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IPCC(Intergovernmental Panel on Climate Change) 50

0.74 ( 0.03 ) , 2050 1.1~6.4
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[3][4][5][6] , 
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[7][8]
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Daily Sea Surface Temperature Analysis
3

90 km 30 km 6 km
360

120 24
10  

 

 
 
2.2.2

2000 WRF
6 km

( 35°57’14’’ 139°3’2’’) ( 35°57’13’’
139°3’47’’ 551 m) ( ) (

( 39 km ) ( 50 km ) )
( )

3
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(1) 
 

a, b

 

(2.1) 

xdi i  
 
(2) 
 

 

(2.2) 

obs dn  
 
(3) 
 

(CDF)
( )
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(2.3)

 
 

1) 2) 3)
 

 
(a) [12] 

,   (2.4) 

 
 
(b) [13] 

,   (2.5) 

,      (2.6) 

shape scale ( )
( 3~5

6~8 9~11 12~2 ) 2
 

 
(c) [14][15] 

, , (2.7) 

,  (2.8) 

,  
 
(d) [16][17] 

(2.9) 

n  
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2.2.3
 

7

16
22.5° 180° 78.75° 303.75°

180° 22.5°
( )  
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2.2.4
 

2.2.2
2000

ELCOM-CAEDYM (
2.2.3 )  

 

(1)  
 

R2

( )
R2 0.5 R2 0.1

6 km
R2

 
 

(2)  
 

R2 CDF
5(Quantile mapping ) ( ) R2

AME RMSE 5
R2 AME RMSE

1(Linear regressions) 2000 965.8 hPa
2~5 R2

5 1(Linear regressions)
1 5 1

5
1

5
R2(0.42) AME(27.58 ) RMSE(74.57 )
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( ) (0-1) ( /s) (°) (W/m2) (hPa) (0-1) 

R2 

0* 

0.865 
0.380 0.088  0.002 0.600 

0.610  0.502  

1* 

2* 

3* 

4* 0.382 0.085 0.001 0.592 

5* 0.879  0.454  0.083 0.003  0.610  0.599 0.486 

6*  0.399     0.484 

7* 0.865 0.401 0.084 0.000 0.565 0.596 0.475 

AME 

0 2.613 0.160 2.103 111.54 105.06 13.20 0.197 

1 2.441 0.141 1.409  80.14 82.67 2.924  0.210 

2 2.449 0.156 1.946 82.08 77.32 3.222 0.202 

3 2.487 0.151 1.807 96.53 91.33 3.061 0.218 

4 2.487 0.151 1.822 92.48 78.12 3.061 0.218 

5 2.328  0.139  1.843 92.41 75.39  3.102 0.218 

6  0.141     0.190 

7 2.429 0.141 1.791 19.31  79.38 3.029 0.189  

RMSE 

0 3.479 0.205 2.919 140.47 200.52 13.85 0.282 

1 3.205 0.175  1.983  90.82 141.31  4.0000 0.281  

2 3.218 0.201 2.657 106.97 142.35 4.434 0.282 

3 3.262 0.195 2.464 125.51 150.03 4.235 0.304 

4 3.262 0.195 2.460 120.94 148.23 4.235 0.304 

5 3.089  0.180 2.473 119.50 144.02 4.302 0.310 

6  0.189     0.313 

7 3.263 0.190 2.476 59.59  157.46 4.321 0.314 

* 0* ( ) 1* 2* 3*
4* 5*

6* 7*
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2.3
 
2.3.1
 

( )

1999 2 4 1) 
2) 3) 4) 

( 100 1 )1,000 m3/s
890 m3/s 110 m3/s

( )
( )

20,000 m3/ 230,000 m3/
100,000 m3/ 350,000 m3

4.1 m3/s 5,000 kW
51.6 km2 1.2 km2 5,800 m3 EL. 
393.3 m EL. 372.0 m EL. 304.0 m ( )  

( ) ( ) (2007
) ( )

( )
2006

1 m
6 km 0.7 m3/s 2007 4

9 9 50
10

10  
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2.3.2
 

3 ELCOM(Estuary Lake and Coastal Ocean Model)
CWR(Centre for Water Research)

ELCOM
CAEDYM(Computational Aquatic Ecosystem Dynamic Model)

3
CAEDYM DYRESM(1

) DYRIM(2 )
 

 
(1) [18]
 

ELCOM [19][20][21]

, , 
Beer’s

( )  
ELCOM  

1)  
2) ( )  
3)  
4)  
5)  

ELCOM Casulli and Cheng[22] TRIM(Tidal, 
Residual, Inter-tidal Mudflat)

Arakawa C-grid
( )

 
 
(2)  
 

ELCOM  
Reynolds-averaged Navier-Stokes(RANS)

Boussunesq

non-hydrostatic code
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ELCOM
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[  ] 
x-  

 

        (2.10) 
y-  

 

       (2.11) 

 
[  ] 

(2.12) 

 
[  ] 

(2.13) 

 
[  ] 

(2.14) 

 
[  ] 

  

(2.15) 

x, y, z , , , 
, , , x, y, z

, x, y, z , 
 

 

TRIM
2 Euler-Lagrange
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Euler-Lagrange 2

TRIM [22]  
ULTIMATE[23] 3

QUICKEST [24]
2

1

 
 
(3) [25] 
 

CAEDYM
DYRESM

Lagrangian 1 ELCOM
3 CAEDYM

CAEDYM
( )

 
CAEDYM 1

1
C N P Si (DO)

(Suspended Solids)
CAEDYM

CAEDYM

CAEDYM (SS; 6 )
( 7 ) ( 5 ) ( 3

) C, N, P, DO, Si ( )
CAEDYM

(280~2800nm) 1
PAR(Photosynthetically Active Radiation, 400~700nm)

45% PAR Beer Lambert 
Law
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CAEDYM 
version3.2 6 (SS)

(PIN
PIP) Stokes  

CAEDYM C, N, P, Si
CAEDYM

( , pH, DO)

Chl.a
Chl.a [26][27] (trial and error method)

SS POM(Particle Organic 
Matter, )

CAEDYM
(POC, PON, POP)

C:N:P
CAEDYM

(Sediment Oxygen Demand, SOD)

Wanninkhof[28] Riley and Skirrow[29]
CAEDYM 0 SOD DO
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CAEDYM 7

Chl.a  Chl.a/L) (mgC/L)
20

( )

 
 

(2.16) 
 

( ), , ,  
  

( 2.17 2.20)
2.17  

 
(2.17) 
(2.18) 

(2.19) 

(2.20) 
 

C N P 2 1 C N P
Chl.a 1 1

Michaelis-Menten[30]

(IN IP) Chl.a (POM)
2

Droop[31]

1
 

CAEDYM 4
Stokes

( 24 )
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2.3.3  
 
(1)  
 

ELCOM-CAEDYM

(x y) 50 m 50 m
(z) 1 m 24,158

AME(Absolute Mean 
Error, ) 0.05 106 m3 RMSE(Root Mean Square Error, )

106 m3 R2(Coefficient of determination, ) 0.999
(58 106 m3) 2.5%(56.6 106 m3)

( )  
 

 
 
(2)  
 

2000
1

( ) 2
2 79.6% 20.4%

(1 )
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1
(39 km) (50 km) 3 1

2

( )  
 
(3)  
 

2001~2009

 
 
L-Q

0.455(NH4) 0.961(NO3) 0.952(TN)
0.896(PO4) 0.905(TP) NH4 PO4 0.9 (

) Chl.a CAEDYM 7
(CYANO) (FDIAT) (CHLOR) (CRYPT) 4

( )[32] 0.36 10-6 ( )
1.75 10-6 ( ) 0.95 10-5 ( ) 0.33 10-4 ( )

SS 2001~2009
SS ( ) 50 m3/s

2
1

3 8 12 16 25 6 ( )  
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  (%) (%) 

~3  1.0  7.9 7.9 

3~5  3.0  7.2 15.1 

5~10  8.0  6.4 21.5 

10~15  12.0  8.7 30.2 

15~25  16.0  27.8 58.0 

25  25.0  42.0 100.0 
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2.3.4
 

2000 
( 500 m ) ( 90 m

) (DO) SS TN TP
Chl.a ( 0.5 m)

( 40~45 m EL. 332.5 m) ( 80~90 m EL. 291.4 m)
3 90 m

 
 
(1)
 

AME 0.490 m RMSE 0.664 m R2 0.977
AME 0.284 106 m3 RMSE 0.314 106 m3 R2 0.974

( )  
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(2)
 

(a)  

7 7 15
7

( 0.5 m)
( EL. 332.5 m) ( EL. 291.4 m) AME 1.131 0.313

0.470 RMSE 1.336 0.356 0.522 R2 0.961 0.968 0.933

 
 
(b) (DO)  

AME
0.821 1.128 1.563 mg/L RMSE 1.064 1.366 2.149 mg/L R2 0.460 0.190

0.135 10
SOD

( )  
 
(c) SS  

SS 1~4 (1999 )
SS AME

RMSE R2 2.141 2.501 mg/L 0.170 2.670 3.613 mg/L 0.005
3.808 4.589 mg/L 0.091

1 SS  
 
(d) TN TP Chl.a  

TN ( )
R2 0.335 0.332 0.075 0.5

0.021~0.049 mg/L(AME) 0.027~0.067 mg/L(RMSE)
TP 3 R2 0.006 0.293 0.018

TP(PO4-P) L-Q SS
Chl.a

( ) R2 0.612 0.076 0.018
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(e) 4  
Chl.a 4

(cell/mL) ( /cell)
4  
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(3)

( 90 m)
TN SS Chl.a

TP
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Parameter Value Description 

Thermodynamic parameters 

Photosynthetically Active Radiation (PAR) 1.00 

Extinction coefficient (m-1) Near Infrared Radiation (NIR) 1.00 

Ultra Violet A Radiation (UVA) 1.00 
Ultra Violet B Radiation (UVB) 2.50 

Oxygen parameters 

YO:C 2.67 Photosynthetic stoichiometry ratio of DO to 
C (mg DO [mg C]-1) 

rSOs Horizontal  
value 

Static sediment exchange rate (day-1) 

KSOs Half saturation constant for sediment 
oxygen demand (mg L-1) 

Nutrient parameters 

vN2 1.08 Temp multiplier for denitrification 

koN2 0.03 Denitrification rate coefficient (day-1) 

KN2 0.5 Half saturation const. for denitrification 
(mgL-1) 

vON 1.08 Temp multiplier for nitrification 

koNH 0.05 Nitrification rate coefficient 

Kon 2.0 Half saturation constant for nitrification 

PON1max 0.002 Rate coefficient of PONL to DONL (day-1) 

DON1max 0.003 Rate coefficient of DONL to NH4 (day-1) 

POP1max 0.001 Rate coefficient of POPL to DOPL (day-1) 

DOP1max 0.1 Rate coefficient of DONL to PO4 (day-1) 

cyanobacteria (C1), diatoms (D), chlorophytes (C2), cryptophytes (C3) 

max C1,D,C2,C3 0.6, 1.2, 1.1, 
0.8 Maximum growth rates of algae (day-1) 

kr C1,D,C2,C3 0.17, 0.08, 
0.09, 0.10 

Algal respiration, mortality, and excretion 
(day-1) 

v C1,D,C2,C3 na*, -0.1, 
-0.01, -0.02 Algal settling velocities (m day-1) 

TST C1,D,C2,C3 25, 4, 19, 27 Standard temperature for algal growth (°C) 

TOT C1,D,C2,C3 27, 5, 20, 29 Optimum temperature for algal growth (°C) 

TMT C1,D,C2,C3 32, 14, 25, 34 Maximum temperature for algal growth (°C) 
* : Time-varying settling velocity estimated by stokes equation with buoyancy control model
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2.3.5  
 

(1)  
 

2000
( 5)

7 W/m2 0~1
0 1 0 1

0 ( ) 0
(4,614 ) (4,406 )  

2006~2011 (2008 ) 5
(24 48 72 )

( 2.21) R2 0.915 AME 1.35 RMSE 1.71
 

 
 

(2.21) 
Twinf ( ) Ta24h Ta48h Ta72h 24 48 72

( )  
 

 

 ( ) (%) (m/s) (W/m2) (hPa) (0-1) 

12.541 75.6 2.664 133.667 965.85 0.364 

13.855 68.0 3.045 207.209 952.72 0.341 

12.541 74.8 2.667 140.987 965.85 0.375 
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( )
11.30  (0.6~25.6 ) 11.25  (0.9~20.0 ) 10.34  (0.1~19.9 )

(
)

( ) 2000
2-21

3 ( ) L-Q
 

 

 
 

 

 

 
 

 
3~5  

 
6~8  

 
9~11  

 
12~2  

 
( ) 

9.94 
(10.18) 

17.01 
(22.41) 

13.31 
(14.64) 

4.90 
(2.85) 

 
( ) 

10.35 
(12.35) 

17.66 
(23.01) 

12.28 
(15.48) 

4.65 
(4.49) 

 
( ) 

8.84 
(10.18) 

17.24 
(22.41) 

11.68 
(14.64) 

3.53 
(2.85) 
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(2)
 

( ) 5(
) ( ) 2

 
 
(a)  

( )

6 21 6.3
( ) 12.5

13.9 12.5 130.2 W/m2 207.2 
W/m2( ) 141.0 W/m2( )

 
 
(b)  

12 15
( )

6~8
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(c) SS  
SS 3 ( )

(c) TN TP Chl.a  
TN TP (

) TN TP

TN TP
Chl.a Chl.a

( ) 2 ) 60.6 15 )
62.1 22 ) ( )

Chl.a
6 19 (57.1 ) Chl.a
PO4-P 7 8

11 Chl.a
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(3)

( )
( ) 11.93 (6.55~25.96 ) 14.01 (7.74~29.71 )

12.18 (6.74~26.70 )

3 ( ) 8.82 mg/L(6.15~11.12 
mg/L) 8.50 mg/L(5.76~11.07 mg/L) 8.84 mg/L (5.99~12.25 mg/L)

SS 0~19.7 mg/L 0~15.2 mg/L 0~15.1 
mg/L TN TP
0.85 mg/L 0.013 mg/L Chl.a

2.1 2.0 2.5 
7 Chl.a
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2.4
 

JRA25 WRF

3 ELCOM-CAEDYM

 
1)

 
 
2) ELCOM-CAEDYM

( 90 m) SS TN TP
(Chl.a)

 
 

(
[45][46] )

( )
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3.1
 

CO2

[1]

1990

(Global Circulation Model GCM)

[2][3] 2000 GCM
RCM(Regional Climate Model)

[4][5][6]
RCP(Representative Concentration Pathways)

[7]

[8][9]
( )

1

1 35 m3

1) WRF
2)

3)
SS Chl.a

3
ELCOM-CAEDYM
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2002~2010 2062~2070 9

 
3.2
 
3.2.1
 

WRF

2001~2004
JRA25(Japanese 25-year ReAnalysis) 2005~2010

JCDAS(JMA Climate Data Assimilation System)
WRF

Sato [10]
5

(5 phase of the Coupled Model Intercomparison Project CMIP5)
(National Oceanic and Atmospheric Administration NOAA) Geophygical 

Fluid Dynamics Laboratory CM3(GFDL-CM3) 2061~2070 10
IPCC 5

RCP4.5 (Representative Concentration Pathways ) 2001~2010
2061~2070 10

( ) WRF 90 km(360 ) 30 km(120 )
6 km(24 )

  

 
5 (RCP)* 4 (SRES)** 

RCP 
2.6 

RCP 
4.5 

RCP 
6.0 

RCP 
8.5 

B1 B2 A1B A2 A1Fl 

CO2  
(ppm) 

~490 ~650 ~850 1370~ 600 800 850 1250 1550 

* Moss [7]  
** Climate Change 2007 Synthesis Report[11]  
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3.2.2
 

(Quantile Mapping)
( )

(R2 AME RMSE)
ELCOM-CAEDYM

0
2002~2010

(R2)
0 x 1

0.131 0.124

RMSE

0( ) 0 x
 



 
50 3

 

[12][13][14]

( 6 )
9

 

 

  

   R2 AME RMSE 

 
( ) 

 -5.900 36.000 12.598  
 -11.041 31.991 12.011 0.925 1.961 2.488 
 -55.900 36.000  12.598  0.926  1.792  2.339  
 -9.668 31.868 12.598 0.925 1.814 2.356 

 
(0-1) 

 0.000 1.000 0.779  
 0.122 1.000 0.699 0.266 0.163 0.212 
 0.000 1.000 0.779 0.269 0.146 0.204 
 0.142 1.000 0.767 0.272 0.145 0.197 
 0.085  1.000  0.775  0.273  0.144  0.198  

 
(m/s) 

 0.000 21.500 2.591  
 0.092 23.662 3.119 0.126 1.971 2.640 
 0.000  21.500  2.591  0.131  1.680  2.216  
 0.109 18.036 2.595 0.124 1.708 2.229 

 
(W/m2) 

 0.000 1038.889 131.841  
 0.000 1070.833 208.599 0.722 88.948 175.818 
 0.000  1038.889  131.841  0.703 60.019  126.584 
 0.000 797.486 139.341 0.723  60.128 119.202  

 
(hPa) 

 924.300 988.700 966.008  
 910.706 967.464 946.521 0.419 19.518 20.227 
 924.300  988.700  966.008  0.421  3.319  5.378  
 930.578 986.712 966.008 0.419 3.321 5.393 

 
(0-1) 

 0.000 1.000 0.642  
 0.000 1.000 0.304 0.309 0.370 0.454 
 0.000 1.000 0.642 0.369 0.214 0.300 
 0.000 1.000 0.540 0.367 0.250 0.343 

0.000  1.000  0.597  0.365  0.238  0.338  
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(0.779) (0.762) 0.017

3.5 W/m2

0.58 (0.64)

3.2.3

(1)
 

2002~2010 (
) 2062~2070 ( )

 ~  

 

( )

-5.900 36.000 12.598 

-5.437 35.862 14.982 

-3.100 39.922 15.515 

(0-1) 

0.000 1.000 0.779 

0.141 1.000 0.686 

0.104 1.000 0.762 

(m/s)

0.000 21.500 2.591 

0.097 22.296 3.062 

0.000 20.692 2.531 

(W/m2)

0.000 1038.889 131.841 

0.000 1059.167 212.514 

0.000 1016.359 135.270 

(hPa)

924.300 988.700 966.008 

914.055 971.101 947.528 

932.962 992.417 967.032 

(0-1)

0.000 1.000 0.642 

0.000 1.000 0.285 

0.000 1.000 0.584 
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9 9
12.6 15.5 2.9

12.0~13.3 2 (2003 ) 12.0 3
(2004 ) 13.3 9

15.0~16.1 3 5 (2064 2066 ) 14.1 6
7 (2067 2068 ) 16.1

9 ( ) 77.5%(75.9~80.6%) 76.2%(74.5~80.0%)
1.6%(0.8~1.8%)
2 5

2.6 m/s(2.5~2.7 m/s) 2.5 m/s(2.4~2.7 m/s) 2.6%
( ) 131.8 

W/m2(123.6~138.0 W/m2) ( ) 135.3 W/m2(130.3~140.1 W/m2)
3.5 W/m2

6.0 5.8
 

 
(2)
 

9
( 3~5 6~8 9~11 12~2

) 10.6 13.2
21.9 24.8 14.8 18.2

3.0 5.5 2.6 2.9 3.4 2.5

7 3 (6~8 ) (9~11 )

86.1% 81.7% 85.3% 82.2% ( 71.8% 70.2%)

( 67.4% 69.8%) 10%

3.0 m/s 3.1 m/s 2.9 m/s 2.9 m/s
2.1~2.2 m/s

59~194 W/m2 56~202 W/m2 ( 78.8 W/m2

77.9 W/m2) ( 171.9 W/m2 179.2 W/m2) ( 181.0 W/m2

186.5 W/m2) ( 95.1 W/m2 96.9 W/m2)
960~970 

hPa 1 7
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3.3
 

3.3.1
 

WRF

YHyM/BTOPMC[15][16]
450m(

(SCE-UA)[17]
( [18]) 2001~2010

(2001~2010 ) (2061~2070 )
1

9 ( 2002~2010 2062~2070 ) ( )
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3.3.2
 

0.1~311.9 m3/s 2.4 m3/s
0.5 m3/s 0.4 m3/s

( )

 

 
m3/s 

0.1 0.2 0.1 0.2 0.1 

312.4 145.7 312.4 147.4 311.9 

2.0 1.6 2.0 1.9 2.4 



 
56 3  

 

3.3.3  
 

9 2.0 m3/s 2003 2007 2010 9
2066 2070

(2.4 m3/s) 2.2 m3/s 2.3 m3/s
1~6 12 11

7~10 8
(2.5 m3/s) (5.4 m3/s) 2.9 m3/s

60 m3/s 100 m3/s 60 m3/s
9 12 18

100 m3/s 5 13
( ) 9 (Q355 13.6 m3/d( ))

9 97 ( Q355 12.2 m3/d) 
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186 89  
 

 
 
 

 
 
 
 
 
 
 
 
 



 
58 3  

 

3.4
 
3.4.1
 

( )
( )

1 1 4 30 (EL. 393.3 m)
( 0.72 m3/s ) 7 1

EL. 372.0 m( ) 9 30
EL. 372.0 m ( = ) 12 31 0.72 m3/s

EL. 393.3 m
2002~2010 (EL. 376.35 

m) 12 31 24
2 9

12.0 m3/s 12.0 m3/s (
12 m3/s)

L-Q 10 (SS 7.8 mg/L )
1/3( 2007~2010 )

2~4 m  



 
3.4 59 

 

3.4.2

(1)
 

2002~2010 9
SS

(2007 4 )
L-Q

1 L-Q
~ NH4

NO3 TN
PO4 TP

Chl.a NH4 9
Chl.a

(CYANO) (FDIAT) (CHLOR) (CRYPT)
4

1 9
( )

7~10  
 

 
 
 
 
 
 

1 2 3 4 5 6 7 8 9 10 11 12

CYANO 
( ) 

0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.09 0.02 0.00 0.00 

FDIAT 
( ) 

0.16 0.13 0.31 0.28 0.16 0.06 0.04 0.15 0.05 0.17 0.13 0.16 

CHLOR 
( ) 

0.19 0.19 0.17 0.26 0.27 0.26 0.46 0.48 0.63 0.47 0.28 0.13 

CRYPT 
( ) 

0.65 0.68 0.52 0.46 0.57 0.68 0.49 0.32 0.24 0.34 0.60 0.71 
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62 3  

 

(2)
 

1
L-Q

(a)  
2002~2010

AME 0.357 m RMSE 0.455 m R2 0.997

(b)  
1 ( ± )

5.0~29.6 (15.6±7.0 ) 1 (
± ) 5.2~30.7 (15.3±7.0 ) 0.2

1.1 1
( ) R2 0.973

AME 0.892 RMSE 1.248 ( )

(c)  

( ± ) 7.25~11.72 mg/L (9.95±0.99 mg/L) ( ±
) 7.40~12.80 mg/L (10.06±1.03 mg/L) ( ) R2

0.404 AME 0.681 mg/L RMSE 0.866 mg/L R2 0.5
AME RMSE 1.0 mg/L  

(d) SS
SS 2005 2007 SS

10 mg/L
( ) R2 0.289 AME 4.326 mg/L RMSE 6.957 mg/L

(e) TN TP Chl.a
TN 2002~2010 0.47~1.22 mg/L (0.84±0.13 mg/L) ( ± )

0.60~1.47 mg/L (0.76±0.09 mg/L) ( ± )
0.13~0.25 mg/L ( )  R2 0.246 AME

0.116 mg/L RMSE 0.142 mg/L R2 AME
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RMSE 9.5% 11.6%
TP ( ± ) 0.003~0.050 mg/L (0.012±0.007 

mg/L) ( ± ) 0.012~0.024 mg/L (0.015±0.002 mg/L)

( )  
Chl.a Chl.a (CYANO) (FDIAT) (CHLOR)
(CRYPT) 4 Chl.a

0.2~51.6 g/L (6.07±8.27 g/L) 0.4~43.4 g/L 
(5.04±8.43 g/L) R2 0.007 AME 6.16 g/L RMSE 11.32 

g/L 9
Chl.a ( ) 9

( )
[19][20]

R2 AME RMSE R2 AME RMSE 

0.973 0.892 1.248 Chl.a  0.007 6.158 11.321 

(mg/L)
0.404 0.681 0.866 0.020 0.370 0.733 

SS(mg/L) 0.289 4.326 6.957 0.001 1.094 2.055 

TN(mg/L) 0.246 0.116 0.142 0.050 2.458 4.987 

TP(mg/L) 0.082 0.006 0.007 0.001 2.982 5.517 
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Parameter Value Description 

Thermodynamic parameters 

Photosynthetically Active Radiation (PAR) 0.25 

Extinction coefficient (m-1) Near Infrared Radiation (NIR) 1.00 

Ultra Violet A Radiation (UVA) 1.00 
Ultra Violet B Radiation (UVB) 2.50 

Oxygen parameters 

YO:C 2.67 Photosynthetic stoichiometry ratio of DO to 
C (mg DO [mg C]-1) 

rSOs Horizontal  
value 

Static sediment exchange rate (day-1) 

KSOs Half saturation constant for sediment 
oxygen demand (mg L-1) 

Nutrient parameters 

vN2 1.08 Temp multiplier for denitrification 

koN2 0.03 Denitrification rate coefficient (day-1) 

KN2 0.5 Half saturation const. for denitrification 
(mgL-1) 

vON 1.08 Temp multiplier for nitrification 

koNH 0.05 Nitrification rate coefficient 

Kon 2.0 Half saturation constant for nitrification 

PON1max 0.002 Rate coefficient of PONL to DONL (day-1) 

DON1max 0.003 Rate coefficient of DONL to NH4 (day-1) 

POP1max 0.001 Rate coefficient of POPL to DOPL (day-1) 

DOP1max 0.1 Rate coefficient of DONL to PO4 (day-1) 

cyanobacteria (C1), diatoms (D), chlorophytes (C2), cryptophytes (C3) 

max C1,D,C2,C3 0.8, 0.9, 0.8, 
0.8 Maximum growth rates of algae (day-1) 

kr C1,D,C2,C3 0.17, 0.08, 
0.12, 0.13 

Algal respiration, mortality, and excretion 
(day-1) 

v C1,D,C2,C3 na*, -0.1, 
-0.01, -0.02 Algal settling velocities (m day-1) 

TST C1,D,C2,C3 20, 22, 22, 24 Standard temperature for algal growth (°C) 

TOT C1,D,C2,C3 27, 25, 26, 24 Optimum temperature for algal growth (°C) 

TMT C1,D,C2,C3 33, 31, 32, 30 Maximum temperature for algal growth (°C) 
* : Time-varying settling velocity estimated by stokes equation with buoyancy control model
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(3)
 

( )
3.9~22.2 (11.9±5.0 ) ( ± )

3.9~25.7 (11.1±4.5 ) ( ± )
3.5 9

( ) 8.5~13.1 mg/L(10.5±1.1 mg/L) ( ±
) 8.6~12.5 mg/L (10.5±0.9 mg/L) ( ± )

( ) SS
( ) TN

9 0.86 mg/L(0.61~1.23 mg/L) 0.77 mg/L(0.62~1.47 mg/L)
TP 0.012 mg/L( ) 0.015 mg/L( )

( ) Chl.a ( 1.42 )
( 2.86 )

( )

R2 AME RMSE R2 AME RMSE 

0.636 2.113 3.148 TP(mg/L) 0.213 0.107 0.132 

(mg/L)
0.459 0.634 0.792 TP(mg/L) 0.012 0.006 0.009 

SS(mg/L) 0.015 6.770 22.119 Chl.a 0.042 2.378 4.049 
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3.4 71 

 

3.4.3
 

2062~2070 9

2007 4 (9 )

2002~2010
 

1)
2)

L-Q 3) ( 2002~2010
2062~2070 ) 10 (SS 7.8 mg/L ) 4)

2~4 m

(1)
 

2-21
( ) 0.1~20.7 (10.4±5.5 )

1.8~24.5 (12.4±5.7 ) 9 2.0
2004 2010 2003

2067 2068 12.9 12.8 ( )  

 

(2)
 

6.8~17.4 mg/L(11.0±2.2 mg/L) 6.4~16.0 
mg/L(10.3±2.0 mg/L)

( )
SS SS 17.8 

mg/L 24.3 mg/L 5.5 mg/L 5,559 mg/L
5,549 mg/L SS ( )

( ) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 

2062 2063 2064 2065 2066 2067 2068 2069 2070 

10.4 10.0 10.8 10.2 10.5 10.5 10.1 10.4 10.6 10.4 

12.7 12.6 12.0 12.2 12.0 12.9 12.8 12.4 12.2 12.4 
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NH4 NO3 TN NH4 NO3 TN
( )

312.4 m3/s( ) 311.9 m3/s( )
( )  
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PO4 TP PO4 0.007~0.02 mg/L( ) 0.006~0.02 mg/L( ) TP
0.007~0.028 mg/L 0.006~0.028 mg/L (

)  
Chl.a Chl.a

0.024 
( )  
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(3)
 

3.4.1
9 (2002~2010 )

EL. 370.7~393.3 m ( EL. 379.4 m)
2006 2004 EL. 370.0~390.4 m (
EL. 376.9 m) 2069 2070

( ) 9 (158
m3) (190 m3) 8

(EL. 372.0 m)

 

 
 

 

 
 
 

(m) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 

2062 2063 2064 2065 2066 2067 2068 2069 2070 

377.5 379.4 381.5 381.2 374.0 380.1 378.0 381.0 382.4 379.4 

376.1 376.0 378.6 373.3 378.1 379.6 377.5 373.2 380.0 376.9 
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3.4.4  
 

(2002~2010 ) (2062~2070 )
500 m ( 0.5 m) (

EL. 308.0 m ) (EL. 308.0 m)
9

2.8
2.0 1.6 3

(12~2 ) (6~8 )

6.3 8.5 ( 35 m) 6.1 8.0 ( 70 m) 4.6 6.1

2006 (5.0 ) (6.3 )
2005 12 ~2006 2 (2.0 ) 2002~2010 12~2

(3.0 ) 2067 (9.1 )
(8.5 ) 6.7 5.6

18.2 ( 22.7 4.5 )

 



 
3.4 77 

 

 
 
 
 

 

 
 
 
 

~



 
78 3  

 

 
 
 
 

 
 
 
 

~



 
3.4 79 

 

19.7 ( 25.7 6.0 ) 1.5

10.41 mg/L 11.60 mg/L 11.94 mg/L 9.61 mg/L 10.85 mg/L
11.28 mg/L 0.79 mg/L 0.75 mg/L 0.66 mg/L

3.0 mg/L
SS 100 m3/s 2003

2007 2009 2062~2067 2070
SS ( 10.3 mg/L 11.3 mg/L 11.1 mg/L) (

24.3 mg/L 28.6 mg/L 24.7 mg/L) 14.0 mg/L 17.3 mg/L
13.6 mg/L TN TP

3 Chl.a
47.2 40.5 9 5.3 2.4 

Chl.a ( )
20 9 370 66 (

) Chl.a Chl.a
Chl.a

Chl.a
0.5 
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3.4.5  
 

9
( ) 11.7 (1.6~27.8 ) 13.1 (3.7~27.3 )

1.4 ( ) ( ) 10.7 
mg/L(8.3~13.4 mg/L) 10.0 mg/L(6.7~12.3 mg/L) 0.7 mg/L

SS( ) 10.5 mg/L(1.4~728.4 mg/L) 25.2 mg/L(1.5~1517.8 mg/L)
14.7 mg/L 789.5 mg/L

TN TP TN 0.78 mg/L 0.82 mg/L TP
0.015 mg/L 0.016 mg/L TN 4.7% TP 4.1%

( ) Chl.a ( ) 3.41 (0.4~32.8 ) 1.54 
(0.3 ~23.8 )

 

[21] 9
0.7 9 880 (98 / )
1,915 (213 / ) 429 (48

/ ) 2,432 (270 / ) 451 (50 / ) 
517 (57 / ) ( )
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( 2.0 ) ( 2.8 )
( 2~4 m)  
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SS 1 2 3 25 mg/L( )

9
181 (20 / ) 2007 79 SS

597 (66 / ) SS 2066 2067 2070
100 SS ( )

SS

SS
SS

20 m3/ 25 
9

105 m3 443 m3 13
m3 91 m3 12.5%

96 m3 347 m3 21.7%

 
 

 

( ) 

2002 2003 2004 2005 2006 2007 2008 2009 2010 

2062 2063 2064 2065 2066 2067 2068 2069 2070 

0 30 0 0 0 97 0 30 24 79 

44 4 30 18 116 231 28 0 127 266 



 
3.4 83 

 

 
 

 

 
 

 
 
 
 

m3 

2002/2062 4,860/21,518 219/1,880 4,641/19,638 

2003/2063 14,616/10,562 1,097/558 13,519/10,004 

2004/2064 2,848/31,722 290/5,405 2,558/26,317 

2005/2065 526/10,777 342/1,135 184/9,642 

2006/2066 4,658/156,605 287/35,262 4,371/121,343 

2007/2067 57,081/11,762 9,027/1,709 48,054/10,053 

2008/2068 4251/323 661/662 3,590/-339 

2009/2069 6,108/416 537/391 5,571/25 

2010/2070 9,807/199,600 615/49,394 9,192/150,206 

104,755/443,285 13,075/96,396 91,681/346,890 

(%)  12.5/21.7 87.5/78.3 
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3.5  

1 35 m3

(9 )

 
 
1) WRF 9

2.9
YHyM/BTOPMC

0.4 m3/s  
 
2) ELCOM-CAEDYM

9
2.0 0.7 mg/L SS
L-Q 9 6.5 mg/L

 
 
3) 2002~2010

2.8

Chl.a
Chl.a

 
 
4) 9

( 429 ) (880 ) ( 2,432 ) ( 1,915
) 25 mg/L SS ( 181
) ( 597 ) (21.7%)
(12.5%)  

 
SS
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4.1
 

[1]
[2]

[3]

[4]

[5]

[6]

1) (Chl.a) 2) 3)
3
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4.2
 
4.2.1
 

OECD TP Chl.a
5 (

)[7] 10 (2001~2010 ) TP Chl.a
TP 10 (0.012 mg/L)

 

 
 

 

TP(mg/L) 

0.004 0.1 2.5 
0.01 2.5 8.0 

0.01~0.035 2.5~8.0 8.0~25.0 
0.035~0.1 8.0~25.0 25.0~75.0 

0.1 25.0 75.0 

TP(mg/L) 

2001 0.013 4.4 25.1 
2002 0.010 3.3 9.1 
2003 0.009 4.8 16.1 
2004 0.012 4.6 10.9 
2005 0.010 4.4 15.8 
2006 0.010 5.4 13.9 
2007 0.016 9.3 49.6 
2008 0.014 4.7 11.0 
2009 0.014 14.5 51.6 
2010 0.010 3.8 8.2 

 0.012 5.9 21.1 
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Chl.a 10 5.9 21.1 
Chl.a ( ) 2007 2009

10
( )

 
 
4.2.2
 

(
7~9 )

( )

14
423 7.6%

32 [8]
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4.2.3
 

 
 

 
 
4.3
 
4.3.1
 

( SWS )
[9]

2~4 m 0
1

Chl.a
Chl.a 6~8 m

2

10~12 m 3 3
4 ~11 Chl.a
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4~6 m 12 ~3
(2~4 m) 4 4

SS 25 mg/L
15 ( SS SWS )

10~12 m (
)  

 

 
 
4.3.2

(1)

0 1 SWS
500 m ( 0.5 m) (

EL. 308.0 m ) (EL. 308.0 m)
16.8

18.0 18.6 18.0 10~12 m 3
( )

3

1
3 mg/L ( ) SS

3 SS  

  SWS   

 0 2~4 m  
 

 

1 2~4 m  

2 6~8 m  Chl.a 

3 10~12 m  SS 

4 

12~3 2~4 m  

4~11 4~6 m  

SS +15  

10~12 m  

 
Chl.a SS 
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- 1
39 mg/L 2 176 mg/L 3 672 mg/L 4 544 mg/L

( ) TN 0.81~0.83 mg/L
1 4 2 3

( ) TP
( )

TN TP
Chl.a (2~4 m) 1
Chl.a 4~11 4~6 m 4

( ) Chl.a
1(16.8 ) 3(18.6 ) 1.8 3

2.3 Chl.a 3
Chl.a  

 
(2)
 

SWS
(12~2 ) (6~8 )

8.5 8.6 9.1
8.8 8.0 8.0 8.1 8.1 6.1 6.1 6.3 6.2

3
1 19.7 ( 25.7 6.0 ) 2 22.7 ( 28.7

6.0 ) 3 23.3 ( 29.4 6.1 ) 4 22.1 ( 28.2
6.1 ) 3

8
0 1

( ) Chl.a
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~
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~
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(3)
 

0 1 SS L-Q
SS

( ) SWS
2 ( 179 m3/s 302 m3/s)

179 m3/s
( )

10~12 m 3
( 12 m)

300 m3/s ( )

3 4
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4.3.2
 

SWS 9
1 13.1 2 11.2 3 10.4 4 12.0

1(2~4 m) ( )
10.0 mg/L 10.1 mg/L 10.2 mg/L 10.0 mg/L

( ) SS 9
1 25.2 mg/L 2 26.1 mg/L 3 28.7 mg/L 4

28.8 mg/L 10~12 m 10~12 m 3 4

3 4 ( ) TN
0.81~0.82 mg/L TP 0.016 mg/L

Chl.a 1
1.54 2 0.69 3 0.47 4 0.92 

1 Chl.a 4~11
( ) 4~6 m 4 (
)  

 



 
4.4 99 

 

4.4
 
4.4.1

Chl.a 20 
SWS Chl.a

20 1 66 2 44
3 17 4 47  ( ) 1 Chl.a

3
f (T)

Chl.a
(20 ) (74 )

49 21 14 20

Chl.a
9

0 1
1 ( )
Chl.a

~

0 1 2 3 4

( )

0.82 0.56 0.62 0.36 0.68 

2.55 1.05 1.12 0.72 1.12 

6.67 3.02 2.40 1.17 2.89 

3.54 0.96 0.90 0.56 0.95 

13.58 5.59 5.04 2.81 5.64 

 
 
 

f (T) 

1.16 1.21 1.04 0.95 1.08 

1.19 1.15 0.86 0.74 0.91 

1.20 1.22 0.98 0.87 1.03 

1.07 0.95 0.64 0.54 0.69 

17.97 25.58 28.32 29.04 27.96 
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4.4.2
 

( ) ( ) SWS
( )

1 429 2 1,109 3 1,470 4
813 1 2,432 2 1,687 3

1,458 4 2,056

1 1,040 2
1,762 3 1,940 4 1,402

611 (142%) 653 (59%) 470 (32%) 589 (72%)
739 (30%) 633 (38%)

458 (31%) 661 (32%) ( )  
 

 



 
4.4 101 
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4.4.3
 

1 2 3
25 mg/L( ) ( )

SWS 1 597 2 672
3 739 4 739

25 mg/L 266 291 320
291 1

( ) 1 2 3

SS
4 4~6 m 10~12 m 3

SS 3 4

SWS
9 105 m3

443 m3 91
m3( 87.5%) 346.9 m3( 78.3%)

SWS
2 346.7 m3(38.5 m3 ) 3 348.5 m3(38.7 m3 )

4 346.0 m3(38.4 m3 )

SWS
2066 ( 302 m3/s) 2070 ( 311 m3/s)

156 m3 200 m3 121 m3 150 m3

20 m3 6  

 

( ) 
2002 2003 2004 2005 2006 2007 2008 2009 2010 
2062 2063 2064 2065 2066 2067 2068 2069 2070 

0 0 30 0 0 0 97 0 30 24 79 
1 44 4 30 18 116 231 27 0 127 266 
2 101 8 58 19 127 232 0 0 127 291 
3 102 12 81 31 147 239 0 0 127 320 
4 102 12 63 31 152 244 8 0 127 291 



 
4.4 103 

 

 

 
 

 

m3 0 1 2 3 4 

2062 4,860/21,518 4,641 19,638 19,463 19,618 19,586 
2063 14,616/10,562 13,519 10,004 99,44 9,863 9,851 
2064 2,848/31,722 2,558 26,317 26,414 26,925 26,559 
2065 526/10,777 184 9,642 9,573 9,565 9,589 
2066 4,658/156,605 4,371 121,343 121,208 122,142 121,083 
2067 57,081/11,762 48,054 10,053 10,105 9,912 9,925 
2068 4,251/323 3,590 -339 -279 -275 -331 
2069 6,108/416 5,571 25 74 85 34 
2070 9,807/199,600 9,192 150,206 150,157 150,671 149,745 

 
104,755 
/443,285 

91,681 346,890 346,659 348,505 346,041 

(%)  87.5 78.3 78.2 78.6 78.1 
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4.5
 

(9 )

SWS
 
1) WRF YHyM/BTOPMC

2.9
0.4 m3/s

SS Chl.a
 

 
2) SWS (
1) 10~12 m 3

SS
Chl.a

Chl.a
 

 
3)

SWS
47 / 10~12 m 163 /
270 / 162 /

 
 
4) SWS
10 3

4 (
1) SS

SWS
SWS

 
 
5) SWS



 
4.5 105 

 

10~12 m Chl.a (20 ) 5 /
(116 / )

SS SWS
 

 

SWS 3

SWS
4~11 ~ 5 m 10~12 m

Chl.a

12~3 3
~ 5m SWS

SS
SS
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1 35 m3

(2062~2070 )

SWS
SWS  

 
 

1

  
 

2 2000 WRF

3
ELCOM-CAEDYM

ELCOM-CAEDYM
( 90 m) SS TN

TP
(Chl.a)

 
 

3 WRF
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SS Chl.a
WRF

9 2.9
YHyM/BTOPMC

0.4 m3/s
ELCOM-CAEDYM 1

9 2.0
0.7 mg/L SS

L-Q 9 6.5 mg/L
2002~2010

2.8

Chl.a Chl.a

9 ( 429 ) (880 )
( 2,432 ) ( 1,915 )

25 mg/L SS ( 181 ) ( 597 )
(21.7%) (12.5%)

SS

 
4  (9 )

SWS SWS
10~12 m

SS

Chl.a
Chl.a

SWS
47 /

10~12 m 163 / 270 /  
162 /

SS



 
5 109 

SWS
SWS

 
SWS

10~12 m Chl.a (20 ) 5 /
(116 / )

SS SWS
 

SWS 3

SWS
4~11 ~ 5 m 10~12 m

Chl.a

12~3 3
~ 5m SWS

SS
SS  

 



 
 

 

 
 

 

 

 

(JST) (CREST)
(

 )

 
 

 

 


