>IV</sup>), 4.30 (br d, 1H, J = 11.16 Hz, H-6a<sup>III</sup>), 4.20 (m, 2H, H-6<sup>I</sup>), 4.02 (br d, 1H, J = 11.16 Hz, H-6b<sup>III</sup>), 3.89 (m, 2H, H-5<sup>I,III</sup>), 3.76 (m, 3H, H-2<sup>I,III</sup>, 3<sup>I</sup>), 3.69 (m, 2H, H-5<sup>II</sup>, 3<sup>III</sup>), 3.56 (m, 6H, H-4<sup>I,II,III</sup>, 3<sup>II</sup>, 5<sup>IV</sup>, 1/2OCH<sub>2</sub>), 3.36 (m, 3H, H-3<sup>IV</sup>, 4<sup>IV</sup>, 1/2OCH<sub>2</sub>), 3.20 (m, 2H, H-2<sup>II,IV</sup>), 1.89 (s, 3H, NAc), 1.87 (s, 3H, NAc), 1.42 (m, 2H, CH<sub>2</sub>), 1.21–1.05 (m, 10H, CH<sub>2</sub>), 0.70 (t, 3H, J = 13.92 Hz, CH<sub>3</sub>). MALDI-TOFMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>36</sub>H<sub>56</sub>N<sub>2</sub>O<sub>29</sub>S<sub>2</sub>Na<sub>5</sub>, 1159.19; found, 1159.42.

Octyl (sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, tetrasodium salt (A21) and octyl (sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-deoxy-2-sulfamido-3,6-di-O-sulfo- $\alpha$ -D-glucopyranosyl)- $(1 \rightarrow 3)$ -(sodium  $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -(2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, pentasodium salt (A22)

<u>NaOH 水溶液を使用した N-硫酸化</u>: **A19**(10.3 mg)を H<sub>2</sub>O(2.4 mL)に溶解し, SO<sub>3</sub>-pyridine complex(56.2 mg)を加え, 0.5 M NaOH で pH 9 に保ちながら 2 時間撹拌した. 反応液は、ゲルろ過カラム(LH-20, 1% AcOH)、イオン交換カラム[Dowex 50Wx8 (Na<sup>+</sup> form), H<sub>2</sub>O]、逆相カラム(C8: H<sub>2</sub>O to 1:4 H<sub>2</sub>O-MeOH)で精製し、**A21** と **A22** の混合物(15.5 mg, 3:1)を得た.

<u>Et3N 水溶液を使用した N-硫酸化</u>: **A19**(5.9 mg)を H<sub>2</sub>O(1.4 mL)に溶解し, SO<sub>3</sub>-pyridine complex(74.7 mg)と Et<sub>3</sub>N(112 µL)を加え pH 10 に保ちながら 3 日間撹拌した. 反応液は, ゲルろ過カラム(LH-20, 1% AcOH)とイオン交換カラム[Dowex 50Wx8 (Na<sup>+</sup> form), H<sub>2</sub>O]で精製し, **A21**(5.5 mg)を収率 78%で得た. **A21**:  $[\alpha]_D$  +38.0 (c 0.41, H<sub>2</sub>O); <sup>1</sup>H NMR  $\delta_H$ (D<sub>2</sub>O): 5.56 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>II</sup>), 4.64 (d, 1H,  $J_{1,2}$  = 8.02 Hz, H-1<sup>III</sup>), 4.62 (d, 1H,  $J_{1,2}$  = 5.96 Hz, H-1<sup>IV</sup>), 4.42 (br d, 1H,  $J_{1,2}$  = 5.50 Hz,  $J_{4,5}$  = 8.71 Hz, H-4<sup>II</sup>), 3.98 (m, 1H, H-5<sup>II</sup>), 3.92 (m, 1H, H-5<sup>III</sup>), 3.85 (d, 1H, H-5<sup>III</sup>), 3.85 (br t, 1H, J = 4.46 Hz, H-3<sup>II</sup>), 3.78 (m, 1H, H-4<sup>III</sup>), 3.73 (m, 3H, H-4<sup>I</sup>, 5<sup>IV</sup>, 1/2OCH<sub>2</sub>), 3.72 (m, 1H, H-3<sup>II</sup>), 3.71 (m, 1H, H-3<sup>III</sup>), 3.55 (m, 3H, H-3<sup>IV</sup>, 4<sup>IV</sup>, 1/2OCH<sub>2</sub>), 3.40 (m, 1H, H-2<sup>III</sup>), 1.65 (m, 2H, CH<sub>2</sub>), 1.39–1.26 (m, 10H, CH<sub>2</sub>), 0.84 (m, 3H, CH<sub>3</sub>). MALDI-TOFMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>32</sub>H<sub>50</sub>N<sub>2</sub>O<sub>33</sub>S<sub>4</sub>Na<sub>7</sub>, 1279.05; found, 1279.11. **A22**:  $\delta$  5.65 (d, 1H,  $J_{1,2}$  = 3.66 Hz, H-1<sup>III</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 4.62 (d, 1H,  $J_{1,2}$  = 8.02 Hz, H-1<sup>III</sup>), 4.62 (d, 1H,  $J_{2,3}$  = 9.39 Hz, H-2<sup>III</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 4.64 (d, 1H,  $J_{1,2}$  = 8.02 Hz, H-1<sup>III</sup>), 4.62 (d, 1H,  $J_{1,2}$  = 3.66 Hz, H-1<sup>IIII</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 3.67 Hz, H-1<sup>III</sup>), 4.64 (d, 1H,  $J_{1,2}$  = 8.02 Hz, H-1<sup>III</sup>), 4.62 (d, 1H,  $J_{1,2}$  = 5.96 Hz, H-1<sup>IIII</sup>), 4.60 (m, 1H, H-3<sup>IIIII</sup>),

4.42 (br d, 1H, J = 10.99 Hz, H-6a<sup>III</sup>), 4.34 (m, 2H, H-6<sup>I</sup>), 4.18 (br d, 1H, J = 11.68 Hz, H-6b<sup>III</sup>), 4.04 (dd, 1H,  $J_{3,4} = 5.50$  Hz,  $J_{4,5} = 8.71$  Hz, H-4<sup>II</sup>), 3.98 (m, 2H, H-5<sup>I, III</sup>), 3.92 3.85 (d, 1H, H-5<sup>II</sup>), 3.85 (br t, 1H, J = 4.46 Hz, H-3<sup>II</sup>), 3.73 (m, 3H, H-4<sup>I</sup>, 5<sup>IV</sup>, 1/20CH<sub>2</sub>), 3.72 (m, 1H, H-3<sup>I</sup>), 3.55 (m, 3H, H-3<sup>IV</sup>, 4<sup>IV</sup>, 1/20CH<sub>2</sub>), 3.40 (m, 1H, H-2<sup>II</sup>), 3.37 (m, 3H, H-2<sup>III, IV</sup>, 4<sup>III</sup>), 3.26 (dd, 1H,  $J_{2,3} = 9.39$  Hz, H-2<sup>I</sup>), 1.65 (m, 2H, CH<sub>2</sub>), 1.39–1.26 (m, 10H, CH<sub>2</sub>), 0.84 (m, 3H, CH<sub>3</sub>). MALDI-TOFMS m/z [M+H<sup>+</sup>]: calcd. for C<sub>32</sub>H<sub>50</sub>N<sub>2</sub>O<sub>36</sub>S<sub>5</sub>Na<sub>7</sub>, 1359.00; found, 1359.13.

#### 第二章

#### 2-(2-Azidoethoxy)ethoxyethylmethanesulfonate (L2)

トリエチレングリコール(10.42 g, 69.4 mmol)を, CH<sub>2</sub>Cl<sub>2</sub>(78 mL)に溶解し, 0 ℃ に冷却 後, Et<sub>3</sub>N(23 mL)と, MsCl(17.0 mL, 140 mmol)を加え, 室温まで連続的に温度を上昇させ ながら終夜撹拌した. 反応液を濃縮し, 残渣をシリカゲルカラム(100:1-2:1 EtOAc-EtOH) で精製し, ビスメシレート(L1, 23.78 g)を得た. これを DMF(190 mL)に溶解し, NaN<sub>3</sub> (12.62 g, 195.1 mmol)を加え撹拌した. 翌日ろ過し, ろ液の濃縮物をシリカゲルカラム(4:1 toluene:EtOAc to EtOAc)で精製し, L2(11.83 g, 46.71 mmol)を二行程収率 67%で得た.

#### 2-(2-Azidoethoxy)ethoxyethanol (L3)

酢酸セシウム(19.31 g, 100.6 mmol)をトルエン(634 mL)に懸濁させ, L2(11.83 g, 46.5 mmol)と 18-crown-6(21.59 g, 81.7 mmol)を加え, 終夜加熱還流した. 反応液を EtOAc と H<sub>2</sub>O で希釈し, 常法に従い後処理した. 濃縮残渣に MeOH(240 mL), Et<sub>3</sub>N(120 mL), H<sub>2</sub>O(120 mL)を加え撹拌した. 翌日, 濃縮残渣をシリカゲルカラム(1:1-1:7 toluene-EtOAc) で精製し, L3(7.05 g)を収率 86%で得た. <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 3.75 (m, 2H, CH<sub>2</sub>), 3.69 (m, 6H, 3CH<sub>2</sub>), 3.62 (m, 2H, CH<sub>2</sub>), 3.41 (br t, 2H, *J* = 4.53 Hz, CH<sub>2</sub>), 2.49 (br s, 1H, OH).

#### 2-(N-Dansyl-2-aminoethoxy)ethoxyethanol (L5)

L3(1.20 g, 6.8 mmol)を, MeOH(83 mL)に溶解し, 触媒量の Pd-C を加え, 水素雰囲気 下で激しく撹拌した. 翌日セライトろ過を行い, 濃縮残渣を H<sub>2</sub>O(63 mL)とアセトン(63 mL)に溶解し, NaHCO<sub>3</sub>(664.9 mg, 7.92 mmol)と DNSCl(2.35 mg, 8.70 mmol)を加え, 終夜 撹拌した. 反応液の濃縮残渣をシリカゲルカラム(1:1 *n*-hexane-EtOAc~100:1-50:1 EtOAc-MeOH)で精製し, L5(2.13 g)を収率 82%で得た. <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 8.55 (d, 1H, *J* = 8.48 Hz, Ar H), 8.33 (d, 1H, *J* = 8.48 Hz, Ar H), 8.24 (dd, 1H, *J* = 1.15 Hz, *J* = 7.33 Hz, Ar H), 7.56 (dd, 1H, *J* = 8.48 Hz, *J* = 7.56 Hz, Ar H), 7.51 (dd, 1H, *J* = 8.48 Hz, *J* = 7.33 Hz, Ar H), 7.18 (d, 1H, *J* = 7.33 Hz, Ar H), 5.77 (br t, 1H, *J* = 2.6 Hz, NH), 3.75 (br s, 2H, CH<sub>2</sub>), 3.57 (t, 1H, *J* = 4.47 Hz, CH<sub>2</sub>), 3.54 (t, 1H, *J* = 3.21 Hz, 1/2CH<sub>2</sub>), 3.52 (d, 1H, *J* = 4.81 Hz, 1/2CH<sub>2</sub>), 3.44 (m, 1H, CH<sub>2</sub>), 3.10 (q, 2H, *J* = 5.34 Hz, CH<sub>2</sub>), 2.89 (s, 6H, NMe<sub>2</sub>).

#### N-Methyltryptamine(T3)

Tryptamine(5.00 g, 31.2 mmol)をトルエン(100 mL)に溶解し, Et<sub>3</sub>N(4.3 mL, 31.2 mmol)と 無水フタル酸(5.09 g, 34.3 mmol)を加え, 1.5 時間加熱還流した.これに, ピリジン(40 mL) と Ac<sub>2</sub>O(40 mL)を加え撹拌した.翌日反応液を濃縮し, 残渣をシリカゲルカラム(7:1-1:1 toluene-EtOAc)で精製し, フタルイミド(**T1**, 5.99 g)を収率 66%で得た. NaH (115.9 mg, 2.1 mmol, 55%)を DMF(1 mL)に懸濁させ, **T1**(524.5 mg, 1.81 mmol) の DMF(4 mL)溶液と MeI (135  $\mu$ L, 2.2 mmol)を加え, 1 時間撹拌した.これに MeOH と塩化アンモニウム水溶液を 加え, EtOAc で希釈し, 常法に従い後処理し, 濃縮した. 濃縮残渣をシリカゲルカラム (8:1-5:1 toluene-EtOAc)で精製し,  $N - \neq \neq \mu$ 体(**T2**, 401.8 mg)を収率 76%で得た. **T2** の一 部(351.6 mg, 1.2 mmol)を EtOH(7 mL)に溶解し, H<sub>2</sub>NNH<sub>2</sub>·H<sub>2</sub>O(1.5 mL)を加え 1.5 時間加熱 還流した.反応液を濃縮し, 残渣をシリカゲルカラム(50:1-1:1 CH<sub>3</sub>Cl-MeOH +0.1%Et<sub>3</sub>N) で精製し, **T3**(324.8 mg)を定量的に得た.<sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 7.60 (d, 1H, *J* = 8.0 Hz, Ar H), 7.30 (d, 1H, *J* = 8.3 Hz, Ar H), 7.24-7.09 (m, 2H, Ar H), 6.89 (s, 1H, Ar H), 3.75 (s, 3H, NMe), 3.02 (m, 2H, CH<sub>2</sub>), 2.92 (m, 2H, CH<sub>2</sub>).

2-(N-Dansyl-2-aminoethoxy)ethoxyethyl (allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosyl)-(1 $\rightarrow$ 4)-(methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside (**B**1 $\alpha$ )

A16(709.3 mg, 428.4 µmol)と L5(589.9 mg, 1.54 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(100 mL)溶液に, MSAW 300(2.09 g)を加え,室温で 30 分間撹拌した. その後,TMSOTf(67 µL, 0.3 mmol)を加え, 1 時間撹拌した.反応液を DIPEA で中和し,セライトろ過後,CHCl<sub>3</sub>で希釈し,常法に よる後処理を行った.濃縮残渣は,シリカゲルカラム(7:1-2-1 toluene-EtOAc)で精製し, B1 $\alpha$ (614.4 mg)を収率 76%で得た. B1 $\alpha$ : <sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>) (selected): 8.53 (m, 1H, DNS), 8.31 (m, 1H, Ar H), 8.25 (m, 1H, Ar H), 8.23-7.15 (m, 38H, Ar H), 5.76-5.71 (m, 1H, All), 5.47 (d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>III</sup>), 5.36 (br t, 1H, NH), 5.26 (m, 1H, All), 5.26 (m, 1H, All), 5.13-4.94 (m, 4H, 2PhC<u>H<sub>2</sub></u>), 4.91(d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>I</sup>) 4.88-4.58 (m, 10H, 5PhC<u>H<sub>2</sub></u>), 3.21 (s, 3H, COOMe), 2.87 (s, 6H, NMe<sub>2</sub>), 2.05, 2.03 (2s, 6H, 2Ac).

2-(N-Dansyl-2-aminoethoxy)ethoxyethyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)- $(1 \rightarrow 4)$ -(6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranosy l)- $(1 \rightarrow 4)$ -(methyl 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ - 6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside (**B**3)

**B1**α(439.1 mg, 233.8 μmol)を CH<sub>3</sub>CN(28 mL)に溶解し, [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd(46.0 mg, 39.7 μmol), PPh<sub>3</sub>(21.3 mg, 79.4 μmol), モルホリン(200 μL)を加え,終夜撹拌した.反応終了後,濃縮し,濃縮残渣をシリカゲルカラム(3:1-1:3 toluene-EtOAc)で精製し,非還元末端に遊離の

ウロン酸をもつ化合物(B2, 326.1 mg)を収率 76%で得た.

**B2**(326.1 mg, 177.4 µmol)と **T3**(109.4 mg, 627.8 µmol)を EtOAc(40 mL)に溶解し, DMT-MM(98.2 mg, 355 µmol)と Et<sub>3</sub>N(87 µL, 0.63 mmol)を加え, 撹拌した. 翌日濃縮し, 濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム(6:1-2:1 toluene-EtOAc)で精製し, **B3**(204.3 mg)を収率 58%で得た. <sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>) (selected): 7.55-7.02 (m, 45H, Ar H), 6.68 (s, 1H, TrpC<u>H</u>),6.39 (br s, 1H, TrpN<u>H</u>), 5.45 (d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>III</sup>), 5.43 (br s, 1H, DNSN<u>H</u>), 4.91 (d, 1H,  $J_{1,2}$  = 3.90 Hz, H-1<sup>I</sup>), 4.49 (d, 1H,  $J_{1,2}$  = 8.93 Hz, H-1<sup>II</sup>), 4.42 (br d, J = 13.97 Hz, H-6a<sup>III</sup>), 4.41 (d,  $J_{1,2}$  = 7.79 Hz, H-1<sup>IV</sup>), 4.40 (br d, J = 13.74 Hz, H-6a<sup>I</sup>), 4.33 (br d, 1H, J = 7.56 Hz, H-6b<sup>III</sup>), 4.27 (br d, 1H, J = 12.37 Hz, H-6b<sup>I</sup>), 3.85 (br d, 2H, J = 9.85 Hz, H-5<sup>II,VI</sup>), 3.55 (s, 3H, TrpN<u>Me</u>), 3.27 (s, 3H, COOMe), 2.90 (s, 6H, NMe<sub>2</sub>), 2.68-2.60 (m, 2H, TrpC<u>H</u><sub>2</sub>), 2.56-2.49 (m, 2H, TrpCH<sub>2</sub>CH<sub>2</sub>), 2.07 (s, 6H, 2Ac).

2-(N-Dansyl-2-aminoethoxy)ethoxyethyl(N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)- $(1 \rightarrow 4)$ -(2-azido-3-O-benzyl-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranosyl- $(1 \rightarrow 4)$ -(sodium 2,3-di-O-benzyl- $\beta$ -D-glucopyranosyluronate)- $(1 \rightarrow 4)$ -2-azido-3-O-benzyl-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranoside, sodium salt (**B5**)

**B3**(35.4 mg)を THF(3 mL)と H<sub>2</sub>O(0.6 mL)に溶解し,0 ℃ に冷却後,1.25 M LiOH(0.3 mL) を加え,徐々に室温に上昇させつつ 2 日間撹拌した.これを 50% AcOH で中和し,濃縮 した.濃縮残渣は、ゲルろ過カラム(LH-20,1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム (3:1-1:6+0.1% AcOH toluene-EtOAc)で精製し、**B4**(23.9 mg)を収率 70%で得た.

**B4**(21.9 mg, 11.5 μmol)を DMF(1.5 mL)に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(47.3 mg, 340 μmol)を加え, 60 °C で 2 時間撹拌した. 反応溶液は, そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精製し, **B5**(36.2 mg)を定量的に得た. <sup>1</sup>H-NMR δ<sub>H</sub>(CD<sub>3</sub>OD) (selected): 8.44-8.07 (m, 3H, DNS), 7.49-6.87 (m, 42H, Ar H), 6.74 (s, 1H, TrpC<u>H</u>), 6.53 (d, *J*<sub>1,2</sub> = 8.02 Hz, H-1<sup>III</sup>), 4.85-4.78 (m, 3H, H-1<sup>1,II,IV</sup>), 4.92 (m, 1H, H-6a<sup>I</sup>), 4.42 (m, 1H, H-6a<sup>III</sup>), 4.30 (m, 1H, H-6b<sup>III</sup>), 4.13 (m, 1H, H-6b<sup>I</sup>), 4.05 (m, 2H, H-5<sup>II,IV</sup>), 3.59 (s, 3H, TrpN<u>Me</u>), 2.74, 2.74 (2s, 6H, NMe<sub>2</sub>). MALDI-TOFMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>102</sub>H<sub>112</sub>N<sub>10</sub>O<sub>30</sub>S<sub>3</sub>Na<sub>3</sub>, 2121.64; found, 2121.55.

#### N-Dansyl-5-aminopentanol (L6)

5-Amino-1-pentanol(553.0 mg, 5.36 mmol)を H<sub>2</sub>O(24 mL)とアセトン(24 mL)に溶解し, NaHCO<sub>3</sub>(450.3 mg, 5.36 mmol)と DNSCl(1.59 g, 6.0 mmol)を加え, 2 時間撹拌した.反応 終了後,濃縮し,濃縮残渣をシリカゲルカラム(1:1-1:15 *n*-hexane-EtOAc)で精製し, **L6**(1.75 g)を収率 96%で得た.<sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 8.54 (d, 1H, *J* = 8.5 Hz, Ar H), 8.31 (d, 1H, *J* = 8.5 Hz, Ar H), 8.24 (d, 1H, *J* = 11.0 Hz, Ar H), 7.55-7.45 (m, 2H, Ar H), 7.17 (d, 1H, *J* = 7.5 Hz, Ar H), 4.97 (m, 1H, NH), 3.46 (t, 1H, *J* = 6.5 Hz, NHC<u>H</u><sub>2</sub>), 2.88 (m, 8H, CH<sub>2</sub>, NMe<sub>2</sub>), 1.37 (m, 4H, 2CH<sub>2</sub>), 1.23 (m, 2H, CH<sub>2</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>17</sub>H<sub>24</sub>N<sub>2</sub>O<sub>3</sub>SNa,

### N-Dansyl-5-aminopentyl (allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-( $1 \rightarrow 4$ )-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ and $\beta$ -D-glucopyranoside (**D1** $\alpha$ and **D1\beta**)

L6(201.5 mg, 599.4 µmol)の CH<sub>2</sub>Cl<sub>2</sub>(3 mL)溶液に MS4Å(208.3 mg)と AgOTf(322.4 mg, 1.25 mmol)と 2,4,6-コリジン(108 μL, 816 μmol)を加え,室温で1時間撹拌した.このけ ん濁液に, A12(176.1 mg, 209.1 µmol)の CH<sub>2</sub>Cl<sub>2</sub>(3 mL)溶液を加え2時間反応させた.こ れに飽和重曹水と飽和食塩水を加え、セライトろ過を行い、常法による処理を行い、濃 縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム(15:1-3:1 toluene-EtOAc)で精製し, D1a(95.5 mg)を 40%, D1β(129.0 mg)を 54%の収率で得た. D1a: <sup>1</sup>H-NMR  $\delta_{\text{H}}$ (CDCl<sub>3</sub>): 8.55 (br d, 1H, J = 8.5 Hz, Ar H), 8.28 (br d, J = 8.7 Hz, Ar H), 8.22 (br d, 1H, J = 7.1 Hz, Ar H), 7.88-7.04 (m, 18H, Ar H), 5.85-5.71 (m, 1H, All), 5.27 (m, 1H, All), 5.23 (m, 1H, All), 5.10, 4.59 (ABq, 2H, J = 10.6 Hz, PhCH<sub>2</sub>), 5.10-4.77 (m, 6H, 2PhCH<sub>2</sub>, 1/2PhCH<sub>2</sub>), 4.74 (d, 1H,  $J_{1,2}$  = 3.6 Hz, H-1<sup>I</sup>), 4.65 (m, 2H, NH, 1/2PhCH<sub>2</sub>), 4.48-4.44 (m, 3H, H-1<sup>II</sup>, 2All), 4.36 (dd, 1H,  $J_{5.6a} = 2.1$  Hz,  $J_{gem} = 12.1$  Hz, H-6a<sup>I</sup>), 4.26 (dd, 1H,  $J_{5.6b} = 4.2$  Hz, H-6b<sup>I</sup>), 3.88-3.81 (m, 4H, H-3<sup>I</sup>, 4<sup>I,II</sup>, 5<sup>II</sup>), 3.70 (m, 1H, H-5<sup>I</sup>), 3.66 (t, 1H,  $J_{2,3} = J_{3,4} = 8.0$  Hz, H-3<sup>II</sup>), 3.54 (m, 1H, 1/2OCH<sub>2</sub>), 3.49 (dd, 1H, H-2<sup>II</sup>), 3.28 (m, 1H, 1/2OCH<sub>2</sub>), 3.24 (m, 1H, H-2<sup>I</sup>), 2.88 (s, 8H, NMe<sub>2</sub>, NHC<u>H</u><sub>2</sub>), 2.02 (s, 3H, Ac), 1.51-1.25 (m, 6H, CH<sub>2</sub>). **D1** $\beta$ : <sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 8.54 (d, 1H, J = 8.5 Hz, Ar H), 8.29 (d, 1H, J = 8.5 Hz, Ar H), 8.23 (d, 1H, J = 7.1 Hz, Ar H), 7.56-7.10 (m, 18H, Ar H), 5.80-5.74 (m, 1H, All), 5.27 (m, 1H, All), 5.17 (m, 1H, All), 5.00, 4.67 (ABq, 2H, J = 10.8 Hz, PhCH<sub>2</sub>), 4.86, 4.80 (ABq, 2H, J = 11.0 Hz, PhCH<sub>2</sub>), 4.77 (m, 3H, PhCH<sub>2</sub>, NH), 4.52-4.47 (m, 4H, H-6a<sup>I</sup>, H-1<sup>II</sup>, 2All), 4.22 (dd, 1H, J = 4.6 Hz, J = 12.1 Hz, H-6b<sup>I</sup>), 4.13 (d, 1H,  $J_{1,2} = 7.3$  H, H-1<sup>I</sup>), 3.88 (m, 2H, H-4<sup>II</sup>, 5<sup>II</sup>), 3.80 (br t, 1H, J = 8.9 Hz, H-4<sup>I</sup>), 3.71 (m, 1H,  $1/2\text{OCH}_2$ ), 3.66 (t, 1H,  $J_{2,3} = J_{3,4} = 8.4$  Hz, H-3<sup>II</sup>), 3.45 (t, 1H, H-2<sup>II</sup>), 3.39 (m, 1H, 1/2OCH<sub>2</sub>), 3.29 (m, 3H, H-2<sup>I</sup>, 3<sup>I</sup>, 5<sup>I</sup>), 2.88 (s, 8H, NMe<sub>2</sub>, NHC<u>H<sub>2</sub></u>), 2.00 (s, 3H, Ac), 1.48-1.21 (m, 6H, CH<sub>2</sub>).

### N-Dansyl-5-aminopentyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -Dglucopyranosyluronamide)- $(1 \rightarrow 4)$ -6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -Dglucopyranoside (**D2**)

**D1**α(36.3 mg, 31.8 µmol)を CH<sub>3</sub>CN(2.4 mL)に溶解し, [(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P]<sub>4</sub>Pd(6.2 mg, 5.4 µmol), PPh<sub>3</sub>(2.8 mg, 11 µmol), モルホリン(3 µL)を加え, 撹拌した. 2 時間後濃縮し, 残渣をシ リカゲルカラム(3:1-1:3 toluene-EtOAc)で精製した. 得られた遊離のカルボン酸と **T3**(21.1 mg, 121 µmol)をEtOAc(4.4 mL)に溶解し, DMT-MM(17.6 mg, 63.6 µmol)とEt<sub>3</sub>N(16 µL, 0.11 mmol)を加え, 撹拌した. 翌日, DMT-MM(8.8 mg, 32 µmol)とEt<sub>3</sub>N(7.8 µL, 56 µmol)を追加し, 6 時間撹拌した. 反応液を濃縮し, 残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, **D2**(42.6 mg)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 8.53 (br d, 1H, J = 8.5 Hz, Ar H), 8.28 (br d, J = 8.7 Hz, Ar H), 8.22 (br d, 1H, J = 7.3 Hz, Ar H), 7.55-7.06 (m, 27H, Ar H), 6.71 (s, 1H, TrpC<u>H</u>),6.39 (br t, 1H, J = 5.9 Hz, TrpN<u>H</u>), 4.85-4.55 (m, 10H, H-1<sup>I</sup>, 4PhC<u>H</u><sub>2</sub>, NH), 4.43 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.39 (dd, 1H,  $J_{5,6a} = 2.0$  Hz,  $J_{gem} = 12.1$  Hz, H-6a<sup>I</sup>), 4.15 (dd, 1H,  $J_{5,6b} = 4.8$  Hz, H-6b<sup>I</sup>), 3.80 (d, 1H,  $J_{4,5} = 8.0$  Hz, H-5<sup>II</sup>), 3.76-3.69 (m, 2H, H-4<sup>I</sup>, 5<sup>I</sup>), 3.64 (m, 4H, H-3<sup>II</sup>, TrpN<u>Me</u>), 3.58 (m, 1H, 1/2OCH<sub>2</sub>), 3.51 (br t, 1H, J = 9.6 Hz, H-4<sup>II</sup>), 3.49 (br t, 1H, J = 7.7 Hz, H-2<sup>II</sup>), 3.30 (m, 2H, 1/2TrpC<u>H</u><sub>2</sub>, 1/2OCH<sub>2</sub>), 2.97 (dd, 1H,  $J_{1,2} = 3.7$  Hz,  $J_{2,3} = 10.3$  Hz, H-2<sup>I</sup>), 2.85 (s, 8H, NMe<sub>2</sub>, NHC<u>H</u><sub>2</sub>), 2.80 (m, 1H, 1/2TrpC<u>H</u><sub>2</sub>), 2.66-2.51 (m, 2H, TrpC<u>H</u><sub>2</sub>), 2.01 (s, 3H, Ac), 1.51-1.25 (m, 6H, CH<sub>2</sub>).

### N-Dansyl-5-aminopentyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -Dglucopyranosyluronamide)-(1 $\rightarrow$ 4)-sodium 2-azido-3-O-benzyl-2-deoxy-6-O-sulfo- $\alpha$ -Dglucopyranoside, sodium salt (**D**4)

**D2**(42.6 mg)をTHF(2 mL)に溶解し,1日に一度0.5 M NaOH(40 µL)を加え,3日間撹 拌した.反応液を50% AcOH で中和し,濃縮残渣をゲルろ過カラム(LH-20,1:1 CHCl<sub>3</sub>-MeOH)で精製し,3行程収率77%で**D3**(29.8 mg)を得た.

**D4**(29.8 mg, 24.5 µmol)を DMF(2.1 mL)に溶解し、SO<sub>3</sub>·NMe<sub>3</sub>(68.2 mg, 490.0 µmol)を加え, 60 °C で 1 時間撹拌した. 反応溶液は、そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精製し、濃縮残渣をイオン交換樹脂[Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製 し、**D4**(28.3 mg)を収率 87%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CD<sub>3</sub>OD): 8.53 (br d, 1H, J = 8.5 Hz, Ar H), 8.37 (br d, 1H, J = 8.7 Hz, Ar H), 8.17 (br d, 1H, J = 7.3 Hz, Ar H), 7.94 (m, 1H, Ar H), 7.60-6.99 (m, 26H, Ar H), 6.82 (s, 1H, TrpC<u>H</u>), 4.90 (d, 1H,  $J_{1,2}$  = 8.0 Hz, H-1<sup>II</sup>), 4.94, 4.53 (ABq, 2H, J = 10.3 Hz, PhC<u>H<sub>2</sub></u>), 4.87-4.71 (m, 4H, 2PhC<u>H<sub>2</sub></u>), 4.67 (d, 1H,  $J_{1,2}$  = 3.5 Hz, H-1<sup>I</sup>), 4.64, 4.59 (ABq, 2H, J = 10.8 Hz, PhC<u>H<sub>2</sub></u>), 4.43 (dd, 1H,  $J_{5,6a}$  = 2.5 Hz,  $J_{gem}$  = 11.0 Hz, H-6a<sup>1</sup>), 4.02 (dd, 1H,  $J_{5,6b}$  = 1.6 Hz, H-6b<sup>1</sup>), 3.92 (d, 1H,  $J_{4,5}$  = 9.4 Hz, H-5<sup>II</sup>), 3.90 (br t, 1H, J = 9.5 Hz, H-5<sup>I</sup>), 3.80 (br t, 1H, J = 8.9 Hz, H-3<sup>II</sup>), 3.75-3.64 (m, 2H, H-3<sup>I</sup>, 4<sup>II</sup>), 3.62 (s, 3H, TrpN<u>Me</u>), 3.59 (m, 1H, H-4<sup>I</sup>), 3.40 (m, 3H, H-2<sup>II</sup>, 1/2TrpC<u>H<sub>2</sub></u>, 1/2OCH<sub>2</sub>), 3.26-3.11 (m, 2H, 1/2TrpC<u>H<sub>2</sub></u>, 1/2OCH<sub>2</sub>), 2.97 (dd, 1H, H-2<sup>I</sup>), 2.84 (s, 6H, NMe<sub>2</sub>), 2.80 (m, 3H, NHC<u>H<sub>2</sub></u>, 1/2TrpC<u>H<sub>2</sub></u>), 1.38-1.17 (m, 6H, CH<sub>2</sub>).

### N-Dansyl-5-aminopentyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -Dglucopyranosyluronamide)- $(1 \rightarrow 4)$ -sodium 3-O-benzyl-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -Dglucopyranoside, disodium salt (**D5**)

**D4**(28.3 mg, 21.5 μmol)を MeOH(2 mL)に溶解し, 触媒量の Lindlar 触媒を加え, 水素雰 囲気下で6時間激しく撹拌した. 反応液をセライトろ過し, ろ液を濃縮した. 濃縮残渣 をピリジン(1.5 mL)に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(59.6 mg, 428 μmol)を加え, 室温で4時間撹拌 した. 反応溶液は、そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し、濃縮残 渣をイオン交換樹脂[Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製し、**D5**(15.1 mg)を 収率 51%で得た. <sup>1</sup>H-NMR  $\delta_{H}$ (CD<sub>3</sub>OD) (selected): 8.52 (m, 1H, Ar H), 8.37 (m, 1H, Ar H), 8.17 (m, 1H, Ar H), 7.96 (m, 1H, Ar H), 7.60-6.95 (m, 26H, Ar H), 6.83 (s, 1H, TrpC<u>H</u>), 5.09 (d, 1H,  $J_{1,2} = 3.5$  Hz, H-1<sup>1</sup>), 4.96 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.48 (m, 2H, H-6ab<sup>I</sup>), 4.09 (m, 1H, H-5<sup>I</sup>), 3.95 (m, 1H, H-4<sup>I</sup>), 3.90 (br d, 1H, J = 9.6 Hz, H-5<sup>II</sup>), 3.82 (m, 2H, H-3<sup>I</sup>, 4<sup>II</sup>), 3.69 (m, 1H, H-4<sup>II</sup>), 3.62 (s, 3H, TrpN<u>Me</u>), 3.34 (m, 1H, H-2<sup>II</sup>), 3.00 (dd, 1H, H-2<sup>I</sup>), 2.84 (s, 6H, NMe<sub>2</sub>).

#### L5, L6, DT1 の加水素分解

基質を EtOAc に溶解し(15 mg / mL), AcOH(1 drop)と触媒量の Pd-C を加え, 10 日間 水素雰囲気下で激しく撹拌後, セライトろ過し, ろ液を濃縮した.

*L*7: <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.80 (d, 1H, J = 7.74 Hz, Ar H), 7.27 (d, 1H, J = 7.04 Hz, Ar H), 7.19 (t, 1H, J = 7.65 Hz, Ar H), 5.25 (s, 1H, NH), 3.58 (t, 1H, J = 6.39 Hz, CH<sub>2</sub>OH), 3.12 (t, 2H, J = 6.09 Hz, CH<sub>2</sub>), 2.94 (br s, 2H, NH), 2.83 (t, 2H, J = 6.09 Hz, CH<sub>2</sub>), 1.80 (m, 4H, 2CH<sub>2</sub>), 1.51-1.22 (m, 6H, 3CH<sub>2</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>15</sub>H<sub>23</sub>NO<sub>3</sub>SNa, 320.1291; found, 320.1286.

*Trp-DNS* (*DT1*): <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 8.51 (d, 1H, *J* = 7.62 Hz, DNS), 8.22 (d, 1H, *J* = 7.26 Hz, DNS), 8.11 (d, 1H, *J* = 8.64 Hz, DNS), 7.84 (dd, 1H, *J* = 8.64 Hz, *J* = 7.26 Hz, DNS), 7.41 (dd, 1H, *J* = 7.62 Hz, *J* = 8.58 Hz, DNS), 7.30 (d, 1H, *J* = 7.86 Hz, Trp), 7.22 (d, 1H, *J* = 8.58 Hz, DNS), 7.17 (t, 1H, *J* = 7.11 Hz, Trp), 7.14 (d, 1H, *J* = 7.38 Hz, Trp), 7.00-6.97 (m, 1H, Trp), 6.54 (s, 1H, Trp), 4.65 (br t, 1H, NH), 3.63 (s, 3H, NMe), 3.23 (q, 2H, *J* = 6.40 Hz, NHC<u>H</u><sub>2</sub>), 2.88 (s, 6H, NMe<sub>2</sub>), 2.79 (t, 2H, *J* = 6.54 Hz, CH<sub>2</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>23</sub>H<sub>25</sub>N<sub>3</sub>O<sub>2</sub>SNa, 430.1560; found, 430.1545.

*DT2*: <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.78 (d, 1H, *J* = 7.86 Hz, DNS), 7.38 (d, 1H, *J* = 7.92 Hz, Trp), 7.29 (d, 1H, *J* = 8.22 Hz, Trp), 7.28-7.22 (m, 2H, Trp, DNS), 7.15 (t, 1H, *J* = 7.74 Hz, Trp), 7.09-7.04 (m, 1H, Trp), 6.87 (s, 1H, Trp), 4.39 (br t, 1H, NH), 3.76 (s, 3H, NMe), 3.23 (q, 2H, *J* = 6.36 Hz, NHC<u>H</u><sub>2</sub>), 2.95 (t, 2H, *J* = 6.42 Hz, CH<sub>2</sub>), 2.75-2.71 (m, 4H, CH<sub>2</sub>), 1.62-1.53 (m, 4H, CH<sub>2</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>21</sub>H<sub>24</sub>N<sub>2</sub>O<sub>2</sub>SNa, 391.1451; found, 391.1447.

2-(N-Benzyloxycarbonyl)aminoethyl (allyl 2,3,4-tri-O-benzyl-β-D-glucopyranosyluronate)-(1→4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-α and β-D-glucopyranoside (**D6α** and **D6β**) Benzyl N-(2-hydroxyethyl)carbamate(67.9 mg, 346 µmol)の CH<sub>2</sub>Cl<sub>2</sub>(1.7 mL)溶液に MS4Å(144 mg), AgOTf(213.4 mg, 830.4 µmol)と 2,4,6-コリジン(71 µL, 0.5 mmol)を加え,

室温で1時間撹拌した. -40 ℃ に冷却後, このけん濁液に, CH<sub>2</sub>Cl<sub>2</sub>(1.5 mL)に溶解した A12(116.6 mg, 138.4 µmol)を加え1時間撹拌した. その後, 徐々に室温に上昇させなが ら,6時間撹拌した.反応液に飽和重曹水と飽和食塩水を加え、セライトろ過を行い、 常法による後処理を行い,濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカ ゲルカラム(15:1-6:1 toluene-EtOAc)で精製し, D6a(57.7 mg)を 42%, D6B(44.8 mg)を 32% の収率で得た. D6α: <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.43-7.20 (m, 25H, Ar H), 5.76-5.73 (m, 1H, All), 5.27 (m, 2H, NH, All), 5.17-5.09 (m, 4H, All, 3/2PhCH<sub>2</sub>), 4.86 (m, 4H, 2PhCH<sub>2</sub>), 4.79 (d, 1H,  $J_{1,2} = 4.9$  Hz, H-1<sup>1</sup>), 4.77, 4.60 (ABq, 2H, J = 10.8 Hz, PhCH<sub>2</sub>), 4.66 (d, 1H, J = 10.7 Hz, 1/2PhC $\underline{H}_2$ ), 4.47 (m, 3H, H-1<sup>II</sup>, 2All), 4.36 (dd, 1H,  $J_{5.6a} = 1.9$  Hz,  $J_{gem} = 12.1$  Hz, H-6a<sup>I</sup>), 4.27  $(dd, 1H, J_{5.6b} = 4.6 Hz, H-6b^{I}), 3.89-3.82 (m, 4H, H-3^{I}, 4^{I,II}, 5^{II}), 3.74 (m, 2H, H-5^{I}, 1/2OCH_2),$ 3.66 (t,  $J_{2,3} = J_{3,4} = 8.5$  Hz, H-3<sup>II</sup>), 3.58 (m, 2H, 1/2OCH<sub>2</sub>, 1/2NHCH<sub>2</sub>), 3.49 (dd, 1H, H-2<sup>II</sup>), 3.40 (m, 1H, 1/2NHCH<sub>2</sub>), 3.28 (m, 1H, H-2<sup>I</sup>), 2.02 (s, 3H, Ac). **D6** $\beta$ : <sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>) (selected): 7.43-7.20 (m, 25H, Ar H), 5.76-5.73 (m, 1H, All), 5.25 (m, 2H, NH, All), 5.17-5.01 (m, 9H, 2All, 7/2PhCH<sub>2</sub>), 4.79 (d, 1H,  $J_{1,2} = 7.3$  Hz, H-1<sup>1</sup>), 4.77-4.36 (m, 6H, J = 10.7 Hz, 3/2PhCH<sub>2</sub>, H-1<sup>II</sup>, 2All), 4.19 (m, 2H, H-6ab<sup>I</sup>), 3.89-3.66 (m, 6H, H-3<sup>I</sup>, 4<sup>I,II</sup>, 5<sup>II</sup>, 1/2OCH<sub>2</sub>, H-5<sup>I</sup>), 3.29 (m, H, H-2<sup>1,11</sup>, 3<sup>11</sup>, 1/20CH<sub>2</sub>, NHCH<sub>2</sub>), 1.98 (s, 3H, Ac).

# 2-(N-Benzyloxycarbony)aminoethyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside (**D**7)

**D6**(111.9 mg, 111.8 µmol)を CH<sub>3</sub>CN(7.3 mL)に溶解し,  $[(C_6H_5)_3P]_4Pd(22.0 mg, 19.0 µmol),$ PPh<sub>3</sub>(10.0 mg, 38.0 µmol), モルホリン(10 µL)を加え, 4 時間撹拌した.反応液を濃縮し, 残渣をシリカゲルカラム(3:1-1:3 toluene-EtOAc)で精製し, 濃縮した.濃縮残渣と **T3**(79.2 mg, 79.2 µmol)を EtOAc(17 mL)に溶解し, DMT-MM(78.5 mg, 0.28 mmol)と Et<sub>3</sub>N(46 µL, 0.45 mmol)を加え, 3 時間撹拌した.反応液を濃縮し,残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム(8:1-1:2 toluene-EtOAc)で精製し, **D7**(68.4 mg)を定量的 に得た.<sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>): 7.69-7.05 (m, 29H, Ar H), 6.70 (s, 1H, TrpC<u>H</u>), 6.40 (m, 1H, TrpN<u>H</u>), 5.10 (br s, 1H, NH), 4.83-4.57 (m, 11H, H-1<sup>1</sup>, 5PhC<u>H</u><sub>2</sub>), 4.42 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.40 (br d, 1H, J = 1.6 Hz, H-6a<sup>1</sup>), 4.15 (dd, 1H, J = 5.3 Hz, J = 12.1 Hz, H-6b<sup>1</sup>), 3.80 (d, 1H,  $J_{4,5} = 8.0$  Hz, H-5<sup>II</sup>), 3.79-3.70 (m, 2H, H-3<sup>1</sup>, 5<sup>1</sup>), 3.64 (m, 5H, H-3<sup>II</sup>, 4<sup>II</sup>, TrpN<u>Me</u>), 3.56 (m, 1H, 1/2OCH<sub>2</sub>), 2.97 (dd, 1H,  $J_{1,2} = 3.6$  Hz,  $J_{2,3} = 10.3$  Hz, H-2<sup>I</sup>), 2.81-2.51 (m, 3H, 1/2TrpC<u>H<sub>2</sub></u>, TrpC<u>H<sub>2</sub></u>), 2.01 (s, 3H, Ac), 1.51-1.25 (m, 6H, CH<sub>2</sub>).

2-(N-Benzyloxycarbony)aminoethyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-2-azido-3-O-benzyl-2-deoxy-6-O-sulfo- $\alpha$ -D-glucopyranoside,

#### sodium salt (D9)

**D7**(68.4 mg)を THF(4 mL)に溶解し, 0.5 M NaOH(250 µL)を加え, 終夜撹拌した. 翌日, 0.5 M NaOH(100 µL)を追加し, 4 日間撹拌した. 反応液を 50% AcOH で中和し, 濃縮し, 濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム(5:1-1:2 toluene-EtOAc)で精製し, 3 行程収率 40%で **D8**(48.5 mg)を得た.

**D8**(48.5 mg, 45.2 µmol)を DMF(3.4 mL)に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(125.8 mg, 904.0 µmol)を加 え, 60 °C で 1 時間撹拌した. 反応溶液は, そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, 濃縮残渣をイオン交換樹脂[Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製し, **D9**(58.0 mg)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{H}$ (CD<sub>3</sub>OD): 7.93-7.01 (m, 29H, Ar H), 6.83 (s, 1H, TrpC<u>H</u>), 5.05-4.98 (m, 2H, PhC<u>H</u><sub>2</sub>), 4.42 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.87-4.51 (m, 9H, H-1<sup>I</sup>, PhC<u>H</u><sub>2</sub>), 4.43 (dd, 1H,  $J_{gem} = 10.9$  Hz,  $J_{5,6a} = 2.4$  Hz, H-6a<sup>I</sup>), 4.10 (d, 1H, H-6b<sup>I</sup>), 3.96 (d, 1H,  $J_{4,5} = 8.4$  Hz, H-5<sup>II</sup>), 3.90 (br t, J = 9.4 Hz, H-4<sup>I</sup>), 3.84-3.74 (m, 4H, H-3<sup>I,II</sup>, 5<sup>I</sup>, 1/2OCH<sub>2</sub>), 3.75 (br t, 1H, J = 9.1 Hz, H-4<sup>II</sup>), 3.64 (s, 3H, TrpN<u>Me</u>), 3.54 (m, 1H, 1/2OCH<sub>2</sub>), 3.42 (m, 3H, H-2<sup>II</sup>, 1/2OCH<sub>2</sub>, 1/2NHC<u>H<sub>2</sub></u>), 3.16 (m, 2H, TrpC<u>H<sub>2</sub></u>), 3.02 (dd, 1H,  $J_{1,2} = 3.6$  Hz,  $J_{2,3} = 10.3$  Hz, H-2<sup>II</sup>), 2.78 (m, 1H, 1/2TrpC<u>H<sub>2</sub></u>).

2-(N-Benzyloxycarbony)aminoethyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamido)-(1 $\rightarrow$ 4)-sodium 3-O-benzyl-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**D12**) and (2-sulfamido)ethyl (N-methyltryptaminyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamido)-(1 $\rightarrow$ 4)-sodium 3-O-benzyl-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, trisodium salt (**D13**)

**D9**(58.0 mg)を MeOH(5 mL)に溶解し, 触媒量の Lindlar 触媒を加え, 水素雰囲気下で 4 時間激しく撹拌した. 反応液をセライトろ過し, ろ液を濃縮し, **D10** と **D11** の混合物 (41.8 mg)を得た.

**D10**と**D11**の混合物(41.8 mg)をピリジン(3 mL)に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(101.0 mg, 726.0 µmol)を加え,室温で2時間撹拌した.反応溶液は,そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し,濃縮残渣をイオン交換樹脂[Dowex 50Wx 8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製し,濃縮した.濃縮残渣をシリカゲルカラム(20:1-2:1 CH<sub>2</sub>Cl<sub>2</sub>-MeOH) で精製し,収率 40%で **D12**(13.5 mg)を得た.また,副生成物である **D13**(12.0 mg)も得られた.**D12**: <sup>1</sup>H-NMR  $\delta_{H}$ (CD<sub>3</sub>OD): 7.46-6.98 (m, 29H, Ar H), 6.80 (s, 1H, TrpC<u>H</u>), 5.27-5.00 (m, 3H, 3/2PhC<u>H<sub>2</sub></u>), 4.93 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.82-4.48 (m, 9H, H-1<sup>I</sup>, H-6a<sup>I</sup>, 7/2PhC<u>H<sub>2</sub></u>), 4.13 (d, 1H, J = 10.4 Hz, H-6b<sup>I</sup>), 4.02 (br t, 1H, J = 9.4 Hz, H-5<sup>I</sup>), 3.93 (br d, 1H, J = 9.1 Hz, H-5<sup>II</sup>), 3.82-3.7 (m, 4H, H-3<sup>I,II</sup>, 4<sup>I,II</sup>), 3.59 (m, 4H, TrpN<u>Me</u>, 1/2OCH<sub>2</sub>), 3.47 (m, 1H, 1/2OCH<sub>2</sub>), 3.38 (t, 1H, H-2<sup>II</sup>), 3.30 (m, 4H, NHC<u>H<sub>2</sub></u>, TrpC<u>H<sub>2</sub></u>), 3.07 (dd, 1H,  $J_{1,2} = 3.6$  Hz,  $J_{2,3} = 10.5$  Hz, H-2<sup>I</sup>), 2.78 (m, 2H, TrpC<u>H<sub>2</sub></u>). **D13**: <sup>1</sup>H-NMR  $\delta_{H}$ (CD<sub>3</sub>OD): 7.56-6.98 (m, 24 H, Ar H), 6.83 (s, 1H, TrpC<u>H</u>), 5.03 (d, 1H,  $J_{1,2} = 4.1$  Hz, H-1<sup>I</sup>), 4.94 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.96-4.53 (m,

9H, H-1<sup>I</sup>, 4PhC<u>H</u><sub>2</sub>), 4.51 (br d, 1H, J = 11.2 Hz, H-6a<sup>I</sup>), 4.09 (br d, 1H, J = 10.8 Hz, H-6b<sup>I</sup>), 3.98 (br t, 1H, J = 9.6 Hz, H-5<sup>I</sup>), 3.90 (br d, 1H, J = 9.0 Hz, H-5<sup>II</sup>), 3.82-3.71 (m, 3H, H-4<sup>I,II</sup>, 3<sup>II</sup>), 3.59 (m, 3H, TrpN<u>Me</u>), 3.59 (m, 1H, H-3<sup>I</sup>), 3.45 (m, 3H, H-2<sup>I,II</sup>, 1/2OCH<sub>2</sub>), 3.25 (m, 1H, 1/2OCH<sub>2</sub>), 3.38 (m, 4H, NHC<u>H<sub>2</sub>, TrpCH<sub>2</sub>), 2.76 (m, 2H, TrpCH<sub>2</sub>).</u>

#### 第三章

5-(N-Benzyloxycarbonyl)aminopentyl (all 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside (**E1**)

5-Benzyloxycarbonylamino-1-pentanol(149.8 mg, 631.1 µmol)の Et<sub>2</sub>O(35 mL)溶液に MS4Å(1.31 g)と AgOTf(486.5 mg, 1.89 mmol)と 2,4,6 – コリジン(163 µL, 1.23 mmol)を加 え,室温で1時間撹拌した.このけん濁液を-40 °C に冷却し,二糖供与体 A12(265.8 mg, 315.6 µmol)を加え1時間反応させた.その後,室温まで連続的に温度を上げながら、2 日間撹拌した.2日後,飽和重曹水と飽和食塩水を加え、セライトろ過を行い、常法に よる処理を行い、濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)にて精製し、さら にシリカゲルカラム(15:1-3:1 toluene-EtOAc)で精製し、E1 $\alpha$ を 50%, E1 $\beta$ を 30%の収率で 得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.44-7.10 (m, 25H, Ar H), 5.81-5.72 (m, 1H, All), 5.31-5.14 (m, 2H, All), 5.11 (m, 3H, 3/2PhCH<sub>2</sub>), 5.01-4.81 (m, 3H, PhCH<sub>2</sub>, NH), 4.81 (d, 1H,  $J_{1,2}$  = 4.3 Hz, H-1<sup>1</sup>), 4.79-4.58 (m, 5H, 5/2PhCH<sub>2</sub>), 4.47 (m, 3H, H-1<sup>II</sup>, All), 4.38 (dd, 1H,  $J_{\rm gem}$  = 12.2 Hz,  $J_{5,6a}$  = 2.0 Hz, H-6a<sup>1</sup>), 4.28 (dd, 1H,  $J_{5,6b}$  = 4.4 Hz, H-6b<sup>1</sup>), 3.94-3.81 (m, 4H, H-3<sup>1</sup>, 4<sup>II</sup>, 5<sup>1,II</sup>), 3.73 (br s, 1H, H-4<sup>I</sup>), 3.69 (t, 1H,  $J_{2,3}$  = 8.1 Hz, H-3<sup>III</sup>), 3.64 (m, 1H, 1/2OCH<sub>2</sub>), 3.48 (dd, 1H,  $J_{1,2}$  = 8.9 Hz, H-2<sup>III</sup>), 3.42 (m, 1H, 1/2OCH<sub>2</sub>), 3.26 (dd, 1H,  $J_{1,2}$  = 3.7 Hz, H-2<sup>II</sup>), 3.18 (m, 2H, NHCH<sub>2</sub>), 2.03 (s, 3H, Ac), 1.66-1.42 [m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>].

# 5-(N-Benzyloxycarbonyl)aminopentyl (all 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-amino-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside (**E2**)

**E1**α(106.5 mg, 102.1 µmol)を THF(4.5 mL)と H<sub>2</sub>O(0.5 mL)に溶解し, PPh<sub>3</sub>(66.9 mg, 255.3 µmol)と silica gel C-200(79.4 mg)を加え, 室温で3日間撹拌した. 反応液をそのままゲル ろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH+1%Et<sub>3</sub>N)で精製し, **E2**(92.5 mg)を収率 89%で得た.

5-(N-Benzyloxycarbonyl)aminopentyl (lithium 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-sulfamido- $\alpha$ -D-glucopyranoside, lithium salt (**E5**) and

5-(N-benzyloxycarbonyl) aminopentyl (lithium 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-

 $(1 \rightarrow 4)$ -2-amino-3-O-benzyl-2-deoxy- $\alpha$ -D-glucopyranoside, lithium salt (E6)

**E2**(92.5 mg, 90.9 µmol)をピリジン(6.8 mL)に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(63.5 mg, 463.0 µmol)を 加え, 0.5 M NaOH を加え pH 8 に保ちつつ, 終夜撹拌した. 反応液をそのままゲルろ過

カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とイオン交換樹脂[Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]で精製し, E3 と E4 の混合物(72.6 mg)を得た. E3 と E4 の混合物を THF(7.5 mL)とH2O(1.5 mL)に溶解し、0 ℃中で 1.25 M LiOH(1.0 mL)を加え、終夜撹拌した.反 応溶液は濃縮し,濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, E5 と **E6** を得た. **E5**: <sup>1</sup>H-NMR  $\delta_{H}$  (CDCl<sub>3</sub>): 7.41-7.11 (m, 25 H, Ar H), 5.26, 4.45 (ABq, 2H, J = 10.6 Hz, PhCH<sub>2</sub>), 4.95 (s, 2H, PhCH<sub>2</sub>), 4.85 (d, 1H,  $J_{12} = 3.2$  Hz, H-1<sup>1</sup>), 4.75-4.62 (m, 6H, 3PhCH<sub>2</sub>), 4.60 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 3.92 (br dd, 1H, J = 2.7 Hz, J = 11.6 Hz, H-6a<sup>I</sup>), 3.89 (br t, 1H, J = 9.0 Hz, H-4<sup>I</sup>), 3.77 (br t, 2H, J = 9.4 Hz, H-3<sup>I</sup>, 6b<sup>I</sup>), 3.67 (br d, 1H, J = 9.8 Hz, H-5<sup>II</sup>), 3.62-3.52 (m, 4H, H-5<sup>I</sup>, 3<sup>II</sup>, 4<sup>II</sup>, 1/2OCH<sub>2</sub>), 3.37 (br t, J = 8.5 Hz, H-2<sup>II</sup>, 1/2OCH<sub>2</sub>), 2.99 (br t, 3H, J = 7.1 Hz, H-2<sup>I</sup>, NHCH<sub>2</sub>), 1.61-1.18 [m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>]. MALDI-TOFMS m/z $[M+Na^{\dagger}]$ : calcd. for C<sub>53</sub>H<sub>60</sub>N<sub>2</sub>O<sub>16</sub>SNa<sub>3</sub>, 1081.34; found, 1081.83. E6: <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.41-7.11 (m, 25 H, Ar H), 5.26, 4.45 (ABq, 2H, J = 10.6 Hz, PhCH<sub>2</sub>), 4.95 (s, 2H, PhCH<sub>2</sub>), 4.85 (d, 1H,  $J_{1,2} = 3.2$  Hz, H-1<sup>I</sup>), 4.75-4.62 (m, 6H, 3PhCH<sub>2</sub>), 4.60 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 3.92 (br dd, 1H, J = 2.7 Hz, J = 11.6 Hz, H-6a<sup>I</sup>), 3.89 (br t, 1H, J = 9.0 Hz, H-4<sup>I</sup>), 3.77 (br t, 2H, J = 9.4 Hz, H-3<sup>I</sup>, 6b<sup>I</sup>), 3.67 (br d, 1H, J = 9.8 Hz, H-5<sup>II</sup>), 3.62-3.52 (m, 4H, H-5<sup>I</sup>, 3<sup>II</sup>, 4<sup>II</sup>,  $1/2OCH_2$ ), 3.39 (br t, J = 8.6 Hz,  $H-2^{II}$ ,  $1/2OCH_2$ ), 3.00 (br t, 3H, J = 7.1 Hz,  $H-2^{I}$ , NHCH<sub>2</sub>), 1.58-1.25 [m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>]. MALDI-TOFMS m/z [M+H<sup>+</sup>]: calcd. for C<sub>53</sub>H<sub>63</sub>N<sub>2</sub>O<sub>13</sub>, 935.43; found, 935.72.

# 5-(N-Benzyloxycarbonyl)aminopentyl (allyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido- $\alpha$ -D-glucopyranoside (**E**7)

**E2**(222.3 mg, 218.5 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(2 mL)に溶解し、0 °C に冷却後、保護硫酸化試薬 X1(600.0 mg, 1.3 mmol)と 1,2-dimethylimidazole(84.0 mg, 874.0 µmol)を加え、1 時間撹拌 した.反応溶液はそのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)にて精製し、 **E7**(350.5 mg)を定量的に得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.39-7.18 (m, 25H, Ar H), 5.84-5.73 (m, 1H, All), 5.48 (br s, 1H, NH), 5.28-5.14 (m, 2H, All), 5.09 (s, 2H, CH<sub>2</sub>), 5.08 (br s, 1H, H-1<sup>1</sup>), 5.02-4.75 (m, 11H, 5PhC<u>H<sub>2</sub></u>, NH), 4.61-4.55 (m, 2H, 2All), 4.49 (d, 1H, *J*<sub>1,2</sub> = 7.8 Hz, H-1<sup>II</sup>), 4.40 (dd, 1H, *J*<sub>gem</sub> = 12.4 Hz, *J*<sub>5,6a</sub> = 2.0 Hz, H-6a<sup>I</sup>), 4.28 (dd, 1H, *J*<sub>5,6b</sub> = 4.4 Hz, H-6b<sup>I</sup>), 3.89-3.84 (m, 3H, H-4<sup>I,II</sup>, 5<sup>I</sup>), 3.69 (m, 4H, H-3<sup>I,II</sup>, 5<sup>II</sup>, 1/2OCH<sub>2</sub>), 3.45 (m, 3H, H-2<sup>I,II</sup>, 1/2OCH<sub>2</sub>), 3.21 (m, 2H, NHC<u>H<sub>2</sub></u>), 2.05 (s, 3H, Ac), 1.70-1.38 [m, 6H, NHCH<sub>2</sub>(C<u>H<sub>2</sub></u>)<sub>3</sub>CH<sub>2</sub>].

5-(N-Benzyloxycarbonyl)aminopentyl (sodium 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, sodium salt (**E9**)

**E7**(350.5 mg, 218.5 µmol)を THF(40 mL)と H<sub>2</sub>O(10 mL)に溶解し、0 ℃ に冷却後 1.25 M LiOH を加え、6 時間撹拌した.反応溶液を 50% AcOH で中和後濃縮し、濃縮残渣をゲ

ルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)にて精製し, E8(176.1 mg)を二行程収率 70%で得 た. E8(176.1 mg)を DMF に溶解し, SO<sub>3</sub>·NMe<sub>3</sub>(425.3 mg, 3.1 mmol)を加え 60 °C で 4 日 間撹拌した.反応終了後,ゲルろ過カラム(LH-20,1:1 CHCl<sub>3</sub>-MeOH)とイオン交換カラム [Dowex 50Wx8 (Na<sup>+</sup> form), 8:1 MeOH-H<sub>2</sub>O]にて精製し, E9(113.1 mg)を収率 58%で得た. また,副生成物である E10(49.1 mg)も得られた. E9:<sup>1</sup>H-NMR δ<sub>H</sub>(CD<sub>3</sub>OD): 7.49-7.20 (m, 25H, Ar H), 5.08, 4.47 (ABq, 2H, J = 10.0 Hz, PhCH<sub>2</sub>), 4.96 (s, 2H, CH<sub>2</sub>), 4.98 (d, 1H, J<sub>1.2</sub> = 7.8 Hz, H-1<sup>II</sup>), 4.84 (d, 1H,  $J_{12} = 3.5$  Hz, H-1<sup>I</sup>), 4.75-4.55 (m, 6H, 3PhCH<sub>2</sub>), 4.46 (br d, 1H, J = 10.1Hz, H-6a<sup>I</sup>), 4.37, 4.27 (ABq, 2H, J = 11.2 Hz, PhCH<sub>2</sub>), 3.95 (m, 3H, H-5<sup>I,II</sup>, 6b<sup>I</sup>), 3.84 (t, 1H,  $J_{2.3}$  $= J_{3,4} = 9.1$  Hz, H-3<sup>II</sup>), 3.75 (t, 1H, H-4<sup>II</sup>), 3.71 (m, 3H, H-3<sup>I</sup>, 4<sup>I</sup>, 1/20CH<sub>2</sub>), 3.69 (m, 4H, H-3<sup>I,II</sup>,  $5^{II}$ , 1/2OCH<sub>2</sub>), 3.46 (m, 1H, 1/2OCH<sub>2</sub>), 3.41 (br dd, 1H, J = 10.8 Hz, J = 3.4 Hz, H-2<sup>I</sup>), 3.36 (t, 1H, H-2<sup>II</sup>), 3.09 (m, 2H, NHCH<sub>2</sub>), 1.67-1.25 [m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>]. MALDI-TOFMS *m/z*  $[M+H^+]$ : calcd. for C<sub>55</sub>H<sub>62</sub>N<sub>2</sub>O<sub>19</sub>S<sub>2</sub>Cl<sub>3</sub>Na<sub>2</sub>, 1269.22; found, 1269.52. E10: <sup>1</sup>H-NMR  $\delta_H$  (CD<sub>3</sub>OD): 7.54-7.21 (m, 25H, Ar H), 5.12 (d, 1H,  $J_{1,2} = 3.4$  Hz, H-1<sup>1</sup>), 5.04 (s, 2H, CH<sub>2</sub>), 4.97 (d, 1H, J =11.2 Hz,  $1/2PhCH_2$ , 4.92 (d, 1H,  $J_{1,2} = 7.8$  Hz, H-1<sup>II</sup>), 4.85-4.67 (m, 7H, 7/2 PhCH<sub>2</sub>), 4.11 (dd, 1H,  $J_{gem} = 11.0$  Hz,  $J_{5,6} = 2.9$  Hz, H-6a<sup>I</sup>), 3.99 (br t, 1H, J = 9.4 Hz, H-4<sup>I</sup>), 3.95 (d, 1H,  $J_{4,5} = 9.4$ Hz, H-5<sup>II</sup>), 3.78 (t, 1H,  $J_{2,3} = J_{3,4} = 9.4$  Hz, H-3<sup>II</sup>), 3.73 (t, 1H, H-4<sup>II</sup>), 3.66 (m, 2H, H-5<sup>I</sup>,  $1/2\text{OCH}_2$ ), 3.57 (br t, 1H, J = 9.7 Hz, H-3<sup>I</sup>), 3.48 (m, 1H,  $1/2\text{OCH}_2$ ), 3.42 (br dd, 1H, J = 10.6Hz, J = 3.6 Hz, H-2<sup>I</sup>), 3.36 (t, 1H, H-2<sup>II</sup>), 3.09 (m, 2H, NHC<u>H</u><sub>2</sub>), 1.69-1.27 [m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>]. MALDI-TOFMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>53</sub>H<sub>59</sub>N<sub>2</sub>O<sub>19</sub>S<sub>2</sub>Na<sub>3</sub>, 1183.27; found, 1183.75.

# 5-(N-Methyl-3-indolacetamido)pentyl (sodium $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**E12**)

EtOH(5 mL)と AcOH(1 drop)に溶解した **E9**(113.1 mg)を,触媒量の Pd-C を加え,水素 雰囲気下で激しく撹拌した.翌日,H<sub>2</sub>O(2.5 mL)を追加し,さらにもう 1 日激しく撹拌 した後,セライトろ過し,**E11**(56.7 mg)を定量的に得た.**E11**(56.7 mg)を 1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl(0.7 mL)に溶解し、**Y1**(37.8 mg, 132.0 µmol)を加え,2 時間撹拌し,濃縮した. 濃縮残渣はゲルろ過カラム(LH-20, 1% AcOH)で精製し,**E12**(66.6 mg)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (D<sub>2</sub>O): 7.55 (d, 1H, J = 8.0 Hz, Ar H), 7.44 (d, 1H, J = 8.2 Hz, Ar H), 7.27 (br t, 1H, J = 7.8 Hz, Ar H), 5.04 (d, 1H,  $J_{1,2}$  = 3.6 Hz, H-1<sup>1</sup>), 4.52 (d, 1H,  $J_{1,2}$  = 8.0 Hz, H-1<sup>II</sup>), 4.28 (d, 2H, J = 3.3 Hz, H-6ab<sup>1</sup>), 3.90 (m, 1H, H-5<sup>1</sup>), 3.75 (s, 3H, NMe), 3.72 (d, 1H,  $J_{4,5}$  = 9.7 Hz, H-5<sup>II</sup>), 3.67 (s, 2H, CH<sub>2</sub>), 3.63 (m, 2H, H-3<sup>I</sup>, 4<sup>I</sup>), 3.50 (m, 1H, 1/2OCH<sub>2</sub>), 3.46 (t, 1H,  $J_{2,3}$  =  $J_{3,4}$  = 9.2 Hz, H-3<sup>II</sup>), 3.60 (t, 1H, H-4<sup>II</sup>), 3.35 (m, 1H, 1/2OCH<sub>2</sub>), 3.27 (t, 1H, H-2<sup>II</sup>), 3.21 (dd, 1H,  $J_{1,2}$  = 3.6 Hz,  $J_{2,3}$  = 10.0 Hz, H-2<sup>I</sup>), 1.46-1.20 [m, 6H, NHCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>]. MALDI-TOFMS *m*/z [M+H<sup>+</sup>]: calcd. for C<sub>28</sub>H<sub>38</sub>N<sub>3</sub>O<sub>18</sub>S<sub>2</sub>Na<sub>2</sub>, 860.12; found, 860.37.</u>

#### Methyl 5-aminopentanoate, hydrochloride (L9)

5-Benzyloxycarbonylamino-1-pentanol(509.1 mg, 2.2 mmol)を EtOAc(15 mL)と H<sub>2</sub>O(13 mL)に溶解し, TEMPO(100.8 mg, 645.0µmol), 1 M NaBr(0.5 mL), 1 M *n*-Bu<sub>4</sub>NBr(0.7 mL), 飽和重曹水(1.9 mL)を加え, 0 °C に冷却した後, 4% NaOCl(2.4 mL)を加え, 2 時間撹拌した.反応終了後, 1M HCl を加え中和した.その後, *t*-BuOH(19 mL), 2-methyl-2-butene(7.8 mL), H<sub>2</sub>O(21 mL), NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O(1.94 g), NaClO<sub>2</sub>(1.94 g)を加え, 終夜撹拌した.反応溶液は EtOAc で希釈し, 常法に従い後処理し, 濃縮した. 濃縮残渣はシリカゲルカラム(10:1-1:1 toluene-EtOAc)で精製し, 5-benzyloxycarbonylaminopentanoic acid(445.9 mg)を定量的に得た. 精製物(32.0 mg)をトルエン(0.6 mL) – MeOH(0.2 mL)に溶解し, TMSCHN<sub>2</sub>(123 µL, 254.6 µmol)を加え, 5分間撹拌し, 濃縮し, L8(33.8 mg)を定量的に得た. L8(33.8 mg)を EtOH(1.5 mL)と 1 M HCl(1 drop)に溶解し, 触媒量の Pd-C を加え, 水素雰囲気下で 2 時間激しく撹拌後, セライトろ過した. ろ液を濃縮し, L9 と L10 の 1:1 の混合物(11.7 mg)を得た. L9: <sup>1</sup>H-NMR δ<sub>H</sub>(CD<sub>3</sub>OD): 3.66 (s, 3H, Me), 3.30 (m, 2H, CH<sub>2</sub>), 3.00 (m, 2H, CH<sub>2</sub>), 1.76 (m, 4H, CH<sub>2</sub>).

5-(N-Benzyloxycarbonyl)aminopentyl (4-methoxycarbonylbutyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)- $(1 \rightarrow 4)$ -3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido- $\alpha$ -D-glucopyranoside (**E13**)

**E8**(38.5 mg, 33.4 µmol)と HOBt(15.5 mg, 100.2 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(1.1 mL)に溶解し, -20 °C に冷却し撹拌した.1時間後, L9 と L10 の 1:1 の混合物(37.7mg)と WSCD·HCl(12.8 mg, 66.8 µmol)を加え3時間反応させた.反応溶液は CHCl<sub>3</sub>で希釈後,常法による後処理を 行い,濃縮した.濃縮残渣はゲルろ過カラム(S-X1, toluene)で精製し, E13(22.7 mg)を定 量 的 に 得 た. この 化 合 物 は こ れ 以 上 精 製 す る こ と な く 次 の 反 応 に 用 い た. MALDI-TOFMS *m*/z [M+Na<sup>+</sup>]: calcd. for C<sub>61</sub>H<sub>74</sub>N<sub>3</sub>O<sub>17</sub>S<sub>1</sub>NaCl<sub>3</sub>, 1280.37; found, 1280.54.

# 5-(N-Benzyloxycarbonyl)aminopentyl (4-methoxycarbonylbutyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)- $(1 \rightarrow 4)$ -3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido-6-O-(2,2,2-trichloroethoxy)sulfo- $\alpha$ -D-glucopyranoside (**E14**)

**E13**(22.7 mg)を CH<sub>2</sub>Cl<sub>2</sub>(1 mL)に溶解し、0 °C に冷却後、保護硫酸化試薬 X1(33.0 mg, 72.0 µmol)と 1,2-dimethylimidazole(8.3 mg, 86.4 µmol)を加え、終夜撹拌した.反応溶液は CHCl<sub>3</sub> で希釈し、常法に従い後処理し、濃縮した.濃縮残渣はゲルろ過カラム(S-X1, toluene)にて精製し、**E14**(16.6 mg)を二行程収率 34%で得た.<sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>) (selected): 7.68-7.22 (m, 25 H, Ar H), 6.27 (m, 1H, NH), 5.94 (m, 1H, NH), 5.06-4.60 (m, 15H, 5PhC<u>H</u><sub>2</sub>, 2CH<sub>2</sub>CCl<sub>3</sub>, NH), 4.57 (br d, 1H, *J* = 2.29 Hz, H-1<sup>1</sup>), 4.57 (br d, 1H, *J* = 4.00 Hz, H-6a<sup>1</sup>), 4.52 (br d, 1H, *J* = 7.45 Hz, H-1<sup>1</sup>), 4.47 (br dd, 1H, *J* = 1.72 Hz, *J* = 8.50 Hz, H-6b<sup>1</sup>), 3.85 (br d, 1H, *J* = 8.01 Hz, H-5<sup>II</sup>), 3.63 (s, 3H, COOMe), 1.64-0.85 (m, 12H, CH<sub>2</sub>).

5-Aminopentyl (4-methoxycarbonylbutyl  $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-2-deoxy-2sulfamido- 6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**E15**)

**E14**(16.6 mg)を EtOH(1.5 mL)と AcOH(1 drop)に溶解し、触媒量の Pd-C を加え、水素 雰囲気下で激しく終夜撹拌した後、H<sub>2</sub>O(1.5 mL)を追加し、2 日間反応させた.反応溶液 はセライトろ過後濃縮し、収率 87%で **E15**(7.4 mg)を得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (D<sub>2</sub>O) (selected): 5.03 (d, 1H,  $J_{1,2}$  = 3.43 Hz, H-1<sup>1</sup>), 4.51 (d, 1H,  $J_{1,2}$  = 7.44 Hz, H-1<sup>II</sup>), 4.30 (br d, 1H, J = 9.73 Hz, H-6a<sup>I</sup>), 4.23 (br dd, 1H, J = 11.44 Hz, J = 5.15 Hz, H-6b<sup>II</sup>), 3.80 (br d, 1H, J = 9.73 Hz, H-5<sup>II</sup>), 3.59 (s, 3H, Me), 2.33 (m, 2H, CH<sub>2</sub>), 1.91 (m, 2H, CH<sub>2</sub>), 1.60-1.07 (m, 10H, CH<sub>2</sub>).

### 5-(N-Methyl-3-indolacetamido)pentyl (4-methoxycarbonylbutyl $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**E16**)

**E15**(7.4 mg, 9.8 µmol)を1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl(0.5 mL)に溶解し, DNF(3.0 mL)に 溶かした **Y1**(6.8 mg, 23.6 µmol)を加え, 5 時間撹拌し, 濃縮した. 濃縮残渣はゲルろ過 カラム(LH-20, 1% AcOH)で精製し, **E16**(0.3 mg)を収率 3%で得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (D<sub>2</sub>O) (selected): 7.56 (d, 1H, *J* = 7.92 Hz, Ar H), 7.45 (d, 1H, *J* = 8.34Hz, Ar H), 7.27 (m, 1H, Ar H), 7.17 (s, 1H, Ar H), 7.12 (m, 1H, Ar H), 4.96 (d, 1H, *J*<sub>1,2</sub> = 3.66 Hz, H-1<sup>1</sup>), 4.56 (d, 1H, *J*<sub>1,2</sub> = 7.92 Hz, H-1<sup>II</sup>), 4.30 (dd, 1H, *J*<sub>gem</sub> = 11.34 Hz, *J*<sub>5,6a</sub> = 4.08 Hz, H-6a<sup>1</sup>), 4.24 (dd, 1H, *J*<sub>5,6b</sub> = 2.16 Hz, H-6b<sup>1</sup>), 3.81 (d, 1H, *J*<sub>4,5</sub> = 9.42 Hz, H-5<sup>II</sup>), 3.75, 3.62 (2s, 6H, Me), 2.30 (m, 2H, CH<sub>2</sub>), 1.60-1.07 (m, 12H, CH<sub>2</sub>).

#### Benzyl 5-aminopentanoate (L13)

5-Amino-1-pentanol(254.8 mg, 2.5 mmol)を MeOH(7 mL)に溶解し, Boc<sub>2</sub>O(646.9 mg, 3.0 mmol)を加え, 3 時間撹拌した後, CHCl<sub>3</sub> で希釈し, 常法に従い後処理を行い, 濃縮し, L11(656.4 mg)を定量的に得た. その一部(570.0 mg)を EtOAc(17 mL)と H<sub>2</sub>O(15 mL)に溶解 し, TEMPO(131.3 mg, 840.0µmol), 1 M NaBr(0.6 mL), 1 M *n*-Bu<sub>4</sub>NBr(0.8 mL), 飽和重曹 水(2.1 mL)を加え, 0 °C に冷却した後, 4% NaOCl(2.7 mL)を加え, 1 時間撹拌した. 反 応終了後, 1 M HCl を加え中和した. その後, *t*-BuOH(21 mL), 2-methyl-2-butene(8.7 mL), H<sub>2</sub>O(24 mL), NaH<sub>2</sub>PO<sub>4</sub>·2H<sub>2</sub>O(2.17 g), NaClO<sub>2</sub>(2.17 g)を加え, 終夜撹拌した. 反応溶液は EtOAc で希釈し, 常法に従い後処理し, 濃縮した. 濃縮残渣を CH<sub>2</sub>Cl<sub>2</sub>(36 mL)に溶解し, BnOH(0.8 mL, 7.4 mmol), DIPEA(0.4 mL, 2.5 mmol), HOBt(1.15 g, 7.4 mmol)を加え, -20 °C に冷却後 WSCD·HCl(947.0 mg, 4.9 mmol)を加え, 終夜撹拌した. 反応溶液は CHCl<sub>3</sub> で希 釈し, 常法に従い後処理し, 濃縮した. 濃縮残渣はシリカゲルカラム(10:1-1:5 toluene-EtOAc)で精製し, L12(823.6 mg)を定量的に得た. L12 の一部(389.8 mg)を CH<sub>2</sub>Cl<sub>2</sub>(4 mL)に溶解し, TFA(2 mL)を加え, 1 時間撹拌後, 濃縮した. 濃縮残渣はシリカ ゲルカラム(5:1-1:1 EtOAc-MeOH)で精製し, L13(96.0 mg)を定量的に得た. <sup>1</sup>H-NMR δ<sub>H</sub> (CD<sub>3</sub>OD): 7.25-7.20 (m, 5H, Ar H), 5.02 (s, 2H, PhC<u>H<sub>2</sub></u>), 2.84 (br t, 2H, *J* = 7.20 Hz, CH<sub>2</sub>), 2.35

#### (br t, 2H, J = 6.80 Hz, CH<sub>2</sub>), 1.59 (m, 4H, 2CH<sub>2</sub>).

5-(N-Benzyloxycarbonyl)aminopentyl (4-benzoxycarbonylbutyl 2,3,4-tri-O-benzyl- $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido-6-O-(2,2,2-trichloroethoxy)sulfo- $\alpha$ -D-glucopyranoside (**E1**7)

**E8**(46.4 mg, 40.3 µmol)と HOBt(18.8 mg, 120.9 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(2.0 mL)に溶解し, -20 °C に冷却し撹拌した. 1 時間後, CH<sub>2</sub>Cl<sub>2</sub>(0.5 mL)に溶解した L13(23.7 mg, 114.3 µmol), DIPEA(7 µL, 40.3 µmol), WSCD·HCl(15.5 mg, 80.6 µmol)を加え 8 時間撹拌した. 反応溶 液はそのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, E13 縮合物(92.9 mg) を定量的に得た. この一部(22.7 mg)を CH<sub>2</sub>Cl<sub>2</sub>(1.5 mL)に溶解し, 0 °C に冷却後, 保護硫 酸化試薬 X1(73.8 mg, 161.2 µmol)と 1,2-dimethylimidazole(18.6 mg, 193.4 µmol)を加え, 終 夜 撹 拌 した. 翌 日, 室 温 で 保 護 硫 酸 化 試 薬 X1(110.7 mg, 241.8 µmol) と 1,2-dimethylimidazole(27.9 mg, 209.1 µmol)を追加し, さらに終夜撹拌した. 反応溶液は CHCl<sub>3</sub> で希釈し, 常法に従い後処理し, 濃縮した. 濃縮残渣はシリカゲルカラム(6:1-1:4 toluene-EtOAc)にて精製し, E17(27.8 mg)を二行程収率 45%で得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>) (selected): 7.53-7.22 (m, 30 H, Ar H), 6.27 (m, 1H, NH), 5.81 (br d, 1H, *J* = 8.76 Hz, NH), 5.12 (br d, 1H, *J* = 3.48 Hz, H-1<sup>1</sup>), 5.12-4.71 (m, 16H, H-1<sup>II</sup>, 5PhC<u>H</u><sub>2</sub>, 2CH<sub>2</sub>CCl<sub>3</sub>, NH), 4.57 (m, 2H, H-6ab<sup>1</sup>), 1.73-1.10 (m, 12H, CH<sub>2</sub>).

### 5-Aminopentyl (4-carboxybutyl $\beta$ -D-glucopyranosyluronamide)-(1 $\rightarrow$ 4)-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**E18**)

**E17**(27.8 mg) を EtOH(2 mL)と AcOH(1 drop)に溶解し, 触媒量の Pd-C を加え, 水素 雰囲気下で激しく終夜撹拌した後, H<sub>2</sub>O(2 mL)を追加し, 2 日間反応させた. 反応溶液 はセライトろ過後濃縮し, H<sub>2</sub>O(2 mL)に溶解し, 触媒量の Pd(OH)<sub>2</sub>を加え, 水素雰囲気 下で激しく終夜撹拌した. 反応溶液はセライトろ過後, 濃縮し **E18**(12.0 mg)を収率 90% で得た. <sup>1</sup>H-NMR δ<sub>H</sub>(D<sub>2</sub>O) (selected): 7.54 (m, 1H, Ar H), 7.43 (m, 1H, Ar H), 7.26-7.10 (m, 3H, Ar H), 4.99 (d, 1H, J<sub>1,2</sub> = 3.43 Hz, H-1<sup>1</sup>), 4.49 (d, 1H, J<sub>1,2</sub> = 7.45 Hz, H-1<sup>II</sup>), 4.30 (m, 2H, H-6ab<sup>I</sup>), 2.30 (m, 2H, CH<sub>2</sub>), 1.60-1.07 (m, 12H, CH<sub>2</sub>).

### 5-(N-Methyl-3-indolacetamido)pentyl (4-carboxybutyl $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-2deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**E19**)

**E18**(12.0 mg, 16.1 µmol)を1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl(0.5 mL)に溶解し, DMF(1.0 mL) に溶かした **Y1**(6.8 mg, 23.6 µmol)を加え, 5 時間撹拌し, EtOAc で希釈し, 洗浄した. 水層を濃縮し, 濃縮残渣はゲルろ過カラム(LH-20, 1% AcOH)で精製し, 収率 85%で **E19** (12.5 mg)を得た.<sup>1</sup>H-NMR δ<sub>H</sub>(D<sub>2</sub>O) (selected): 7.56 (d, 1H, *J* = 7.92 Hz, Ar H), 7.45 (d, 1H, *J* = 8.34 Hz, Ar H), 7.27 (m, 1H, Ar H), 7.17 (s, 1H, Ar H), 7.12 (m, 1H, Ar H), 4.96 (d, 1H, *J*<sub>1,2</sub> = 3.66 Hz, H-1<sup>1</sup>), 4.56 (d, 1H,  $J_{1,2} = 7.92$  Hz, H-1<sup>II</sup>), 4.30 (dd, 1H,  $J_{gem} = 11.34$  Hz,  $J_{5,6a} = 4.08$  Hz, H-6a<sup>I</sup>), 4.24 (dd, 1H,  $J_{5,6b} = 2.16$  Hz, H-6b<sup>I</sup>), 3.81 (d, 1H,  $J_{4,5} = 9.42$  Hz, H-5<sup>II</sup>), 3.75, 3.62 (2s, 6H, Me), 2.30 (m, 2H, CH<sub>2</sub>), 1.60-1.07 (m, 12H, CH<sub>2</sub>).

#### 4-Methoxyphenyl 2,4-di-O-acetyl-β-D-glucopyranosylurono-3,6-lactone (M2)

**M1**(88.3 mg, 0.293 mmol), Ac<sub>2</sub>O(2.5 mL), I<sub>2</sub>を混合し,7日間撹拌した.反応液は,1M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>と氷を加えた後,濃縮し,シリカゲルカラム(100:1-3:1 toluene-EtOAc)で精製し, **M2**(15.9 mg)を収率 10%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 6.96 (m, 2H, Ar H), 6.80 (m, 2H, Ar H), 5.48 (s, 1H, H-1), 5.35 (d, 1H,  $J_{2,3}$  = 3.4 Hz, H-2), 5.17 (dd, 1H,  $J_{3,4}$  = 4.0 Hz, H-3), 4.91 (br t, 1H, J = 4.0 Hz, H-4), 4.29 (br d, 1H, J = 3.5 Hz, H-5), 3.76 (s, 3H, Me), 2.19, 2.13 (2s, each 3H, Ac).

#### Methyl (dodecyl 2,3,4-tri-O-acetyl-1-thio- $\alpha$ and $\beta$ -D-glucopyranosyl)uronate (M4 $\alpha$ and M4 $\beta$ )

**M3**(4.83 g, 12.8 mmol) の (CH<sub>2</sub>Cl)<sub>2</sub> (130 mL) 溶 液 に , MSAW 300(1.45 mg) , 1-dodecanthiol(4.6 mL, 19 mmol), TMSOTf(3.0 mL, 17 µmol)を加え,室温で7時間撹拌し た.反応溶液は飽和重曹水で中和し、セライトろ過後、CHCl<sub>3</sub>で希釈した.有機層は常 法に従い後処理し、濃縮した.濃縮残渣はシリカゲルカラム(100:1-2:1 *n*-hexane-EtOAc) で精製し、収率 70%で **M4**αと**M4**βの混合物(4.66 g,  $\alpha/\beta=2/1$ )を得た. **M4**α: <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 5.71 (d, 1H,  $J_{1,2}$  = 5.52 Hz, H-1), 5.37 (t, 1H,  $J_{3,4}$  = 9.60 Hz, H-3), 5.17 (t, 1H,  $J_{4,5}$  = 9.60 Hz, H-4), 5.00 (dd, 1H,  $J_{2,3}$  = 9.60 Hz, H-2), 4.75 (d, 1H, H-5), 3.75 (s, 3H, Me), 2.62-2.50 (m, 2H, SCH<sub>2</sub>), 2.07, 2.04, 2.03 (3 s, each 3H, 3Ac), 1.36-1.25 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>]</u>, 0.88 (br t, 3 H, J = 7.02 Hz, CH<sub>3</sub>). **M4**β: 5.26 (br t, 1H, J = 9.30 Hz, H-3), 5.19 (br t, 1H, J = 9.60 Hz, H-2), 5.04 (br t, 1H, J = 9.90 Hz, H-4), 4.51 (br d, 1H, J = 10.02 Hz, H-5), 4.02 (br d, 1H, J = 9.72 Hz, H-1), 3.75 (s, 3H, Me), 2.73-2.64 (m, 2H, SCH<sub>2</sub>), 2.05, 2.02, 2.02 (3 s, each 3H, 3Ac), 1.35-1.23 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>]</u>, 0.88 (br t, 3 H, J = 7.02 Hz, CH<sub>3</sub>).

#### Methyl (dodecyl 2,3,4-tri-O-pivaloyl-1-thio- $\alpha$ and $\beta$ -D-glucopyranosyl)uronate (M5 $\alpha$ and M5 $\beta$ )

M4αとM4βの混合物(4.08 g, 7.86 mmo)を MeOH(41 mL)に溶解し, 0.107 M NaOMe を 7 時間かけて 0.8~3.7 µL(計 6.8 mL)加え, 終夜撹拌し, 1 M HCl で中和後濃縮した. 濃縮 残渣(2.59 g)をピリジン(45 mL)に溶解し, 60 °C で PivCl(5.8 mL, 47.2 mmol)を加え, 終夜 撹拌した. 翌日 PivCl(1.9 mL, 15.7 mmol)を追加し 3 時間撹拌後, MeOH を加え CHCl<sub>3</sub> で希釈後, 常法に従い後処理した. 濃縮残渣はゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精製し, シリカゲルカラム(100:1-1:1 *n*-hexane-EtOAc)でさらに精製し, アノマー混合 物 M5αと M5βの混合物(2.74 g)を二行程収率 54%で得た. M5α: <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 5.75 (d, 1H, J<sub>1,2</sub> = 5.88 Hz, H-1), 5.46 (br t, 1H, J = 10.14 Hz, H-3), 5.20 (br dd, 1H, J = 9.42 Hz, J = 10.02 Hz, H-4), 5.01 (br dd, 1H, J = 5.88 Hz, J = 10.14 Hz, H-2), 4.77 (dr d, 1H, J = 10.14 Hz, H-5), 3.73 (s, 3H, Me), 2.69-2.47(m, 2H, SCH<sub>2</sub>), 1.35-1.23 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub></u>)<sub>10</sub>CH<sub>3</sub>], 1.17, 1.15, 1.12 (3s, 27H, *t*-Bu), 0.88 (br t, 3H, J = 7.02 Hz, CH<sub>3</sub>): <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>). **M5** $\beta$  : 5.36 (br t, 1H, J = 9.36 Hz, H-3), 5.25 (br t, 1H, J = 9.96 Hz, H-2), 5.11 (br dd, 1H, J = 9.42 Hz, J = 9.96 Hz, H-4), 4.52 (br d, J = 10.08 Hz, H-2), 4.07 (dr d, J = 10.08 Hz, H-5), 3.73 (s, 3H, Me), 2.76-2.62 (m, 2H, SCH<sub>2</sub>), 1.35-1.23 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub></u>)<sub>10</sub>CH<sub>3</sub>], 1.16, 1.14, 1.11 (3 s, each 9H, 3*t*-Bu), 0.88 (br t, 3H, J = 7.02 Hz, CH<sub>3</sub>).

# 2-(5-Sulfo-1-naphthyl)aminoethyl (dodecyl 2,3,4-tri-O-pivaloyl-1-thio- $\alpha$ and $\beta$ -D-glucopyranosyl)uronamide, sodium salt ( $M7\alpha$ and $M7\beta$ )

M5αと M5βの混合物(28.4 mg, 44.0 μmol)を THF(36 μL)に溶解し、0 ℃ に冷却し、 LiOOH(36 μl, 3.72 M solution of LiOH in 3% H<sub>2</sub>O<sub>2</sub>)を加え終夜撹拌し、1 M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>を 2 滴 加え、そのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し、濃縮した.濃縮残渣 と HOBt(8.2 mg, 50.4 μmol)を DMF(140 μL)に溶解し、-20 ℃ に冷却後、HBTU(9.7 mg, 50.4 μmol)を加え、撹拌した. 30 分後、DMF(154 μL)に溶かした EDANS(13.2mg, 45.8 μmol) と DIPEA(16 μL, 91.6 μmol)を加え、室温で1時間撹拌した.反応溶液はそのままゲルろ 過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し、M7αと M7βの混合物(18.4 mg)を二行程収 率 47%で得た.

# 2-(5-Sulfo-1-naphthyl)aminoethyl dodecyl 1-thio- $\alpha$ and $\beta$ -D-glucopyranosyl)uronamide, sodium salt (**M8\alpha and M8\beta**)

**M7**αと **M7**βの混合物(18.4 mg)を MeOH(250 µL)に溶解し、1.0 M NaOMe(計 248 µL)を 加え pH を 9~10 に保ちつつ 4 日間撹拌した. 反応溶液に 1 M HCl を加え中和した後濃 縮し、**M8**αと **M8**βの混合物(3.6mg)を得た.<sup>1</sup>H-NMR  $\delta_{\text{H}}$ (CD<sub>3</sub>OD): 8.14-8.09 (m, 3H, EDANS), 7.37-7.30 (m, 2H, EDANS), 6.67-6.65 (m, 1H, EDANS), 5.36 (br t, 1H, *J* = 9.36 Hz, H-3), 5.25 (br t, 1H, *J* = 9.96 Hz, H-2), 5.11 (br dd, 1H, *J* = 9.42 Hz, *J* = 9.96 Hz, H-4), 4.52 (br d, *J* = 10.08 Hz, H-2), 4.07 (dr d, *J* = 10.08 Hz, H-5), 3.73 (s, 3H, Me), 2.76-2.62 (m, 2H, SCH<sub>2</sub>), 1.35-1.23 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.16, 1.14, 1.11 (3 s, each 9H, 3*t*-Bu), 0.88 (br t, 3H, *J* = 7.02 Hz, CH<sub>3</sub>). MALDI-TOFMS *m*/*z* [M+Na<sup>+</sup>]: calcd for C<sub>30</sub>H<sub>45</sub>N<sub>2</sub>O<sub>8</sub>S<sub>2</sub>Na<sub>2</sub>, 671.24; found, 670.89.</u>

# (Methyl 2,3,4-tri-O-pivaloyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-1,6-anhydro-2-azido-3-O-benzyl-2-deoxy- $\beta$ -D-glucopyranose (**F2**)

M5αと M5βの混合物(223.9 mg, 347.2 μmol)と F1(144.4 mg, 520.8 μmol)を(CHCl<sub>2</sub>)<sub>2</sub>(3.5 mL)に溶解し, MSAW 300(270 mg)を加えて撹拌した後, NIS(156.2 mg, 694.4 μmol)と TfOH(9 μL, 0.1 mmol)を Et<sub>2</sub>O(1.8 mL)と(CHCl<sub>2</sub>)<sub>2</sub>(1.8 mL)に溶解して加え, 5 時間撹拌した. 反応溶液は 1 M Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> と飽和重曹水で中和後, CHCl<sub>3</sub> で希釈し, セライトろ過した.

有機層は常法に従い後処理した. 濃縮残渣はゲルろ過(S-X1, toluene)で精製した. ゲル ろ過精製物をシリカゲルカラム(100:1-1:2 *n*-hexane-EtOAc)でさらに精製し, 収率 95%で **F2**(236.5 mg)を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.37-7.29 (m, 5H, Ar H), 5.43 (s, 1H, H-1<sup>1</sup>), 5.37 (br t, 1H, *J* = 9.42 Hz, H-3<sup>II</sup>), 5.29 (br t, 1H, *J* = 9.72 Hz, H-4<sup>II</sup>), 5.12 (dd, 1H, *J*<sub>1,2</sub> = 9.86 Hz, *J*<sub>2,3</sub> = 9.42 Hz, H-2<sup>II</sup>), 4.80 (d, 1H, H-1<sup>II</sup>), 4.68, 4.62 (ABq, 2H, *J* = 11.70 Hz, PhC<u>H</u><sub>2</sub>), 4.53 (br d, 1H, *J* = 5.82 Hz, H-6a<sup>I</sup>), 4.04 (m, 2H, H-4<sup>I</sup>, 5<sup>II</sup>), 3.19 (br s, 1H, H-6b<sup>I</sup>), 3.77-3.72 (m, 2H, H-3<sup>I</sup>, 5<sup>I</sup>), 3.71 (s, 3H, Me), 3.19 (br s, 1H, H-2<sup>I</sup>), 1.17, 1.14, 1.12 (3 s, each 9H, 3*t*-Bu).

### (Methyl 2,3,4-tri-O-pivaloyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-D-glucopyranose (**F3**)

**F2**(236.5 mg, 328.6 µmol)を Ac<sub>2</sub>O(3.2 mL)と AcOH(0.2 mL)に溶かし、0 °C に冷却後, TFA(0.2 mL)を加え一晩撹拌した.氷を加え反応を止めた後、濃縮した.濃縮残渣(272.3 mg)を DMF(3.7 mL)に溶解し、H<sub>2</sub>NNH<sub>2</sub>·AcOH(45.8 mg, 497.0 µmol)を加え室温で 2 時間撹 拌した.反応溶液は飽和食塩水と EtOAc で希釈後、常法に従い後処理した.濃縮残渣 はシリカゲルカラム(10:1-1:3 toluene-EtOAc)で精製し、二行程収率 83%で **F3**(212.0 mg) を得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>) (selected): 7.48-7.14 (m, 5H, Ar H), 5.34-5.04 (m, 7H, H-1 $\alpha^{I,\Pi}$ , 2<sup>II</sup>, 3<sup>II</sup>, 4<sup>II</sup>, PhC<u>H<sub>2</sub></u>), 4.46 (br t, 1H, *J* = 11.16 Hz, H-5<sup>II</sup>), 4.57 (br d, 1H, *J* = 7.98 Hz, H-1 $\beta^{\rm I}$ ), 4.47 (m, 1H, H-6a<sup>I</sup>), 4.12 (m, 1H, H-6b<sup>I</sup>), 4.10 (m, 1H, H-5<sup>I</sup>), 3.37 (s, 3H, Me), 3.34 (m, 1H, H-3<sup>I</sup>), 3.32 (m, 1H, H-2<sup>I</sup>), 2.12 (s, 3H, Ac), 1.17, 1.14, 1.12 (3 s, each 9H, 3*t*-Bu).

### (Methyl 2,3,4-tri-O-pivaloyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-Obenzyl-2-deoxy- $\alpha$ and $\beta$ -D-glucopyranosyl choloride (**F4\alpha and F4\beta**)

**F3**(212.0 mg, 271.9  $\mu$ mol)を CH<sub>2</sub>Cl<sub>2</sub>(2.0 mL)に溶解し, 1-chloro-*N*,*N*,2-trimethyl-1propenylamine(0.5 mL, 2.73 mmol)を加え、室温で3時間撹拌後、濃縮した、濃縮残渣は シリカゲルカラム(100:1-1:1 toluene-EtOAc)で精製し、収率 77%で **F4**αと **F4**βの混合物 (167.0 mg)を得た. <sup>1</sup>H-NMR  $\delta_{H}$ (CDCl<sub>3</sub>) (selected): 7.47-7.17 (m, 5H, Ph), 6.02 (d, 1H, *J*<sub>1,2</sub> = 3.84 Hz, H-1 $\alpha^{1}$ ), 5.36-4.67 (m, 7H, H-1 $\beta^{1,II}$ , 2<sup>II</sup>, 3<sup>II</sup>, 4<sup>II</sup>, PhC<u>H</u><sub>2</sub>), 3.58 (s, 3H, Me), 2.12 (s, 3H, Ac), 1.17, 1.14, 1.12 (3 s, each 9H, 3*t*-Bu).

### 5-(N-Benzyloxycarbonyl)aminopentyl (methyl 2,3,4-tri-O-pivaloyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy- $\alpha$ and $\beta$ -D-glucopyranoside (**F5\alpha and F5\beta**)

5-Benzyloxycarbonylamino-1-pentanol(99.3 mg, 418 µmol)の Et<sub>2</sub>O(21.9 mL)溶液に MS4Å(822 mg)と AgOTf(322.5 mg, 1.26 mmol)と 2,4,6-コリジン(108 µL, 816 µmol)を加 え,室温で1時間撹拌した.このけん濁液を-40 ℃に冷却し,Et<sub>2</sub>O(21.9 mL)に溶解した F4αと F4βの混合物(167.0 mg, 209.2 µmol)を加え1時間撹拌した.その後,室温まで連 続的に温度を上げながら、5日間撹拌した.5日後,飽和重曹水と飽和食塩水を加え,

セライトろ過を行い,常法による処理を行い,濃縮残渣をゲルろ過カラム(LH-20,1:1 CHCl<sub>3</sub>-MeOH)にて精製し、さらにシリカゲルカラム(15:1-2:1 toluene-EtOAc)で精製し、 F5α(108.2 mg)を 52%, F5β(33.9 mg)を 16%の収率で得た. F5α: <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.43-7.25 (m, 10H, Ar H), 5.29 (br t, 1H, J = 9.06 Hz, H-3<sup>II</sup>), 5.25 (br t, 1H, J = 9.42 Hz, H-4<sup>II</sup>), 5.09 (s, 2H, PhCH<sub>2</sub>), 5.06 (m, 2H, 1/2CH<sub>2</sub>, H-2<sup>II</sup>), 4.80 (d, 1H,  $J_{12} = 3.54$ , H-1<sup>I</sup>), 4.75 (br d, H, J = 7.08 Hz, H-1<sup>II</sup>), 4.73 (s, 1H, NH), 4.35 (dd, 1H,  $J_{5.6a}$  = 1.95 Hz,  $J_{gem}$  = 12.03 Hz, H-6a<sup>I</sup>), 4.23 (dd, 1H, H-6b<sup>I</sup>), 3.92 (br d, 1H, J = 9.54 Hz, H-5<sup>II</sup>), 3.90 (br t, 1H, J = 9.90 Hz, H-3<sup>I</sup>), 3.84 (br t, 1H, J = 9.78 Hz, H-4<sup>I</sup>), 3.76 (m, 1H, H-5<sup>I</sup>), 3.64 (m, 1H, 1/20CH<sub>2</sub>), 3.62 (s, 3H, Me), 3.19 (dd, 1H,  $J_{2,3} = 10.08$  Hz, H-2<sup>I</sup>), 3.20 (m, 2H, NHCH<sub>2</sub>), 2.10 (s, 3H, Ac), 1.65, 1.54, 1.40 [3m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>O], 1.16, 1.12, 1.12 (3 s, each 9H, 3*t*-Bu). **F5**<sub>B</sub>: 7.42-7.25 (m, 10H, Ar H), 5.29 (br t, 1H, J = 9.06 Hz, H-3<sup>II</sup>), 5.25 (br t, 1H, J = 9.34 Hz, H-4<sup>II</sup>), 5.09 (s, 2H, PhCH<sub>2</sub>), 5.02 (br t, 1H, J = 8.85 Hz, H-2<sup>II</sup>), 4.96, 4.72 (ABq, 2H, PhCH<sub>2</sub>), 4.72 (br d, H, J = 7.74 Hz, H-1<sup>II</sup>), 4.41 (dd, 1H,  $J_{5.6a} = 2.26$  Hz,  $J_{gem} = 11.94$  Hz, H-6a<sup>I</sup>), 4.20 (d, 1H,  $J_{1,2} = 7.92$ , H-1<sup>I</sup>), 4.15 (dd, 1H, H-6b<sup>I</sup>), 3.90 (br d, 1H, J = 9.66 Hz, H-5<sup>II</sup>), 3.82 (m, 2H, 1/2OCH<sub>2</sub>, H-4<sup>I</sup>), 3.59 (s, 3H, Me), 3.50 (m, 1H, 1/20CH<sub>2</sub>), 3.38 (m, 3H, H-2<sup>I</sup>, 3<sup>I</sup>, 5<sup>I</sup>), 3.18 (m, 2H, NHCH<sub>2</sub>), 2.08 (s, 3H, Ac), 1.65, 1.54, 1.40 [3m, 6H, NHCH<sub>2</sub>(CH<sub>2</sub>)<sub>3</sub>CH<sub>2</sub>O], 1.16, 1.12, 1.12 (3 s, each 9H, 3*t*-Bu).

### 5-(N-Benzyloxycarbonyl)aminopentyl (methyl 2,3,4-tri-O-pivaroyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-6-O-acetyl-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido- $\alpha$ -D-glucopyranoside (**F6**)

**F5**α(85.6 mg, 85.7 µmol)を THF(7.5 mL)と H<sub>2</sub>O(0.9 mL)に溶解し, PPh<sub>3</sub>(56.2 mg, 214 µmol)と silica gel C-200(0.98 g)を加え,室温で2日間撹拌した.反応液を濃縮後,ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH+1%Et<sub>3</sub>N)で精製し,濃縮した(77.6 mg).濃縮残渣 (77.6 mg)を CH<sub>2</sub>Cl<sub>2</sub>(0.9 mL)に溶解し,0°C に冷却後,保護硫酸化試薬 X1(218.9 mg, 478.2 µmol)と 1,2-dimethylimidazole(30.6 mg, 319 µmol)を加え,2時間撹拌した.反応溶液はそのままゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)にて精製し,濃縮した.ゲルろ過精製物 をシリカゲルカラム(10:1-1:4 toluene-EtOAc)でさらに精製し,二行程収率 47%で F6(47.5 mg)を得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CD<sub>3</sub>OD): 7.44-7.00 (m, 10H, Ar H), 5.20 (m, 4H, PhC<u>H</u><sub>2</sub>, H-3<sup>II</sup>, 4<sup>II</sup>), 5.07, 4.47 (ABq, 2H, J = 10.40 Hz, PhC<u>H</u><sub>2</sub>), 4.97 (s, 2H, CCl<sub>3</sub>CH<sub>2</sub>), 4.92 (m, 1H, H-2<sup>II</sup>), 4.83 (d, 1H,  $J_{1,2} = 6.48$ , H-1<sup>1</sup>), 4.81 (br d, H, J = 8.16 Hz, H-1<sup>II</sup>), 4.25 (m, 2H, H-6ab<sup>I</sup>), 3.99 (m, 1H, H-4<sup>I</sup>), 3.83 (br d, 1H, J = 9.78 Hz, H-5<sup>III</sup>), 3.73-3.54 (m, 3H, H-3<sup>I</sup>, OCH<sub>2</sub>), 3.51 (m, 1H, H-5<sup>I</sup>), 3.38 (m, 1H, NHC<u>H</u><sub>2</sub>), 3.23 (m, 1H, H-2<sup>II</sup>), 1.65, 1.54, 1.40 [(3m, 6H, NHCH<sub>2</sub>(C<u>H</u><sub>2</sub>)<sub>3</sub>CH<sub>2</sub>O)], 1.06, 1.04, 1.02(3 s, each 9H, 3*t*-Bu).

5-(N-Benzyloxycarbonyl)aminopentyl (2,3,4-tri-O-pivaroyl- $\beta$ -D-glucopyranosyluronic acid)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamide- $\alpha$ -D-glucopyranoside (**F**7) **F6**(430.3 mg, 336.3 µmol)をTHF(540 µL)に溶解し,0 ℃でLiOOH(540 µl, 2.02 M solution of LiOH in 3% H<sub>2</sub>O<sub>2</sub>)を加え, 撹拌した.反応2日目と3日目に, 室温でLiOOH 溶液(540 µL)とTHF(270 µL)をそれぞれ追加し, 撹拌した.6日間後, 50% AcOH を加えて中和し, 濃縮した.濃縮残渣はシリカゲルカラム(5:1-1:1 toluene-EtOAc+0.1% AcOH to 40:1-30:1 EtOAc-MeOH+0.1% AcOH)で精製し, **F7**(148.4 mg)を収率 36%で得た.

### 5-(N-Benzyloxycarbonyl)aminopentyl (benzyl 2,3,4-tri-O-pivaroyl- $\beta$ -D-glucopyranosyluronate) - $(1\rightarrow 4)-3$ -O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido- $\alpha$ -D-glucopyranoside (**F8**)

**F7**(82.2 mg, 61.1 µmol), BnOH(9 µL, 91.7 µmol), DIPEA(10.6 mg, 61.1 µmol), HOBt(28.4 mg, 183.3 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(5.6 mL)に溶解し, -20 °C に冷却し撹拌した. 1 時間後, WSCD·HCl(23.4 mg, 122.2 µmol)を加え一晩撹拌した.反応溶液は CHCl<sub>3</sub> で希釈し, 有機 層を常法に従い後処理し, 濃縮した.濃縮残渣はシリカゲルカラム(100:1-1:5 *n*-hexane-EtOAc)で精製し, **F7** 縮合物(46.4 mg)を収率 53%で得た.

5-(N-Benzyloxycarbonyl)aminopentyl (benzyl 2,3,4-tri-O-pivaroyl- $\beta$ -D-glucopyranosyluronate)-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-(2,2,2-trichloroethoxy)sulfamido-6-O-(2,2,2-trichloroethoxy)sulfo - $\alpha$ -D-glucopyranoside (**F9**)

**F8**(22.7 mg, 38.5 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(1 mL)に溶解し,保護硫酸化試薬 X1(65.0 mg, 154 µmol)と 1,2-dimethylimidazole(16.4 mg, 184.9 µmol)を加え,終夜撹拌した.反応溶液は CHCl<sub>3</sub>で希釈し,常法に従い後処理し,濃縮した.濃縮残渣は,PTLC(2:1 *n*-hexane-EtOAc) にて精製し,**F9**(10.0 mg)を収率 18%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.34-7-24 (m, 15H, Ar H), 5.48 (br d, 1H, J = 9.00 Hz, NHSO<sub>3</sub>) 5.32 (m, 2H, 1/2CH<sub>2</sub>, H-4<sup>II</sup>), 5.09 (m, 4H, CH<sub>2</sub>, 1/2CH<sub>2</sub>, H-3<sup>II</sup>), 5.30 (d, 1H,  $J_{1,2} = 5.22$  Hz, H-1<sup>I</sup>), 4.95 (br d, 2H, 1/2CH<sub>2</sub>, H-2<sup>II</sup>), 4.88 (m, 1H, N<u>H</u>CH<sub>2</sub>), 4.76 (s, 2H, CH<sub>2</sub>CCl<sub>3</sub>), 4.74 (d, 1H, J = 7.86 Hz, 1/2CH<sub>2</sub>), 4.68 (d 1H,  $J_{1,2} = 11.46$  Hz, H-1<sup>II</sup>), 4.52 (d, 1H,  $J_{gem} = 6.60$  Hz,  $J_{gem} = 12.03$  Hz, H-6a<sup>I</sup>), 4.46 (dd, 1H, H-6b<sup>I</sup>), 4.00 (br d, 1H, J = 9.36 Hz, H-5<sup>II</sup>), 3.87 (br t, 1H, J = 9.66 Hz, H-4<sup>II</sup>), 3.84 (m, 1H, H-5<sup>I</sup>), 3.69 (m, 1H, 1/2CH<sub>2</sub>, H-3<sup>I</sup>), 3.56 (m, 1H, H-2<sup>I</sup>), 3.44 (m, 1H, 1/2OCH<sub>2</sub>), 3.20 (m, 2H, NHCH<sub>2</sub>), 1.65-1.25 [m, 6H, NHCH<sub>2</sub>(C<u>H<sub>2</sub>)</u><sub>3</sub>CH<sub>2</sub>O], 1.17, 1.11, 1.12 (3 s, each 9H, 3*t*-Bu).

### 5-Aminopentyl (2,3,4-tri-O-pivaroyl- $\beta$ -D-glucopyranosyluronic acid)-(1 $\rightarrow$ 4)-2-deoxy-2-sulfamido-6-O-sulfo- $\alpha$ -D-glucopyranoside, disodium salt (**F10**)

**F9**(10.0 mg, 7.0µmol)を EtOH(1 mL)と AcOH(1 drop)に溶解し, 触媒量の Pd-C を加え, 水素雰囲気下で終夜激しく撹拌した.反応溶液はセライトろ過し, ろ液を濃縮し, F10(3.4 mg)を収率 54%で得た.

5-(N-Methyl-3-indoylacetamido)pentyl  $\beta$ -D-glucopyranosyluronate-(1 $\rightarrow$ 4)- 2-deoxy-2-

#### sulfamido-6-O- sulfo- $\alpha$ -D-glucopyranoside, disodium salt (F11)

DMF(0.4 mL)に溶解した E19(3.4 mg, 3.8 µmol)に, 1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl(0.2 mL) と DMF(0.1 mL)に溶かした Y1(1.6 mg, 5.7 µmol)を加え,終夜撹拌した.反応溶液はその ままゲルろ過カラム(LH-20, 1:1 MeOH-H<sub>2</sub>O)で精製し, F11(6.0 mg)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{\text{H}}$ (CD<sub>3</sub>OD, selected): 7.45 (br d, 1H, *J* = 6.36 Hz, Indole), 7.24 (br d, 1H, *J* = 8.28 Hz, Indole), 7.07 (m, 1H, Indole), 7.02 (s, 1H, Indole), 6.93 (m, 1H, Indole), 5.30-4.91 (m, 3H, H-2<sup>II</sup>, 3<sup>II</sup>, 4<sup>II</sup>), 4.89 (bt d, 1H, *J* = 7.86, H-1<sup>II</sup>), 4.49 (br d, H, *J* = 1.68 Hz, H-1<sup>I</sup>), 1.05, 1.05, 1.00 (3 s, each 9H, 3*t*-Bu).

#### 第四章

#### Dodecyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (K2)

化合物 K1(5.57 g, 8399 mmol)を, MeOH(212 mL)に溶解し, 0.5 M NaOMe (9 mL)を加 えて撹拌した. 2 時間後, [Dowex 50Wx8 (H<sup>+</sup> form), MeOH]で中和してろ過した. ろ液を 濃縮し, 得られた *Dodecyl 2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside* (4.27 g)を CH<sub>3</sub>CN(400 mL)に溶解し, benzaldehyde dimethylacetal (2.6 mL, 17 mmol)と触媒量の p-TsOH を pH 2 以下になるまで加え, 3 時間撹拌した. 反応終了後, Et<sub>3</sub>N で反応液を中 和した後, 濃縮した. 濃縮残渣をシリカゲルカラム(20:1-10:1 toluene-EtOAc)で精製し, K2(4.06 g)を二行程収率 78%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 8.01-7.26 (m, 10H, Ar H), 5.57 (s, 1H, PhC<u>H</u>), 5.39 (d, 1H,  $J_{1,2}$  = 10.62 Hz, H-1), 4.56 (br t, 1H, J = 9.57 Hz, H-3), 4.36 (dd, 1H,  $J_{5,6a}$  = 5.04 Hz,  $J_{gem}$  = 10.44 Hz, H-6a), 4.31 (br t, 1H, J = 10.29 Hz, H-2), 3.80 (br t, 1H, J = 10.26 Hz, H-6b), 3.64 (m, 1H, H-5), 3.61 (br t, 1H, J = 9.15 Hz, H-4), 2.68 (m, 1H, 1/2SCH<sub>2</sub>), 2.59 (m, 1H, 1/2SCH<sub>2</sub>), 2.54 (s, 1H, OH-3), 1.30-1.13 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>]</u>, 0.87 (t, 3H, J = 14.10 Hz, CH<sub>3</sub>). ESI-HRMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>33</sub>H<sub>43</sub>NO<sub>6</sub>SNa, 604.2703; found, 604.2690.

# $Dodecyl \ 3-O-benzyl-4, 6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-\beta-D-glucopyranoside (K3)$

DMF に NaH (205.1 mg, 4.70 mmol, 55%)を加えた懸濁液に, K2(1.37 g, 2.35 mmol)の DMF(24 mL)溶液を加え, 0 °C で 1 時間撹拌した後, BnBr(780 µL)を加えた. 1 時間後, MeOH を加え NaH を分解し,反応液を塩化アンモニウム水溶液で中和した後, EtOAc で希釈した. 有機層は飽和食塩水で洗浄し,濃縮した.濃縮残渣をシリカゲルカラム (7:1-4:1 *n*-hexane-EtOAc) で精製し, K3 (1.36 g)を収率 86%で得た. <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.86-6.86 (m, 14H, Ar H), 5.63 (s, 1H, PhC<u>H</u>), 5.31 (d, 1H, J<sub>1,2</sub> = 10.68 Hz, H-1), 4.79, 4.50 (ABq, 2H, J = 12.36 Hz, PhC<u>H<sub>2</sub></u>), 4.44 (br t, 1H, J = 9.45 Hz, H-3), 4.41 (dd, 1H, J<sub>5,6a</sub> = 10.62 Hz, J<sub>gem</sub> = 4.92 Hz, H-6a), 4.27 (br t, 1H, J = 10.29 Hz, H-2), 3.82 (br t, 1H, J = 10.02 Hz, H-5), 3.80 (br t, 1H, J = 9.09 Hz, H-4), 3.70 (dd, 1H,  $J_{5,6b} = 9.66$  Hz, H-6b), 2.64 (m, 1H, 1/2SCH<sub>2</sub>), 2.55 (m, 1H, 1/2SCH<sub>2</sub>), 1.51-1.13 [m, 20H, SCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 0.87 (t, 3H, J = 14.16 Hz, CH<sub>3</sub>). ESI-HRMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>40</sub>H<sub>49</sub>NO<sub>6</sub>SNa, 694.3173; found, 694.3168.

# Dodecyl 3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (**K4**)

**K4** (5.12 g, 7.62 mmol)を CH<sub>2</sub>Cl<sub>2</sub> (48 mL)と MeOH (48 mL)に溶解し、触媒量の CSA を 加え、4 日間撹拌した.反応液は Et<sub>3</sub>N で中和し、濃縮した.濃縮残渣はシリカゲルカ ラム(4:1-1:1 toluene-EtOAc)で精製し、4,6-diol(4.10 g)を得た.これを DMF に溶解し、 imidazole (1.06 g, 15.5 mmol)と TBDPSCl (2.0 mL, 7.7 mmol)を加え、撹拌した.5日後、 反応液を EtOAc で希釈し、有機層を常法に従い後処理し、シリカゲルカラム(10:1-3:1 *n*-hexane-EtOAc)で精製して、**K4**(4.35 g)を二行程収率 69%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.90-6.90 (m, 19H, Ar H), 5.23 (d, 1H,  $J_{1,2}$ = 10.38 Hz, H-1), 4.78, 4.55 (ABq, 2H, J = 12.24 Hz, PhC<u>H<sub>2</sub></u>), 4.29 (dd, 1H,  $J_{2,3}$ = 10.26 Hz,  $J_{3,4}$ = 8.46 Hz, H-3), 4.21 (br t, 1H, J = 10.35 Hz, H-2), 3.98 (dd, 1H,  $J_{5,6a}$  = 4.56 Hz,  $J_{gem}$  = 10.62 Hz, H-6a), 3.92 (m, 2H, H-4, 6b), 3.60 (m, 1H, H-5), 3.07 (d, 1H,  $J_{4,0H}$  = 2.28 Hz, OH-4), 2.62 (m, 1H, 1/2SCH<sub>2</sub>), 2.52 (m, 1H, 1/2SCH<sub>2</sub>), 1.43 (m, 2H, SCH<sub>2</sub>C<u>H<sub>2</sub></u>), 1.30-1.13 [m, 18H, SC<sub>2</sub>H<sub>4</sub>(C<u>H<sub>2</sub></u>)<sub>9</sub>CH<sub>3</sub>], 1.09 (s, 9H, *t*-Bu), 0.86 (t, 3H, J = 14.22 Hz, CH<sub>3</sub>). ESI-HRMS *m*/z [M+Na<sup>+</sup>]: calcd. for C<sub>49</sub>H<sub>63</sub>NO<sub>6</sub>SSiNa, 844.4038; found, 844.4026.

### Dodecyl $\beta$ -D-galactopyranosyl- $(1 \rightarrow 4)$ -3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2phthalimido-1-thio- $\beta$ -D-glucopyranoside (**K9**)

Method A: K4 (495.2 mg, 544.7 µmol)と 2,3,4,6-tetra-*O*-acetyl-α-D-galactopyranosyl trichloroacetimidate (K5, 668.9 mg, 1.36 mmol)を CH<sub>2</sub>Cl<sub>2</sub> (55 mL)に溶解し, MSAW 300(1.44 g)存在下,室温で撹拌した. 30 分後, -20 °C で TMSOTf (173 µL, 679 µmol)を加え 2.5 時間反応させた.反応液を飽和重曹水で中和し,セライトろ過をした. 有機層は常法に 従い後処理後,ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)とシリカゲルカラム(6:1-5:1 *n*-hexane-EtOAc)で精製し, K6(9.7 mg), K7α(101.0 mg)と K7β(184.3 mg)をそれぞれ収率 2%, 34%と 64%で得た.

Method B: K4(2.81 g, 3.42 mmol)と K5(2.53 g, 5.13 mmol)を CH<sub>2</sub>Cl<sub>2</sub> (233 mL)に溶解し, MS4Å存在下,室温で撹拌した. 30 分後, -78 °C で TMSOTf(46 μL, 0.26 mmol)を加え, 2 時間反応させた.反応液を Method A と同じ方法で抽出と洗浄を行い,シリカゲルカ ラム(15:1-5:1 toluene-EtOAc)で精製し, K6 と K8 の混合物(4.26 g)を得た. これを MeOH(160 mL)に溶解し, 0.5 M NaOMe (3.4 mL)を加え室温で撹拌した. 4 時間後,反応 液を[Dowex 50Wx8 (H<sup>+</sup> form), MeOH]で中和し,ろ過した.ろ液は濃縮後,シリカゲル カラムで精製し, K9(2.02 g)を二行程収率 60%で得た. K9:<sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.83-6.88 (m, 19H, Ar H), 5.20 (d, 1H, J<sub>1,2</sub>= 10.50 Hz, H-1), 4.90, 4.50 (ABq, 2H, J= 12.18 Hz, PhC<u>H</u><sub>2</sub>), 4.76 (d, 1H,  $J_{1,2}$  = 7.80 Hz, H-1<sup>II</sup>), 4.42 (br t, 1H, J = 9.48 Hz, H-3<sup>I</sup>), 4.28 (br t, 1H, J = 8.94 Hz, H-4<sup>I</sup>), 4.27 (br t, 1H, J = 10.43 Hz, H-2<sup>I</sup>), 4.22 (dd, 1H,  $J_{5.6a} = 2.04$  Hz,  $J_{gem} = 11.04$  Hz, H-6a<sup>I</sup>), 4.03 (d, 1H, H-6b<sup>I</sup>), 3.94 (d, 1H,  $J_{3,4} = 2.76$  Hz, H-4<sup>II</sup>), 3.75 (m, 2H, H-6<sup>II</sup>ab), 3.69 (br t, 1H, J =8.61 Hz, H-2<sup>II</sup>), 3.57 (br d, 1H, J = 9.66 Hz, H-5<sup>I</sup>), 3.41 (dd, 1H,  $J_{2,3} = 9.42$  Hz, H-3<sup>II</sup>), 3.34 (br t,  $1H, J = 4.11 Hz, H-5^{II}$ , 2.65 (m, 1H, 1/2SCH<sub>2</sub>), 2.58 (m, 1H, 1/2SCH<sub>2</sub>), 1.47 (m, 2H,  $SCH_2CH_2$ , 1.28-1.11 [m, 18H,  $SC_2H_4(CH_2)_9CH_3$ ], 1.08 (s, 9H, *t*-Bu), 0.87 (t, 3H, *J* = 14.16 Hz, CH<sub>3</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>55</sub>H<sub>73</sub>NO<sub>11</sub>SSiNa, 1006.4566; found, 1006.4549. Dodecyl 2,3,4,6-tetra-O-acetyl-1-thio-α-D-galactopyranoside ( $K7\alpha$ ): <sup>1</sup>H-NMR δ<sub>H</sub> (CDCl<sub>3</sub>): 5.71 (d, 1H,  $J_{3,4}$  = 5.52 Hz, H-4), 4.45 (d, 1H,  $J_{1,2}$  = 3.18 Hz, H-1), 5.26 (dd, 1H,  $J_{2,3}$  = 10.86 Hz, H-3), 4.22 (dd, 1H, H-2), 4.59 (br t, 1H, J = 6.44 Hz, H-5), 4.11 (m, 2H, H-6ab), 2.56 (m, 1H, 1/2SCH<sub>2</sub>), 2.49 (m, 1H, 1/2SCH<sub>2</sub>), 2.15, 2.08, 2.05, 2.00 (4s, each 3H, 4Ac), 1.58 (m, 2H, SCH<sub>2</sub>CH<sub>2</sub>), 1.38-1.23 [m, 18H, SC<sub>2</sub>H<sub>4</sub>(CH<sub>2</sub>)<sub>9</sub>CH<sub>3</sub>], 0.88 (t, 3H, *J* = 14.04 Hz, CH<sub>3</sub>). ESI-HRMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>26</sub>H<sub>44</sub>O<sub>9</sub>SNa, 555.2598; found, 555.2585. Dodecyl 2,3,4,6-tetra-O-acetyl-1-thio-β-D-galactopyranoside (**K**7β): <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 5.43 (d, 1H,  $J_{3,4}$  = 3.30 Hz, H-4), 5.24 (br t, 1H, J = 9.96 Hz H-2), 5.05 (dd, 1H,  $J_{2,3}$  = 9.66 Hz, H-3), 4.48 (d, 1H,  $J_{1,2} = 10.02$  Hz, H-1), 4.16 (dd, 1H,  $J_{5.6b} = 6.60$  Hz,  $J_{gem} = 11.34$  Hz, H-6b), 4.11 (dd, 1H, J<sub>5.6a</sub> = 6.60 Hz, H-6a), 3.93 (t, 1H, H-5), 2.64-2.73 (m, 2H, SCH<sub>2</sub>), 2.16, 2.07, 2.05, 2.00 (4s, each 3H, 4Ac), 1.38-1.25 [m, 20H, SCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 0.88 (t, 3H, J = 14.04 Hz, CH<sub>3</sub>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>26</sub>H<sub>44</sub>O<sub>9</sub>SNa, 555.2598; found, 555.2598.

### Dodecyl 4,6-O-(2-naphthylidene)-β-D-galactopyranosyl-(1→4)-3-O-benzyl-6-O-tertbutyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (**K10**)

CH<sub>3</sub>CN(12 mL)に **K9**(1.18 g, 1.20 mmol)を溶解し、2-naphthaldehyde (374.8 mg, 2.40 mmol)と *p*-TsOH·H<sub>2</sub>O (22.8 mg, 0.12 mmol)を加え、撹拌した.2 時間後、反応液を Et<sub>3</sub>N によって中和し、濃縮した.濃縮残渣はシリカゲルカラム(4:1-2:1 toluene-EtOAc)で精製し、**K10**(1.20 g)を収率 89%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.84-6.80 (m, 26H, Ar H), 5.67 (s, 1H, NpC<u>H</u>), 5.21 (d, 1H,  $J_{1,2}$  = 10.56 Hz, H-1<sup>1</sup>), 5.10, 4.64 (ABq, 2H, J = 12.24 Hz, PhC<u>H</u><sub>2</sub>), 4.85 (d, 1H,  $J_{1,2}$  = 7.74 Hz, H-1<sup>1</sup>), 4.45 (dd, 1H,  $J_{2,3}$  = 10.02 Hz,  $J_{3,4}$  = 8.82 Hz, H-3<sup>1</sup>), 4.40 (d, 1H,  $J_{gem}$  = 12.36 Hz, H-6<sup>II</sup>a), 4.34 (t, 1H, H-4<sup>I</sup>), 4.29 (br d, 2H, J = 10.20 Hz, H-2<sup>I</sup>, 6<sup>I</sup>a), 4.20 (d, 1H,  $J_{3,4}$  = 3.66 Hz, H-4<sup>II</sup>), 4.04 (d, 1H,  $J_{gem}$  = 12.36 Hz, H-6<sup>Ib</sup>b), 4.01 (d, 1H, H-6<sup>II</sup>b), 3.79 (t, 1H, H-2<sup>II</sup>), 3.54 (m, 2H, H-5<sup>I</sup>, 3<sup>II</sup>), 3.36 (s, 1H, H-5<sup>II</sup>), 2.66 (m, 1H, 1/2SCH<sub>2</sub>), 2.58 (m, 2H, 1/2SCH<sub>2</sub>, OH-2<sup>II</sup>), 2.51 (d, 1H,  $J_{3',OH}$  = 9.36 Hz, OH-3<sup>II</sup>), 1.52-1.30 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)10</u>CH<sub>3</sub>], 1.10 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 14.16 Hz, CH<sub>3</sub>). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>66</sub>H<sub>79</sub>NO<sub>11</sub>SSiNa, 1144.5035; found, 1144.5013.

 $Dodecyl \ 2, 3-di \cdot O-(4-methylbenzoyl)-4, 6-O-(2-naphthylidene)-\beta-D-galactopyranosyl- \ (1 \rightarrow 4)-3-di \cdot O-(2-naphthylidene)-\beta-D-galactopyranosyl- \ (1 \rightarrow 4)-$ 

#### O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (K11)

化合物 **K10** を CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL) とピリジン(30 mL)に溶解し, *p*-toluoylchloride (312 µL, 2.35 mmol)と触媒量の DMAP を加え, 5 日間撹拌した. 反応液を CHCl<sub>3</sub> で希釈し, 有機 層を 1 M HCl, 飽和重曹水と飽和食塩水で洗浄し, 濃縮した. 濃縮残渣はシリカゲルカ ラム(10:1 toluene-EtOAc)で精製し, **K11**(1.35 g)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.85-6.75 (m, 34H, Ar H), 5.91 (dd, 1H,  $J_{1,2} = 8.04$  Hz,  $J_{2,3} = 10.44$  Hz,  $H-2^{\rm H}$ ), 5.65 (s, 1H, NpC<u>H</u>), 5.29 (dd, 1H,  $J_{3,4} = 3.66$  Hz, H-3<sup>II</sup>), 5.25 (d, 1H, H-1<sup>II</sup>), 5.14, 4.72 (ABq, 2H, J = 12.30Hz, PhC<u>H</u><sub>2</sub>), 5.12 (d, 1H,  $J_{1,2} = 10.26$  Hz, H-1<sup>I</sup>), 4.60 (d, 1H, H-4<sup>II</sup>), 4.53 (d, 1H,  $J_{gem} = 12.36$  Hz, H-6<sup>II</sup>a), 4.47 (dd, 1H,  $J_{3,4} = 8.40$  Hz,  $J_{4,5} = 9.72$  Hz, H-4<sup>I</sup>), 4.32 (dd, 1H,  $J_{2,3} = 10.26$  Hz, H-3<sup>I</sup>), 4.26 (t, 1H, H-2), 4.10 (d, 1H, H-6b<sup>II</sup>), 3.92 (d, 1H,  $J_{gem} = 10.56$  Hz, H-6<sup>I</sup>a), 3.83 (d, 1H, H-6<sup>I</sup>b), 3.57 (s, 1H, H-5<sup>II</sup>), 3.23 (d, 1H, H-5<sup>I</sup>), 2.62 (m, 1H, 1/2SCH<sub>2</sub>), 2.53 (m, 1H, 1/2SCH<sub>2</sub>), 2.32, 2.29 (2 s, each 3H, 2<u>Me</u>Ph), 1.48-1.18 [m, 20H, SCH<sub>2</sub>(C<u>H</u><sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.14 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 14.22 Hz, CH<sub>3</sub>). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>82</sub>H<sub>91</sub>NO<sub>13</sub>SSiNa, 1380.5873; found, 1380.5852.

Dodecyl 3-O-allyl-4,6-O-(2-naphthylidene)- $\beta$ -D-galactopyranosyl- (1 $\rightarrow$ 4)-3-O-benzyl-6-O-tertbutyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (**K12**) and dodecyl 2,3di-O-allyl-4,6-O-(2-naphthylidene)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tertbutyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (**K13**)

化合物 K10(2.12 g, 1.9 mmol)を DMF(70 mL)に溶解し、0 °C で NaH(3.42 mmol, 55%)を 加え, 撹拌した. 1時間後, AllBr(413 µL, 4.75 mmol)を加え, 2時間撹拌した. 反応液 に, MeOH を加え NaH を分解し, 反応液を塩化アンモニウム水溶液で中和した後, EtOAc で希釈した. 有機層は飽和食塩水で洗浄し, 濃縮した. 濃縮残渣をシリカゲルカラム (30:1-1:5 n-hexane-EtOAc) で精製し, K12 (1.27 g)を収率 40%, K13(0.13 g)を収率 6%で それぞれ得た. **K12**: <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>): 7.85-6.75 (m, 26H, Ar H), 6.02-5.95 (m, 1H, All), 5.64 (s, 1H, CH), 5.34 (m, 1 H, All), 5.25 (m, 1 H, All), 5.23 (d, 1H,  $J_{1,2} = 10.56$  Hz, H-1<sup>I</sup>), 5.10, 4.68 (ABq, 2H, J = 12.42 Hz, ArCH<sub>2</sub>), 4.92 (d, 1H,  $J_{1,2} = 7.74$  Hz, H-1<sup>II</sup>), 4.45 (dd,  $J_{2,3} = 10.08$ Hz,  $J_{3,4} = 8.64$  Hz, H-3<sup>I</sup>), 4.41-4.34 (m, 3H, H-4<sup>I</sup>, 6<sup>I,II</sup>a), 4.30 (br t, 1H, J = 10.38 Hz, H-2<sup>I</sup>), 4.28-4.24 (m, 1H, All), 4.24 (d, 1H,  $J_{3,4} = 3.24$  Hz, H-4<sup>II</sup>), 4.07-4.03 (m, 1H, All), 4.05 (m, 2H,  $H-6^{I,II}b$ , 4.00 (t, 1H,  $H-2^{II}$ ), 3.60 (br d, J = 9.72 Hz,  $H-5^{I}$ ), 3.36 (dd, 1H,  $H-3^{II}$ ), 3.31 (s, 1H, H-5<sup>II</sup>), 2.68 (m, 1H, 1/2SCH<sub>2</sub>), 2.58 (m, 1H, 1/2SCH<sub>2</sub>, 2.48 (s, 1H, OH-2<sup>I</sup>), 1.52-1.18 [m, 20H,  $SCH_2(CH_2)_{10}CH_3$ ], 1.10 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 7.20 Hz, CH<sub>3</sub>). **K13**: <sup>1</sup>H-NMR  $\delta_H$ (CDCl<sub>3</sub>): 7.85-6.76 (m, 26H, Ar H), 5.99-5.84 (m, 2H, 2All), 5.65 (s, 1H, CH), 5.39-5.30 (m, 2 H, 2All), 5.23 (d, 1H,  $J_{1,2} = 10.44$  Hz, H-1<sup>I</sup>), 5.20-5.17 (m, 2H, 2All), 5.14, 4.76 (ABq, 2H, J =12.42 Hz, ArCH<sub>2</sub>), 5.11 (m, 1H, All), 5.01 (m, 1H, All), 4.96 (d, 1H,  $J_{1,2} = 7.80$  Hz, H-1<sup>II</sup>), 4.43-4.37 (m, 4H, H-4<sup>I</sup>, 6<sup>I</sup>ab, 6<sup>II</sup>a), 4.34-4.24 (m, 4H, H-2<sup>I</sup>, 3<sup>I</sup>, 2All), 4.20 (d, 1H,  $J_{34}$  = 3.48 Hz,
H-4<sup>II</sup>), 4.01 (m, 1H, H-6<sup>II</sup>b), 3.71 (dd, 1H,  $J_{2,3} = 9.66$  Hz, H-2<sup>II</sup>), 3.60 (br d, J = 9.12 Hz, H-5<sup>I</sup>), 3.40 (dd, 1H, H-3<sup>II</sup>), 3.29 (s, 1H, H-5<sup>II</sup>), 2.68 (m, 1H, 1/2SCH<sub>2</sub>), 2.60 (m, 1H, 1/2SCH<sub>2</sub>), 1.52-1.18 [m, 20H, SCH<sub>2</sub>(C<u>H</u><sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.06 (s, 9H, *t*-Bu), 0.87 (m, 1H, CH<sub>3</sub>).

Dodecyl 2,3-di-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)-β-D-galactopyranosyl-( $1 \rightarrow 4$ )-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (**K14**)

**K11**(1.35 g, 0.98 mmol)を THF (37 mL) に溶解し, BH<sub>3</sub>·NMe<sub>3</sub>(427.3 mg, 5.88 mmol)を加 え, 30 分間撹拌した後, AlCl<sub>3</sub> (786.6 mg, 5.88 mmol)と H<sub>2</sub>O (1 drop)を加えて終夜撹拌し た. 反応溶液は塩化アンモニウム水溶液で中和し, EtOAc で希釈した. 有機層は常法に 従い後処理し, 濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, **K14**(1.23 g)を収率 92%で得た. <sup>1</sup>H- NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.83-6.79 (m, 34H, Ar H), 5.80 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$  = 10.32 Hz, H-2<sup>II</sup>), 5.21 (dd, 1H,  $J_{3,4}$  = 3.18 Hz, H-3<sup>II</sup>), 5.25 (d, 1H, H-1<sup>II</sup>), 5.11 (d, 1H,  $J_{1,2}$  = 10.02 Hz, H-1<sup>I</sup>), 4.94, 4.60 (ABq, 2H, J = 12.30 Hz, ArCH<sub>2</sub>), 4.71, 4.67 (ABq, 2H, J = 12.18 Hz, ArCH<sub>2</sub>), 4.44 (dd, 1H,  $J_{3,4}$  = 8.40 Hz,  $J_{4,5}$  = 9.72 Hz, H-4<sup>I</sup>), 4.42 (dd, 1H,  $J_{4,0H}$  = 3.84 Hz, H-4<sup>II</sup>), 4.32 (br t, 1H, J = 10.20 Hz, H-3<sup>I</sup>), 4.26 (br t, 1H, J = 10.20 Hz, H-2<sup>I</sup>), 3.76 (m, 5H, H-6<sup>I,II</sup>ab, 5<sup>II</sup>), 3.22 (d, 1H, H-5<sup>I</sup>), 2.73 (d, 1H, OH-4<sup>II</sup>), 2.60 (m, 1H, 1/2SCH<sub>2</sub>), 2.52 (m, 1H, 1/2SCH<sub>2</sub>), 2.35, 2.29 (2 s, each 3H, 2<u>Me</u>Ph), 1.47-1.06 [m, 20H, SCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.06 (s, 9H, *t*-Bu), 0.86 (t, 3H, J = 14.28 Hz, CH<sub>3</sub>). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>82</sub>H<sub>93</sub>NO<sub>13</sub>SSiNa, 1382.6029; found, 1382.6003.

## $Dodecyl \ 3-O-allyl-6-O-(2-naphthylmethyl)-\beta-D-galactopyranosyl-(1 \rightarrow 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio-\beta-D-glucopyranoside (K15)$

**K12**(364.1 mg, 313.2 µmol)の THF (10 mL)溶液に BH<sub>3</sub>·NMe<sub>3</sub>(142.7 mg, 1.9 mmol) と MS4Å(59.6 mg)を加え, 30 分間撹拌した後, AlCl<sub>3</sub>(250.6 mg, 1.9 mmol)を加えて 3 時間撹 拌した. 反応液は塩化アンモニウム水溶液で中和し, EtOAc で希釈した. 有機層は常法 に従い後処理し, 濃縮残渣はゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, **K15**(224.9 mg)を収率 62%で得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.81-6.73 (m, 26H, Ar H), 6.00-5.94 (m, 1H, All), 5.35 (m, 1H, All), 5.24 (m, 1 H, All), 5.20 (d, 1H,  $J_{1,2}$  = 10.50 Hz, H-1<sup>1</sup>), 4.87, 4.49 (ABq, 2H, J = 12.36 Hz, ArCH<sub>2</sub>), 4.77 (d, 1H,  $J_{1,2}$  = 7.80 Hz, H-1<sup>II</sup>), 4.69, 4.63 (ABq, 2H, J = 12.12 Hz, ArCH<sub>2</sub>), 4.39 (dd, 1H,  $J_{2,3}$  = 10.14 Hz,  $J_{3,4}$  = 8.70 Hz, H-3<sup>II</sup>), 4.31-4.22 (m, 5H, H-2<sup>I</sup>, 4<sup>I</sup>, 6<sup>I</sup>ab, All), 4.14-4.07 (m, 1H, All), 4.06 (br s, 1H, H-4<sup>II</sup>), 4.03 (d, 1H,  $J_{5,6b}$  = 11.52 Hz, H-6<sup>II</sup>b), 3.77 (dd, 1H,  $J_{5,6a}$  = 6.72 Hz,  $J_{gem}$  = 9.84 Hz, H-6<sup>II</sup>a), 3.67 (dd, 1H,  $J_{5,6b}$  = 5.16 Hz, H-6<sup>II</sup>b), 3.57 (br d, 1H, J = 11.52 Hz, H-5<sup>II</sup>), 3.52 (t, 1H, H-5<sup>III</sup>), 3.24 (dd, 1H, H-3<sup>III</sup>), 2.63 (m, 1H, 1/2SCH<sub>2</sub>), 2.56 (m, 1H, 1/2SCH<sub>2</sub>), 2.48 (br d, 2H, J = 13.50 Hz, OH-2<sup>II</sup>, 4<sup>II</sup>), 1.47-1.06 [m, 20H, SCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.04 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 7.11 Hz, CH<sub>3</sub>).

 $Dodecyl \ 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)-\beta-D-galactopyranosyl-(1\rightarrow 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio-\beta-D-glucopyranoside ($ **K16**)

CH<sub>2</sub>Cl<sub>2</sub> (1.5 mL)とピリジン(1.0 mL)に溶解した K14(152.2 mg, 111.8 µmol)に *p*-toluoylchloride (18 µL, 0.13 mmol)と触媒量の DMAP を加え, 6 日間撹拌した. 反応液 はK11 を合成した時と同じ方法で洗浄した後, ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精製し, K16 (161.2 mg)を収率 98%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.90-6.90 (m, 38H, Ar H), 5.95 (d, 1H,  $J_{3,4}$ = 3.54 Hz, H-4<sup>II</sup>), 5.76 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$  = 10.38 Hz, H-2<sup>II</sup>), 5.47 (dd, 1H, H-3<sup>II</sup>), 5.25 (d, 1H, H-1<sup>II</sup>), 5.12 (d, 1H,  $J_{1,2}$  = 10.14 Hz, H-1<sup>I</sup>), 4.98, 4.69 (ABq, 2H, J = 11.88 Hz, ArCH<sub>2</sub>), 4.67, 4.48 (ABq, 2H, J = 11.58 Hz, ArCH<sub>2</sub>), 4.46 (br t, 1H, J = 9.06 Hz, H-4<sup>I</sup>), 4.34 (dd, 1H,  $J_{2,3}$  = 10.14 Hz,  $J_{3,4}$  = 8.28 Hz, H-3<sup>I</sup>), 4.30 (t, 1H, H-2<sup>I</sup>), 4.08 (br t, 1H, J = 6.39 Hz, H-6<sup>II</sup>a), 3.85 (br d, 2H, H-6<sup>I</sup>ab), 3.66 (dd, 1H,  $J_{5,6b}$  = 9.66 Hz,  $J_{gem}$  = 5.70 Hz, H-6<sup>II</sup>b), 3.57 (dd, 1H,  $J_{5,6a}$  = 7.68 Hz, H-5<sup>II</sup>), 3.24 (br d, 1H, J = 9.78 Hz, H-5<sup>I</sup>), 2.63 (m, 1H, 1/2SCH<sub>2</sub>), 2.55 (m, 1H, 1/2SCH<sub>2</sub>), 2.30, 2.30, 2.29 (3 s, each 3H, 3MePh), 1.52-1.12 [m, 20H, SCH<sub>2</sub>(CH<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>], 1.08 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 14.28 Hz, CH<sub>3</sub>). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>90</sub>H<sub>99</sub>NO<sub>14</sub>SSiNa, 1500.6448; found, 1500.6411.

# Dodecyl 3-O-ally-2,4-di-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-1-thio- $\beta$ -D-glucopyranoside (**K1**7)

CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL)とピリジン(6.0 mL)に溶解した **K15**(401.9 mg, 345.1 µmol)に *p*-toluoylchloride (110 µL, 0.83 mmol)と触媒量の DMAP を加え, 撹拌した. 翌日, *p*-toluoylchloride (60 µL, 0.41 mmol)と触媒量の DMAP を加え, 6 日間撹拌した. 反応液 は**K11** を合成した時と同じ方法で洗浄した後, ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精製し, **K17**(490.1 mg)を定量的に得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.87-6.71(m, 34H, Ar H), 5.82 (d, 1H,  $J_{3,4} = 3.18$  Hz, H-4<sup>II</sup>), 5.71-5.65 (m, 1H, All), 5.23 (br t, 1H, J = 9.03 Hz, H-2<sup>II</sup>), 5.13 (br t, 2H, J = 8.28 Hz, H-1<sup>I,II</sup>), 5.07 (m, 1H, All), 4.97, 4.65 (ABq, 2H, J = 1.98 Hz, PhC<u>H</u><sub>2</sub>), 4.67, 4.50 (ABq, 2H, J = 12.03 Hz, PhC<u>H</u><sub>2</sub>), 4.42 (br t, 1H, J = 9.06 Hz, H-4<sup>I</sup>), 4.33 (br t, 1H, J = 9.33 Hz, H-3<sup>I</sup>), 4.28 (br t, 1H, J = 10.23 Hz, H-2<sup>I</sup>), 4.17 (m, 1H, All), 3.99 (m, 1H, All), 3.93 (d, 1H,  $J_{gem} = 11.40$  Hz, H-6<sup>I</sup>a), 3.87 (br d, 2H, J = 10.74 Hz, H-6<sup>I</sup>b, 6<sup>II</sup>a), 3.67 (dd, 1H, H-3<sup>II</sup>), 3.63 (m, 1H, H-6<sup>II</sup>b), 3.53 (br t, 1H, J = 8.67 Hz, H-5<sup>II</sup>), 3.26 (br d, 1H, J = 9.72 Hz, H-5<sup>I</sup>), 2.63-2.52 (m, 2H, SCH<sub>2</sub>), 2.37, 2.29 (2 s, each 3H, 2<u>Me</u>Ph), 1.52-1.12 [m, 20H, SCH<sub>2</sub>(C<u>H<sub>2</sub>)<sub>10</sub>CH<sub>3</sub>]</u>, 1.08 (s, 9H, *t*-Bu), 0.87 (t, 3H, J = 7.11 Hz, CH<sub>3</sub>).

2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K18**)

(CH<sub>2</sub>Cl)<sub>2</sub> (8.5 mL)と Et<sub>2</sub>O (29 mL)に溶解した **K16**(819.1 mg, 553.9 µmol)と benzyl *N*-(2-hydroxyethyl)carbamate (162.2 mg, 830.9 µmol)を, MSAW 300(993.2 mg)と室温で 30 分間撹拌した後, NIS (249.8 mg, 1.11 mmol)と TfOH (15 µL, 0.16 mmol)を加え, 室温で 6 時間撹拌した (反応液は飽和重曹水で中和後, セライトろ過を行い, 常法による後処理 を行い, 濃縮残渣をシリカゲルカラム(20:1-15:1 toluene-EtOAc)で精製し, 定量的に **K18**(867.6 mg)を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.77-6.74 (m, 43H, Ar H), 5.95 (d, 1H,  $J_{3,4}$  = 3.36 Hz, H-4<sup>II</sup>), 5.76 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$  = 10.38 Hz, H-2<sup>II</sup>), 5.47 (dd, 1H, H-3<sup>II</sup>), 5.27 (d, 1H, H-1<sup>II</sup>), 5.05 (d, 1H,  $J_{1,2}$  = 8.58 Hz, H-1<sup>I</sup>), 4.98, 4.67 (ABq, 2H, J = 11.97 Hz, ArCH<sub>2</sub>), 4.89 (m, 3H, NH, ArCH<sub>2</sub>), 4.68, 4.48 (ABq, 2H, J = 12.24 Hz, ArCH<sub>2</sub>), 4.46 (br t, 1H, J = 9.18 Hz, H-4<sup>II</sup>), 4.28 (dd, 1H,  $J_{2,3}$  = 10.80 Hz,  $J_{3,4}$  = 8.82 Hz, H-3<sup>II</sup>), 4.17 (dd, 1H, H-2<sup>II</sup>), 4.07 (br t, 1H, J = 6.84 Hz, H-5<sup>II</sup>), 3.89 (br d, 1H, J = 10.38 Hz, H-6<sup>I</sup>a), 3.81 (br d, 1H, J = 11.40 Hz, H-6<sup>Ib</sup>b), 3.70 (m, 1H, 1/2OCH<sub>2</sub>), 3.67 (dd, 1H,  $J_{5,6a}$  = 5.52 Hz,  $J_{gem}$  = 9.54 Hz, H-6<sup>II</sup>a), 3.58 (dd, 1H,  $J_{5,6b}$  = 7.68 Hz, H-6<sup>II</sup>b), 3.45 (m, 1H, 1/2OCH<sub>2</sub>), 3.24 (m, 3H, H-5, NHCH<sub>2</sub>), 2.28 (s, 9H, 3MePh), 1.09 (s, 9H, *t*-Bu) ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>88</sub>H<sub>86</sub>N<sub>2</sub>O<sub>17</sub>SiNa, 1493.5588; found, 1493.5549.

### 2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K19**)

**K18**(867.6 mg, 553.9 µmol)を THF (4.0 mL)と AcOH (320 µL, 5.55 mmol)に溶解し, 1 M TBAF (2.8 mL, 2.8 mmol)を加え 13 日間撹拌した.反応液は、CHCl<sub>3</sub> で希釈し、有機層は 常法に従い後処理を行った. 濃縮残渣はゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH) で精 製し、**K19**(538.4 mg)を収率 79%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.83-6.75 (m, 33H, Ar H), 5.91 (d, 1H,  $J_{3,4}$ = 3.24 Hz, H-4<sup>II</sup>), 5.91 (dd, 1H,  $J_{1,2}$  = 7.98 Hz,  $J_{2,3}$  = 10.38 Hz, H-2<sup>II</sup>), 5.56 (dd, 1H, H-3<sup>II</sup>), 5.06 (d, 1H,  $J_{1,2}$  = 8.34 Hz, H-1<sup>I</sup>), 5.06 (s, 1H, NH), 5.04 (d, 1H, H-1<sup>II</sup>), 4.97, 4.67 (ABq, 2H, J = 12.45 Hz, ArCH<sub>2</sub>), 4.89 (m, 2H, ArCH<sub>2</sub>), 4.59, 4.43 (ABq, 2H, J = 12.36, Hz, ArCH<sub>2</sub>), 4.30 (br t, 1H, J = 9.04 Hz, H-3<sup>II</sup>), 4.15 (br t, 1H, H-5<sup>II</sup>), 4.12 (m, 1H, H-2<sup>II</sup>), 4.04 (br t, 1H, J = 9.27 Hz, H-4<sup>II</sup>), 3.70 (br s, 2H, H-6<sup>I</sup>ab), 3.34 (m, 1H, 1/2OCH<sub>2</sub>), 3.55 (m, 3H, H-6<sup>II</sup>ab, 1/2OCH<sub>2</sub>), 3.28 (m, 2H, H-5, 1/2NCH<sub>2</sub>), 3.16 (m, 1H, 1/2NCH<sub>2</sub>), 2.37, 2.32, 2.29 (3 s, each 3H, 3<u>Me</u>Ph), 1.99 (br s, 1H, OH-6<sup>II</sup>). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>77</sub>H<sub>68</sub>N<sub>2</sub>O<sub>17</sub>Na, 1255.4410; found, 1255.4380.

## 2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-6-O-acetyl-3-O-benzyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K20**)

CH<sub>2</sub>Cl<sub>2</sub> (2.0 mL)に溶解した **K20**(130.6 mg, 105.9 μmol)に, ピリジン(90 μL)と Ac<sub>2</sub>O (90 μL)を加え終夜撹拌した後,濃縮した.濃縮残渣を CH<sub>2</sub>Cl<sub>2</sub> (2.1 ml)と MeOH (0.6 ml)に溶 解し, DDQ (24.0 mg, 106 μmol)と H<sub>2</sub>O (1 drop)を加え撹拌した.3 日後,反応溶液を濃縮 し, CHCl<sub>3</sub> で希釈した. 有機層は常法に従い後処理を行い,濃縮残渣はゲルろ過カラム

(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, **K20** (84.1 mg)を収率 84%で得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.93-6.80 (m, 26H, Ar H), 5.87 (dd, 1H,  $J_{1,2} = 7.92$  Hz,  $J_{2,3} = 10.38$  Hz, H-2<sup>II</sup>), 5.72 (d, 1H,  $J_{3,4} =$ 3.30 Hz, H-4<sup>II</sup>), 5.50 (dd, 1H, H-3<sup>II</sup>), 5.07 (d, 1H,  $J_{1,2} = 8.58$  Hz, H-1<sup>I</sup>), 5.07 (br s, 1H, NH), 4.95, 4.90 (ABq, 2H, J = 12.24 Hz, PhCH<sub>2</sub>), 4.89, 4.52 (ABq, 2H, J = 12.06 Hz, PhCH<sub>2</sub>), 4.86 (d, 1H, H-1<sup>II</sup>), 4.35 (m, 1H, H-6<sup>I</sup>a), 4.31 (m, 1H, H-3<sup>I</sup>), 4.16 (m, 1H, H-6<sup>I</sup>b), 4.11 (m, 1H, H-2<sup>I</sup>), 3.92 (m, 2H, H-4<sup>I</sup>, 5<sup>II</sup>), 3.64 (m, 1H, 1/2OCH<sub>2</sub>), 3.53 (m, 2H, H-5<sup>I</sup>, 1/2OCH<sub>2</sub>), 3.46 (m, 1H, H-6<sup>II</sup>a), 3.36 (m, 1H, H-6<sup>II</sup>b), 3.20 (m, 2H, NCH<sub>2</sub>), 2.54 (br s, 1H, OH-6<sup>II</sup>), 2.38, 2.37, 2.28 (3 s, each 3H, 3<u>Me</u>Ph), 2.01 (s, 3H, Ac). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>63</sub>H<sub>62</sub>N<sub>2</sub>O<sub>18</sub>Na, 1157.3890; found, 1157.3862.

## 2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K21**)

**K19** (77.0 mg, 62.4 µmol)を CH<sub>2</sub>Cl<sub>2</sub> (1.3 ml)と MeOH (0.4 ml)に溶解し, DDQ(16.8 mg, 74.9 µmol)と H<sub>2</sub>O (1 drop)を加え, 終夜撹拌した. 反応溶液は **K20** を合成した際と同様 の方法を用いて後処理を行い, ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, **K21**(52.9 mg)を収率 78%で得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.95-6.78 (m, 26H, Ar H), 5.85 (dd, 1H,  $J_{1,2} = 7.95$  Hz,  $J_{2,3} = 10.32$  Hz, H-2<sup>II</sup>), 5.77 (d, 1H,  $J_{3,4} = 3.06$  Hz, H-4<sup>II</sup>), 5.59 (dd, 1H, H-3<sup>II</sup>), 5.24 (br t, 1H, J = 5.46 Hz, NH), 5.16 (d, 1H,  $J_{1,2} = 7.62$  Hz, H-1<sup>I</sup>), 5.15 (d, 1H, H-1<sup>II</sup>), 4.92, 4.65 (ABq, 2H, J = 12.12 Hz, PhCH<sub>2</sub>), 4.82, 4.66 (ABq, 2H, J = 12.18 Hz, PhCH<sub>2</sub>), 4.27 (m, 1H, H-3<sup>II</sup>), 4.21 (m, 1H, H-2<sup>II</sup>), 4.11 (m, 1H, H-6<sup>II</sup>a), 3.85 (br d, 1H, J = 6.12 Hz, H-4<sup>II</sup>), 3.20 (m, 1H, 1/2NCH<sub>2</sub>), 3.10 (m, 1H, 1/2NCH<sub>2</sub>), 2.89 (br s, 1H, H-5<sup>II</sup>), 2.38, 2.33, 2.28 (3 s, each 3H, 3<u>Me</u>Ph). ESI-HRMS *m*/z [M+Na<sup>+</sup>]: calcd. for C<sub>61</sub>H<sub>60</sub>N<sub>2</sub>O<sub>17</sub>Na, 1115.3784; found, 1115.3760.

#### O-Sulfation of K22, K23 and K24

出発原料を DMF (2.0 mL per 50 mg of the starting material)に溶解し, SO<sub>3</sub>·Me<sub>3</sub>N (20 equiv. per hydroxyl group)を加え 60 °C で 1~3 時間撹拌した. 反応終了後, ゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, *O*−硫酸化された(**K26**, **K27**, **K28**) をそれぞれ収率 88%, 定量的, 90%で得た.

2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-sulfo- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-6-O-acetyl-3-O-benzyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside, trimethylamine salt (**K26**)

<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 7.91-6.85 (m, 26H, Ar H), 5.93 (br s, 1H, H-4<sup>II</sup>), 5.78 (dd, 1H,  $J_{1,2}$  = 7.92 Hz,  $J_{2,3}$  = 10.32 Hz, H-2<sup>II</sup>), 5.46 (dd, 1H,  $J_{3,4}$  = 2.94 Hz, H-3<sup>II</sup>), 5.06 (d, 2H,  $J_{1,2}$  = 12.06 Hz, H-1<sup>I</sup>, NH), 5.00, 4.59 (ABq, 2H, J = 12.06 Hz, PhC<u>H</u><sub>2</sub>), 4.94, 4.90 (ABq, 1H, J = 12.30 Hz,

PhC<u>H</u><sub>2</sub>), 4.92 (d, 1H, H-1<sup>II</sup>), 4.39 (m, 1H, H-5<sup>II</sup>), 4.33 (d, 1H,  $J_{gem} = 11.28$  Hz, H-6<sup>I</sup>b), 4.27 (m, 2H, H-3<sup>I</sup>, 6<sup>II</sup>a), 4.17 (dd, 1H,  $J_{5,6a} = 4.32$  Hz, H-6<sup>I</sup>a), 4.15 (m, 1H, H-6<sup>II</sup>b), 3.96 (m, 2H, H-2<sup>I</sup>, 4<sup>I</sup>), 3.62 (m, 1H, 1/2CH<sub>2</sub>), 3.53 (m, 1H, 1/2CH<sub>2</sub>), 3.48 (m, 2H, H-5<sup>I,II</sup>), 3.21 (br s, 2H, CH<sub>2</sub>), 2.77 (t, 9 H, NMe<sub>3</sub>), 2.37, 2.32, 2.29 (3 s, each 3H, 3<u>Me</u>Ph), 2.05 (s, 3H, Ac). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>63</sub>H<sub>61</sub>N<sub>2</sub>O<sub>21</sub>SNa<sub>2</sub>, 1259.3277; found, 1259.3248.

2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-phthalimido-6-O-sulfo- $\beta$ -D-glucopyranoside, trimethylamine salt (**K2**7)

<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CD<sub>3</sub>OD): 7.96-6.56 (m, 33H, Ar H), 5.84 (d, 1H,  $J_{3,4}$  = 3.36 Hz, H-4<sup>II</sup>), 5.64 (dd, 1H,  $J_{1,2}$  = 7.80 Hz,  $J_{2,3}$  = 10.26 Hz, H-2<sup>II</sup>), 5.56 (dd, 1H, H-3<sup>II</sup>), 5.37 (d, 1H, H-1<sup>II</sup>), 5.01 (d, 1H,  $J_{1,2}$  = 8.52 Hz, H-1<sup>I</sup>), 4.89, 4.47 (ABq, 1H, J = 11.64 Hz, ArC<u>H</u><sub>2</sub>), 4.69 (s, 2H, ArC<u>H</u><sub>2</sub>), 4.61, 4.36 (ABq, 2H, J = 12.18 Hz, ArC<u>H</u><sub>2</sub>), 4.35 (d, 1H,  $J_{gem}$  = 10.50 Hz, H-6<sup>I</sup>a), 4.33 (br t, 1H, J = 6.60 Hz, H-5<sup>II</sup>), 4.17 (dd, 1H,  $J_{2,3}$  = 10.50 Hz,  $J_{3,4}$  = 9.18 Hz, H-3<sup>I</sup>), 4.09 (br t, 1H, J = 9.42 Hz, H-4<sup>I</sup>), 4.03 (d, 1H, H-6<sup>I</sup>b), 3.92 (dd, 1H, H-2<sup>I</sup>), 3.60 (m, 1H, 1/2CH<sub>2</sub>), 3.55 (dd, 1H,  $J_{5,6a}$  = 5.82 Hz,  $J_{gem}$  = 9.54 Hz, H-6<sup>II</sup>a), 3.49 (dd, 1H,  $J_{5,6b}$  = 7.50 Hz, H-6<sup>II</sup>b), 3.37 (m, 2H, H-5<sup>I</sup>, 1/2CH<sub>2</sub>), 3.30 (m, 2H, CH<sub>2</sub>), 2.77 (s, 9H, NMe<sub>3</sub>), 2.27, 2.18, 2.15 (3 s, each 3H, 3<u>Me</u>Ph). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>72</sub>H<sub>68</sub>N<sub>2</sub>O<sub>20</sub>SNa, 1357.3798; found, 1357.3782.

# 2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-sulfo- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-2-deoxy-2-phthalimido-6-O-sulfo- $\beta$ -D-glucopyranoside, bistrimethylamine salt (**K28**)

<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CD<sub>3</sub>OD): 7.95-6.75 (m, 26H, Ar H), 5.83 (d, 1H,  $J_{3,4}$  = 3.18 Hz, H-4<sup>II</sup>), 5.67 (dd, 1H,  $J_{1,2}$  = 7.92 Hz,  $J_{2,3}$  = 10.26 Hz, H-2<sup>II</sup>), 5.56 (dd, 1H, H-3<sup>II</sup>), 5.40 (d, 1H, H-1<sup>II</sup>), 5.01 (d, 1H,  $J_{1,2}$  = 8.58 Hz, H-1<sup>I</sup>), 4.92, 4.57 (ABq, 1H, J = 12.00 Hz, PhC<u>H</u><sub>2</sub>), 4.69 (s, 2H, PhC<u>H</u><sub>2</sub>), 4.39 (br t, 1H, J = 6.63 Hz, H-5<sup>II</sup>), 4.35 (br d, 1H, J = 9.30 Hz, H-6<sup>I</sup>a), 4.14 (m, 2H, H-3<sup>I</sup>, 6<sup>II</sup>a), 4.01 (m, 3H, H-4<sup>I</sup>, 6<sup>I,II</sup>b), 3.86 (dd, 1H,  $J_{2,3}$  = 10.44 Hz, H-2<sup>I</sup>), 3.57 (m, 1H, 1/2OCH<sub>2</sub>), 3.36 (m, 1H, 1/2OCH<sub>2</sub>), 3.35 (d, 1H,  $J_{5,6a}$  = 9.96 Hz, H-5<sup>II</sup>), 2.99 (t, 2H, NCH<sub>2</sub>), 2.82 (s, 18 H, 2NMe<sub>3</sub>), 2.25, 2.18, 2.17 (3 s, each 3H, 3<u>Me</u>Ph). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>61</sub>H<sub>58</sub>N<sub>2</sub>O<sub>23</sub>S<sub>2</sub>Na<sub>3</sub>, 1319.2559; found, 1319.2536.

#### Biotinylated KS (0S) disaccharide (KS-1)

**K19** を EtOH (2.4 mL)に溶解し、1,3-diaminopropane (232 µL, 2.8 mmol)を加え、終夜加 熱還流を行った後、反応液を濃縮した.濃縮残渣は MeOH(5.0 mL)に溶解し、Ac<sub>2</sub>O (0.2 mL)と Et<sub>3</sub>N (0.2 mL)を加え終夜撹拌し、再度濃縮した.残渣は逆相クロマトグラフィー (Bond Elut C8 column, 0-90% MeOH)で精製を行った.精製物は 50% aq. EtOH (2.0 mL)に 溶解し, 触媒量の Pd-black を加え, 水素雰囲気下で激しく撹拌した. 2 日後, H<sub>2</sub>O (1.0 mL) と AcOH (1 drop)を追加し, さらに 4 日間激しく撹拌した. 反応液はセライトろ過し濃縮した. 残渣を 1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl (1.5 mL)に溶解し, NHS-PEG<sub>4</sub>-biotin (60.4 mg, 99.7 µmol)を加え終夜撹拌した. 反応液をゲルろ過カラム(LH-20, H<sub>2</sub>O)で精製し, 定量的に KS-1 を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (D<sub>2</sub>O, selected): 4.51 (dd, 1H,  $J_{\rm b,c}$  = 7.92 Hz,  $J_{\rm c,d}$  = 4.86 Hz, H-c), 4.48 (d, 1H,  $J_{1,2}$  = 8.37 Hz, H-1<sup>1</sup>), 4.38 (d, 1H,  $J_{1,2}$  = 7.86 Hz, H-1<sup>II</sup>), 4.33 (dd, 1H,  $J_{\rm b,c}$  = 4.50 Hz, H-b), 4.00 (m, 1H, H-r), 3.90 (dd, 1H,  $J_{5,6a}$  = 2.16 Hz,  $J_{\rm gem}$  = 12.18 Hz, H-6<sup>II</sup>a), 3.84 (d, 1H,  $J_{3,4}$  = 3.36 Hz, H-4<sup>II</sup>), 3.79 (m, 1H, H-r), 3.75 (dd, 1H,  $J_{5,6b}$  = 5.10 Hz, H-6<sup>II</sup>b), 3.75-3.60 (m, 2H, H-6<sup>I</sup>ab), 3.67 (m, 2H, H-2<sup>I</sup>, 3<sup>I</sup>), 3.58 (dd, 1H,  $J_{2,3}$  = 9.90 Hz, H-3<sup>II</sup>), 3.52 (m, 3H, H-4<sup>I</sup>, 5<sup>I,II</sup>), 3.45 (dd, 1H, H-2<sup>II</sup>), 1.96 (s, 3H, NAc). ESI-HRMS *m*/*z* [M+Na<sup>+</sup>]: calcd. for C<sub>37</sub>H<sub>65</sub>N<sub>5</sub>O<sub>18</sub>SNa, 922.3938; found, 922.3925.

#### Biotinylated KS (6'S) disaccharide (KS-2)

K26(80.9 mg, 65.4 µmol)を EtOH(3.5 mL)に溶解し, 1,3-diaminopropane (290 µL, 3.9 mmol)を加え,終夜加熱還流を行った後,反応液を濃縮した.残渣を MeOH (2.3 mL)に 溶解し, Ac<sub>2</sub>O (0.3 mL)と Et<sub>3</sub>N (0.3 mL)を加え, 終夜撹拌し, 再度濃縮した. 濃縮残渣は 逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製を行った. 精製物を MeOH(0.6 mL)に溶解し、0.5 N NaOH (250 µL)を加え、9 時間加熱還流を行った後、1% AcOH で中和し,濃縮した.濃縮残渣は逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製した. 精製物を 50% aq. 2-PrOH (1.0 mL)に溶解し, 触媒量の Pd-black を加え,水素雰囲気下で終夜激しく撹拌した.反応液に,H<sub>2</sub>O(1.0 mL)とAcOH(1 drop) を追加し、2日間激しく撹拌した.反応液はセライトろ過し、濃縮した.濃縮残渣を1M Na<sub>3</sub>PO<sub>4</sub>と0.15 M NaCl (0.8 mL)に溶解し,NHS-PEG<sub>4</sub>-biotin(27.7 mg, 47.1 µmol)を加え終 夜撹拌した.反応液は、ゲルろ過カラム(LH-20, H<sub>2</sub>O)で精製し、定量的に KS-2 を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (D<sub>2</sub>O, selected): 4.45 (m, 2H, H-c, H-1<sup>I</sup>), 4.37 (d, 1H,  $J_{1,2}$  = 8.37 Hz, H-1<sup>II</sup>), 4.27 (m, 1H, H-b), 4.13 (d, 1H,  $J_{gem} = 4.74$  Hz, H-6<sup>II</sup>a), 3.96 (d, 1H, H-6<sup>II</sup>b), 3.75 (m, 1H, H-2<sup>I</sup>),  $3.74-3.59 \text{ (m, 2H, H-6^{I}ab)}, 3.57 \text{ (m, 1H, H-2^{II})}, 3.36 \text{ (m, 1H, H-e)}, 2.85 \text{ (dd, 1H, } J_{c,d} = 5.10 \text{ Hz},$  $J_{\text{gem}} = 13.02 \text{ Hz}, \text{H-d}$ , 2.63 (d, 1H, H-d'), 1.90 (s, 3H, NAc). ESI-HRMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>37</sub>H<sub>64</sub>N<sub>5</sub>O<sub>21</sub>S<sub>2</sub>Na<sub>2</sub>, 1024.3325; found, 1024.3331.

#### Biotinylated KS (6S) disaccharide (KS-3)

化合物 K27(64.1 mg, 46.7 μmol)を EtOH(2.7 mL)に溶解し, 1,3-diaminopropane(234 μL, 2.8 mmol)を加え, 終夜加熱還流を行った後, 反応液を濃縮した. 濃縮残渣を MeOH (1.5 mL)に溶解し, Ac<sub>2</sub>O (0.2 mL)と Et<sub>3</sub>N (0.2 mL)を加え, 終夜撹拌し, 再度濃縮した. 濃縮 残渣は逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製を行った. 精 製物を MeOH(0.6 mL)に溶解し、0.5 N NaOH (250  $\mu$ L)を加え、6 時間加熱還流を行った後、1% AcOH で中和し、濃縮した.濃縮残渣は逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製した.精製物を 50% aq. 2-PrOH (1.0 mL)に溶解し、触媒量の Pd-black を加え、水素雰囲気下で2 日間激しく撹拌した.反応液に H<sub>2</sub>O(1.0 mL)とAcOH (1 drop)を追加し、4 日間激しく撹拌した.反応液はセライトろ過し、濃縮した.濃縮残渣を1 M Na<sub>3</sub>PO<sub>4</sub> と 0.15 M NaCl (0.8 mL)に溶解し、NHS-PEG<sub>4</sub>-biotin(9.9 mg, 18.5  $\mu$ mol)を加え終夜撹拌した.反応液液は、ゲルろ過カラム(LH-20, H<sub>2</sub>O)で精製し、定量的に KS-3 を得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (D<sub>2</sub>O, selected): 4.54 (m, 1H, H-c), 4.51 (m, 2H, H-1<sup>LI</sup>), 4.38 (m, 1H, H-b), 4.35 (m, 1H, H-6<sup>I</sup>a), 4.27 (br s, 1H, H-6<sup>I</sup>b), 3.86 (br d, 1H,  $J_{3,4}$  = 3.48 Hz, H-4<sup>II</sup>), 3.85-3.58 (m, 2H, H-6<sup>II</sup>ab), 3.70 (m, 1H, H-2<sup>II</sup>), 3.68 (m, 1H, H-3<sup>II</sup>), 3.63 [dd, 1H,  $J_{1,2}$  =  $J_{2,3}$  = 9.87, 7.98 Hz (reversible), H-2<sup>II</sup>], 3.28 (m, 1H, H-e), 2.91 (dd, 1H,  $J_{c,d}$  = 4.95 Hz,  $J_{gem}$  = 13.02 Hz, H-d), 2.71 (d, 1H, H-d<sup>II</sup>), 1.96 (s, 3H, NAc). ESI-HRMS *m/z* [M+Na<sup>+</sup>]: calcd. for C<sub>37</sub>H<sub>64</sub>N<sub>5</sub>O<sub>21</sub>S<sub>2</sub>Na<sub>2</sub>, 1024.3325; found, 1024.3325.

#### Biotinylated KS (6,6'-diS) disaccharide (KS-4)

化合物 K27(67.1 mg, 49.0 µmol)を EtOH(2.8 mL)に溶解し、 1,3-diaminopropane(245 µL, 2.9 mmol)を加え,終夜加熱還流を行った後,反応液を濃縮した.濃縮残渣を MeOH (1.5 mL)に溶解し、Ac<sub>2</sub>O(0.2 mL)とEt<sub>3</sub>N(0.2 mL)を加え、終夜撹拌し、再度濃縮した.濃縮 残渣は逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製を行った.精 製物を 50% aq. MeOH (1.5 mL)に溶解し, 0.5 N NaOH (200 μL)を加え, 8 時間加熱還流を 行った後,1% AcOH で中和し,濃縮した.濃縮残渣は逆相クロマトグラフィー(Bond Elut C8 column, 0-90% MeOH)で精製した. 精製物を H<sub>2</sub>O (1.5 mL)と AcOH (1 drop)に溶解し, 触媒量の Pd-black を加え, 水素雰囲気下で4日間激しく撹拌した. 反応液はセライトろ 過し濃縮した.濃縮残渣を1 M Na<sub>3</sub>PO<sub>4</sub>と0.15 M NaCl (0.3 mL)に溶解し, NHS-PEG<sub>4</sub>-biotin(2.6 mg, 4.6 µmol)を加え終夜撹拌した. 反応液はゲルろ過カラム(LH-20, H<sub>2</sub>O)で精製し, 定量的に KS-4 を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$  (D<sub>2</sub>O, selected): 4.54 (dd, 1H,  $J_{\rm bc}$  = 7.92 Hz,  $J_{c,d} = 4.86$  Hz, H-c), 4.49 (d, 1H,  $J_{1,2} = 7.92$  Hz, H-1<sup>I</sup>), 4.47 (d, 1H,  $J_{1,2} = 7.86$  Hz, H-1<sup>II</sup>), 4.35 (m, 2H, H-b,  $6^{I}a$ ), 4.24 (m, 1H, H- $6^{I}b$ ), 4.10 (m, 1H, H- $6^{II}a$ ), 3.94 (d, 1H,  $J_{3,4} = 3.06$  Hz,  $H-4^{II}$ ), 3.93 (dd, 1H, H-6<sup>II</sup>b), 3.84 (m, 1H, H-r), 3.70 (m, 1H, H-3<sup>I</sup>), 3.69 (br t, 1H, J = 5.94 Hz, H-2<sup>I</sup>), 3.63 (m, 1H, H-3<sup>II</sup>), 3.48 (dd, 1H,  $J_{2,3} = 10.02$  Hz, H-2<sup>II</sup>), 3.33 (m, 2H, H-q), 3.27 (m, 1H, H-e), 2.93 (dd, 1H, J<sub>gem</sub> = 13.02 Hz, H-d), 2.72 (d, 1H, H-d'), 1.94 (s, 3H, NAc). ESI-HRMS m/z [M+Na<sup>+</sup>]: calcd. for C<sub>37</sub>H<sub>63</sub>N<sub>5</sub>O<sub>24</sub>S<sub>3</sub>Na<sub>3</sub>, 1126.2713; found, 1126.2700.

2-(N-Benzyloxycarbonyl)aminoethyl 3-O-allyl-2,4-di-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K29**) CH<sub>2</sub>Cl<sub>2</sub> (11.0 mL)に溶解した **K17**(234.4 mg, 167.3 µmol)と benzyl *N*-(2-hydroxyethyl) carbamate (50.9 mg, 260.7 µmol)を, MA4Å(285.9 mg)を加えて室温で30分間撹拌した後, NIS (74.3 mg, 330.3 µmol)と AgOTf (6.3 mg, 25.1 mmol)を加え、室温で1時間撹拌した. 反応液は飽和重曹水で中和後, セライトろ過を行い、常法による後処理を行い、濃縮残 渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し、定量的に **K29**(253.7 mg)を得た. <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.86-6.71 (m, 34H, Ar H), 5.83 (d, 1H,  $J_{3,4}$  = 3.24 Hz, H-4<sup>II</sup>), 5.71-5.64 (m, 1H, All), 5.53 (dd, 1H,  $J_{1,2}$  = 8.16 Hz,  $J_{2,3}$  = 9.99 Hz, H-2<sup>II</sup>), 5.19 (m, 1H, All), 5.13 (d, 1H, H-1<sup>II</sup>), 5.08 (m, 1H, All), 5.05 (d, 1H,  $J_{1,2}$  = 8.52 Hz, H-1<sup>I</sup>), 4.96, 4.64 (ABq, 2H, J = 11.94 Hz, ArC<u>H</u><sub>2</sub>), 4.89 (br, d, 3H, J = 4.02 Hz, NH, ArC<u>H</u><sub>2</sub>), 4.67, 4.51 (ABq, 2H, J = 12.00 Hz, ArC<u>H</u><sub>2</sub>), 4.42 (br t, 1H, J = 9.21 Hz, H-4<sup>II</sup>), 4.27 (dd, 1H,  $J_{2,3}$  = 10.74 Hz,  $J_{3,4}$  = 8.73 Hz, H-3<sup>I</sup>), 4.17 (m, 1H, All), 4.14 (dd, 1H, H-2<sup>II</sup>), 4.00-3.97 (m, 1H, All), 3.95 (d, 1H,  $J_{gem}$  = 10.77 Hz, H-6<sup>I</sup>a), 3.87 (br t, 1H, J = 7.53 Hz, H-6<sup>II</sup>a), 3.83 (d, 1H, H-6<sup>II</sup>b), 3.71-3.66 (m, 2H, H-6<sup>II</sup>b, 1/2OCH<sub>2</sub>), 3.64 (t, 1H, H-3<sup>II</sup>), 3.52 (br t, 1H, J = 8.00 Hz, H-5<sup>II</sup>), 3.43 (m, 1H, 1/2OCH<sub>2</sub>), 3.27-3.19 (m, 3H, H-5<sup>I</sup>, NCH<sub>2</sub>), 2.37 (2 s, each 3H, 2<u>Me</u>Ph), 1.07 (s, 9H, *t*-Bu).

### 2,3,4-Tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-Obenzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranosyl trichloroacetimidate (**K34**)

**K33**(96.3 mg, 74.4 µmol)と CCl<sub>3</sub>CN(37 µL, 0.37 mmol)を CH<sub>2</sub>Cl<sub>2</sub>(1.3 mL)に溶解し, DBU(6 µL, 0.04 mmol)を加え, 0 °C で 30 分間撹拌した後, 室温でさらに 6 時間撹拌した. 反応溶液はそのままシリカゲルカラム(30:1-1:1 *n*-hexane-EtOAc)で精製し、**K34**(72.4 mg) を収率 68%で得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$  (CDCl<sub>3</sub>): 8.46 (s, 1H, NH), 7.84-6.75 (m, 38H, Ar H), 6.35 (d, 1H,  $J_{1,2}$ = 8.46 Hz, H-1<sup>1</sup>), 5.95 (d, 1H,  $J_{3,4}$  = 3.48 Hz, H-4<sup>II</sup>), 5.79 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$ = 10.38 Hz, H-2<sup>II</sup>), 5.50 (dd, 1H, H-3<sup>II</sup>), 5.30 (d, 1H, H-1<sup>II</sup>), 5.02, 4.71 (ABq, 2H, *J* = 12.03 Hz, ArC<u>H</u><sub>2</sub>), 4.70, 4.52 (ABq, 2H, *J* = 12.12 Hz, ArC<u>H</u><sub>2</sub>), 4.55 (br t, 1H, *J* = 9.54 Hz, H-4<sup>II</sup>), 4.49 (t, 1H,  $J_{2,3}$  = 10.80 Hz, H-3<sup>II</sup>), 4.45 (dd, 1H, H-2<sup>II</sup>), 4.09 (br t, 1H, *J* = 6.75 Hz, H-6<sup>II</sup>a), 3.90 (d, 1H,  $J_{gem}$  = 11.88 Hz, H-6<sup>I</sup>a), 3.88 (d, 1H, H-6<sup>II</sup>b), 3.66 (dd, 1H,  $J_{5,6b}$  = 9.66 Hz,  $J_{gem}$  = 5.61 Hz, H-6<sup>II</sup>b), 3.59 (dd, 1H, H-5<sup>II</sup>), 3.42 (br d, 1H, *J* = 9.72 Hz, H-5<sup>II</sup>), 2.30, 2.30, 2.29 (3 s, each 3H, 3<u>Me</u>Ph), 1.10 (s, 9H, *t*-Bu).

2-(N-Benzyloxycarbonyl)aminoethyl 2,4-di-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K30**)

THF(8 mL)に溶解した触媒量の(1,5-Cyclooctadiene)bis(methyldiphenylphosphine) iridium(I) PF<sub>6</sub>に, **K29**(253.7 mg)の THF 溶液(8 mL)を加え,室温で1時間撹拌した後, 0 ℃でH<sub>2</sub>O(3.8 mL), NaHCO<sub>3</sub>(284.7 mg, 3.4 mmol), I<sub>2</sub>(84.9 mg, 334.5 µmol)を加え,3 時 間撹拌した.反応液に1MNa<sub>2</sub>S<sub>2</sub>O<sub>3</sub>とCHCl<sub>3</sub>を加え,希釈した.有機層は常法に従い後 処理し,濃縮残渣をゲルろ過カラム(LH-20,1:1 CHCl<sub>3</sub>-MeOH)で精製し,定量的に **K30**(256.8 mg)を得た.<sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.83-6.71 (m, 34H, Ar H), 5.71 (d, 1H,  $J_{3,4}$  = 3.42 Hz, H-4<sup>II</sup>), 5.38 (dd, 1H,  $J_{1,2}$  = 7.98 Hz,  $J_{2,3}$  = 9.99 Hz, H-2<sup>II</sup>), 5.15 (d, 1H, H-1<sup>II</sup>), 5.05 (d, 1H,  $J_{1,2}$  = 8.52 Hz, H-1<sup>1</sup>), 4.95, 4.59 (ABq, 2H, J = 11.94 Hz, ArC<u>H</u><sub>2</sub>), 4.89 (br d, 3H, J = 5.46 Hz, NH, ArC<u>H</u><sub>2</sub>), 4.66, 4.48 (ABq, 2H, J = 12.03 Hz, ArC<u>H</u><sub>2</sub>), 4.42 (br t, 1H, J = 9.18 Hz, H-4<sup>I</sup>), 4.27 (dd, 1H,  $J_{2,3}$  = 10.62 Hz,  $J_{3,4}$  = 8.64 Hz, H-3<sup>I</sup>), 4.17 (dd, 1H, H-2<sup>I</sup>), 4.02-3.99 (m, 2H, H-6<sup>I</sup>a, 3<sup>II</sup>), 3.92-3.89 (m, 2H, H-6<sup>I</sup>b, 6<sup>II</sup>a), 3.69 (m, 1H, 1/2OCH<sub>2</sub>), 3.64 (dd, 1H,  $J_{5,6b}$  = 9.54 Hz,  $J_{gem}$  = 5.52 Hz, H-6<sup>II</sup>a), 3.57 (dd, 1H,  $J_{5,6a}$  = 7.56 Hz, H-5<sup>II</sup>), 3.45 (m, 1H, 1/2OCH<sub>2</sub>), 3.27 (m, 3H, H-5<sup>I</sup>, NCH<sub>2</sub>), 2.61 (d, 1H, J = 5.94 Hz, OH-3<sup>II</sup>), 2.37, 2.30 (2 s, each 3H, 2<u>Me</u>Ph), 1.07 (s, 9H, *t*-Bu).

2-(N-Benzyloxycarbonyl)aminoethyl 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido- $\alpha$  and  $\beta$ -D-glucopyranosyl-(1 $\rightarrow$ 3)- 2,4-di-O-(4-methyl)benzoyl-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido- $\beta$ -D-glucopyranoside (**K31\alpha and K31\beta**), 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-D-glucal (**K32**) and 2,3,4-tri-O-(4-methylbenzoyl)-6-O-(2-naphthylmethyl)- $\beta$ -D-galactopyranosyl-(1 $\rightarrow$ 4)-3-O-benzyl-6-O-tert-butyldiphenylsilyl-2-deoxy-2-phthalimido-D-glucopyranose (**K33**)

Entry 1: MS4Å(52.6 mg), NIS(11.2 mg, 60.4 µmol), AgOTf(3.1 mg, 15 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(0.3 mL)に懸濁させて 30 分間撹拌後, -20 °C に冷却し, CH<sub>2</sub>Cl<sub>2</sub>(2.0 mL)に溶解した K16(44.6 mg, 30.2 µmol)と K30(33.6 mg, 24.8 µmol)を加え撹拌した. 4 時間後, 飽和重曹水で中和 して, セライトろ過を行い, 常法による後処理を行い, 濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, 収率 23%で K31 β (14.7 mg)を得た. また, 副生成物として K32 (58.2 mg)も得た.

Entry 2: NIS(9.6 mg, 43 µmol)と TMSOTf(5 µL, 280 mM solution of TMSOTf in CH<sub>2</sub>Cl<sub>2</sub>)の CH<sub>2</sub>Cl<sub>2</sub>(0.3 mL)溶液に MS4Å(52.1 mg)を加え, 撹拌した. 30 分後, -40 °C に冷却し, CH<sub>2</sub>Cl<sub>2</sub>(2.0 mL)に溶解した K16(44.6 mg, 30.2 µmol)と K30(31.9 mg, 23.6 µmol)を加え撹拌 した. 3 時間後, Entry 1 と同様の方法で精製し, 収率 17%で K31 β (10.5 mg)を得た. ま た, 副生成物として K32 (60.0 mg)も得た.

Entry 3: MS4Å(68.9 mg), CuBr<sub>2</sub>(14.0 mg, 62.7 µmol), *n*-Bu<sub>4</sub>NBr(2.2 mg, 6.8 µmol), AgOTf(16.1 mg, 627 µmol)をCH<sub>3</sub>NO<sub>2</sub>(0.5 mL)に懸濁させて 30 分撹拌後, -20 °C に冷却し, CH<sub>3</sub>NO<sub>2</sub>(1.6 mL)に溶解した, **K16**(61.6 mg, 41.7 µmol)と**K30**(37.6 mg, 27.8 µmol)を MS4Å(60.5 mg)存在下終夜撹拌した. 反応液を常法に従い後処理し, 濃縮残渣をゲルろ 過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, 収率 81%で**K31αβ**(59.2 mg, α/β=60/40)を 得た. Entry 4: NIS(59.9 mg, 266 µmol)と AgOTf(6.8 mg, 27 µmol)を CH<sub>3</sub>NO<sub>2</sub>(0.5 mL)に懸濁さ せて, MS4Å(254.0 mg)存在下 30 分間撹拌後, -20 °C に冷却し, MS4Å(253.2 mg)と CH<sub>3</sub>NO<sub>2</sub>(10.4 mL)に溶解した K16(193.6 mg, 130.9 µmol)と K30(207.2 mg, 153.1 µmol)を加 え終夜撹拌した.反応液を飽和重曹水で中和し, セライトろ過後, 常法による後処理を 行い, 濃縮残渣をゲルろ過カラム(LH-20, 1:1 CHCl<sub>3</sub>-MeOH)で精製し, 収率 30%で K31 αβ (118.3 mg, α/β=60/40)を得た. また, 副生成物として K32 (201.9 mg)も得た.

Entry 5: K34(72.4 mg, 50.3 µmol)と K30(22.3 mg, 16.5 µmol)を CH<sub>2</sub>Cl<sub>2</sub>(2 mL)に溶解し, MS4Å(104.5 mg)存在下 40 分間撹拌した後, TMSOTf(5 µL, 18 µmol)を加え1時間撹拌し た. 反応液に, Et<sub>3</sub>N を加え中和後, セライトろ過を行い, CHCl<sub>3</sub>で希釈した. 有機層は, 常法に従い後処理し,濃縮残渣をゲルろ過カラム(LH-20,1:1 CHCl3-MeOH)とシリカゲル カラムで精製し, 収率 75%で K31β(33.0 mg)を得た. K31α: <sup>1</sup>H-NMR δ<sub>H</sub>(CDCl<sub>3</sub>, selected): 5.89 (d, 1H,  $J_{3,4}$  = 3.36 Hz, H-4<sup>IV</sup>), 5.63 (m, 2H, H-4<sup>II</sup>, 2<sup>IV</sup>), 5.53 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$  = 10.20 Hz, H-2<sup>II</sup>), 5.37 (m, 1H, H-3<sup>IV</sup>), 5.30 (d, 1H,  $J_{12} = 4.02$  Hz, H-1<sup>III</sup>), 5.29 (d, 1H,  $J_{12} = 8.10$ Hz, H-1<sup>IV</sup>), 5.00 (d, 1H, H-1<sup>II</sup>), 4.98 (d, 1H,  $J_{1,2} = 7.98$  Hz, H-1<sup>I</sup>), 4.40 (m, 1H, H-4<sup>III</sup>), 4.35 (m, 1H, H-4<sup>I</sup>, 2<sup>III</sup>, 3<sup>III</sup>), 4.15 (m, 1H, H-2<sup>I</sup>), 3.75 (dd, 1H, H-3<sup>II</sup>), 3.22 (m, 1H, H-5<sup>III</sup>), 2.39, 2.37, 2.35, 2.34, 2.32 (5 s, each 3H, 5MePh), 1.13, 1.11 (2 s, each 9H, 2*t*-Bu). **K31** $\beta$ : <sup>1</sup>H-NMR  $\delta_{\rm H}$ (CDCl<sub>3</sub>): 7.86-6.26 (m, 82H, Ar H), 5.87 (d, 1H,  $J_{3,4}$  = 3.42 Hz, H-4<sup>IV</sup>), 5.72 (d, 1H,  $J_{3,4}$  = 3.42 Hz, H-4<sup>II</sup>), 5.66 (dd, 1H,  $J_{1,2} = 8.10$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz, H-2<sup>IV</sup>), 5.37 (dd, 1H,  $J_{1,2} = 8.28$  Hz,  $J_{2,3} = 10.35$  Hz,  $J_{2,3$  $= 9.94 \text{ Hz}, \text{H-2}^{\text{II}}$ , 5.34 (dd, 1H, H-3<sup>IV</sup>), 5.14 (d, 1H,  $J_{1,2} = 8.16 \text{ Hz}, \text{H-1}^{\text{I}}$ ), 5.12 (d, 1H, H-1<sup>IV</sup>), 4.95 (d, 1H,  $J_{1,2} = 8.10$  Hz, H-1<sup>III</sup>), 4.90 (d, 1H, H-1<sup>II</sup>), 4.88, 4.40 (ABq, 2H, J = 12.72 Hz,  $ArCH_2$ , 4.87 (s, 3H, NH,  $ArCH_2$ ), 4.81 (d, 1H, J = 11.82 Hz,  $1/2ArCH_2$ ), 4.64 (d, 1H, J = 12.30Hz,  $1/2ArCH_2$ , 4.61 (d, 1H, J = 12.18 Hz,  $1/2ArCH_2$ ), 4.38 (br t, 1H, J = 6.45 Hz, H-4<sup>I</sup>), 4.28 (br t, 1H, J = 8.88 Hz, H-4<sup>III</sup>), 4.11 (m, 1H, H-2<sup>III</sup>), 4.05 (dd, 1H,  $J_{2,3} = 10.86$  Hz, H-2<sup>I</sup>), 3.96 (m, 5H, H-6a<sup>II</sup>, 6ab<sup>I,III</sup>), 3.84 (br t, 1H, J = 6.24 Hz, H-6a<sup>IV</sup>), 3.70 (m, 1H, 1/2OCH<sub>2</sub>), 3.60 (dd, 1H,  $J_{5,6} = 10.38$  Hz,  $J_{gem} = 5.60$  Hz, H-6b<sup>IV</sup>), 3.52 (dd, 1H,  $J_{5,6} = 9.48$  Hz,  $J_{gem} = 5.40$  Hz, H-6b<sup>II</sup>), 3.46 (d, 1H, H-5<sup>II</sup>), 3.43 (d, 1H, H-5<sup>IV</sup>), 3.41 (m, 1H, 1/20CH<sub>2</sub>), 3.22 (m, 3H, H-5<sup>I</sup>, NHC<u>H<sub>2</sub></u>), 2.96 (br d, J = 9.72 Hz, H-5<sup>III</sup>), 2.38, 2.35, 2.32, 2.30, 2.28 (5 s, each 3H, 5MePh), 1.13, 1.11 (2 s, each 9H, 2*t*-Bu). **K32**: <sup>1</sup>H-NMR δ<sub>H</sub> (CDCl<sub>3</sub>): 7.82-6.75 (m, 38H, Ar H), 6.66 (s, 1H, H-1), 5.94 (d, 1H,  $J_{3,4} = 3.36$  Hz, H-4<sup>II</sup>), 5.78 (dd, 1H,  $J_{1,2} = 8.04$  Hz,  $J_{2,3} = 10.44$  Hz, H-2<sup>II</sup>), 5.45 (dd, 1H, H-3<sup>II</sup>), 5.30 (d, 1H, H-1<sup>II</sup>), 5.02, 4.63 (ABg, 2H, J = 11.52 Hz, ArCH<sub>2</sub>), 4.74-4.69 (m, 2H, H-3<sup>1</sup>, 4<sup>1</sup>), 4.62, 4.42 (ABq, 2H, J = 12.16 Hz, ArCH<sub>2</sub>), 4.04 (br t, 1H, J = 6.69 Hz, H-6<sup>II</sup>a), 3.92 (s, 1H, H-5<sup>I</sup>), 3.58 (dd, 1H,  $J_{5.6b} = 9.54$  Hz,  $J_{gem} = 9.54$  Hz, H-6<sup>II</sup>a), 3.54 (dd, 1H, H-5<sup>II</sup>), 2.37, 2.32, 2.32 (3 s, each 3H, 3MePh), 1.11 (s, 9H, t-Bu). **K33**: <sup>1</sup>H-NMR δ<sub>H</sub> (CDCl<sub>3</sub>): 7.84-6.74 (m, 38H, Ar H), 5.94 (d, 1H,  $J_{3,4}$  = 3.18 Hz, H-4<sup>II</sup>), 5.76 (dd, 1H,  $J_{1,2}$  = 8.04 Hz,  $J_{2,3}$  = 10.44 Hz,  $H-2^{II}$ ), 5.45 (dd, 1H,  $H-3^{II}$ ), 5.22 (d, 1H,  $H-1^{II}$ ), 5.15 (br t, 1H, J = 8.52 Hz,  $H-1^{I}$ ), 5.02, 4.67 (ABq, 2H, J = 11.91 Hz, ArCH<sub>2</sub>), 4.68, 4.49 (ABq, 2H, J = 12.24 Hz, ArCH<sub>2</sub>), 4.42 (br t, 1H, J

= 9.00 Hz, H-4<sup>I</sup>), 4.40 (br t, 1H, J = 9.45 Hz, H-3<sup>I</sup>), 4.05 (dd, 1H,  $J_{5,6a}$  = 7.68 Hz,  $J_{gem}$  = 5.70 Hz, H-6<sup>I</sup>a), 4.04 (dd, 1H,  $J_{1,2}$  = 8.52 Hz,  $J_{2,3}$  = 10.20 Hz, H-2<sup>I</sup>), 3.87 (m, 2H, H-6<sup>I</sup>ab), 3.64 (dd, 1H,  $J_{5,6b}$  = 9.60 Hz, H-6<sup>II</sup>b), 3.56 (dd, 1H, H-5<sup>II</sup>), 3.26 (br d, 1H, J = 9.12 Hz, H-5<sup>I</sup>), 2.54 (br d, 1H, J = 5.58 Hz, OH-1<sup>I</sup>), 2.35, 2.34, 2.34 (3 s, each 3H, 3<u>Me</u>Ph), 1.11 (s, 9H, *t*-Bu).

#### 総括

序論では、細胞外マトリックスを構成するプロテオグリカン(PG)の構造と生理活性に について述べた. PGは、コアタンパク質に結合する GAG の違いにより、HSPG や CSPG、 DSPG、KSPG などの種類が存在する. PG によって発現される生理活性は、対応する タンパク質などの分子が、数多く存在する糖鎖の微細構造を正確に認識していることが 近年次第に明らかになってきている. GAG の糖鎖構造と生理活性の相関を明らかにす るために、構造が明確な GAG を得ることが重要となる.本研究では、がん細胞の血行 性転移の際にヘパラナーゼによって分解されることが報告されている基底膜の構成成 分である HSPG と、軸索再生阻害作用が近年報告されている KSPG に注目し、構造が 明確な HSPG と KSPG を合成することを目的とした.

第一章では、がん細胞の転移の際に基底膜のヘパラン硫酸を切断するために放出されるヘパラナーゼに基質特異的な構造である、ヘパラン硫酸四糖オクチルグリコシド(標的化合物 I) GlcAβ1-4GlcNS(6S)α1-4GlcAβ1-4GlcNS(6S)α-Oct の合成について述べた.

 $\beta$ -グルコシル-1,6-アンヒドログルコース誘導体(A1)から二糖供与体(A11, A12) と二糖受容体(A5)の高収率な合成に成功し、それらの縮合条件の検討を行った.脱離基 にイミドイル基のあるA11を用いると、イミドイル基の脱離が先行するS<sub>N</sub>1反応によっ てα体が形成されるが、二糖受容体(A5)の求核攻撃によるS<sub>N</sub>2反応も競合したために、 β体も多く生成されたと考えた.しかし、イミドイル基より脱離しやすい Cl 糖供与体 (A12)では、低温下でAgOTfにより Cl の脱離が速やかに進行したと考えられる.その 結果、S<sub>N</sub>1反応が優勢となり、収率とα選択性を向上させることに成功したと結論した. 得られた四糖の還元末端にオクタノールを高収率かつα選択的に縮合し、6 位水酸基の 位置選択的な硫酸化を行った後、GlcNの2位アミノ基の硫酸化を行った.*N*-硫酸化 の際の pH 調整に NaOH 水溶液を用いた場合、水中での反応にもかかわらず GlcN<sup>3</sup>の 3 位水酸基が硫酸化された.これは、大過剰の Na<sup>+</sup>存在下では GlcN<sup>3</sup>の水酸基と GlcA<sup>4</sup> のカルボキシル基の酸素原子間で Na<sup>+</sup>錯体を形成し、GlcN<sup>3</sup>の水酸基が活性化されたた めと考えた.塩基を Et<sub>3</sub>N に変更した結果、予想どおり副生成物を得ることなく、標的 化合物 I を高収率で得ることに成功した.

第二章と第三章では、ヘパラナーゼによって糖間が切断されたことを鋭敏に検出する 方法として FRET に注目し、FRET の機能をもつヘパラン硫酸四糖の合成を検討した.

第二章では、蛍光発色基をもつへパラン硫酸合成時の、Pd-C 存在下での加水素分解 における蛍光発色基の耐性について検討した. DNS をもつトリエチレングリコールが 結合したヘパラン硫酸四糖保護体(F5)で、加水素分解後、DNS が結合したトリエチレ ングリコールアグリコンが糖骨格から切断されたことについて考察した. 解決策として アグリコンを炭化水素鎖に変更したが,トリエチレングリコールの時と同様に<sup>1</sup>H-NMR で DNS のシグナルが消失していた. この理由として, DNS が加水素分解によって還 元されたと考え, DNS をもつ簡単な化合物に対して加水素分解を行ったところ,トリ エチレングリコールに結合している DNS では還元は起こらなかったが,炭化水素鎖と Trp に結合している DNS は NMe<sub>2</sub>が消失し, DNS のナフタレン環の一部が還元されて いたことをつきとめた. DNS は結合している化合物の違いによって反応性が変わると 推測し, DNS は加水素分解後に結合させることが望ましいという結論に至った. そこ で,還元末端側に Z 基をもつ二糖を用い, DNS を加水素分解後に結合させて FRET の 機能をもつ標的化合物Vの合成を行ったが, Pd-C を用いた加水素分解では, Trp のイ ンドール環も還元されていることが判明し, Trp も DNS 同様加水素分解後に結合させ る経路を提案した.

第三章では,第二章の結果を受け,蛍光発色基を加水素分解後に導入する方法で標的 化合物の合成を行うとともに,グルクロン酸のカルボキシル基のアミド化の検討を行った.

蛍光発色基を加水素分解後に導入するため, FRET が起こる蛍光発色基をTrpとDNS のペアから Indole と EDANS のペアに変更した標的化合物VIの合成経路を行った.

標的化合物VIの合成を行う際、遊離のカルボキシル基をもつ基質の硫酸化では、カル ボキシル基に硫酸化試薬が反応して混合酸無水物を形成し,その一方でアミノ基が硫酸 化されないことが判明した.これを避けるためアミノ基を保護硫酸化した. 0-硫酸化 では、カルボキシル基が混合酸無水物を形成するが、長時間反応させることで6位水酸 基の硫酸化に成功した. しかし, すべての保護基の除去後, 還元末端側に Indole を結 合させることはできたが, EDANS を非還元末端側のカルボキシル基に結合させること ができなかった. 第二章では, Bn 基で水酸基が保護されているグルクロン酸に対して Trp とのアミド化に成功していたため、水酸基が保護されていない状態ではカルボキシ ル基が求核反応を受けにくいと考え、カルボキシル基が求核攻撃されやすいよう、グル クロン酸にリンカーを装着し、EDANS と反応するカルボキシル基の位置を離してアミ ド化することを提案した. その結果, 水酸基が Bn 基で保護された状態でグルクロン酸 のカルボキシル基にリンカーをアミド結合することに成功した.そして, N. O-保護硫 酸化を行い,加水素分解によって全ての保護基を除去した後,還元末端側に Indole を 導入することにも成功した. しかし, グルクロン酸のリンカーへ EDANS を結合する ことはできなかったことから、リンカーが糖から離れていても、水酸基が遊離ではリン カー末端でアミド化ができないことが判明した.以上の結果をもとに、グルクロン酸の 水酸基をアシル基で保護することを提案し、グルクロン酸で予備実験を行った.グルク ロン酸の水酸基をピバロイル(Piv)基で保護した単糖(M6) と EDANS とのアミド結合 の形成は、水酸基を Piv 基で保護した場合でも可能であることが明らかになり、Piv 基 の除去も行うことができた.しかし,水酸基を Piv 基で保護した二糖(F5)を用いて, N, O-保護硫酸化後,加水素分解を行い,還元末端側に Indole を結合させることには 成功したが, EDANS を結合させることができなかった.現段階では,二種類の蛍光発 色基を装着したオリゴ糖に対し,位置選択的な N, O-硫酸化の経路をみつけることが できなかった.本研究では,非還元末端のカルボキシル基に対して蛍光発色基を導入す ることができなかったが,還元末端側のアミノ基には蛍光発色基を導入できたことから, 非還元末端をアミノ基に変更すれば蛍光発色基を結合させることができると考え,今後 検討していくことを考えている.

第四章ではケラタン硫酸オリゴ糖の合成について述べた.

軸索再生阻害作用に影響を与えるケラタン硫酸の構造を明確にするため、4 種類の硫酸化パターンをもつケラタン硫酸オリゴ糖の系統的な合成を行った.

まず初めに、アミノ基を Phth、水酸基を Ac 基で保護したドデシルチオグリコシル グルコサミン誘導体(K1)を高収率で単糖受容体(K4)へと誘導した. K4 と単糖供与体 (K5)との縮合は、-78 °C で反応させることでドデシルチオ基の分子間転移を抑制し、 高収率で二糖の縮合に成功した. 得られた二糖から誘導した共通二糖ユニット(K10)の ナフチリデンの還元開裂では、触媒量の H<sub>2</sub>O を加えることで二糖供与体 I と二糖供与 体 II を高収率で得た. ケラタン硫酸二糖の位置選択的脱保護と *O*-硫酸化を行い、還 元末端にビオチンリンカーが結合した 4 種類の硫酸化パターンをもつケラタン硫酸二 糖を系統的に得ることに成功した.

糖鎖の伸長では,異なる二糖供与体(ドデシルチオグリコシド: K16,トリクロロアセ トイミデート: K34)を使って二糖受容体(K30)との縮合条件を検討した.非極性溶媒 (CH<sub>2</sub>Cl<sub>2</sub>)中で縮合を行った場合,K34を用いると収率 75%でβ選択的に四糖を得ること ができたが,K16を用いると収率が 23%となり 1,2-脱離物が多く得られたため低収率 となった.極性溶媒(CH<sub>3</sub>NO<sub>2</sub>)の場合,1,2-脱離物の生成は抑制できたがβ選択性が低 下した.非極性溶媒の場合,Phth 基の隣接基効果で非局在型カチオンが形成されて S<sub>N</sub>2 反応が起こり,β選択的に四糖を得ることができたと考えた.しかし,極性溶媒の場合 非局在化カチオンであるアノマー炭素と CH<sub>3</sub>NO<sub>2</sub> がβ位で配位または結合し,α方向か らの求核攻撃に誘導したと考えられる.そのため,α体が優勢に得られたと考えた.得 られた四糖の位置選択的な脱保護,*O*-硫酸化,ビオチン化や,糖鎖伸長が今後の課題 である.

#### 発表論文

#### 主論文

- Synthesis of heparan sulfate tetrasaccharide as a substrate for human heparanase. <u>Naoko Takeda</u>, Remina Ikeda-Matsumi, Kaoru Ebara-Nagahara, Miyuki Otaki-Nanjo, Kayo Taniguchi-Morita, Miwa Nanjo and Jun-ichi Tamura, *Carbohydrate Research*, **353**, 13-21 (2012).
- Synthesis of Biotinyllated Keratan Sulfate Repeating Disaccharides. <u>Naoko Takeda</u> and Jun-ichi Tamura, *Bioscience Biotechnology and Biochemistry*, accepted.

#### 参考論文

- Amounts and Compositional Analysis of Glycosaminoglycans from Fish. Kazuya Arima, Hiroyuki Fujita, Ryosuke Toita, Ayaka Imazu-Okada, Nao Tsutsumishita-Nakai, <u>Naoko Takeda</u>, Yasuhiro Nakao, Hui Wang, Manami Kawano, Haruna Tanaka, Kenya Matsushita, Masahiro Kitagaki, Ryuya Hatto, Yuka Hieda, Shin Morimoto, Ayumi Nakamura, Hiroki Hayashi, Takashi Okuhara, Ayako Watanabe, Takeru Yumura, Katsuhiko Shimizu, Kiyoshi Nakayama, Seizo Shirade and Jun-ichi Tamura, *Carbohydrate Research*, **366**, 25-32 (2012).
- Synthesis and the interaction with midkine of biotinylated chondroitin sulfate tetrasaccharides.
  Iun ishi Tamura Nac Tautaumichita Nakai Vasuhira Nakao Manami Kawana Saki Kata

Jun-ichi Tamura, Nao Tsutsumishita-Nakai, Yasuhiro Nakao, Manami Kawano, Saki Kato, <u>Naoko Takeda</u>, Satomi Nadanaka and Hiroshi Kitagawa, *Bioorganic Medicinal Chemistry Letters*, **22**, 1371-1374 (2011).

#### 謝辞

本研究を行うにあたり、学部生時代から終始御指導、御鞭撻を賜りました 本学地域学部教授 田村純一先生に心から感謝の意を示します。

学位論文審査において、貴重なご意見をいただいた 本学工学研究科化学・生物応用工学専攻教授 斎本博之先生、伊藤敏幸先生、 同准教授 伊福伸介先生、野上敏材先生に深く感謝いたします。

日々の研究やゼミなどで多くのご指導をしていただいた 農学部生物資源環境学科准教授 一柳剛先生に深く感謝いたします。

直接のご指導を頂いた本学地域学部地域環境学科 南條美輪氏に深く感謝いたしま す。

鳥取大学入学以来、様々なご指導をしていただいた本学地域学部地域環境学科の先生 方、工学研究科化学・生物応用工学専攻の先生方に深く感謝いたします。

NMR をはじめとする機器分析について多くのご指導を頂きました

本学工学研究科化学・生物応用工学専攻教授 南条真佐人先生、

生命機能研究支援センター機器分析分野准教授 森本稔先生、

元素分析を担当していただいた丹松美由紀先生、

ESI-MS を測定していただいた池成真弓先生に深く感謝いたします。

共同研究者として親切なご助力とご協力を賜りました、

名古屋大学大学院医学系研究科教授 門松健治先生に深く感謝いたします。

また、合成した化合物の生理活性を調べていただいた、

神戸薬科大学薬学部教授 北川裕之先生、神戸薬科大学薬学部講師 灘中里美先生、 北海道大学大学院名誉教授 菅原一幸先生、名城大学薬学部教授 山田修平先生、 新潟大学大学院医歯学総合研究科准教授 武内恒成先生に深く感謝いたします。

2013 年度より日本学術振興会の特別研究員制度に採用されました。ご支援いただいた関係各位に深く感謝いたします。

最後に、本研究をするにあたり日々協力してくれた研究室の皆様に深く感謝いたしま す。