ダム貯水池における気候変動に伴う 水質変化と水質保全施設の運用

2014年1月

崔 貞 圭

目次

第2章 力学的ダウンスケーリングによるバイアスが

ダム貯水池の水質予測に与える影響 13

第3章 将来予測結果によるダム貯水池の将来水質予測

47

第4章 気候変動に適応したダム貯水池における水質保全施設の運用方法の検討

87

第5章 結論

107

謝辞

図目次

 iv

表目次

第1章 序論

1.1 緒言

気象庁の観測データによれば東京の最近 10 年(2001~2010 年)の平均気温と年降水量は 16.6℃と1628.2 mm で、過去100年(1901~2000年)の平均気温 14.9℃と年降水量 1536.2 mm より気温は 1.7 ℃上昇し, 年降水量は 92 mm 増加した[1]. また, IPCC(Intergovernmental Panel on Climate Change)は現在の全球平均気温は過去50年 前より0.74℃(±0.03℃)上昇し, 2050年には現在の気温より1.1~6.4℃が上昇する可能性を 言及し、このような気温上昇の原因として急激な経済成長と人間活動による二酸化炭素な ど温室ガスの濃度が増加したためと結論付けた[2]. さらに気温の上昇は降水量と蒸発量の 変化を起こし、干ばつ、洪水、局地性集中豪雨の発生頻度と発生地域を増加させる働きを し、結果的に流域の流出量、河川流量の変化によって水資源供給の不安定性を増加させる ことになる[3][4][5][6]. また、気温の上昇によりダム貯水池内では酸素消費量の増加とそ れにより堆積層でリンの溶出が増加して、循環期に表層で栄養分を供給し、植物プランク トンの濃度を増加させて富栄養化とアオコの大発生(algal bloom)を起こす原因になる [7][8]. また、降雨強度の増加によって洪水時に流入する濁水量が増加して貯水池内では微 粒子による濁水の長期化を起こし、放流時に下流河川の水質低下および生態系の攪乱(例: 魚類生息環境の変化)などの悪影響を与え、最終的には低層に堆積して貯水池の容量を減少 させる.そのため、気候変動が水資源の量的・質的変化に及ぼす影響を検討しておくこと は重要である.

気候変動に伴う流域の降水量・流出量及び河川流量などの量的な変化に及ぼす影響に関 する研究は多いが、我が国の水道原水の半分以上を担っているダム貯水池[9]における濁水 やアオコを含む質的な影響に関する研究は少ない、さらにダム貯水池は閉鎖的な陸水物理 学的な特性により、滞留時間が短い河川より気候変動による大きな影響を受けやすいため、 気候変動に伴う将来の水質変化と影響を明らかにした上でそれに対応する適切な水質保全 対策が必要である.

現在、ダム貯水池における水質保全のためにはフェンス(curtain weir)、選択取水設備 (selective withdrawal system), 曝気装置(aeration), バイパス(bypass)などの多様な施設 が設置・運用にされ、それによる水質管理が行われている[10][11][12][13][14]. フェンス は表層流入水の流れを人為的に変化させて表層に流入する栄養塩の供給を遮断することに よってアオコ及び藻類の大量増殖を防ぐことができる[15][16][17][18][19][20][21]. 選択取 水設備は水深が深い成層化されたダム貯水池での特定水深の水を取水できる施設であり、

放流水及び下流河川の水温, 溶存酸素と濁度などの調節ができるため, 冷・温水放流の最 小化、濁水の早期排除などの利用目的に適合な放流と水質向上のために運用されている [22][23][24][25]. また、曝気装置は貯水池に循環流を発生させることで、表層から中層に かけて循環混合層を形成させ、植物プランクトンの異常増殖が難しい環境を維持すること を目的としている.具体的には循環混合層の拡大による植物プランクトンの成長条件であ る光制限効果及び表層と中層の循環による水温の希釈効果に伴う成長に適合な水温の範囲 を外れ、植物プランクトンの成長を抑制させることができる[26][27][28]. もう1つの施設 はバイパスというダム貯水池の上流から流入する水に対してダム貯水池を通過させず下流 河川に直接放流させることができる施設である。これは利用目的によって2つの運用方法が ある.1つは出水時に流入する高濁度の濁水による貯水池内の土砂堆積などの被害を防ぐた めに、下流河川に直接放流する方法ともう1つは平常時に下流河川の水質向上のために上流 河川の清水を下流河川に直接放流する方法がある[29][30][31]. しかしながら、このような 水質保全施設の運用方法に伴うダム貯水池の水質変化又は最適運用方法の検討は少ない. そこでそれぞれの水質保全施設について運用方法による水質変化と最適運用方法の検討、 また各施設の連携運用を通じたダム貯水池の水質最適化に関する検討を行う必要がある.

以上のような背景から本研究の目的としては東京都、埼玉県と秩父市の水道用水及び灌 漑用水の供給に重要な役割を担っている浦山ダムにおける 3 次元湖沼生態系モデル ELCOM-CAEDYM を用いて十分な再現計算結果による水質予測関連パラメータを得て, 将来の気象と流出データを用いて気候変動に伴う水質変化の予測とそこで得られる結果を 用いて将来における気候変動に適応した浦山ダムの選択取水設備の最適運用方法を提案す るものである.

1.2 既往の研究

1.2.1 温暖化結果の詳細化手法とバイアス補正に関する現状

将来における気候変動による気温や降水量などの変化を検討するために将来予測結果の 時・空間的な精度を向上させることは大事な過程である。この方法として力学的ダウンス ケーリングがある。力学的ダウンスケージャング。 RCM(Regional Climate Model)を用いた地域規模の詳細化手法がよく適用され、高解像度 の将来予測結果の得ることができる[32][33][34]. 原ら[35]は IPCC 第 4 次報告書による A2 シナリオ採用し、MIROC(Model for Interdisciplinary Research on Climate)から得ら れた結果を用い, RCM による格子間隔3 km の高解像度の将来予測を行い, 2070年代に おける夜間のヒートアイランド強度は 2000 年代に比べて約 20%以上強まる結果を得た. また, 飯塚ら[36]は名古屋における解像度1km のダウンスケーリングによって 2000 年代 に比べて 2070 年代の平均気温が約 3.0℃上昇する結果を示した. Adachi ら[37]は RAMS(Regional Atmospheric Modeling Systems)を用い、空間解像度 3 km のダウンスケ

ーリングを行い, 2000年代から 2070年代にかけての地上気温の上昇に気候変動が 2.0℃, 都市化が0.5℃寄与する結果が得られた. また、統計学的ダウンスケーリングについて Hay ら[38]は緯度と経度, 標高を独立変数, 対象地域の日降水量, 日最低気温や最高気温を被 説明変数とする重回帰を使用した. Ueyama ら[39]は標高と開放度, 傾斜度, 水域度など の地形要因と気候モデルの地表面気温を独立変数、地点の地上気温を被説明変数とする重 回帰式を用いて統計学的ダウンスケーリングを行った.

さらに、系統的誤差というバイアスを補正するため、対象要素の頻度分布を持つ統計的 な性質を利用するバイアス補正が行っている[40][41]. Wood ら[42]は観測値とモデルによ る予測値との間で、互いの順序統計量を関連づけるマッピングテーブルを作成し、同テー ブルを利用することで将来予測値のバイアス補正を行った. なお、Harrold ら[43]は現在 と将来のモデルの出力値の間で、順序統計量の変化の比を求め、同比を観測値に適用する ことで将来予測値に対してバイアス補正を行っている. Ines and Hansen[44]は日降水量頻 度と強度についてガンマ分布を適用した. Baigorria ら[45]は日最低・最高気温に正規分布, 日積算日射量にベータ分布を適用した. 中津川[46]は気温, 風速, 湿度は正規分布, 降水 量と降雪量がガンマ分布を用いてバイアス補正を行った.

1.2.2 気候変動が水資源に及ぼす影響に関する現状

水資源分野における気候変動に関する研究は1980年代中頃から活発に進んでいる。全地 球的な気候変動が地域の水資源に及ぼす影響を検討するために米国のサクラメント流域を 対象としたGleick[47]の研究を始め、多様な分析方法論を通じた研究が行われている. 特 に欧州連合(European Union, EU)はCHESS(Climate, Hydrochemistry and Economics of Surface-water System)プロジェクトでヨーロッパにある複数の流域に気候変動シナリオ を適用して水質影響評価のための方法を示した. SWAT(Soil and Water Assessment Tool) モデルとQUESTOR(QUality Evaluation and Simulation Tool for River-systems)モデ ルを用い, 将来の気候変動が水文-水質に与える影響を関する研究を進んでいる. Bouraouiら[48]はイギリスのYorkshire地方にあるOuse River流域における6つの気候変 動シナリオを作成してSWATモデルに適用した. その結果、気候変動に伴う総窒素(Total Nitrogen)と総リン(Total Phosphorus)の汚染負荷量はそれぞれ6から27%まで、5から34% まで増加する結果を得た. また、Bouraouiら[49]は気候変動によって年平均栄養物質汚染 負荷量と冬季流出量は増加し、積雪面積は減少すると予測し、Sefton and Boorman[50]は 2×CO₂の(二酸化炭素倍増)シナリオでイギリスの39つの流域に対する流出を分析した結 果,東部地域は流出減少によって干ばつ被害が増加すると予測した. Merrittら[51]はA2 とB2シナリオを用いてOkanagan流域の気候変動の影響を分析した結果、春季の融雪が早 く起こして流出量の減少を予測し、一方、Zhangら[52]はA2とB2シナリオを用いてLuohe 川の流出量を予測して将来(2050年)の平均流出量が10%, 特に春季の流出量が60%増加す ると予測した. De Stasioら[53]は北米ダム貯水池における二酸化炭素が増加するシナリオ

で成層形成時期の短縮、成層強度と期間の増加、夏季表層水温の増加及び流量減少による 滞留時間の増加などに影響を与えることを示した. Tanerら[54]は気候変動によって将来ダ ム貯水池の表層と低層の水温が上昇して水温躍層が深くなり、さらに、河川から流入する 栄養塩の負荷が増加し、植物プランクトンの成長を促進する結果を得られた. 浜口ら[55] は現在気候(1979~2000年)と将来気候(2079~2100年)データを用いて琵琶湖・淀川流域にお ける流出を含めた生態環境に及ぼす影響の検討を行った結果、夏季に流出量が増加する傾 向を見いだし、気温上昇によって河川水温の上昇と低い温度を好む魚類分布が減少する結 果を予測した.

1.2.3 水質保全施設の運用及び効果に関する現状

ダム貯水池の水質保全のために設置されたフェンス、選択取水施設及び曝気装置の運用 による水質保全と向上に関する研究は多いが、バイパスの設置事例とそれに伴う運用効果 及び評価に関する研究は少ない. Asaeda ら[15]は、寺内ダムにおけるダム内の高い藻類濃 度を管理するためにフェンスを設置して上流部から流入する栄養塩の提供を遮断させるこ とによりダムの藻類成長を抑制することを評価した。また、フェンスは簡単な設置ができ るし、設置と運用費用も曝気装置の 75%程度となる. Chung ら[56]は2次元湖沼水質モデ ル(CE-QUAL-W2)を用いて韓国の3番目の貯水容量である Daecheong ダムにおけるフェ ンスの設置によるクロロフィル濃度の変化を検討した。その結果、設置場所によって渇水 年(2001年)は11.2~40.3%,平水年(2006年)は20.3~56.7%を減少することが予測された. 選択取水設備(Selective Withdrawal System)に関して矢島ら[57]は湖沼水質モデルを用い て殿ダムについて選択取水設備の運用によって下流河川への冷水放流と夏季の貯水位変動 が小さい時に発生する温水放流を防ぐことができた。また、成層化されておれば、濁水の 拡散を減少させ, より多くの SS を放流することができることを示した. Ryu ら[58]は CE-QUAL-W2 モデルを用いて Soyang ダムにおける濁水量規模に伴う選択取水設備の運 用効果を評価した. 貯水池の総貯水量に対した SS の濃度が 25.0 mg/L 以上の濁水量の割 合が 0.3~0.6 の範囲では選択取水が河川下流への濁水放流期間を減少させて、0.83 の場合 は濁水放流期間が増えることが分かった. 曝気装置に関する研究では Kortmann ら[59]は 曝気循環装置の運用によって藍藻類(Anabaena sp., Aphanizomenon sp.)の藻類異常増殖 現象が減少し、優占種の藍藻類から緑藻類と珪藻類に変化することを報告した。Cooke ら [60]は成層を破壊できる人工曝気は珪藻類の沈降を抑制するため、珪藻類の沈殿率を鈍化 させる結果を得た. また, Steinberg[61]はドイツの Upper Bavaria にある小さい湖沼にお ける研究で成層破壊以後,藍藻類は減少するパターンが見られて緑藻類と珪藻類は増加さ れたと報告した. バイパスに関しては Sumi ら[62]は日本の旭ダムにおける 1998~2002 年 まで計16回の高濁水をバイパスさせることによって流入土砂量の80~90%を迂回させるこ とを確認した。美和ダムでも高濁水をより早く放流する目的としてバイパスを運用して 2007年の7月の洪水時は13万トン,9月に発生した洪水期には36万トンの土砂流入を抑 制する結果が得られた[30]. 一方, 荒川流域の浦山ダムは 2006年国土交通省の水環境改善 事業によって平常時に上流部の清水を下流へ直接放流できるバイパスを設置し、2007年9 号台風によって発生した洪水以後の濁水放流を上流部の清水に代替して下流観測地点にお ける濁度 10 度以上の期間を6 日間短縮させて平均濃度が低くなる効果が得られた.

1.3 本研究の目的と論文の構成

以上のように将来における気候変動による気温、降水量などの変化が水資源に及ぼす影 響に関する研究は多様な方法と形態で進んでいる。そこでは将来予測に対する精度及び信 頼性を向上させれば気候変動による変化の事前予防的な対策樹立に多く貢献することがで きると考えられる.特にダム貯水池については信頼性が高い将来予測を行う上で,水質保 全施設の最適運用方法を同時に考えれば、将来に可能性がある水質問題の解決に役立つと 考えられる.

以上のことにより本研究では、まず、現在と将来における予測された気象データと流出 データに内在されているバイアスがダム貯水池の水質予測に与える影響を検討する。そこ で得た結果とともに将来における予測した気象及び流出データのバイアス補正 (bias-correction)を行い、気象及び流出データの誤差の低減を行う. そして、最終的に精度 を高めた気象及び流出データを用いて将来の水量(貯水位)と水質の変化を明らかにする. さらに,将来のダム貯水池の水質管理における選択取水設備の最適運用方法の提案を行う ものである.

以下、本論文の構成について示す.

第2章では、現在気候に対するダウンスケールされたデータを用いて頻度分布マッピン グを含む複数のバイアス補正を行い、それらを実測データと比較することにより補正手法 の精度と適用性に対した検討を行う. また, 対象地域(浦山ダム)における 3 次元湖沼生態 系モデルから再現計算された結果とダウンスケールされたデータ及びそのデータのバイア ス補正後のデータを用いた計算を行い、バイアスが湖沼モデルの計算結果に与える誤差及 び不確実性の検討を行う.

第3章では、疑似温暖化実験から得られた将来の気象データとそれを用いて予測された 流出データを用いて第2章で検討したバイアス補正を行う.また、将来における水質予測 のために2002~2010年の9年連続の再現計算を行い植物プランクトンに関したパラメータ を決定する. 補正された気象データと流出データを用いて対象地域(浦山ダム)における将 来水質予測を行い、ダム湖内と下流河川の水質変化を評価する.

第4章では,将来における浦山ダムに設置・運用されている選択取水設備の運用方法に 伴う効果を評価する、特に、ダム湖内での水質問題である植物プランクトンの増殖、下流

河川における冷・温水放流、さらに、ダム湖内の土砂堆積と下流河川の濁水放流の問題の 3 点に着目し、選択取水設備の運用方法による水質変化の検討を行い、最適運用方法の提 案を行う.

第5章においては、以上の考察をまとめた上で結論を述べる.

- 第1章 参考文献 —

- [1] http://www.jma.go.jp $(\frac{1}{2} \mid \frac{12013}{10^{18}})$
- [2] IPCC, 2007. Climate change 2007: The Scientific Basis, IPCC Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
- [3] Arora, V. K. and Boer, G. J., 2001. Effects of climate change on the hydrology of major river basins. Journal of Geophysical Research. American Geophysical Union. 106, 3335-3348.
- [4] Mohseni, O. and Stefan, H. G., 2001. Water budgets of two watersheds in different climatic zones under projected climate warming. Climate Change. 49, 77-104.
- [5] Shelton, M. L., 2001. Mesoscale atmospheric $2 \times CO_2$ climate change simulation applied to an Oregon watershed. Journal of the American Water Resources Association. 37, 1041-1052.
- [6] Morrison, J., Quick, M. C. and Foreman, G. G., 2002. Climate change in the fraser river watershed: flow and temperature projections. Journal of Hydrology. 263, 230-244.
- [7] Wade, A. J., Durand, P., Beaujouan, V., Wessel, W. W., Raat, K. J., Whitehead, P. G., Butterfield, D., Rankinen, K. and Lepisto, A., 2002. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrology and Earth System Sciences. 6, 559-582.
- [8] Komatsu, E., Fukushima, T. and Harasawa, H., 2007. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecol. Model. 209, 351-366.
- [9] 国土交通省水資源部総合水資源管理戦略室, 日本の水資源の現状と課題, http://www.spc.jst.go.jp/hottopics/0907water/r0907_kokudo.htm (引用 2013/10/18)
- [10] Barbiero, R. P., James, W. F. and Barko, J. W., 1997. The Effects of a Change in Withdrawal Operations on Phytoplankton and Nutrient Dynamics in Eau Galle Reservoir, Wisconsin (USA). Int. Revue ges. Hydrobiol. 82, 531-543.
- [11] Caliskan, A. and Elci, S., 2009. Effects of selective withdrawal on hydrodynamics of a stratified reservoir. Water Resour. Manage. 23, 1257-1273.
- [12] Gulliver, J. S. and Wilhelms, S. C., 1994. Water quality enhancement technology for river-reservoir systems. ASCE National Conference on Hydroulic Engineering, Buffalo, NY. 1-10.
- [13] Kovacic, D. A., Twait, R. M., Wallace, M. P., Bowling, J. M., 2006. Use of created wetlands to improve water quality in the Midwest-Lake Bloomington case study. Ecological Engineering. 28, 258-270.
- [14] Shammaa, Y. and Zhu, D. Z., 2010. Experimental study on selective withdrawal in a two-layer reservoir using a temperature-control. Hydr. Engrg. 136, 234-246.
- [15] Asaeda, T., Nimal Priyantha, D. G., Saitoh, S. and Gotoh, K, 1996. A new technique for controlling algal blooms in the withdrawal zone of reservoirs using vertical curtains. Ecol. Eng. 7, 95-104.
- [16]Asaeda, T., Pham, H. S., Nimal Priyantha, D. G., Manatunge, J. and Hocking, G. C., 2001. Control of algal blooms in reservoirs with a curtain: a numerical analysis. Ecol. Eng. 16, 395-404.
- [17] Chung, S. W., Lee, H. S. and Jung, Y. R., 2008. The effect of hydrodynamic flow regimes on the algal bloom in a monomictic reservoir. Water Sci. and Tech. WST. 58, 1291-1298.
- [18] Morillo, S., Imberger, J. and Antenucci, J., 2006. Modifying the residence time and dilution capacity of a reservoir by altering internal flow-paths. Int. J. River Basin Manage. 4, 255-271.
- [19] Nimal Priyantha, D. G., Asaeda, T., Saitoh, S. and Gotoh, K., 1997. Modelling effects of curtain method on algal blooming in reservoirs. Ecol. Model. 98, 89-104.
- [20] Vermeyen, T. B., 2000. Application of flexible curtains to control mixing and enable selective withdrawal in reservoirs. U.S. Bureau of Reclamation, D-8560, Denver, CO 80225, 457-462.
- [21] Vermeyen, T. B. and Knoblauch, H., 2000. Hydraulic characteristics of a plunge zone in Whiskeytown reservoir. California, U.S. Bureau of Reclamation, D-8560, Denver, CO 80225, 469-474.
- [22] Australian Capital Territory, 2006. Water Resources Environmental Flow Guidelines.
- [23] Fischer, H. B., List, E. J., Koh, R. C. Y., Imberger, J. and Brooks, N. H., 1979. Mixing in Inland and Coastal Waters, Academic Press, New York, NY.
- [24] Martin, J. L. and McCutcheon, S. C., 1999. Hydrodynamics and Transport for Water Quality Modeling. CRC Press, Inc., 335-387.
- [25] Michael, L. S., Steven, C. W. and Laurin, I. Y., 2004. SELECT Version 1.0 Beta: A One-Dimensional Reservoir Selective Withdrawal Model Spreadsheet, U.S. Army Engineer Research and Development Center, Vicksburg, MS, ERDC/ECSR-04-01.
- [26] Heo, W. M. and Kim, B. C., 2004. The effect of artificial destratification on phytoplankton in a reservoir. Hydrobiologia. 524, 229-239.
- [27] Jungo, E., Visser, P. M., Stroom, J. and Mur, L. R., 2001. Artificial mixing to reduce

growth of the blue-green alga Microcystis in Lake Nieuwe Meer, Amsterdam: an evaluation of 7 years of experience. Water Sci. and Tech. Water Supply. 1, 17-23.

- [28] McQueen, D. J., Lean, D. R. S. and Charlton, M. N., 1986. The effects of hypolimnetic aeration on iron-phosphorus interactions. Water Research. 20, 1129-1135.
- [29] 角哲也, 村崎充弘, 藤永清和, 名倉裕, 玉置晴朗, 2004. ブラッシング排砂時におけ る貯水池堆砂の侵食・堆積過程計測に関する研究, 水工学論文集, 第48 巻, 1375-1380.
- $[30]$ http://www.cbr.mlit.go.jp/mibuso $(\frac{1}{7})$ $\frac{1}{7}$ 2013/10/18)
- $[31]$ http://www.water.go.jp/kanto/arakawa/urayama $(\frac{1}{2})$ #2013/10/18)
- [32] Kida, H., Koide, T., Sasaki, H. and CHIBA, M., 1991. A new approach for coupling a limited area model to a GCM for regional climate simulations. Journal of the Meteorological Society of Japan, 69, 723-728.
- [33] Cocke, S. and LaRow, T. E., 2000. Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Monthly weather review, 128, 689-708.
- [34] von Storch, H., Langenberg, H. and Feser, F., 2000. A spectral nudging technique for dynamical downscaling purposes. Monthly weather review, 128, 3664-3673.
- [35] 原 政之, 日下博幸, 木村富士男, 若月泰孝, 2010. 気候変動が首都圏の都市気候に及 ぼす影響ー冬季を対.象としてー,ながれ, 29, 353-361.
- [36] 飯塚悟, 金原和矢, 日下博幸, 原政之, 秋本祐子, 2010. 夏季の名古屋の温熱環境を 対象とした現状再現の精度検証と疑似温暖化手法を併用した将来予測の試み - 領域気 象モデル WRF による名古屋都市圏の温熱環境シミュレーション(その1), 日本建築学 会環境系論文集, 75, 87-93.
- [37] Adachi, S. A., Kimura, F., Kusaka, H., Inoue, T. and Ueda, H., 2012. Comparison of the impact of global climate changes and urbanization on summertime future climate in the Tokyo Metropolitan Area. Journal of Applied Meteorology and Climatology, 51, 1441-1454.
- [38] Hay, L. E., Clark, M. P., Wilby, R. L., Gutowski Jr, W. J., Leavesley, G. H., Pan, Z., Arritt, R. W. and Takle, E. S., 2002. Use of regional climate model output for hydrologic simulations. Journal of Hydrometeorology, 3, 571-590.
- [39] Ueyama, H., Adachi, S. and Kimura, F., 2010. Compilation method for 1 km grid data of monthly mean air temperature for quantitative assessments of climate change impacts. Theoretical and applied climatology, 101, 421-431.
- [40] Iizumi, T., Hayashi, Y. and Kimura, F., 2007. Influence on rice production in Japan from cool and hot summers after global warming. Journal of Agricultural Meteorology, 63, 11-23.
- [41] Tanaka, K., Kojiri, T. and Fujihara, Y., 2006. Bias correction of the meteorological

variables from RCM for hydrological application. The Advance Report of ICCAP, 43-46.

- $[42]$ Wood, A. W., Maurer, E. P., Kumar, A. and Lettenmaier, D. P., 2002. Long \cdot range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research: Atmospheres, 107, ACL-6.
- [43] Harrold, T.I., Chiew, F. H. S. and Siriwardena, L., 2005. A method for estimating climate change impacts on mean and extreme rainfall and runoff. In MODSIM 2005 International Congress on Modelling and Simulation, Zerger A, Argent RM (eds), Modelling and Simulation Society of Australia and New Zealand: Melbourne, 497-504.
- [44] Ines, A. V. and Hansen, J. W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and forest meteorology, 138, 44-53.
- [45] Baigorria, G. A., Jones, J. W., Shin, D. W., Mishra, A. and O'Brien, J. J., 2007. Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Climate Research, 34, 211-217.
- [46] 中津川誠, 2010. 気候変動が積雪地域の利水へ与える影響に関する研究, 河川環境管 理財団, 1-24.
- [47] Gleick, P. H., 1986. Methods for evaluating the regional hydrologic impacts of global climatic changes. Journal of Hydrology. 88, 97-116.
- [48] Bouraoui, F., Galibiati, L. and Bidoglio, G., 2002. Climate change impacts on nutrients loads in the Yorkshire ouse catchment(UK). Hydrology and Earth System Sciences, 6, 197-209.
- [49] Bouraoui, F., Grizzetti, B., Granlund, K., Rekolainen, S. and Bidoglio, G., 2004. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climate Change, 66, 109-126.
- [50] Sefton, C. E. M. and Boorman, D. B., 1997. A Regional Investigation of Climate Change Impacts on UK Stream flows. Journal of Hydrology, 195, 26-44.
- [51] Merritt, W. S., Alila, Y., Barton, M., Taylor, B., Cohen, S. and Neilsen. D., 2006. Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. Journal of Hydrology, 326, 79-108.
- [52] Zhang, X., Srinivasan ,R. and Hao, F., 2007. Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model. ASABE, 50, 901-910.
- [53] De Stadio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. and Magnuson, J. J., 1996. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr., 41, 1136-1149.
- [54] Taner, M. Ü., Carleton, J. N. and Wellman, M., 2011. Integrated model projections

of climate change impacts on a North American lake. Ecological Modelling, 222, 3380-3393.

- [55] 浜口俊雄, 小尻利治, 森英祐, 2008. ダム貯水池モデルを組み込んだ流域環境評価モ デリング, 京都大学防災研究所年報, 第 51 号 B, 737-747.
- [56] Lee, H. S., Chung, S. W., Choi, J. K. and Min, B. H., 2010. Feasibility of curtain weir installation for water quality management in Daecheong Reservoir. Desalination and Water Treatment, 19, 164-172.
- [57] 矢島啓, 吉川栄, 石黒潤, 2006. 選択取水方式がダム貯水池の長期・短期の水質保全 に与える影響に関する研究,水工学論文集,第50巻,1375-1380.
- [58] Ryu, I. G., Chung, S. W. and Yoon, S. W., 2011. Modelling a turbidity current in Soyang reservoir (Korea) and its control using a selective withdrawal facility. Water Sci. & Tech., 1864-1872.
- [59] Kortmann, R. W., Knoecklein, G. W. and Bonnell, C. H., 1994. Aeration of Stratified Lakes: Theory and Practice. Lake and Reservoir Management, 8, 99-120.
- [60] Cooke, G. D., Welch, E. B., Peterson, S. A. and Newroth, P. R., 1993. Artificial circulation. "Restoration and management of lakes and reservoirs". 2nd. LEWIS, 419-449.
- [61] Steinberg, C., 1983. Effects of artificial destratification on the phytoplankton populations in a small lake. Journal of Plankton Research. 5, 855-864.
- [62] Sumi, T., Okano, M. and Takata, Y., 2004. Reservoir sedimentation management with bypass tunnels in Japan. Proceeding of the Ninth International Symposium on River Sedimentation, 1036-1043.

第2章 力学的ダウンスケーリングによるバイア スがダム貯水池の水質予測に与える影響

2.1 概説

全球気候モデル(General Circulation Model:GCM)を用いた将来予測計算結果を用いて、 気候変動が流域水資源の量的変化に及ぼす影響を評価した多くの研究がある[1][2]. 通常 GCM モデルの出力値は時間·空間解像度が粗いため、力学的あるいは統計学的に解像度 の高いデータ<インスケールされたデータが用いられている。 しかし、ダウンスケー ルされたデータには、系統的誤差というバイアスが含まれているため、その結果を用いて 計算を行うすべての予測結果に不確実性を生じる原因になる。それで、このような誤差を どのように最小化するかによって将来予測結果の信頼性が決定されるといっても過言では ない.このような誤差を最小化するために複数の補正手法が適用される[3][4][5]. この補 正手法の中で最もよく用いられている手法が、頻度分布マッピング(Quantile mapping)[6][7]である. Leung[8]らは米国コロンビア川流域における気候予測結果を補正 するためこの手法を適用した.また,補正されたデータにも誤差は残っていると考えられ るが、それらの値をもとに流出計算などを行う場合には、そこで使用するモデルの精度に 起因する予測結果の不確実性がさらに生じる可能性がある[9][10].

以上のことから、本章では現在気候に対するダウンスケールされたデータを用いて頻度 分布マッピングを含む複数のバイアス補正を行い、それらを実測データと比較することに より補正手法の検討を行う. さらに、浦山ダムは上流部からダム放流口まで約4 km の細 長い地形であり、洪水期に流入する濁水は流入部の付近で同じ水温層を追って貫入する現 象も見られる. また、主な流入河川が2つ(浦山川,大久保谷川)あるため、鉛直1次元モ デルでは流入部からの濁水の挙動や複数の流入河川の考慮が困難であると考えられる.こ のことにより、本研究では最新3次元湖沼生熊系モデル(ELCOM-CAEDYM)を用いて再現 計算した結果とダウンスケールされたデータ及びそのデータのバイアス補正後のデータを 用いた計算を行い、バイアスが湖沼モデルの計算結果に与える誤差及び不確実性の検討を 行う.

2.2 バイアス補正方法と検討

2.2.1 WRF を用いたカ学的ダウンスケーリング

本研究は米国大気研究所を中心として開発されている非静力領域気象モデル WRF(Weather Research Forecasting System)を用いて気候情報の力学的ダウンスケーリ ングを行った結果を用いた. WRF の初期値及び境界条件には気象庁と電力中央研究所のプ ロジェクトによる気象庁長期再解析データ(JRA25:Japanese 25-year ReAnalysis)[11]が 用いられている. また、WRFの実行に必要な海永分布、海陸分布、標高、土壌タイプ、植 生タイプ等の陸面情報に関しては米国環境予測センターによる NCEP FNL が用いられて いる. 下部境界条件として必要な海面水温には NOAA Optimum Interpolation 1/4 Degree Daily Sea Surface Temperature Analysis が用いられている. 本研究で用いられたデータ は解像度の異なる3つの領域をネスティングすることにより、ダウンスケーリングが行わ れている. モデルの水平格子間隔は粗い方から 90 km, 30 km, 6 km となる. 各領域がカ バーする範囲を図2.1に示した.積分間隔は空間解像度の粗い領域から.それぞれ360秒. 120秒, 24秒である. また, ダウンスケーリングは各月毎に行い, スピンアップ期間とし て各月に先立つ10日間が与えられている.

2.2.2 バイアス補正(Bias correction)

浦山ダムにおける年総降水量として平水年である 2000 年を対象とし、WRF を用いて水 平格子間隔 6 km で力学的ダウンスケーリングされた結果から、図 2.2 に示したように, 浦山ダム(北緯 35°57'14", 東経 139°3'2")に一番近いグリッド(北緯 35°57'13", 東経 139°3'47", モデル標高 551 m)の値(以下, 「計算値」と呼ぶ)を, 浦山ダムにおける観測値(雲 量については熊谷(ダムからの39kmの地点)と前橋(ダムからの50km 地点)の平均値)を用 いてバイアス補正された値を「補正値」と呼ぶ). なお、バイアス 補正方法については、以下の3つを検討する.

(1) 線形回帰式による補正法(Linear regressions)

観測値と計算値の線形回帰式により得られた頂きおよび切片の係数 a, b を用いて, 次式 により補正する.

$$
x'_{di} = a \times x_{di} + b \cdot (2.1)
$$

ここで x_{di}^{\prime} は補正された計算値, x_{di} はi番目の計算値である.

(2) 平均値による補正法 (Relative ratios)

観測値と計算値の平均値の比を、すべての計算値に掛け合わせることにより補正する方 法である.

$$
x'_{di} = x_{di} \times \frac{\mu_{obs}}{\mu_{dn}} \cdot (2.2)
$$

ここでμobsは観測値の平均値, μdnは計算値の平均値である.

(3) 頻度分布マッピング補正法 (Quantile mapping)

観測値と計算値それぞれの累積分布関数(CDF)を作成し、次式により計算値に対してマ ッピングを行い補正する方法である(図2.3).補正は計算期間すべての毎時データを用いて 処理する.

$$
x'_{di} = F_{obs}^{-1}(F_d(x_{di})) \cdot (2.3)
$$

ここで F_{obs}^{-1} は観測値の累積分布逆関数, F_{d} は計算値の累積分布関数である.

頻度分布マッピングで使われた累積分布関数については 1)正規分布, 2)ガンマ分布, 3) ベータ分布を採用してそれぞれの関数を求めた.

(a) 正規分布による累積分布関数[12]

$$
f(x) = \frac{1}{\sigma\sqrt{2\pi}} exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right], \quad -\infty < x < \infty \cdot \cdot \cdot \cdot (2.4)
$$

ここでμは平均値, σは標準偏差である. また, 計算範囲は-∞ < x < ∞である.

(b) ガンマ分布による累積分布関数[13]

$$
f(x) = \frac{(x/\beta)^{\alpha - 1} \exp(-x/\beta)}{\beta \Gamma(\alpha)}, \qquad x, \alpha, \beta > 0 \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.5)
$$

$$
\alpha = \frac{\mu^2}{\sigma^2}, \qquad \beta = \frac{\sigma^2}{\mu} \cdot (2.6)
$$

ここでαはshape パラメータ, βはscale パラメータ, Γ(α)はガンマファンクションであ る。ただし、ガンマ分布関数については年平均値と標準偏差を用いた方法と季節毎(春:3~5 月, 夏:6~8月, 秋:9~11月, 冬:12~2月)に分けて平均値と標準偏差を求める2つの方法 を考慮してマッピングを行った.

(c) ベータ分布による累積分布関数[14][15]

$$
f(x) = \left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] x^{\alpha-1} (1-x)^{\beta-1}, \quad 0 \le x \le 1, \quad \alpha, \beta > 0 \cdot \cdot \cdot (2.7)
$$

$$
\alpha = \mu \left[\frac{\mu(1-\mu)}{\sigma^2} - 1 \right], \quad \beta = (1-\mu) \left[\frac{\mu(1-\mu)}{\sigma^2} - 1 \right] \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.8)
$$

 \leq \le

(d) 経験的累積分布関数[16][17]

݂ሺݔሻ ൌ ^ଵ ^σ ͳሼஸ௫^ሽ (2.9)࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ୀଵ

ここでn はデータ数である.

この方法は実測値と計算値をそれぞれ小さい順に並べ、並べ替えた実測値を計算値に入 れ換え元の計算値の順番に戻し、計算値の補正を行う.

図2.3 頻度分布マッピング補正法の概念図

2.2.3 バイアス補正に依らない気象データの補正

貯水池水質予測計算に用いる気象データは、気温、湿度、風速、風向、雲暈、日射量、 気圧の7項目である。これらの項目のうち、風向は山間部に位置するダム周辺の地形を反 映した特性があるため、バイアスによる補正が困難であることが予想される。そこで毎時 の観測風向とダウンスケーリングから得られた計算風向を16 方位で分類し、計算風向毎に 観測値の最頻値の風向である 22.5°あるいは 180°を、78.75° く計算風向く303.75°の範囲は 180°, それ以外の計算風向においては 22.5°と選択的に補正する統計的な補正を行うこと とした(図2.4).

図2.4 ダム地点における観測・計算風向の出現頻度

2.2.4 バイアス補正結果の検討

2.2.2 に述べたように複数の補正補法によるバイアス補正を行ってその結果を実測デー タと比較した. 実測データ及び補正に使われたデータは 2000 年のデータであり, ELCOM-CAEDYM モデルの入力データで用いる気温, 湿度, 風速, 日射量, 雲量, 気圧(風 向は 2.2.3 に述べた方法)を用いて求めた.

(1) 項目毎の補正精度

比較項目について実測データと補正方法毎による補正値とのR2を比較すると、気温、気 圧、日射量、雲暈、湿度、風速の順に精度が高いことが分かる(表2.1). この順番で、気温 から雲量までは R^2 が 0.5 を超えており、相関があると判断されるが、風速と風向は R^2 が 0.1 以下となり、ほとんど相関がない。従って、ダム貯水池における風向・風速のように局地 性が強い項目については、6km格子程度のダウンスケーリングでは補正を行っても十分に 表現することができない. 特に風向のR2が最低であり, 2.2.3 に示した統計的な補正の方 が、信頼性が高いことが明らかである.

(2) 補正方法毎の補正精度

補正方法毎による精度を検討した. R²で判断すると季節によるCDF特性を考慮した方法 5(Quantile mapping, 季節平均値)の精度が高いことが多いことが分かる(表 2.1). 一番R² が高く、水質予測に大きな影響を及ぼす気温に対するAMEとRMSEをみると、方法5の値 が一番小さく精度が高い. 次にR²が高かった気圧をみると, AMEとRMSEでは方法 1(Linear regressions)が最も良い結果であるが、2000年の平均気圧が 965.8 hPaであるこ とを考慮すると、方法2~5においても大きな違いはない。また、気圧とほぼ同じR2であっ た日射量をみると、方法5あるいは方法 1(Linear regressions)の誤差が小さい. その他の 項目についても、方法1あるいは方法5の精度が高い結果となった. しかし、方法1を将 来予測時に適応する場合、線形補正は、過大評価や過小評価される可能性があるため、方 法5 が一番安定した補正結果になると考えられる。さらに、湿度と雲量についてベータ分 布も行ったが、直接比較した方法1とガンマ分布を用い、季節変化を考量してマッピング した方法5 より低い精度が得た. 風向についてはすべての補正より統計的補正を行った場 合にR²(0.42)が高く、AME(27.58°)とRMSE(74.57°)が小さくなる結果が得た. 風速につ いては、いずれの方法でも精度は低いため、今後はさらに詳細なダウンスケーリングを行 うなどの検討が必要であると考えられる。

		気温	湿度	風速	風向	日射量	気圧	雲量
		(C)	$(0-1)$	(m/s)	(\circ)	(W/m ²)	(hPa)	$(0-1)$
\mathbf{R}^2	方法 0*	0.865	0.380	0.088	0.002	0.600	0.610	0.502
	方法 1*							
	方法 2*							
	方法 3*							
	方法 4*		0.382	0.085	0.001	0.592		
	方法 5*	0.879	0.454	0.083	0.003	0.610	0.599	0.486
	方法 6*		0.399					0.484
	方法 7*	0.865	0.401	0.084	0.000	0.565	0.596	0.475
AME	方法0	2.613	0.160	2.103	111.54	105.06	13.20	0.197
	方法1	2.441	0.141	1.409	80.14	82.67	2.924	0.210
	方法2	2.449	0.156	1.946	82.08	77.32	3.222	0.202
	方法3	2.487	0.151	1.807	96.53	91.33	3.061	0.218
	方法 4	2.487	0.151	1.822	92.48	78.12	3.061	0.218
	方法 5	2.328	0.139	1.843	92.41	75.39	3.102	0.218
	方法6		0.141					0.190
	方法7	2.429	0.141	1.791	19.31	79.38	3.029	0.189
RMSE	方法0	3.479	0.205	2.919	140.47	200.52	13.85	0.282
	方法1	3.205	0.175	1.983	90.82	141.31	4.000	0.281
	方法 2	3.218	0.201	2.657	106.97	142.35	4.434	0.282
	方法3	3.262	0.195	2.464	125.51	150.03	4.235	0.304
	方法 4	3.262	0.195	2.460	120.94	148.23	4.235	0.304
	方法 5	3.089	0.180	2.473	119.50	144.02	4.302	0.310
	方法6		0.189					0.313
	方法 7	3.263	0.190	2.476	59.59	157.46	4.321	0.314

表 2.1 それぞれのバイアス補正法による実測値との統計値

方法0:直接比較(補正なし), 方法1*:線形補正, 方法2*:平均値による補正, 方法3*:正規分 布による補正. 方法 4*:年平均値を考慮したガンマ分布による補正, 5*:季節毎の平均値を考慮 したガンマ分布による補正、方法6*:ベータ分布による補正、方法7*:経験的分布による補正

2.3 バイアスが水質予測計算に与える影響の検討

2.3.1 対象地域の概要

本研究では荒川水系に位置してある浦山ダム(図2.5)を対象としてモデルを構築、再現計算 を行った、浦山ダムは埼玉県の秩父盆地南方の山中に建設された重力式コンクリートダムで、 1999年2月に完工し、同年4月から運用が開始された. 浦山ダムの機能としては1) 洪水調 節. 2) 既得取水の安定・河川環境の保全. 3) 水道用水の供給及び4) 発電である. 洪水調節 についてはダム地点の計画高水流量(および100年に1回起りうる洪水の規模)1.000 m³/sのう ち、890 m³/sをダムで貯め、ダム下流への放流量を110 m³/sに減らすことにより下流域の洪 水被害の軽減を目的とする。既得取水の安定·河川環境の保全としての役割は河川の流量が 豊富な時にダムに貯留し、逆に不足する時にダムから放流することにより荒川本流(沿川)の既 得取水(灌漑用水)が安定されるように、また、魚類など河川環境の保全等のための必要流量の 確保である. 水道用水については秩父市に 20,000 m³/日, 埼玉県には 230,000 m³/日, 東京 都は 100,000 m3/日として日最大 350,000 m3の水道用水を供給している. また, ダムから最 大 4.1 m3/sの放流水を利用して最大 5,000 kWの発電が行われている. 浦山ダムは集水面積 51.6 km², 渇水面積 1.2 km²の持つ総貯水容量 5,800 万m³であり、平常時最高貯水位はEL. 393.3 m, 洪水貯留準備水位はEL. 372.0 m, 最低水位はEL. 304.0 mである(図 2.6).

浦山ダムに流入する主要河川は浦山川と大久保谷川があり、ダム内の主要水質調査地点に は流入部(浦山川や大久保谷川), 基準点, 補助地点(寄国土, 副ダム)及びダム放流地点(2007 年から)がある(図2.5). 主要施設としては取水する深さを自由に選び、ダム下流へ放流でき る選択取水設備があるため、下流河川で利用する目的によって水温や水質(特に濁水)の選択放 流や調節放流ができる。また、2006年には国土交通省の水環境改善事業により清水バイパス が完成された. 清水バイパスは平常時に上流部の清水をダム下流へ直接放流できる直径1m, 長さ6kmの自然流下式のトンネルとして最大通水量は0.7 m³/sである. 2007年4月から運 用されて同年9月に上陸した台風9号によるダムの水が濁度50度以上の濁った状況になった が、清水バイパスを運用して下流に濁度10度以下の水の放流をすることが清水バイパスがな かった時より濁度10 度を超える放流日数が減少する効果が得られた。

図2.5 浦山ダムの地図と水質調査地点

図 2.6 浦山ダムの貯水容量配分図

2.3.2 3次元湖沼生態系モデルの概要

3 次元水理流体モデル ELCOM(Estuary, Lake and Coastal Ocean Model)は西オーストラ リアの CWR(Centre for Water Research)で開発されたモデルとして湖沼、貯水池、河口、海 洋における時·空間的な流動、水温や塩分濃度の変化を予測できるモデルである. ELCOM モデルは湖沼生態系モデル CAEDYM(Computational Aquatic Ecosystem Dynamic Model) とリンクされて湖沼とダム貯水池の水質や生態系の予測のための 3 次元解析を行うことがで きる. CAEDYM モデルは多様な水理モデルとリンクさせるように開発され、DYRESM(1 次 元), DYRIM(2 次元)などの水理モデルと連携され生物学的、地球化学的過程の予測を行うこ とができる.

(1) ELCOM モデルの概要[18]

ELCOM モデルは水面を通じた熱交換は先行研究文献[19][20][21]で提示する標準方法を 採用している。大気と水面のエネルギー伝達は、透過されない長波放射エネルギー、顕熱輸 送、潜熱輸送、そして透過性短波放射エネルギーに分けて計算される. 非透過性放射エネルギ 一は水面混合層でのエネルギーとして使用されて、透過性エネルギーは Beer's 法則によって 水深に従って指数関数的に減衰して水体にエネルギーで提供する(図2.7).

ELCOMはモデルの計算時間のステップ毎に以下の方法を用いて計算を行う.

- 1) 水面の熱収支の計算
- 2) 混合層モデル手法を用いてスカラー(水温、塩分など)値と運動量の鉛直混合の計算
- 3) 混合層で風エネルギーの計算
- 4) 自由水面変化と速度場の計算
- 5) スカラー値の水平移流の計算

ELCOM モデルの基本的な数値解析手法は Casulli and Cheng[22]が開発した TRIM(Tidal, Residual, Inter-tidal Mudflat)モデルの方法を採用しているが、数値解析の正確度の補完, スカラーの質量保存、数値拡散の除去、そして鉛直乱流混合モデルが追加されている。数値 解析のためのグリッドは直交座標を採用した Arakawa C-grid を使用して速度場はセルの表 面、自由水面の高さとスカラー濃度値はセルの中央で定義される(図2.8). 各水柱でのグリッ ドの自由水面高さは自由水面方程式によって計算された結果に従い移動する.

(2) ELCOM モデルの支配方程式

ELCOM の支配方程式には運動量方程式、連続方程式、自由水面方程式、物質移流拡 散方程式が含まれている. 運動量方程式は Reynolds-averaged Navier-Stokes(RANS)方程 式を使用して、基本的に流体の特性に関しては Boussunesq 仮定、鉛直方向は静水圧を仮 定する. しかしながら、水面傾斜に従う動水圧作用や内部波の影響などの非静水圧が重要 な場合には non-hydrostatic code オプションを使用して鉛直方向の運動量方程式を使用す

ることができる. ELCOM で水平方向流速の瞬間変動成分による乱流クロージャは水平過 粘性係数を使用して鉛直方向に関しては拡散モデルの鉛直過粘性係数、また混合層モデル を使用ことができる. 以下に用いられている支配方程式を示す.

図 2.7 ELCOM モデルで考慮する物理的プロセスの概要図

図 2.8 ELCOM モデルの計算座標、メッシュ、変数の定義

[運動量方程式]

x ·方向方程式

డ௨ ݑ డ௧ డ௨ ݒ డ௫ డ௨ ݓ డ௬ డ௨ డ௭ ൌ െ݃ ቄడఎ డ௫ ^ଵ డ డ௫ ^ߩ^ᇱ ^ఎ ఘబ ^௭ ݀ݖቅ ^డ డ௫ ቄݒ௫ డ௨ డ௫^ቅ ^డ డ௬ ቄݒ௬ డ௨ డ௬^ቅ ^డ డ௭ ቄݒ௭ డ௨ (2.10)࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ ݒ݂ డ௭^ቅ

y·方向方程式

డ௩ ݑ డ௧ డ௩ ݒ డ௫ డ௩ ݓ డ௬ డ௩ డ௭ ൌ െ݃ ቄడఎ డ௬ ^ଵ ఘబ డ డ௬ ^ߩ^ᇱ ^ఎ ^௭ ݀ݖቅ ^డ డ௫ ቄݒ௫ డ௩ డ௫^ቅ ^డ డ௬ ቄݒ௬ డ௩ డ௬^ቅ ^డ డ௭ ቄݒ௭ డ௩ డ௭ቅ െ ݂࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ݑ)2.11 (

[連続方程式]

డ௨ డ௫ డ௩ డ௬ డ௪ డ௭ ൌ Ͳ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭)2.12 (

[圧力方程式]

డ డ௭ ൌ െߩ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭݃)2.13 (

[自由水面方程式]

డఎ డ௧ ^డ ఎ ݖ݀ ݑ ቂ డ௫ బ ቃ ^డ ఎ ݖ݀ ݒ ቂ డ௬ బ ቃ ൌ Ͳ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭)2.14 (

[物質移流拡散方程式]

డ ݑ డ௧ డ ݒ డ௫ డ ݓ డ௬ డ డ௭ ൌ ^డ డ௫ ቄ݇௫ డ డ௫^ቅ ^డ డ௬ ቄ݇௬ డ డ௬^ቅ ^డ డ௭ ቄ݇௭ డ (2.15)࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ܵ డ௭^ቅ

ここで, u,v,w : x, y, z 方向の流速, f : コリオリ係数, η : 水面変動量, h : 基準面からの水 深, ρ_0 :基準密度, ρ' :基準密度からの偏差, v_x , v_y , v_z :運動量に対する x, y, z 方向の過動 粘性係数, k_x , k_y , k_z : スカラー量に対する x, y, z 方向の過動粘性係数, S_c : ソース・シング 項である.

数値解析のための支配方程式は有限差分直交座標で差分化する. 流速成分は各計算セル の面でスカラー成分はセルの中央で計算される。運動量方程式は TRIM モデルで使用した 準陰解法を使用して 2 次方程式 Euler-Lagrange 補間法を適用して解を求める.

Euler-Lagrange 補間法のための 2 次方程式の適用は内部波の人為的な緩和を減らすこと によって成層化したダム貯水池での波の運動をより再現することができる。自由水面方程 式は準陰解法を用いて差分化して TRIM モデルで使用した共役勾配法で解を求める[22].

移流拡散方程式における水平方向の移流項は、ULTIMATE[23]法とともに3次精度を持 つ QUICKEST 法[24]を使用することで濃度変化が急激な領域で解を安定的に求めること ができる. 水平拡散項は2次程度の陽解法を用いて差分化して鉛直方向の乱流移流はそれ ぞれの水柱に対する1次元混合層モデルを適用した解析を行う. それ以外の水位による圧 力と密度差による圧力項、地球自転によるコリオリ力項、風による応力、大気ー水面間の 温度差による対流項、そして流入水と流出水の影響などに対した計算が含まれている.

(3) CAEDYM モデルの概要[25]

CAEDYM モデルは多様な水理モデルと容易にリンクされることができるように設計さ れた湖沼生態系モデルである. 例えば、DYRESM は湖沼とダム貯水池で鉛直密度成層を 予測するができる Lagrangian 構造の 1 次元モデル, ELCOM は湖沼, ダム貯水池, 河口 及び海洋に適用することができる3次元水理モデルとして CAEDYM とリンクさせること ができる. CAEDYM モデルと水理モデルの連動解析は特に水体の水温構造や密度が水の 濁度や水質濃度(例えば、浮遊物質や塩分度)に依存する場合に水理ー水質間の相互作用を 反映することができる.

CAEDYM モデルの主な目標の 1 つは,特定なシステムに適用する時に多様な物質要素 の循環と最低1つの藻類グループを含む生熊系の構成をたやすくすることであった. した がって、このモデルは C, N, P, Si の多様な循環過程, 溶存酸素(DO)循環, 複数グルー プの無機浮遊物質(Suspended Solids), そして植物プランクトンの変化が含まれている. また、CAEDYM モデルは藻類の日周期光合成と夜間呼吸などの過程を解析するため水質 モデルの計算時間閘隔の整数倍のタイムステップを使用することができるが、一般的に水 理モデルと同じ計算間隔でモデルの計算が行われている. CAEDYM で計算できる主要な 生物地球化学的な状態変数などは図 2.9のとおりになる。計算に含まれる変数は計算構成 条件の情報を提供する入力ファイルで定義する。計算に必要なパラメータは別途のファイ ルで定義して、必要時にそれらを変えてキャリブレーションできる.

CAEDYM モデルから計算できる項目としては無機浮遊物質(SS;最大6グループ). 植物 プランクトン(最大7 グループ), 動物プランクトン(最大5 グループ), 魚類(最大3 グルー プ), バクテリアなどを含めて C, N, P, DO, そして Si の循環の計算ができる(図 2.9). 水理 モデルから水面の熱力学及び交換の計算で用いられた短波放射エネルギーが CAEDYM に 提供される. 短波放射エネルギー(280~2800nm)は植物プランクトンの 1 次生産に使用で きる光合成に有用なエネルギーPAR(Photosynthetically Active Radiation, 400~700nm) に分かれる. これは流入短波エネルギーの 45%程度と仮定する. PAR は Beer-Lambert Law によって水体内に減衰して透過する仮定であり、光の減衰係数は藻類の濃度、無機及

図2.9 CAEDYM モデルで考慮する水体と堆積層の状態変数の概要図

び粒子態物質,そして溶存有機炭素濃度のレベルに従って動的に計算される.CAEDYM version3.2 では粒子大きさの特性に伴って最大 6 グループまで無機浮遊粒子(SS)を計算で き、各粒子グループは直径、密度、そして沈降や再浮上と関連されたパラメータを指定で きる. 水中の溶存リンとアンモニウムイオンが無機粒子の表面に吸着された形態(PIN, PIP)と脱着される過程の計算もでき、沈降速度は Stokes 式によって計算される.

CAEDYM モデルは C, N, P, Si は全ての計算項目の物質収支を水体と単一堆積層に維持 する. CAEDYM モデルの主要開発目的は堆積層の質量保存を維持するために十分な複雑 度を維持しながら、水体での主要物質のエネルギー源とフラックスをより完全に計算する ことである.無機や有機栄養塩類の堆積層のフラックスは環境要素(例えば,水温,pH,DO) を含む経験式に基礎しており,入力パラメータを確保するために実験室分析と現場実験が 必要である. 本研究では Chl.a 関係以外のパラメータはマニュアルのデフォルトを用い, Chl.a のパラメータについては文献[26][27]を参考し試行錯誤法(trial and error method) によりパラメータを同定した. 堆積層と水体の境界面で SS と POM(Particle Organic Matter, 粒子態有機物質)の再浮上を計算するために限界せん断応力と再浮上率含む複数 パラメータが必要である. 堆積層の成分は CAEDYM の初期条件ファイルから定義されて, 粒子態有機物質(POC, PON, POP), そしてそれぞれの無機浮遊粒子グループが包含される. 堆積層の有機物成分比として使用された初期 C:N:P 比は計算期間の全体に再浮上された粒 子の成分を計算するために使用する. CAEDYM モデルの溶存酸素の計算は大気との交換, 堆積層の酸素要求量(Sediment Oxygen Demand, SOD), 呼気性微生物による有機物の分 解と硝酸化、光合成による溶存酸素生産と呼吸による消費によって計算される. 大気交換 は Wanninkhof[28]モデルと Riley and Skirrow[29]のフラックス方程式に基礎しており, 現在 CAEDYM モデルは簡単な静的 0 次 SOD モデルを使用して、水体の水温と DO 濃度

によって変わる.

CAEDYM モデルは最大7 グループの植物プランクトンの計算ができ、藻類の生体量は Chl.a(µg Chl.a/L), また、炭素(mgC/L)で計算することができる. それぞれの植物プラン クトングループの成長速度は20℃に最大可能成長率の水温関数や光、窒素、リン及び珪素 (珪藻類の場合)による制限要因中に最小値を掛けて決定される. また、植物プランクトン の生体量は動物プランクトン、魚類及び貝類の摂取によって減少する. ここで、水質予測 に重要な藻類の成長率の計算式を示す.

$\mu_{ga} = \mu_{maxa} \min[f(I)_{a}, f(N)_{a}, f(P)_{a}, f(Si)_{a}, f(C)_{a}] f_{a}^{T1}(T) \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.16)$

ここでaは藻類の種類, μ_gは成長率(/day), f(I), f(N), f(P) は光, 窒素, リンのよる制限因子, $f(\mathit{Si})$ は珪藻類を計算する場合, $f(\mathit{C})$ は炭素貯蔵機能を採用する場合, f_{a}^{T1} は水温関数であ る(式 2.17~式 2.20). さらに、Toprで植物プランクトンの成長が最大になり、TMAXになる と植物プランクトンの成長が減少し、 T_{STD} は式 2.17 により計算される.

݂ ்ଵሺܶሻ ൌ ߴ (2.17)࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭ଶ்ି ܶ ൌ ܶௌ் ݂ሺܶሻ ൌ ͳ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭)2.18 (ܶ ൌ ܶை் డሺ்ሻ డ௧ ൌ Ͳ࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭࣭)2.19 (

$$
T = T_{MAX} : f(T) = 0 \cdot (2.20)
$$

藻類グループでは C, N, P の変動を計算する 2 つ方法がある. 1 つは一定の C, N, P : Chl.a の比を使用する方法で、もう 1 つは動的に細胞内の貯蔵を考慮する方法である. 1 つ目の方法は簡単な Michaelis-Menten[30]式が、藻類成長に影響を与える栄養塩の制限程 度を算定することに使用される.死滅と分泌による栄養塩の損失は固定された内部栄養塩 類(IN, IP)と Chl.a 比と藻類減少量の掛け算で計算され、また、粒子態有機物(POM)に転 換される. 一方, 2 つ目の方法は動的に細胞内に貯蔵した栄養塩を使用することができ, Droop[31]モデルを用いた成長速度の算定を行う.この方法は植物プランクトンの種毎に指 定された最小と最大値の範囲内で動的に栄養塩を摂取し、可変的な内部栄養塩類濃度を持 つことを許容する.死滅と分泌による栄養塩の損失は1つ目の方法で計算されるが、内部 栄養塩類濃度は動的に計算された値が使用される.

CAEDYM には植物プランクトンの移動と沈降のための4 種のモデルが含まれている. 一定沈降速度, 計算された細胞の密度に伴って計算される Stokes 沈降, 光の影響を受けな い鉛直移動, そして光の影響を受ける鉛直移動がある. 底に沈降した植物プランクトンの 再浮上が許容される場合、モデルパラメータで指定された期間(通常24時間)に持続的に存 在することが仮定される。また、植物プランクトンが水体に戻らない場合、藻類は該当す る堆積層に栄養塩に分解される.

2.3.3 再現計算モデルの構築

(1) 地形データの構築

ELCOM-CAEDYMモデルによる計算のために必要なデータは地形データ、流入量·放 流量、気象データ、流入水温、流入水質濃度及び選択取水施設やバイパスの運用記録など である. モデルの最初段階として計算で用いるメッシュは水平方向(x, y) 50 m×50 m, 鉛 直方向(z) 1 mで区分して総 24,158 個のセルで構築した. また、構築したメッシュの正確 度を確認するため、実際の水位に伴う貯水容量と比較した.その結果、AME(Absolute Mean Error, 平均絶対誤差)は 0.05×10⁶ m³, RMSE(Root Mean Square Error, 平均二乗誤差) は×10⁶ m³, また, R²(Coefficient of determination, 決定係数)は 0.999 となり, 総貯水量 (58×10⁶ m³)に比べて 2.5%(56.6×10⁶ m³)の小さい誤差であるため、構築した地形資料は モデルの適用に適当な誤差範囲であると考えられる(図2.10).

図 2.10 実測とモデルの水位ー貯水容量の相関図

(2) 入力データの構築

モデルの再現計算のための期間は年総降水量として平水年である 2000 年を対象とし. モデルに入力される流入量・放流量, 流入水温は浦山ダム管理事務所から観測された 1 時 間ごとの実測値を用いた(図2.11). 流入河川は浦山川と大久保谷川の2つの河川で設定し、 それぞれの流入量は2つ河川の流域面積比を用いて浦山川は79.6%,大久保谷川は20.4% が流入するように設定した. また、流入水温は浦山川の流入部で測定され(1時間ごと)、大 久保谷川には測定されていないため、大久保谷川の流入水温も浦山川の流入水温と同じと した。気象データは気温、湿度、風速、風向、日射量、気圧については浦山ダムの屋上で

測定された1時間ごとの実測値を用いたが、雲量については実測値がないため、付近の熊 谷(39 km)と前橋(50 km)の3時間ごとのデータをそれぞれ1時間ごとに線形補間してその 2 か所の平均値を用いた. ダム貯水池の水理ー水質に大きな影響を与える選択取水施設運 用記録については浦山ダム事務所からもらった運用日誌をもとに設定した. 選択取水施設 の取水水深は下流河川の水温調節(冷水、温水)と濁水防止のために運用された.

(3) 流入濃度の設定

流入水質濃度は 2001~2009 年の浦山川の流入部における定期調査の実測値を用いて

図 2.11 2000年における流入量, 放流量, 水位及び取水水深

L-Q方程式を導出し、それを用いて流入水質濃度を求めた、それぞれ項目の精度について は図2.12に示した. 各項目の決定係数はそれぞれ0.455(NH4),0.961(NO3),0.952(TN). 0.896(PO4)及び 0.905(TP)としてNH4とPO4除いて0.9 以上の高い決定係数が得られた(図 2.12). ChlaについてはCAEDYMでは7グループの藻類に対する計算ができるが、本研究 では藍藻類(CYANO), 珪藻類(FDIAT), 緑藻類(CHLOR), 鞭毛藻類(CRYPT)の 4 グルー プについて計算を行った。各藻類に該当する比率は観測された藻類毎のセル数とそれぞれ の単位セル当りの重さ(μg/cell)[32]を利用して求めた. 各重さは0.36×10-6 μg/cell(藍藻類), 1.75×10⁻⁶ ug/cell(珪藻類), 0.95×10⁻⁵ ug/cell(緑藻類)及び 0.33×10⁻⁴ ug/cell(鞭毛藻類) であった. 流入SS濃度については 2001~2009 年間の定期調査と洪水期の実測値を用いて 濁度-SS相関式を導出した(図 2.13). さらに、相関式は流入量規模を50 m³/s以下とその 以上に分け, 2 つの式を流入部で測定している濁度データから換算して適用した. また, 粒径は定期調査と洪水時に測定した粒度分布データを用い、その平均値を求めそれぞれ1, 3, 8, 12, 16 及び 25 µmの 6 グループで設定した(表 2.2).

図 2.13 浦山川の流入部における観測濁度と観測 SS の相関図

33、4.4 初以、55、24当正以为									
粒径区分	代表粒径	配分比率(%)	累積比率(%)						
\sim 3 µm	$1.0 \mu m$	7.9	7.9						
3ν ⁵ μ m	$3.0 \mu m$	7.2	15.1						
$5 \sim 10 \mu m$	$8.0 \mu m$	6.4	21.5						
$10~15~\mu m$	$12.0 \mu m$	8.7	30.2						
$15 - 25 \,\mathrm{\mu m}$	$16.0 \mu m$	27.8	58.0						
$25 \mu m$ ~	$25.0 \mu m$	42.0	100.0						

表 2 2 溘入 SS の粒径区分

2.3.4 再現計算結果の検討

2000年を対象に水位と貯水容量、水温と水質に対する再現計算を行った結果を貯水池 内の基準点(ダム放流地点から約 500 m 上流)と放流地点(ダム放流地点から直下流 90 m 地 点)の実測値を用いて比較を行った. 定期調査時の水温, 溶存酸素(DO), SS, TN, TP, Chl.a 及びセル数から変換された藻類種の濃度について、基準点における表層(水深0.5 m), 中層(水深 40~45 m 付近; 平均 EL. 332.5 m), 底層(水深 80~90 m 付近; 平均 EL. 291.4 m) の3か所で比較を行った. さらに、放流地点についてはダム直下流 90 m 地点での実測値 を用いて再現計算との比較行った.

(1) 水位と貯水容量の計算結果

水位と貯水容量の比較は構築された地形データの精度や水収支の確認の目的がある。計 算された水位は実測水位との比較でAMEは 0.490 m, RMSEは 0.664 mとR²は 0.977, 貯 水容量についてAMEは 0.284×10⁶ m³. RMSEは 0.314×10⁶ m³とR²は 0.974 となり. 構 築された地形データの信頼性が高いことが分かった(図 2.14).

図2.14 実測水位や貯水容量とモデルの計算水位や貯水容量の比較

(2) 基準点での計算結果

(a) 水温の再現計算結果

図2.15に計算期間における水温の鉛直分布結果を示した.実測データとの比較は基準点 に設置され、毎日午前7時及び午後7時に測定されている自動観測データの毎月15日午 前7時のデータを用いて比較を行った. 計算水温は成層の形成と季節に伴う変化をよく計 算して実測水温の鉛直分布をよく再現したと考えられる. また、水温は表層(水深0.5 m), 中層(平均EL. 332.5 m)と底層(平均EL. 291.4 m)でのAMEはそれぞれ 1.131, 0.313 と 0.470 °C, RMSEは 1.336, 0.356 と 0.522 °Cであり, R²は 0.961, 0.968, 0.933 となり, 全層において誤差が小さく精度が高い結果が得られた。さらに、モデルで用いた水温関係 のパラメータを表 2.3に示した.

(b) 溶存酸素(DO)の再現計算結果

基準点の全層における再現計算された溶存酸素のAMEは表層、中層と底層でそれぞれ 0.821, 1.128 \geq 1.563 mg/L, RMSE \uplus 1.064, 1.366 \geq 2.149 mg/L, R² \downarrow 0.460, 0.190 と 0.135 として表層で精度が高く、底層で最も低い精度であった. 特に、10月以後の溶存 酸素低下の再現計算が十分でなかった. この原因はSODによる酸素消費についての関連パ ラメータの キャリブレーション が不十分なため、溶存酸素の消費が実際より小さかったた めである(図 2.16 左).

(c) SS の再現計算結果

SSについては図 2.16 右に示す 1~4 月にかけて前年(1999 年)から残留していた微細粒子 と考えられるSS濃度の再現はできなかった. 再現精度を統計値でみると, 表層でのAME, RMSEとR²はそれぞれ 2.141, 2.501 mg/Lと 0.170, 中層では 2.670, 3.613 mg/Lと 0.005, 底層は 3.808, 4.589 mg/Lと 0.091 であった. 期間中に発生した出水は、小規模の出水が 1回であったが、洪水に伴うSSの沈降はある程度再現ができたと考えられる.

(d) TN, TP と Chl.a の再現計算結果

TNの再現計算結果はどの層においても再現精度が高かった(図 2.17). 表層, 中層と底層 でのR²はそれぞれ 0.335, 0.332 と 0.075 であり 0.5 より低いが, 誤差については 0.021~0.049 mg/L(AME), 0.027~0.067 mg/L(RMSE)の範囲となる結果が得られた. これ に対し、TPの3か所でのR²は 0.006, 0.293 と 0.018 となることが分かった. これは流入 河川のTP(PO4-P)のL-Q式による推定誤差、植物プランクトンやSSに関するモデルパラメ 一タに起因する問題があると考えられる. Chl.aは濃度が高く一番問題となる表層の時系列 変化をよく再現できた(図 2.18). それぞれの層に対するR2は 0.612, 0.076 と 0.018 として 表層の再現精度が一番高いことが分かった.

(e) 4 グループの藻類の再現計算結果

Chl.a 濃度に対して4グループの藻類種を考慮した表層での再現計算結果を図 2.19に示 した. それぞれの濃度は定期調査データのセル数(cell/mL)から単位重さ(ug/cell)を掛けた 割合を用いて比較を行って4グループの計算結果は実測値の時系列変化をよく反映した.

図2.15 実測と計算水温の鉛直分布(左)と表層·中層·底層における比較(右)

図 2.16 表層·中層·底層における実測と計算の溶存酸素(左)とSS(右)の比較

図 2.17 表層·中層·底層における実測と計算のTN(左)とTP(右)の比較

図 2.18 表層·中層·底層における実測と計算の Chl. a 濃度の比較

図2.19 基準点の表層における実測藻類濃度とモデルの計算結果の比較

(3) 放流地点での計算結果

放流地点(放流口の直下流 90 m)の計算結果を実測値と比較した結果を図 2.20 に示した. 比較結果をみると各項目の精度は水温と TN の精度が一番高く、溶存酸素、SS と Chl.a は ある程度高い精度がみられて TP が一番低い精度が得られた. 全体的にすべての再現計算 は値の上昇と下降の変化パターンをよく再現していると考えられる.

図2.20 放流地点における実測値と水温及び水質計算結果の比較

表 2.3 再現計算で用いた水温, 溶存酸素, 栄養塩, Chl.a のパラメータ

* : Time-varying settling velocity estimated by stokes equation with buoyancy control model

2.3.5 影響検討のためのモデルの計算

(1) 入力データの比較

本節ではダウンスケールされたデータに含まれているバイアスがダム貯水池の水質予測 に及ぼす影響を検討するため、実測データを用いた再現計算結果と補正前·後の気象デー タを用いて計算結果との比較を行った. 本節の計算で用いられた実測とダウンスケーリン グデータは 2000 年のデータであり、補正後の計算で用いた気象データは季節の変化を考 盧した頻度分布マッピング(方法5)を採用し、風向の場合は2.2.3 で述べた方法を適用した データを用いた. 実測及び補正前·後の計算で採用したデータの年平均値を表 2.4に示し た. 補正後の気温と気圧は実測値に等しく、湿度、風速及び雲量は若干の差があり、日射 量は約7 W/m²の差があった. 範囲を 0~1 にすることができる湿度と雲量は補正後のデー タが0より小さい及び1より大きい時にそれを0と1にしたため、差が生じたと考えられ る。また、日射量は補正できない実測と補正前データの0数(日射量がない)が違うため、0 が多い実測値(4.614個)より補正後(4.406個)の年平均値が高くなったと考えられた.

また、計算時の流入水温については、再現計算時は実測流入水温を用い、補正前·後の 流入水温は 2006~2011 年(2008 年はデータ欠測が多いため除外)の 5 年間の実測データか ら求めた気温ー流入水温の移動平均(24,48,72時間)回帰式を導出して適用した. 導出さ れた回帰式(式 2.21)の精度はR²:0.915, AME:1.35℃, RMSE:1.71℃として高い相関 が得られた.

$Tw_{inf} = 0.5413 \times Ta_{24h} - 0.4716 \times Ta_{48h}$

 $+0.6267 \times Ta_{72h} + 1.612 \cdot (2.21)$ ここでTwinfは流入水温(°C), Ta_{24h}, Ta_{48h}, Ta_{72h}はそれぞれ気温の 24, 48, 72 時間の移 動平均気温(℃)である.

	気温	湿度	風速	日射量	気圧	雲量
	$({}^{\circ}C)$	$(\%)$	(m/s)	$\rm (W/m^2)$	(hPa)	$(0-1)$
実測値	12.541	75.6	2.664	133.667	965.85	0.364
補正前	13.855	68.0	3.045	207.209	952.72	0.341
補正後	12.541	74.8	2.667	140.987	965.85	0.375

表 2.4 計算で用いた実測値、補正前·後の気象データの年平均値

実測値, 回帰式により算定された計算値と補正値の年平均水温(日平均流入水温の範囲) はそれぞれ 11.30℃ (0.6~25.6℃), 11.25℃ (0.9~20.0℃)及び 10.34℃ (0.1~19.9℃)であっ た。このように気温を用いた算定では平均的な流入水温の推定はできても、夏季日中の水 温上昇を過小評価している。また、季節的な傾向をみると、実測値に比べて計算値と補正 値は冬と秋は低く、夏は高い傾向がある。これらは推定式の特性と考えられた(表 2.5, 図 2.21). さらに、気温データと併せて比較すると、気温の補正値と実測値は等しく、計算値 は実測値よりも高い値を示している。しかし、水温では計算値の方が実測値に近いことが 分かる(表 2.4). これは計算対象とした2000年がダム供用開始の翌年であり、作成した式 2-21 の関係が流域状況の変化等の影響で近年と異なっていた可能性があると考えられた. また、流入水質は3つ(再現計算,補正前·後)の計算ですべてL-Q 方程式から求めた同じ 濃度を用いた.

単位	春	夏	秋	冬
C°	$3 - 5$ 月	$6 - 8$ 月	$9 - 11$ 月	12~2月
実測値	9.94	17.01	13.31	4.90
(気温)	(10.18)	(22.41)	(14.64)	(2.85)
補正前	10.35	17.66	12.28	4.65
(気温)	(12.35)	(23.01)	(15.48)	(4.49)
補正後	8.84	17.24	11.68	3.53
(気温)	(10.18)	(22.41)	(14.64)	(2.85)

表 2.5 日平均流入水温の実測値·補正前·補正後の季節毎の変化

図 2.21 日平均流入水温の実測値·補正前·補正後の比較

(2) 基準点における計算結果の検討

ダウンスケーリングから得られた気象データを補正なしに水質予測計算を行ったケース (計算値)とダウンスケーリングからの値を補正方法 5(季節毎関数を用いた頻度分布マッピ ング)によって補正した値をもとにした水質予測計算ケース(補正値)の2ケースを再現計算 結果のケースと比較し考察する.

(a) 水温の計算結果

浦山ダムの基準点における水温計算結果の鉛直分布を図2.22(左)に示した.計算結果をみ ると、実測値と補正値の水温分布はほぼ同じであったが、計算値はそれらの比較より明らか に高い水温計算結果となった. 6月21日の表層において、計算値は補正値よりも6.3℃高い 水温であった(最大較差). 入力された気象データは、実測値の年平均気温は 12.5℃、計算値 が 13.9℃, 補正値は 12.5℃, また, 年平均日射量はそれぞれ 130.2 W/m² (実測値), 207.2 W/m²(計算値), 141.0 W/m²(補正値)と, 計算値が実測値と補正値より高いことが原因である. さらに、計算で得られた気温を外力の境界条件として与えているため、計算値においては不 自然な熱収支が生じている場合があると考えられる。

(b) 溶存酸素の計算結果

溶存酸素の分布は水温分布ほど大きな違いはみられず、12月15日の分布から分かるよ うに、水温の違いによる飽和濃度の違いが原因として支配的なものである(図2.22右). た だし、6~8 月の分布でこれが明確でないのは、植物プランクトンの光合成の影響を受けて いるからと考えられる.

図 2.22 実測値·計算値·補正値の水温(左)と溶存酸素(右)の鉛直分布計算結果

(c) SS の計算結果

SS の場合は 3 つのケースで鉛直分布毎に大きな違いは見られなかった(図 2.23 左). こ れは計算値での水温分布は他のケースよりも温かいものの、流入水温も同様に高くなるた め、濁水の貫入状況に違いが見られなかったからと考えられる。ただし、将来は流出モデ ルと組み合わせて流入量を変化させるときには雨量・流量の誤差が大きく影響を及ぼすと 推測できる.

(c) TN, TP と Chl.a の計算結果

貯水池内の表層におけるTN·TPの濃度にはケース間の大きな差異は見られなかった(図 2.23 右上, 右中). 計算に用いた河川流入量とTNとTP等の濃度はどのケースにおいても同 じであるため、流入河川の貫入位置の違いによる栄養塩の提供水深の違いや藻類の成長と 死滅による変化が、ケース間のTN·TPの変化に影響を与えていると考えられる。また、 貯水池内基準点の表層におけるChl.aの違いは明らかであった。日平均最大Chl.aで実測値 (再現計算), 計算値と補正値はそれぞれ 49.7 μg/L (8月2日), 60.6 μg/L (7月15日)及び 62.1 ug/L (7月22日)となり、最大濃度とその発生日も異なった(図2.23右下). 特に計算 値においては水温が高くなった影響を受け、Chl.aのピークの時期が早くなるたけでなく, 一度6月19日にピーク(57.1 ug/L)を示した. その後、Chl.aの成長に大事な役割を担って いるPO4-Pの枯渇による濃度の低下を示した後、7月8日に発生した洪水による栄養塩の 補給後に再びピークを迎えており、植物プランクトンの出現パターンも異なっていた. 補 正値についてはピークの時期は実測値より約 11 日早いが、Chl.a濃度の増加と減少するパ ターンは概ね一致する結果が得られた.

図 2.23 実測値·計算値·補正値の SS(左)の鉛直分布と 表層における TN · TP · Ch1. a(右)の計算結果

(3) 放流地点における計算結果の検討

貯水池内とともに用水供給の目的として大事な役割を担っている下流河川の変化を検討 するため、放流地点の計算結果を検討した(図 2.24). 実測値、計算値及び補正値の放流水 温の年平均値(変動範囲)はそれぞれ 11.93℃(6.55~25.96℃), 14.01℃(7.74~29.71℃)及び 12.18℃(6.74~26.70℃)であった. 実測値による計算結果と比べると、計算値による計算よ り補正値による計算で明らかに年平均水温の差が小さく、変動範囲も狭いことが分かった. また, 3 つの計算による溶存酸素の放流濃度(変動範囲)はそれぞれ 8.82 mg/L(6.15~11.12 mg/L), 8.50 mg/L(5.76~11.07 mg/L), 8.84 mg/L (5.99~12.25 mg/L)として計算値より補 正値による計算で誤差が小さかった. SS の変動範囲は 0~19.7 mg/L, 0~15.2 mg/L, 0~15.1 mg/L で大きな差はみられなかった. TN と TP の平均放流濃度は全ての計算でそれぞれ 0.85 mg/L 及び 0.013 mg/L でほとんど差がなかった. また、放流 Chl.a の平均濃度は各計 算で 2.1 μg/L, 2.0 μg/L, 2.5 μg/L であり, 補正値より計算値の場合で実測値による計算 との誤差が小さかった. これは7月中旬から基準点における計算値の Chl.a 濃度は他の計 算と比べて低くてそれが表層放流されたため、補正値より低い濃度になったと考えられる.

2.4 結語

本章では、浦山ダムを対象に JRA25 をもとに WRF を用いた力学的ダウンスケーリング を行った結果をの結果を複数の方法で補正したデータについて精度を評価すると ともに3次元湖沼生熊系モデルである ELCOM-CAEDYM を適応したときの、バイアス補 正が貯水池水質に与える影響を評価した. ここで得られた成果は以下の通りである.

1) 浦山ダム付近の気象データのバイアス補正についての検討を行った結果、将来時への 適応を考慮した場合、頻度分布マッピングが最も適切な補正方法と考えられた.また、補 正後の精度から気温、気圧、日射量、雲量、湿度についてはバイアス補正が可能であるが、 風向については統計的ダウンスケーリングが有効であり、風向についてはもっと詳細なダ ウンスケーリング等の対応が必要であると考えられた。

2) ELCOM-CAEDYM モデルを用いた検討を行った結果、ダウンスケーリングから得ら れた気温や日射量などに適切なバイアス補正を行うことにより、ダム湖内とその影響を強 く受ける下流河川(ダム直下流 90 m)について検討した結果, SS, TN やTP 濃度に与える 影響は小さかった. しかしながら、水温と植物プランクトン(Chl.a)には大きな影響を与え ることが分かった.さらに,植物プランクトンのバイオマスに大きな影響を与える表層水 温に重要な熱収支の問題を少なくすることができることが分かった.

今後は気象データ毎に適切な補正方法(例えば、気温·風速·湿度は正規分布、日射量は ベータ分布が適切するという論文[45][46]がある)を検討し、より高い精度の上で温暖化に 伴う詳細なダム貯水池における水量·水質問題を明らかにしていく必要がある。さらに、 将来における予測された水質問題(冷·温水放流、濁水長期化、アオコ)について水質保全 施設である選択取水設備とバイパスの運用による水質保全や改善効果を評価する必要があ る.従って,本研究の第3章では,浦山ダムにおける将来予測を行い,水量・水質問題に ついて検討行う. また、第4章では、将来における予測された結果を用い、選択取水設備 による水質変化を明らかにする上で、選択取水設備の最適運用方法の提案を行う.

- 第2章 参考文献 —

- [1] Wood, A. W., Maurer, E. P., Kumar, A. and Lettenmaier, D. P., 2002. Long-range experimental hydrologic forecasting for the eastern United States, J. Geophys. Res. Atomos., 107, D20, 4429.
- [2] Wood, A. W., Leung, L. R., Sridhar, V. and Lettenmaier, D. P., 2004. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs, Climatic Change, 62, 189-216.
- [3] Hashino, T., Bradley, A. A. and Schwartz, S. S., 2007. Evaluation of bias-correction methods for ensemble streamflow volume forecast. Hydrol. Earth Syst. Sci., 11, 939-950.
- [4] 猪股広典, 竹内邦良, 深見和彦, 2009. GCM 降水量データの統計的バイアス補正手法 に関する考察, 水工学論文集, 第53巻, 223-228.
- [5] 渋尾欣弘, 鼎信次郎, 2010. 大雨に着目した気候モデル日降水量出力のバイアス補正 手法比較, 水工学論文集, 第 54 巻, 235-240.
- [6] Ines, A. V. and Hansen, J. W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and forest meteorology, 138, 44-53.
- [7] Baigorria, G. A., Jones, J. W., Shin, D. W., Mishra, A. and O'Brien, J. J., 2007. Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Climate Research, 34, 211-217.
- [8] Leung, L. R., Hamlet, A. F., Lettenmaier, D. P. and Kumar, A., 1999. Simulations of the ENSO hydroclimate signals in the Pacific Northwest Columbia River basin, Bull. Amer. Meteorol. Soc, 80, 2313-2329.
- [9] 藤原洋一,田中賢治, 渡邉紹裕,小尻利治, 2008. GCMs·ダウンスケーリング·水文 モデルに起因する温暖化影響評価の不確実性,水工学論文集,第52巻,373-378.
- [10] Najafi, M. R., Moradkhani, H. and Jung, I. W., 2011. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrol. Process., 25, 2814-2826.
- [11] Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kamahori, H. Takahashi, K., Kadokura, S., Wada, K., Kato, K., Oyama, R., Ose, T., Mannoji, N. and Taira. R., 2007. The JRA-25 Reanalysis, J. Meteor. Soc. Japan, 85, 369-432.
- [12] Fuchs, R., 2011. Empirical-Statistical Post-Processing of Radiation and Humidity Parameters in Regional Climate Simulations. Wegener Center for Climate and Global Change

University of Graz, Scientific Report No. 42.

- [13] Piani, C., Haerter, J. O. and Coppola, E., 2010. Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climato, 99, 187-192.
- [14] Ines, A. V. M. and Hansen, J. W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and Forest Meteorology, 138, 44-53.
- [15] Baigorria, G. A., Jones, J. W., Shin, D. W., Mishra, A. and O'Brien, J. J., 2007. Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Clim Res, 34, 211-222.
- [16] Boé, J., Terray, L., Habets, F. and Martin, E., 2007. Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int. J. Climatol. 27, 1643-1655.
- [17] Wilks, D. S., 2001. Statistical Methods in the Atmospheric Sciences. Access Online via Elsevier, 100.
- [18] Hodges, B.R. and Dallimore, C., 2006. Estuary, Lake and Coastal Ocean Model : ELCOM. Centre for Water Research, University of Western Australia.
- [19] Amorocho, J. and Devries, J. J., 1990. A new evaluation of the wind stress coefficient over water surfaces. Journal of Geophysical Research: Oceans, 85, 433-442.
- [20] Jacquet, J., 1983. Simulation of the thermal regime of rivers. Mathematical Modeling of Water Quality: Streams, Lakes and Reservoirs, In Orlob, G. T., editor, Wiley-Interscience,. 150-176.
- [21] Imberger, J. and Patterson, J. C., 1981. A dynamic reservoir simulation model DYRESM 5. In Fischer, H., editor, Transport Models for Inland and Coastal Waters, Academic Press. 310-361.
- [22] Casulli, V. and Cheng, R. T., 1992. Semi-implicit finite difference methods for three-dimensional shallow water flow, Int. J. Numer. Methods Fluids, 15, 629-648.
- [23] Leonard, B. P., 1991. The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Engrg., 88, 17-74.
- [24] Leonard, B. P., 1979. A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Comput. Methods Appl. Mech. Engrg., 19,s 59-98.
- [25] Hipsey, M. R., Romero, J. R., Antenucci, J. P. and Hamilton, D., 2009. Computational Aquatic Ecosystem DYnamics Model. V3.2 Science Manual. Centre for Water Research, University of Western Australia.
- [26] Spillman, C. M., Imberger, J., Hamilton, D. P., Hipsey, M. R. and Romero, J. R.,

2007. Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. Journal of Marine Systems, 681, 167-200.

- [27] Romero, J. R., Antenucci, J. P. and Imberger, J., 2004. One-and three-dimensional biogeochemical simulations of two differing reservoirs. Ecological Modelling, 174, 143-160.
- [28] Wanninkhof, R., 1992. Relationship between wind speed and gas exchange over the ocean, Journal of Geophysical Research:Oceans, 97, 7373-7382.
- [29] Riley, J. P. and Skirrow, G., 1975. Chemical Oceanography, Academic Press, London.
- [30] Dowd, J. E. and Riggs, D. S., 1965. A comparison of estimates of Michaelis-Menten kinetic constants from various linear transformations, The Journal of Biological Chemistry, 240, 863-869.
- [31] Droop, M. R., 1974. The nutrient status of algal cells in continuous culture, J. mar. biol. Ass. U.K. 54, 825-855.
- [32] Reynolds, C.S., 2006. Ecology of phytoplankton. Cambridge Univ. New York.

第3章 将来予測結果によるダム貯水池の将来水 質予測

3.1 概説

急激な経済成長と人間活動の拡大に伴う石油や石炭の消費増加は二酸化炭素などの温室 効果ガスを大気中には出させて大気中のCO2濃度を増加させ、地球温暖化を加速化させて いると言われている[1]. 温暖化によって流域の水資源に大きな変化が発生する可能性が高 くなり, 温暖化が水資源に与える影響を評価することが必要である.

1990年代以後、地球温暖化や気候変動が水資源に与える影響を検討するために世界で多 様な研究が活発に進んでいる。研究初期には多様な統計的な方法が適用され、全球気候モ デル(Global Circulation Model; GCM)の計算結果を実際の流域に適用するための詳細化 方法に着目して行われてきた[2][3]. 2000年代以後より多様な GCM 及び地域気候モデル RCM(Regional Climate Model)が開発され、それらを用いて予測された結果と降雨-流出 モデルを連携した研究が行われてきた[4][5][6]. また、最近は代表的濃度パス RCP(Representative Concentration Pathways)という新たな二酸化炭素排出シナリオが 設定されており、最新の二酸化炭素排出傾向を反映し、信頼性と妥当性が以前より高くな ったデータにもとづく気候変動研究が行われている[7]. しかしながら、温暖化がダム貯水 池の水環境に与える研究は降雨や流出に関する研究と比べて少なく、水温や成層強度に関 する研究が多い[8][9]. さらに, このような研究で用いられたデータは水温に影響を与える 気象要素(例えば、気温·日射量·雲量など)の中で気温だけを用いた場合が多いため、将 来予測の確実性が十分に確保されているとは言えない. また、ダムの重要な目的の1つで おる質の高い生活用水の供給のために、濁質や植物プランクトンを含む水質変化の検討が 必要である.

そこで本章では、都市圏を中心に 1 日 35 万m3の水道用水を供給している重要な水ガメ である荒川流域の浦山ダムを対象に 1) 領域気象モデルWRFによりダウンスケールされた 長期間の将来予測情報を作成し、2)その結果の降水量データを用いて荒川流域の流出予測 により浦山ダムへの流入量を算定し、3)予測された気象データと流量データをバイアス補 正した上で、濁度や植物プランクトンの指標であるSSやChl.aを含む浦山ダムの水質予測 を行い、ダム湖内と下流河川における水質変化を検討する. 水質予測に用いる3次元湖沼 生態系モデルELCOM-CAEDYMの気象データは、気温を含む湿度、風速·風向、日射量、 気圧及び雲量であり、これまでの気温のみ用いた検討より精緻な予測結果が得られる

と考えられる. また、現在気候は 2002~2010 年、将来気候は 2062~2070 年のそれぞれ 9 年間を対象とした.

3.2 気象データの将来予測結果の検討

3.2.1 将来気候予測の概要

米国大気研究所を中心として開発されている非静力領域気象モデル WRF を用いた将来 気候の「疑似温暖化実験」の力学的ダウンスケーリングにより,対象領域の将来気象の推 定を行った結果を採用した. モデルを適用するにあたり、まず、2001~2004年は気象庁長 期再解析データである JRA25(Japanese 25-year ReAnalysis)と 2005~2010 年は気象庁気 候データ同化システムである JCDAS(JMA Climate Data Assimilation System)をもとに WRFモデルを用いた現在気候のダウンスケーリングを行い、流域降水量の再現性について 確認が行われた.その結果,個々の降水イベントの発生タイミングや年総降水量について は、やや実測値と差異も見られたものの、降水量の季節・年変動や空間分布パターンにつ いては概ね妥当な計算結果であることが確認された.

疑似温暖化時の設定については、Satoら[10]の手法に基づき作成し、ダウンスケーリン グが行われている。将来気候情報には、第5次結合モデル相互比較プロジェクトで使用さ れたデータ(5 phase of the Coupled Model Intercomparison Project: CMIP5)から、米国大 気海洋庁(National Oceanic and Atmospheric Administration:NOAA)の Geophygical Fluid Dynamics Laboratory による CM3(GFDL-CM3)の 2061~2070 年の 10 年間の温暖 化結果が用いられ、最近の温室ガス濃度変化傾向を反映した IPCC 第 5 次評価報告書の RCP4.5 シナリオ(Representative Concentration Pathways, 表 3.1)の 2001~2010 年及び 2061~2070 年の各 10 年間における各月の平均場の差分を利用に疑似温暖化結果を採用し た(図 3.1). WRF によるダウンスケーリングはそれぞれ 90 km(360 秒), 30 km(120 秒), 6 km(24 秒)を計算格子 (タイムステップ) とするネスティングが行われている.

			第5次評価報告書(RCP)*		第4次評価報告書(SRES)**				
	RCP	RCP	RCP	RCP	B1	B ₂	A1B	A2	A1FI
	2.6	4.5	6.0	8.5					
$CO2$ 基準値									
(ppm)	~1490	$~1$ ~650	~850	$1370-$	600	800	850	$1250\,$	1550

表 3.1 IPCC の第4次と5次評価報告書によるシナリオとCO₂濃度

* Moss ら[7]の論文から引用

** Climate Change 2007 Synthesis Report $[11]\rightarrow$

3.2.2 将来気象データのバイアス補正

本章で採用するバイアス補正方法は**第 2 章**で精度及び妥当性が確認された頻度分布マッ ピング(Quantile Mapping)を採用して補正を行った. 分布関数についてはガンマ分布と経 験的分布を使用して現在気候においてダウンスケーリングされたデータ(現在値)の補正を 行った. 各気象要素における精度(R2, AME, RMSE)を検討して気象要素毎に精度が高い 分布関数を選んで適用した. さらに、湿度と雲量についてはELCOM-CAEDYMモデルの 入力形式としてデータの範囲が 0≦x≦l となるためベータ分布を追加して検討を行った. 表 3.2に2002~2010年の実測値と現在気候における現在値及び補正後の補正値について気象 要素毎の統計値を示した。気温と気圧については経験的分布を用いた計算で最小値·最大 値 • 平均値が同じであり、ガンマ分布より決定係数(R2)が高く、誤差が小さい結果を得た。 湿度については0≦x≦1の範囲で計算されるベータ分布で良い精度がみられた. 風速はそ れぞれ 0.131 と 0.124 の低い決定係数がみられたが、ピーク風速が反映された経験的分布 で良い精度が得られた. 日射量の場合は、ガンマ分布が経験分布より決定係数が高く, RMSEが小さいが、日変動を考えるとピーク値の影響がよく与える日射量はピーク値の反 映がよい経験的分布を用いた補正が良いと考えられた。雲量は全般的に経験的分布で精度 が高かったが. 0 (雲がない時)数が違うため将来の補正では補正後の最小値が $0 \leq x$ になるた め、ベータ分布の採用がより妥当性が高いと考えられた.

以上の検討を参考して気温·風速·日射量·気圧については経験的分布関数を採用し、 湿度や雲暈暈へのいてはベータ分布関数を用いて将来予測結果における風向以外の気象デー

夕の補正を行った. 第2章ではすべての気象要素でガンマ分布関数を採用したが、本章で はより長期間のバイアス補正を行うと経験的分布関数を用いた方法でより高い精度が得た. バイアス補正に関する他の研究[12][13][14]を参考すると対象地域、対象期間によって提案 される補正方法が異なることがよくみられる.

気象要素(風向を除く6項目)について補正を行った結果を表 3.3 に示した. 補正結果を みると9年間の平均気温は現在の実測値より将来の補正値が高く、最小値と最大値も高い

		最小値	最大値	平均値	\mathbf{R}^2	AME	RMSE
	実測値	-5.900	36.000	12.598			
気温	現在値	-11.041	31.991	12.011	0.925	1.961	2.488
(C)	経験的	-5.900	36.000	12.598	0.926	1.792	2.339
	ガンマ	-9.668	31.868	12.598	0.925	1.814	2.356
	実測値	0.000	1.000	0.779			
	現在値	0.122	1.000	0.699	0.266	0.163	0.212
湿度 $(0-1)$	経験的	0.000	$1.000\,$	0.779	0.269	0.146	0.204
	ガンマ	$0.142\,$	1.000	0.767	0.272	0.145	0.197
	ベータ	0.085	1.000	0.775	0.273	0.144	0.198
	実測値	0.000	21.500	2.591			
風速	現在値	0.092	23.662	3.119	0.126	1.971	2.640
(m/s)	経験的	0.000	21.500	2.591	0.131	1.680	2.216
	ガンマ	0.109	18.036	2.595	0.124	1.708	2.229
	実測値	0.000	1038.889	131.841			
日射量	現在値	0.000	1070.833	208.599	0.722	88.948	175.818
(W/m ²)	経験的	0.000	1038.889	131.841	0.703	60.019	126.584
	ガンマ	0.000	797.486	139.341	0.723	60.128	119.202
	実測値	924.300	988.700	966.008			
気圧	現在値	910.706	967.464	946.521	0.419	19.518	20.227
(hPa)	経験的	924.300	988.700	966.008	0.421	3.319	5.378
	ガンマ	930.578	986.712	966.008	0.419	3.321	5.393
	実測値	0.000	1.000	0.642			
雲量	現在値	0.000	1.000	0.304	0.309	0.370	0.454
$(0-1)$	経験的	0.000	1.000	0.642	0.369	0.214	0.300
	ガンマ	0.000	1.000	0.540	0.367	0.250	0.343
	ベータ	0.000	1.000	0.597	0.365	0.238	0.338

表3 2 現在気候におけるそれぞれの分布関数によるバイアス補正結果

結果が得られた. 湿度については実測値(0.779)より将来の補正値(0.762)が 0.017 減少し, 風速は現在より将来における弱くなることが予測された。日射量については将来にピーク 値は低くなるが、平均としては 3.5 W/m²高くなり、気圧も現在より高くなることが予測さ れた. 雲量は将来においては 0.58 となり現在(0.64)より減少すると予測された.

		最小值	最大値	平均值
	実測値	-5.900	36.000	12.598
気温 (C)	将来值	-5.437	35.862	14.982
	補正値	-3.100	39.922	15.515
	実測値	0.000	1.000	0.779
湿度 $(0-1)$	将来值	0.141	1.000	0.686
	補正値	0.104	1.000	0.762
	実測値	0.000	21.500	2.591
風速 (m/s)	将来值	0.097	22.296	3.062
	補正値	0.000	20.692	2.531
	実測値	0.000	1038.889	131.841
日射量 (W/m ²)	将来值	0.000	1059.167	212.514
	補正値	0.000	1016.359	135.270
	実測値	924.300	988.700	966.008
気圧 (hPa)	将来值	914.055	971.101	947.528
	補正値	932.962	992.417	967.032
	実測値	0.000	1.000	0.642
雲量 $(0-1)$	将来值	0.000	1.000	0.285
	補正値	0.000	1.000	0.584

表 3.3 将来気候(2062~2070の9年間)におけるバイアス補正結果

3.2.3 将来における気候変動パターンの検討

(1) 年変動を考慮した検討

現在気候としての比較期間である2002~2010年のバイアス補正値(以下、「現在値」と呼 ぶ), 将来予測期間である 2062~2070 年のバイアス補正値(以下,「将来値」と呼ぶ)のそれ ぞれ9年間の毎年の平均値を図3.2に示した. 気温をみると9年間における現在値の平均 気温は 12.6℃, 将来値は 15.5℃となり, 将来は現在より 2.9℃高いことが予測された. ま た、現在の平均気温は 12.0~13.3℃の範囲であり, 2年目(2003年)が 12.0℃で一番低く, 3 年目(2004年)が 13.3℃となり、9年間で最も高い年であった. なお、将来の平均気温は 15.0~16.1℃の範囲であり、3年目と5年目(2064年と2066年)が14.1℃で最も低く、6年 目と7年(2067年2068年)が16.1℃となり、最も高い傾向がみられた。湿度の現在と将来 の9年間の平均値(範囲)はそれぞれ 77.5%(75.9~80.6%), 76.2%(74.5~80.0%)となり, 将来 は現在より1.6%(0.8~1.8%)程度減少するパターンが得られ、現在と将来の最大値を比較す れば現在は2年目,将来は5年目が高いことが予測された. 風速は現在と将来においてそ れぞれ 2.6 m/s(2.5~2.7 m/s), 2.5 m/s(2.4~2.7 m/s)であり、将来は現在より 2.6%増加した が、年により特別に大きな年はみられなかった. 日射量の現在値(範囲)は 131.8 W/m²(123.6~138.0 W/m²), 将来値(範囲)は 135.3 W/m²(130.3~140.1 W/m²)となり, 現在 と比べて3.5 W/m²将来に高くなる結果となった. 気圧は現在と将来のおいて大きな差と変 動がみられなかった. 雲量について将来は現在より低く、それぞれの平均は約6.0 と約5.8 程度であった.

(2) 月変動を考慮した検討

予測計算期間である9年間の月ごとの平均値に関する比較結果を図3.3に示した. 気温 は、すべての月で将来の方が高かった. 季節毎(春:3~5月, 夏:6~8月, 秋:9~11月, 冬:12~2 月)に比較すると、春において現在の平均気温は 10.6℃、将来は 13.2℃、夏において現在 と将来の平均気温はそれぞれ 21.9℃, 24.8℃, 秋はそれぞれ 14.8℃, 18.2℃, 冬はそれぞ れ 3.0℃, 5.5℃となり, 将来は現在より春は 2.6℃, 夏は 2.9℃, 秋は 3.4℃, 冬は 2.5℃と なり、秋における変化量が最も大きく、春と冬に小さいことが確認された. 湿度の比較結 果をみると現在と将来ともに, 7 月に最も高く 3 月に低くなり, 夏(6~8 月)と秋(9~11 月) に現在は 86.1%, 81.7%, 将来は 85.3%, 82.2%になって春(現在:71.8%, 将来:70.2%)と 冬(現在:67.4%, 将来:69.8%)より平均約10%前後高くなり、夏と秋は降雨の影響で高くな ったと考えられる。風速は湿度の変動と反対傾向がみられ、春で現在と将来の平均風速は それぞれ 3.0 m/s, 3.1 m/s, 冬は現在で 2.9 m/s, 将来で 2.9 m/sとなり, 夏と秋は現在と 将来におけるそれぞれ 2.1~2.2 m/sの範囲であった. 日射量は月ごとの変動をみると, 現在 は59~194 W/m²,将来は56~202 W/m²の範囲であり,将来には現在より冬(現在:78.8 W/m², 将来:77.9 W/m²)は低くて、春(現在:171.9 W/m²、将来:179.2 W/m²)、夏(現在:181.0 W/m²、 将来:186.5 W/m²), 秋(現在:95.1 W/m², 将来:96.9 W/m²)には高いパターンが得られた. 気圧は現在と将来の大きな月毎の変化はみられなく、月平均気圧は現在と将来に 960~970 hPaの範囲幅がみられた. 雲量は現在と将来両方で1月から徐々に増加して7月に最大値 となり、現在と将来ともに夏>秋>春>冬の順で高くなることが予測された。

図3.2 現在と将来における気象データの年変動

図3.3 現在と将来における気象データの月変動

3.3 流出データの将来予測結果の検討

3.3.1 将来流出予測の概要

全球気候モデルによる温暖化実験結果を、WRFを利用した力学的ダウンスケーリングに よって領域スケールの気象情報へ変換された雨量をもとに、以下に示す分布型流出モデル による流出計算によって得られた流量をバイアス補正することにより現在・将来気候のも とでの浦山ダムにおける流入量の推定を行った。

まず、バイアス補正に用いるダム流入量は流域降水量を、分布型流出モデル YHyM/BTOPMC[15][16]に入力することで、浦山ダム流入量を含む荒川流域全体の河川流 量の将来予測を行った結果を採用した. 本研究では、荒川全流域を約 450m(15")の解像度 でモデル化するとともに、アメダス観測降水量を入力とした寄居地点流域の降雨-流出解析 に対して自動最適化手法(SCE-UA)[17]を適用することで流出モデルのパラメータ同定が 行われている(図3.4[18]). なお、2001~2010年を対象に同定されたモデルによる浦山ダム 流入量推定値と実測値の比較を行い、流入量のモデル推定値の妥当性について確認されて いる。このようにして同定された分布型流出モデルに、ダウンスケーリングで得られた降 水情報を与えることで、現在気候(2001~2010年)及び将来気候(2061~2070年)に対応した 浦山ダム流入量の推定値を求め、最初の1年は助走期間として本研究では現在気候と将来 気候はそれぞれ9年間(現在:2002~2010年,将来:2062~2070年)のデータを用いた(図3.5). なお、本研究で用いる予測値では、降水量といったダウンスケーリング結果に対するバイ アス補正等の処理は行わずに、 算定された浦山ダムへの流入量について経験的分布関数を 用いたバイアス補正を行った.

図3.4 流出計算における主要比較地点[18]

図3.5 流出データの将来予測方法の概念図

3.3.2 将来流出データのバイアス補正

流出データは頻度分布マッピングを用いてバイアス補正を行い、分布関数については経 験的分布関数を採用した。これは気象データにおける日射量の補正と同じ理由でピーク値 の再現を重要視したからである。実測値と比べると補正後の現在値は最小値、最大値や平 均値と同じになり, 将来値は 0.1~311.9 m³/sの範囲, 計算期間の平均値は 2.4 m³/sとなり, 最大値は実測値より約 0.5 m3/s低いが、平均としては 0.4 m3/s程度増加することが予測さ れた(表 3.4).

単位 m^3/s	実測値		現在値	将来值		
		補正前	補正後	補正前	補正後	
最小值	0.1	0.2	0.1	0.2	0.1	
最大值	312.4	145.7	312.4	147.4	311.9	
平均值	2.0	1.6	2.0	1.9	2.4	

表 3.4 流出データにおける現在値と将来値に補正結果

3.3.3 将来における流出変動パターンの検討

補正された現在と将来流出データの年平均流量と月平均流量を図 3.6 に示した. 現在に おける9年平均流量は2.0 m³/sであるが、2003年、2007年、2010 年目は9 年間の平均流 量を超え、洪水の影響によるものと考えられた. 将来は 2066 年と 2070 年に将来の平均流 量(2.4 m³/s)よりそれぞれ 2.2 m³/s, 2.3 m³/s多いことが予測された. また. 月ごとの変化 をみると現在と将来両方, 1~6 月と 12 月は年平均以下の流量となり, 11 月はほぼ平均流 量と同じであるが、7~10月においては年平均流量を上回ることが予測された.特に8月は 現在(2.5 m³/s)より将来(5.4 m³/s)に 2.9 m³/s程度高く, 現在より出水の規模や頻度が増加 することが予測された。現在と将来における出水の規模と頻度を調べるために、浦山ダム の洪水流量である60 m³/sと100 m³/sに対して評価を行った. まず, 洪水流量である60 m³/s を超える洪水は、9年間で現在は12回、将来には18回起ることが予測された。また、流 量100 m3/s以上の洪水について現在は5回, 将来は13回が予測され, 規模が大きな出水 数が増えることが明らかにされた(図 3.7). 現在の9年平均(Q355:13.6 m³/d(図 3.8))を下回 る日数は、9年間の合計で現在は97日、将来(将来における渇水流量Q355:12.2 m3/d)

は186 日となり、89 日間長くなり、将来には渇水の頻度も高くなることが予測された.

3.4 3次元湖沼生熊系モデルによるダム貯水池の将来水質予測

3.4.1 ダム貯水池の運用ルールによる放流量の設定と SWS の運用

浦山ダムにおける将来予測のために浦山ダムの基本的な運用ルール(図 3.9)を適用して 放流量とバイパス(濁水対策として上流からの清水を下流へバイパスするように設定)運用 量を決めた. 浦山ダムは1月1日から4月30日までは平常時最高貯水位(EL. 393.3 m)ま で水を溜め(放流量は約 0.72 m3/sで一定)、それ以後から水位が7月1日まで灌漑用水を放 流させEL. 372.0 m(洪水貯留準備水位)になるように放流量を設定した. また, 9月30日 まではEL. 372.0 mを維持(流入量=放流量)し, 12 月 31 日までは 0.72 m³/sの一定量を放流 して平常時最高貯水位まで水をキープする基本ルールで運用されている。しかしながら、 その時に水位がEL. 393.3 m以上になれば放流量を流入量と同じとし、そのまま水位が維持 されるように設定した.計算のための初期水位は2002~2010年の実測平均水位(EL. 376.35 m)とした. また、初年度の放流量に伴う水位変動を求め、最終時の12月31日24時の水 位を2年目の初期水位とし、9年間まで繰り返しそれぞれの放流量の設定を行った.また、 選択取水ゲートは最大 12.0 m3/sの放流ができるため、12.0 m3/sを超える放流量(放流量ー 12 m3/s)については通用洪水吐きから放流されるように設定した. さらに, バイパスの運 用はL-Q式によって算定された浦山川の流入濁度が 10 度(SSは 7.8 mg/L相当)以下の場合 に流入量の 1/3(実測運用された 2007~2010 年の平均)を放流するように設定した. また, 選択取水設備の取水水深は、実績の基本である 2~4 mの常時表層取水とした.

3.4.2 再現計算及びパラメータの同定

(1) 再現計算モデルの構築

将来予測のための再現計算とパラメータの同定は2002~2010年の9年間の実測値を用い て計算を行った. 第2章に述べたように流入量, 放流量, 流入水温, 気象データ, 流入SS, 選択取水設備の取水水深やバイパス運用量(2007年の4月から開始)については荒川ダム総 合管理所で測定されたデータを採用し、流入水質濃度に対しては、図 2.12 で示したL-Q式 から算出した 1 時間毎のデータを用いた. L-Q式によって算定された各項目と定期調査に よる実測値との比較を図 3.10~図 3.11 に示した. NH4は出水によって増加する高濃度は算 出ができなかったが、平均的な濃度は概ね計算できて、NO₃とTNについては実測値との比 較で高い精度が得られた. さらに、PO4とTPも実測値の時系列変化をよく再現できていた と考えられる. Chl.aの場合はNH4と同じように高濃度の算出はできなかったが、9年間の 実測値の時系列変化をみると概ね再現はできたと考えられる. Chl.a計算のための設定は藍 藻類(CYANO), 珪藻類(FDIAT), 緑藻類(CHLOR), 鞭毛藻類(CRYPT)に分けてそれぞれの 比率を考慮して流入藻類濃度を算出した。計算で用いた4種類の流入藻類濃度の比率は基 進点で測定されている月1回の定期調査結果参考に9年間の総セル数とセル当りの重さを 用いて求めた(表 3.5). 全体的にはセル当り重さが重たい鞭毛藻類と緑藻類の比率が高く, 藍藻類は7~10月に観察されるパターンがみられた.

	1月	2 _月	3月	4月	5 _月	6月	7月	8月	9月	10月	11月	12月
CYANO (藍藻類)	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.09	0.02	0.00	0.00
FDIAT (珪藻類)	0.16	0.13	0.31	0.28	0.16	0.06	0.04	0.15	0.05	0.17	0.13	0.16
CHLOR (緑藻類)	0.19	0.19	0.17	0.26	0.27	0.26	0.46	0.48	0.63	0.47	0.28	0.13
CRYPT (鞭毛藻類)	0.65	0.68	0.52	0.46	0.57	0.68	0.49	0.32	0.24	0.34	0.60	0.71

表 3.5 Ch1.a の計算で採用した藻類種毎の月毎の比率

(2) 基準点における再現計算の結果

再現計算結果ついては基準点の表層における月1回の定期調査時の実測値用いて比較を行 い、その精度及びL-Q 式から求めた流入水質と同定されたパラメータの妥当性を確認した.

(a) 水位の比較を通じた水収支の検討

2002~2010 年における水位に比較結果を図 3.12 に示した. 計算された水位は実測水位 との比較でAMEは 0.357 m, RMSEは 0.455 mとR²は 0.997 となり, 高い精度が確認され 㸬ࡓ

(b) 水温の再現計算結果

ダム基準点の表層における月 1 回の定期調査時の実測水温範囲(平均±標準偏差)は 5.0~29.6℃(15.6±7.0℃)の範囲である. また, 再現計算された1時間間隔の表層水温範囲(平 均±標準偏差)は 5.2~30.7℃(15.3±7.0℃)の範囲であった. 実測水温より最低水温は 0.2℃, 最高水温は 1.1℃高く計算されたが、実測水温は月 1回の限定性を考慮すると再現計算の 精度が高いと考えられる(図 3.13上). また, 定期調査の実測水温と比較するとR2は 0.973, AMEは 0.892℃とRMSEは 1.248℃の統計値が得られた(表 3.6). さらに、モデルで用いた 水温関係のパラメータを表3.7に示した.

(c) 溶存酸素の再現計算結果

溶存酸素についても計算期間の時系列変化をよく再現できており、再現された溶存酸素 の範囲(平均±標準偏差)は7.25~11.72 mg/L (9.95±0.99 mg/L)となり、実測値の範囲(平均± 標準偏差)である 7.40~12.80 mg/L (10.06±1.03 mg/L)を従っている(図3.13 中). また, R² は 0.404, AMEは 0.681 mg/LとRMSEは 0.866 mg/Lの統計値が得られ, R²は 0.5 より低 いが、AMEとRMSEは 1.0 mg/L以下の誤差であった.

(d) SS の再現計算結果

SSの再現計算結果を実測値と比較すると 2005 年と 2007 年の出水によるSS濃度を過大 評価するが、それ以外の平常時の10 mg/L以下の濃度変化は概ね再現ができたと考えられ る(図3.13下). また、R²は 0.289, AMEは 4.326 mg/LとRMSEは 6.957 mg/Lであり、少 し精度が低く誤差も大きかった.

(e) TN·TP·Chl.aの再現計算結果

TN: 2002∼2010 年の実測値は 0.47∼1.22 mg/L (0.84±0.13 mg/L)の範囲(平均±標準偏差) であり, 再現計算期間では 0.60~1.47 mg/L (0.76±0.09 mg/L)の範囲(平均±標準偏差)とし て実測値より 0.13~0.25 mg/L程度高く計算された(図 3.14 上). また, R2は 0.246, AME は 0.116 mg/LとRMSEは 0.142 mg/Lの精度であった. このような、R2は小さいが、AME とRMSEは実測値の最大値と比較するとそれぞれ 9.5%と 11.6%程度の誤差であった.

TP:比較期間における実測値の範囲(平均±標準偏差)は 0.003~0.050 mg/L (0.012±0.007 mg/L), 再現計算の範囲(平均±標準偏差)は 0.012~0.024 mg/L (0.015±0.002 mg/L)として再 現計算値は最小値と最大値間の変動が実測値より小さかった. 再現計算値は比較期間にお ける全体的に実測値より過大計算されることが分かった(図3.14中).

Chl.a : Chl.aの再現計算は藍藻類(CYANO), 珪藻類(FDIAT), 緑藻類(CHLOR), 鞭毛藻 類(CRYPT)の4種類を考慮し、それぞれの濃度の総合を求めてChl.aの濃度を算出した. 比 較期間における実測値は 0.2~51.6 μg/L (6.07±8.27 μg/L), 再現計算は 0.4~43.4 μg/L (5.04±8.43 μg/L)の範囲であった. また, R²は 0.007, AMEは 6.16 μg/LとRMSEは 11.32 ug/Lが得られて統計値としての精度は低いが、比較期間である9年間におけるすべての項 目で年々変動が一番多い水質項目はChl.aであるため、図 3.14(下)をみると再現計算値は9 年間の時系列変動を概ね再現できたと考えられる。 藻類毎の再現計算結果をみるとすべて の藻類種で濃度の増加と減少のタイミングを概ね再現していると考えられる(図 3.15). ま た、表 3-7に示した藻類成長の水温関係パラメータは他の研究[19][20]を参考すると妥当な 範囲であると考えられる.

	\mathbf{R}^2	AME	RMSE		\mathbf{R}^2	AME	RMSE
水温(°C)	0.973	0.892	1.248	$Chl.a(\mu g/L)$	0.007	6.158	11.321
溶存酸素 (mg/L)	0.404	0.681	0.866	藍藻類(μg/L)	0.020	0.370	0.733
SS(mg/L)	0.289	4.326	6.957	珪藻類 $(\mu$ g/L)	0.001	1.094	2.055
TN(mg/L)	0.246	0.116	0.142	緑藻類(µg/L)	0.050	2.458	4.987
TP(mg/L)	0.082	0.006	0.007	鞭毛藻類 $(\mu g/L)$	0.001	2.982	5.517

表 3.6 基準点の表層における実測値と再現計算値との R^2 , AME, RMSE

Parameter	Value	Description			
Thermodynamic parameters					
Photosynthetically Active Radiation (PAR)			0.25		
Near Infrared Radiation (NIR)			1.00	Extinction coefficient $(m-1)$	
Ultra Violet A Radiation (UVA)			1.00		
Ultra Violet B Radiation (UVB)			2.50		
Oxygen parameters					
$\gamma_{O:C}$	2.67		$C \text{ (mg DO [mg C]-1)}$	Photosynthetic stoichiometry ratio of DO to	
r SOs	Horizontal			Static sediment exchange rate (day ¹)	
KSOs	value	oxygen demand $(mg L1)$		Half saturation constant for sediment	
Nutrient parameters					
vN2	1.08			Temp multiplier for denitrification	
koN2	0.03			Denitrification rate coefficient (day 1)	
KN2	0.5	Half saturation const. for denitrification (mgL^{-1})			
vON	1.08	Temp multiplier for nitrification			
koNH	0.05			Nitrification rate coefficient	
Kon	2.0			Half saturation constant for nitrification	
$PON1_{max}$	0.002			Rate coefficient of PONL to DONL (day ⁻¹⁾	
$DOM1_{max}$	0.003			Rate coefficient of DONL to NH_4 (day ¹)	
$POP1_{max}$	0.001			Rate coefficient of POPL to DOPL (day ¹)	
$DOP1_{max}$	0.1			Rate coefficient of DONL to $PO4$ (day ⁻¹)	
	cyanobacteria (C_1) , diatoms (D) , chlorophytes (C_2) , cryptophytes (C_3)				
μ max C ₁ , D _, C ₂ , C ₃	0.8, 0.9, 0.8, 0.8			Maximum growth rates of algae (day ¹)	
kr C ₁ , D _, C ₂ , C ₃	0.17, 0.08, 0.12, 0.13	(day^1)		Algal respiration, mortality, and excretion	
V C ₁ , D , C ₂ , C ₃	$na^*, -0.1,$ $-0.01, -0.02$	Algal settling velocities ($m \, day^{-1}$)			
T _{ST C1,D,C2,C3}	20, 22, 22, 24	Standard temperature for algal growth (C)			
Γ OT C ₁ , D, C ₂ , C ₃	27, 25, 26, 24			Optimum temperature for algal growth (C)	
$T_{\text{MT C1,D,C2,C3}}$	33, 31, 32, 30			Maximum temperature for algal growth (C)	

表 3.7 再現計算で用いた水温, 溶存酸素, 栄養塩, Ch1.a のパラメータ[19][20]

* : Time-varying settling velocity estimated by stokes equation with buoyancy control model

(3) 下流河川における再現計算の結果

浦山ダムの定期調査地点である放流口を下流河川における計算精度の確認地点として設 定し、その地点における実測値と再現計算された結果の比較を行った(表3.8). 水温につい て実測水温は 3.9~22.2℃(11.9±5.0℃)の範囲(平均±標準偏差)に対し、計算水温は 3.9~25.7℃(11.1±4.5℃)の範囲(平均±標準偏差)であり、計算水温の最高値は実測水温の最 高値より 3.5℃程度高いが,9年間の季節及び時系列変化をみると概ね再現できたと考えら れる(図 3.16 上). また、実測の溶存酸素は 8.5~13.1 mg/L(10.5±1.1 mg/L)の範囲(平均±標 準偏差)に対し,計算値は8.6~12.5 mg/L (10.5±0.9 mg/L)の範囲(平均±標準偏差)となり, 実測と計算値の差は小さかった(図 3.16 中). SS については出水時に過大評価された基準 点の影響を受けて計算値の方が高く計算された(図 3.16 下). TN の場合は実測と計算値の 9年間の平均濃度がそれぞれ 0.86 mg/L(0.61~1.23 mg/L)と 0.77 mg/L(0.62~1.47 mg/L), TP は 0.012 mg/L(実測濃度)と 0.015 mg/L(計算濃度)であり、ある程度の再現計算の精度 が確認された(図 3.17 上, 中). 下流河川の Chl.a 濃度の再現計算結果(平均値:1.42 μg/L) は、実測濃度(平均値:2.86 ug/L)の約半分の程度に計算されたが、年毎では濃度が夏に高 く、冬に低くなる季節パターンを概ね再現できたと考えられる(図3.17下).

	R^2	AME	RMSE		\mathbf{R}^2	AME	RMSE
水温(°C)	0.636	2.113	3.148	TP(mg/L)	0.213	0.107	0.132
溶存酸素							
(mg/L)	0.459	0.634	0.792	TP(mg/L)	0.012	0.006	0.009
SS(mg/L)	0.015	6.770	22.119	$Chl.a(\mu g/L)$	0.042	2.378	4.049

表 3.8 下流河川における実測値と再現計算値との R^2 , AME, RMSE

3.4.3 将来水質予測モデルの構築

浦山ダムにおける将来の水質予測のために 2062~2070年の9年間の計算を行った.また. 再現計算は実際のダム状況を考慮して運用された選択取水設備の取水水深とバイパス運用 データを用いたため、将来における選択取水設備の取水水深を細かく調節することは困難で ある. さらに、バイパスは2007年の4月から運用されているため、全計算期間(9年)にバイ パスの運用を考慮する将来予測との直接比較は予測結果の客観的な比較ができないと考え られる. このようなことから、現在気候に対するダウンスケーリングを行った 2002~2010 年のデータを用いた計算も行い、その結果を用いて将来予測結果の対照群とした.

現在と将来の予測計算における基本的な設定は1)流入量は気候データを用いた流出計算 結果・放流量はダム運用ルールによって求めた結果, 2)流入水温・流入水質濃度は回帰式 と L-Q 式から求めた結果, 3) バイパスの運用は全期間(現在:2002~2010 年, 将 来: 2062~2070 年)にわたって流入濁度 10 度以下(SS は 7.8 mg/L 相当)の場合に運用, 4) 取水水深は全期間 2~4 m の表層取水を仮定して計算を行った.

(1) 流入水温データの算定結果

現在と将来の水質予測のための流入水温は第2章の式 2-21 による回帰式を用いて算出し た(図 3.19 上). 現在において算出された流入水温は 0.1~20.7℃(10.4±5.5℃)の範囲を示し. 将来は 1.8~24.5℃(12.4±5.7℃)で算出され、計算期間(9年)における将来は現在より 2.0℃高 く予測された. 年々変動をみると現在は 2004 と 2010 年が高く、2003 年が一番低い結果と なり,将来は2067と2068年のそれぞれ年平均流入水温が12.9℃と12.8℃となった(表3.9).

単位	2002	2003	2004	2005	2006	2007	2008	2009	2010	平均
$(^{\circ}C)$	2062	2063	2064	2065	2066	2067	2068	2069	2070	
現在	10.4	10.0	10.8	10.2	10.5	10.5	10.1	10.4	10.6	10.4
将来	12.7	12.6	12.0	12.2	12.0	12.9	12.8	12.4	12.2	12.4

表 3.9 回帰式による算出された現在·将来の流入水温の計算結果

(2) 流入水質データの算定結果

溶存酸素:現在は 6.8~17.4 mg/L(11.0±2.2 mg/L)に範囲に対して、将来には 6.4~16.0 mg/L(10.3±2.0 mg/L)の範囲がみられて流入水温の変化による溶存酸素の変化が生じてい る(図3.18中).

SS: 流入量の規模による出水時の影響を強く受ける SS 濃度は現在と将来でそれぞれ 17.8 mg/Lと24.3 mg/Lの平均値をみせて将来が5.5 mg/L 高くてピーク値はそれぞれ5,559 mg/L と 5,549 mg/L を示し、現在の SS ピークがより高いことが確認された(図 3.18 下).

NH₄, NO₃, TN:NH₄, NO₃, TNについては、現在と将来で平均としての大きな差は みられず、出水による流入量の規模によるピーク値の濃度が生じている(図 3.19). 濃度の 算出で大きな影響を与える流入量の最大値はそれぞれ 312.4 m³/s(現在)と 311.9 m³/s(将来) であった(表 3.4).

PO₄, TP:PO₄はそれぞれ 0.007~0.02 mg/L(現在)と 0.006~0.02 mg/L(将来), TPについ ては 0.007~0.028 mg/Lと 0.006~0.028 mg/Lの範囲で流入水質の変動が起こっている(図 $3.20 \pm$, 図 $3.20 \pm$).

Chl.a:窒素とリンが最低値となる時に Chl.a は最大値となり, 反対の変動が生じている. 平均値としてはそれぞれ 0.627 µg/L と 0.651 µg/L となり、将来における 0.024 µg/L 高く なるパターンとなった(図3.20下).

(3) 貯水池運用ルールによる水位変動の決定結果

本章の 3.4.1 に述べたように現在と将来における流入量に対する放流量を決定し、それ に伴う水位の変化を検討した. 現在気候における計算期間である9年間(2002~2010年)の 水位はEL. 370.7~393.3 m (平均: EL. 379.4 m)の範囲幅で変動し、毎年の変動を比較する と 2006 年が最小値であり, 2004 年が最大値であった. また, 将来はEL. 370.0~390.4 m (平 均: EL. 376.9 m)の範囲となり, 2069 年で最小値, 2070 年で最大値となり, 将来の平均水 位が現在より低くなった(図 3.21,表 3.10). これは、9年間のダムへの総流入量は現在(158 千m3)より将来(190千m3)で多いが、図3.6に示したように8月に将来の流入量が多く、そ の時期が夏季の洪水貯留準備水位(EL. 372.0 m)として水位が一定に保たれるため、放流量 も将来が多くなるためである.

表 3.10 現在と将来のおける9年間の平均水位と毎年の平均水位

単位	2002	2003	2004	2005	2006	2007	2008	2009	2010	平均
(m)	2062	2063	2064	2065	2066	2067	2068	2069	2070	
現在	377.5	379.4	381.5	381.2	374.0	380.1	378.0	381.0	382.4	379.4
将来	376.1	376.0	378.6	373.3	378.1	379.6	377.5	373.2	380.0	376.9

3.4.4 ダム貯水池における水質変化検討

浦山ダムにおける現在(2002~2010年)と将来(2062~2070年)について水質予測を行い. 放流地点から約 500 m 上流に位置したダム基準点において表層(水深 0.5 m)、中層(水位と EL. 308.0 m の平均水深), 底層(EL. 308.0 m)の水温や水質項目についてそれぞれの水質変 化の検討を行った. まず、現在と将来において表層、中層、底層における9年間平均水温 に対し変化を図 3.22 に示した. 将来における平均水温は現在と比べて表層で 2.8℃, 中層 で2.0℃,底層で1.6℃高くなり,表層の水温が3つの層で最も高くなることが確認された. これは気温上昇とともに水温が上昇し、水深が浅いほど強く影響が与えて表層の差が大き かったと考えられる. また、現在と将来の冬(12~2 月)と夏(6~8 月)における水温の鉛直分 布を図 3.23 と図 3.24 に示した. 循環期である冬において、現在と将来において表層はそ \hbar ²λ 6.3℃, 8.5℃, 中層(水深 35 m)は 6.1℃, 8.0℃, 底層(水深 70 m)は 4.6℃, 6.1℃と なった。このように将来における表層と底層の水温差が大きかった。また、現在の冬にお いて年ごとにみると 2006 年の水面水温(5.0℃)は平均(6.3℃)より低い水温であった. これ は 2005 年 12 月~2006 年 2 月の平均気温(2.0℃)が 2002~2010 年の 12~2 月の平均気温 (3.0℃)より低いためであると考えられる。さらに、将来には2067年の水面水温(9.1℃)がそ れぞれ水面の平均水温(8.5℃)より高く、平均気温を比べるとそれぞれ 6.7℃、5.6℃なった. 夏における表層と底層での水温差を比較すると、現在は18.2℃(表層:22.7℃、底層:4.5℃),

図 3.22 現在と将来における表層・中層・底層の水温・溶存酸素・SS の変化

図3.23 現在と将来の冬(12~2月)における水温の鉛直分布

図3.24 現在と将来の夏(6~8月)における水温の鉛直分布

将来は 19.7℃(表層:25.7℃, 底層:6.0℃)となり, 将来は現在より水温差が 1.5℃高く, 成 層強度が強くなることが明らかになった。溶存酸素については、表層、中層、底層の濃度 はそれぞれ 10.41 mg/L, 11.60 mg/L, 11.94 mg/Lと将来はそれぞれ 9.61 mg/L, 10.85 mg/L, 11.28 mg/Lとなり、表層で 0.79 mg/L, 中層で 0.75 mg/L, 底層で 0.66 mg/L高いことが予 測された. さらに, 底層でも, 3.0 mg/L以下となる貧酸素現象は現在, 将来ともにみられ なかった. SSは出水による濃度の増加が予想され、現在は100 m3/s以上の出水が 2003, 2007, 2009 年に起きるのに対し、将来は 2062~2067 年と 2070 年にあるため、すべての 層において平均SSは現在(表層:10.3 mg/L, 中層:11.3 mg/L, 底層:11.1 mg/L)より将来(表 層: 24.3 mg/L, 中層: 28.6 mg/L, 底層: 24.7 mg/L)は表層で 14.0 mg/L, 中層は 17.3 mg/L, 底層で13.6 mg/L高いことが明らかになった.TNとTPは出水による流入負荷量の増加によ る変動はみられたが、3つの層で大きい差はみられなかった. Chl.aの表層における日平均 最大濃度は現在 47.2 μg/L, 将来は 40.5 μg/L, 9 年間平均値はそれぞれ 5.3 μg/L, 2.4 μg/L となり、将来におけるChl.a濃度が低くなることが予測された(図 3.25). さらに、表層の日 平均濃度が 20 µg/L以上を超える日数は 9 年間で現在は 370 日, 将来は 66 日であった(図 3.26). Chl.a濃度の低下は、将来の気温の上昇に伴う水温上昇がChl.aの成長に適さなくな り、また、頻度の高い出水と表層放流によりChl.aが排出され、さらに、出水後に残留する 濁水による光阻害によってChl.aが増加しにくくなったと考えられる. 中層と底層での濃度 は現在と将来ともに 0.5 µg/L以下の低い濃度が予測された.

図 3.25 現在と将来における表層·中層·底層の TN·TP·Chl.a の変化

3.4.5 下流河川における水質変化検討

ダム貯水池における下流河川の水質はダム湖内ほど重要な水資源であるため、将来に変 化が予想される下流河川における水質変化の検討を行った. 現在と将来における9年間の 平均放流水温(範囲)は現在で 11.7℃(1.6~27.8℃), 将来で 13.1℃(3.7~27.3℃)となり, 将来 に1.4℃高くなることが予測された(図 3.27). 溶存酸素の平均放流濃度(範囲)は現在で10.7 mg/L(8.3~13.4 mg/L), 将来で 10.0 mg/L(6.7~12.3 mg/L)となり 0.7 mg/L 程度低く, 平均 放流 SS(範囲)は現在で 10.5 mg/L(1.4~728.4 mg/L), 将来で 25.2 mg/L(1.5~1517.8 mg/L) が予測され, 平均 14.7 mg/L 程度高く, 最大値を比較すると将来に 789.5 mg/L 高かった. TN と TP において現在と将来の放流濃度は TN でそれぞれ 0.78 mg/L, 0.82 mg/L, TP で 0.015 mg/L, 0.016 mg/L となり将来に TN は 4.7%, TP は 4.1%高くなることが予測され た(図 3.27). Chl.a の平均放流濃度(範囲)は現在で 3.41 µg/L(0.4~32.8 µg/L), 将来で 1.54 μg/L(0.3~23.8 μg/L)となり、将来に低くなるパターンが予測された. すべての項目は表層 取水による表層の水温や水質の影響を強く受けてダム基準点での変化と同じパターンをみ 廿 た.

また、下流河川において多くのダムで指摘されている冷·温水放流、濁水放流の観点か ら水質問題を評価した。まず、冷·温水放流についての境界は便宜的に現在と将来の計算 期間でそれぞれの流入水温に対する現在の日平均水温とその標準偏差 σ を求め, 日平均水 温から2oを引いてそれの水温より低く放流された時を冷水放流と定義し、また、日平均水 温から 2o を加えた値より高く放流された時を温水放流として算出した[21]. その結果, 9 年間の2αの平均値は0.7℃であった. 現在の9年間における冷水放流は計880日(98日/年) であり、温水放流は計 1,915 日(213 日/年)であった. また、将来の冷水放流は計 429 日(48 日/年), 温水放流は計 2,432 日(270 日/年)となり, 現在と比べて冷水放流は 451 日(50 日/年) 減少し、温水放流は 517 日(57 日/年)が増加することが予測された(図 3.28 と図 3.29). こ

れは将来に上昇する流入水温(平均2.0℃)より上昇する表層水温(平均2.8℃)が大きく、選択 取水設備操作として表層取水(水深 2~4 m)を行うためと考えられる.

図3.27 現在と将来の下流河川における水温と水質の変化

図3.28 現在(上)と将来(下)における毎年放流水温の時系列変化と冷·温水放流の範囲

図3.29 現在と将来の9年間における冷水放流と温水放流の放流日数

SSについて水道用水1·2·3級の河川環境基準である 25 mg/L(日平均値)に基づく日平 均濃度が基準値を超える日数を評価した。現在においては9年間に基準値を超えた日数は 計 181 日(20 日/年)となるが, 2007 年の出水時には 79 日間連続で高SSの放流があった. さらに、将来には計 597 日(66 日/年)の高SSが放流され、2066 年、2067 年、2070 年はそ れぞれ年間 100 日以上の高SSが放流されることが予測された(図 3.30, 表 3.11). このよう に将来は現在より気温の上昇と洪水の規模と頻度の増加によって、温水放流や高SSの放流 が起る可能性が高くなることが明らかになった。また、出水時に流入する濁水は湖内で沈 降·堆積すると貯水容量が減少となる。そこで、流入量と流入SSから推定した流入土砂に 対する放流量と放流SSから推定した放流土砂の収支を求めて、放流土砂量と堆積土砂量を 評価した. 表 3.12 に現在と将来における浦山ダムの土砂堆積量と堆積率を示した. 荒川ダ ム総合管理所による年計画堆積量は 20 千m³/年であるが、数値シミュレーションは粒径 25 um以下である主に浮遊砂を対象としており、現在、ダムに流入する9年間の総土砂量は約 105 千m3,将来は約 443 千m3と大幅増加する流入土砂量が予測された. その中,現在は13 千m³が放流され, 91 千m³がダム湖内に堆積し, 流入土砂の 12.5%が放流された. また, 将 来には 96 千m3が放流され, 347 千m3がダム湖内に堆積し, 流入土砂の 21.7%が放流される ことが予測された、これは現在より将来の出水頻度が増加しダム滞留時間が短くなるため、 将来により多くの土砂の排除が可能となっていると考えられる.

単位	2002	2003	2004	2005	2006	2007	2008	2009	2010	最大
(日)	2062	2063	2064	2065	2066	2067	2068	2069	2070	連続 日数
現在		30	0		$\boldsymbol{0}$	97	0	30	24	79
将来	44	4	30	18	116	231	28		127	266

表 3.11 現在と将来における毎年の濁水放流日数と最大連続日数

単位: $m3$	流入土砂量	放流土砂量	堆積量
2002/2062	4,860/21,518	219/1,880	4,641/19,638
2003/2063	14,616/10,562	1,097/558	13,519/10,004
2004/2064	2,848/31,722	290/5,405	2,558/26,317
2005/2065	526/10,777	342/1,135	184/9,642
2006/2066	4,658/156,605	287/35,262	4,371/121,343
2007/2067	57,081/11,762	9,027/1,709	48,054/10,053
2008/2068	4251/323	661/662	3,590/-339
2009/2069	6,108/416	537/391	5,571/25
2010/2070	9,807/199,600	615/49,394	9,192/150,206
累積土砂量	104,755/443,285	13,075/96,396	91,681/346,890
堆積率 $(\%)$		12.5/21.7	87.5/78.3

表 3.11 現在と将来のダム湖内における毎年の十砂堆積量と堆積率

3.5 結語

本章では、都市圏を中心に1日35万m3の水道用水を提供している重要な水ガメである 荒川流域の浦山ダムを対象に将来における長期間(9年間)の予測計算を行い、浦山ダムのダ ム湖内と下流河川の水質変化を検討した。ここで本章における成果をまとめると以下のよ うになる.

1) WRFによりダウンスケールされた気象予測にバイアス補正を行った結果、9年間の将 来平均気温在平均気温より 2.9 ℃上昇し、また、ダウンスケール結果に YHyM/BTOPMCを適用して得られた現在と将来の浦山ダムへの流入量のバイアス補正結 果, 将来は現在より 0.4 m3/s程度増加することが予測された.

2) 将来予測のために構築した ELCOM-CAEDYM モデルの入力データとして流入水温は 気温から求める回帰式を用いたため、気温の影響が与えて将来は現在より 9 年間平均で 2.0℃上昇し、溶存酸素は 0.7 mg/L 低下した. さらに、流入 SS 濃度は流入量から求める L-Q 式を用いたため,流入量がより多い将来に現在と比べて9年間平均6.5 mg/L 増加する ことが予測された.

3) 2002~2010年の再現計算から概ね再現できたパラメータを用いて現在と将来予測を行 った結果、ダム基準点において将来には気温の上昇に伴い表層水温が平均 2.8℃高くなる とともに水温成層も強くなることが予測された。また、将来は出水の規模と頻度増加によ り頻繁な高濁水の流入・残留・放流が予測されたが、逆に将来の Chl.a は表層水温の上昇 や放流, 出水による濁水が Chl.a の成長を阻害し現在より低くなる可能性が高いことを明 らかにした.

4) ダムからの放流による下流河川の水質変化をみると、9年間に、将来における冷水放 流(計 429 日)は現在(880 日)より短くなるが、将来の温水放流(計 2,432 日)は現在(計 1,915 日)より長くなることが予測された. さらに, 25 mg/L を超える SS の放流は現在(計 181 日)よりも将来(計597日)に大幅に増加し、放流された土砂量を比較すると将来(21.7%)は現 在(12.5%)より放流されたことが明らかになった.

今後は将来に起こる可能性が高い温水放流や高 SS の放流期間をできるだけ短縮できる 選択取水設備などの水質保全施設の運用方法を検討し、将来におけるダム湖内と下流河川, 両方の水質の向上させる方法を提案する必要がある.

- 第 3 章 参考文献 —

- [1] IPCC, 2007. Climate change 2007: The Scientific Basis, IPCC Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
- [2] Giorgi, F., Marinucci, M. R. and Visconti, G., 1990. Use of a limited-area model nested in a general circulation model for regional climate simulation over Europe. J. Geophys. Res., 95, 18413-18431.
- [3] von Storch, H., 1999. On the use of "inflation" in statistical downscaling. Journal of Climate, 12, 3505-3506.
- [4] Christensen, N. S., Wood, A. W., Voisin, N., Lettenmaier, D. P. and Palmer, R. N., 2004. The effects of climate change on the hydrology and water resources of the Colorado River basin. Climatic Change, 62, 337-363.
- [5] Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F. and Gu, R. R., 2006. Climate changes sensitivity assessment on upper mississippi river basin streamflows using SWAT. Journal of the American Water Resources Association, 42, 997-1015.
- [6] Koirala, S. R., and Gentry, R. W., 2012. SWAT and Wavelet Analysis for Understanding the Climate Change Impact on Hydrologic Response. Open Journal of Modern Hydrology, 2, 41-48.
- [7] Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., Carter, T. R., Emori, S., Kaimuma, M., Kram, T., Meehl, G. A., Mitchell, J. F. B., Nakicenovic, N., Roahi, K., Smith, S. J., Stouffer, R. J., Thomson, A. M., Weyant, J. P. and Wilbanks, T. J., 2010. The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756.
- [8] De Stadio, B. T., Hill, D. K., Kleinhans, J. M., Nibbelink, N. P. and Magnuson, J. J., 1996. Potential effects of global climate change on small north-temperate lakes: Physics, fish, and plankton. Limnol. Oceanogr., 41, 1136-1149.
- [9] George, G., Hurley, M. and Hewitt, D., 2007. The impact of climate change on the physical characteristics of the larger lakes in the English Lake District. Freshwater Biology, 52, 1647-1666.
- [10] Sato, T., Kimura, F. and Kitoh, A., 2007. Projection of global warming onto regional precipitation over Mongolia using a regional climate model. J. of Hydrol., 333, 144-154.
- [11] Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,

Takemura, T., Chikira, M., Ogura, T., Sekiguchi, M., Takata, K., Yamazaki, D., Yokohata, T., Nozawa, T., Hasumi, H., Tatebe, H. and Kimoto, M., 2010. Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J. Climate, 23, 6312-6335.

- [12] Hashino, T., Bradley, A. A. and Schwartz, S. S., 2007. Evaluation of bias-correction methods for ensemble streamflow volume forecast. Hydrol. Earth Syst. Sci., 11, 939-950.
- [13] Ines, A. V. and Hansen, J. W., 2006. Bias correction of daily GCM rainfall for crop simulation studies. Agricultural and forest meteorology, 138, 44-53.
- [14] Baigorria, G. A., Jones, J. W., Shin, D. W., Mishra, A. and O'Brien, J. J., 2007. Assessing uncertainties in crop model simulations using daily bias-corrected Regional Circulation Model outputs. Climate Research, 34, 211-217.
- [15] Takeuchi, K., Ao, T. and Ishidaira, H., 1999. Introduction of block-wise use of TOPMODEL and Muskingum-Cunge method for the hydroenvironmental simulation of a large ungauged basin. Hydrological Sciences Journal, 44, 633-646.
- [16] Takeuchi, K., Hapuarachchi, P., Zhou, M., Ishidaira, H. and Magome, J., 2008. A BTOP model to extend TOPMODEL for distributed hydrological simulation of large basins. Hydrol. Process., 22, 3236-3251.
- [17] Duan, Q., S. Sorooshian, S. and Gupta, V., 1992. Effective and Efficient Global Optimization for Conceptual Rainfall-runoff Models. Water Resources Research, 28, 1015-1031.
- [18] 荒川水系の流域及び河川の概要(案), 2007, 国土交通省河川局.
- [19] Spillman, C. M., Imberger, J., Hamilton, D. P., Hipsey, M. R. and Romero, J. R., 2007. Modelling the effects of Po River discharge, internal nutrient cycling and hydrodynamics on biogeochemistry of the Northern Adriatic Sea. Journal of Marine Systems, 681, 167-200.
- [20] Romero, J. R., Antenucci, J. P. and Imberger, J., 2004. One-and three-dimensional biogeochemical simulations of two differing reservoirs. Ecological Modelling, 174, 143-160.
- [21]矢島啓,吉川栄,石黒潤, 2006. 選択取水方式がダム貯水池の長期・短期の水質保全に 与える影響に関する研究, 水工学論文集, 第50巻, 1375-1380.

第4章 気候変動に適応したダム貯水池における 選択取水設備による水質向上方法の検討

4.1 概説

近年、気候変動による干ばつや大雨頻度の増加、河川流量の減少や増加、ダム貯水池及 び湖沼の水位変化と水質悪化が生じ、それによる水資源の量·質的な問題が重要な社会に 問題になってきている[1]. そこで、気候変動に伴う降水量の変化とそれによる流域での流 出量や河川流量の変化に関する研究が進んでいるが[2], 水資源の確保として大きな役割を 担っているダム貯水池に対する同様の研究は少ない、また、多くのダム貯水池で設置・運 用されている選択取水設備とフェンスなどの水質保全施設に対して、将来の気候変動に適 応した新たな運用方法の検討が必要であると考えられる。例えば、選択取水設備は放流水 の水温, 濁度などの水質を制御することができるが、その効果はダム貯水池の地形, 水文 条件、濁水発生量、施設の位置·構造と運用方法によって異なる。特に、取水水深の変化 に伴う貯水池内の水理学的な水循環の変化は、流入土砂や栄養塩の輸送と拡散にも影響を 与える[3]. そのため、気候変動に伴う将来のダム貯水池への流入量、高濁度水の発生頻度 と規模,藻類成長などの変動に関して精度が高い予測を行い、それに対応できる選択取水 設備の運用方法の検討が必要である。従来の研究として、堀田ら[4]は成層型ダムにおける 選択取水設備の運用により水温躍層を低下させることによって濁水長期化現象の発生流量 を大きくすることができ、コンジット部の放流設備と併せて濁質の早期排除もできること を明らかにした. また、矢島ら[5]は異高同時選択取水による水質保全効果を評価し、長期 間の表層取水に伴う温水放流による下流河川の生態系に悪影響を与える可能性を指摘した. 一方、異高同時取水を行った場合、一般的な流況の年では冷・温水放流の避けることがで きることを示した. 牧野ら[6]は選択取水設備が導入された奥多摩湖における表層放流は, 鉛直方向の植物プランクトンの成長可能範囲を広げ、それにより透明度が増加することを 明らかにした.

本研究では、温暖化に伴う水量・水質の変化が心配される荒川流域の浦山ダムにおいて、 将来における水量·水質の変化を予測するとともに、貯水池に設置運用されている選択取 水設備を用いた水質保全効果について検討する。また、選択取水設備の運用方法について は、1)湖内の植物プランクトン(Chl.a)の増殖、2)冷・温水放流, 3)湖内の堆砂問題, 以上 の3つの観点から水質問題の対策に着目した検討を行う.

4.2 ダム貯水池と下流河川における水質問題の概要

4.2.1 富栄養化の概要

ダム貯水池において栄養塩類の蓄積が進み栄養塩濃度の比較的高い貯水池に変化するこ とにより、藍藻類等の植物プランクトンの異常増殖が発生し、アオコ等によって水面の着 色現象や水道用水の異臭味障害などが発生することで景観を損い水処理コストの増加など の被害を及ぼす現象を富栄養化現象という. また、OECD では年平均 TP と Chl.a 濃度を 基準にダム貯水池を極貧栄養、貧栄養、中栄養、富栄養、過栄養の5段階に分類した(表 4.1)[7]. これを基準に浦山ダムの過去10年(2001~2010年)においてTP と Chl.a の毎年平 均濃度を調べると TP 濃度の基準では 10 年間の平均濃度(0.012 mg/L)は中栄養段階であり,

分類	TP(mg/L)		$Chl.a(\mu g/L)$				
	年平均值	年平均值	年最大値				
極貧栄養	≤ 0.004	≤ 0.1	≤ 2.5				
貧栄養	≤ 0.01	≤ 2.5	≤ 8.0				
中栄養	$0.01 - 0.035$	$2.5 - 8.0$	8.0×25.0				
富栄養	$0.035 - 0.1$	8.0×25.0	25.0×75.0				
過栄養	≥ 0.1	≥ 25.0	≥ 75.0				

表 4 1 OECD の富栄養化の判定基進

表 4.2 浦山ダムにおける過去 10 年間の TP と Ch1.a 濃度の変化

年度	TP(mg/L)	$Chl.a(\mu g/L)$				
	年平均值	年平均値	年最大値			
2001	0.013	4.4	25.1			
2002	0.010	3.3	9.1			
2003	0.009	4.8	16.1			
2004	0.012	4.6	10.9			
2005	0.010	4.4	15.8			
2006	0.010	5.4	13.9			
2007	0.016	9.3	49.6			
2008	0.014	4.7	11.0			
2009	0.014	14.5	51.6			
2010	0.010	3.8	8.2			
平均	0.012	5.9	21.1			

Chl.a 濃度の基準では 10 年平均濃度は 5.9 μg/L, 毎年最大値の平均濃度は 21.1 μg/L とな り, Chl.a 濃度を基準しても中栄養段階であった(表 4.2). なお, 2007 年と 2009 年をみる と平均値と最大値は富栄養段階であった. 10年間の平均的に評価すると浦山ダムは中栄養 ダムであるが、日射(光)、水温などのダム状況によって植物プランクトンの増殖もみられ 㸬ࡓ

4.2.2 冷・温水放流の概要

水温成層が形成されるダム貯水池では水温躍層よりも下層の水温がかなり低いため(浦 山ダムでは7~9℃程度)、下層からの取水が行われた場合には、下部の冷水を放流する現象 を冷水放流という(図4.1). また、ある程度以上の貯水量を持つダム貯水池では春から秋に かけて水とともに熱量も蓄積することになるため、河川の水温が徐々に低下する夏季以後 に放流水温が流入水温を上回る現象を温水放流という。ダム貯水池の建設によって自然的 な流れの遮断による冷・温水の放流は下流河川における魚類の生息環境の変化などの生態 系に影響を与え、また、灌漑時期に放流される冷水によって農作物の生育障害などの影響 も与えるため、適切な管理や運用方法が必要である.

平成14年度に国土交通省で開催された「ダム事業のプログラム評価に関する検討委員会」 で実施されたアンケートでは、全国の423ダムにおいて、冷水現象がみられるダムは7.6%に 該当する32ダムであるとの結果が得られた[8]. さらに、将来における気温上昇の可能性が高 いことによって水温の上昇も予想されるため、温水放流による影響に対する対策が必要であ る.冷・温水放流については選択取水設備の運用によりダム建設後も流入水温と同程度の 水温の水を放流することが可能である。なお、環境放流の実施を前提とした場合、同問題 が発生する可能性はあるが、選択取水施設の運用によって問題はある程度解消ができると 考えられる.

図 4.1 冷・温水放流の概念図

4.2.3 濁水長期化と土砂堆積の概要

ダムがない自然な河川では、出水によって濁水は発生するが、出水が終わると高濁度の 水は速やかに流され、平常時の流れに戻る。しかしながら、ダム貯水池に出水が発生する と濁水はダム貯水池内に貯留され、高濁水が長い期間で放流とダム湖内に沈降する現象が 起こる。これを濁水長期化という。図 4.2 にダム貯水池がない時とある時の下流河川にお ける時間的な濁度濃度の変化を示した.ダム貯水池がない時の出水による濁水の流れはピ 一ク値まで到達するとすぐ減少するパターンがみられたが、ダム貯水池がある時はダム貯 水池がない時よりピーク値は低く、その以後、ある程度高い濃度の濁水が継続放流される ことがある。また、出水によってダム内に貯留した濁水の一部はダム内に沈降されることに よりダムの貯水容量が減少することがあるため、濁水の早期排除が重要な管理目的である.

期間

図4.2 ダム貯水池の有無による下流河川における出水時の濁度濃度の変化

4.3 選択取水設備を考慮した将来の水質変化予測

4.3.1 選択取水設備の運用シナリオの設定

選択取水設備(以下, SWS と略)の取水水深の違いによるダム湖内と下流河川の水環境に 与える影響を検討するために、まず、国内の多くのダムで運用されている表層取水[9]を考 慮する. 現在と将来における水深 2~4 m 間で常時取水を行う運用をそれぞれケース0 とケ ース1に設定し、それらを対照群とした. 実験群について、浦山ダムは下流河川で水道用 水の取水が行われているため、浄水場に悪影響を与える Chl.a 濃度の低減が必要である. 従って、表層水より Chl.a の濃度が低く、水温も低すぎないことが予想される水深 6~8 m 間から取水する運用をケース2とした. また、出水による濁水が貫入する水深から取水す ると濁水の早期排除が可能であることから、シミュレーションによる濁水貫入深さを参考 に、水深10~12m 間から取水する運用をケース3とした. しかしながら、ケース3は冷水 放流が予想されるため、さらに、4 月~11 月は冷水放流と高濃度の Chl.a 放流を防ぐため

に水深 4~6m間から取水し、循環期である12月~3月までは全層において一定水温である ため表層取水(2~4 m)を行うケース 4 を設定した. ただし、ケース 4 は、濁度の低減も図 るため、洪水時にダム流入地点の SS 濃度が河川環境基準の 25 mg/L を超過した時から, 再びそれ以下に低下した 15 時間後(出水時に流入部の SS が SWS までに到達する時間)ま では濁水の貫入水深と予想される水深 10~12 m 間から取水する特別運用を実施した(**表** $(4, 3)$.

表43 現在と将来における SWS の運用シナリオ

4.3.2 ダム貯水池における水質変化検討

(1) SWS の運用による水質変化

ケース0とケース1とともに将来における SWS の運用方法の違いによる水質予測を行 い、放流地点から約500m 上流に位置したダム基準点において表層(水深0.5m),中層(水 面と EL. 308.0 m の平均水深), 底層(EL. 308.0 m)の水温や水質項目についてそれぞれの 水質変化の検討を行った. まず、表層において平均水温は各ケースでそれぞれ 16.8℃、 18.0℃, 18.6℃, 18.0℃となり, 水深 10~12 m 間から取水するケース3 で最も高い水温で あった(図 4.3 上). これは、表層付近から取水すれば表層の暖かい水が放流されるのに対 し、より深い水深から取水すれば表水層が十分に暖められ、ケース3で高い水温がみられ た.また、中層と底層ではケース毎に大きな差はみられなかった.水温と逆相関関係であ る溶存酸素は水温が低いケース1で最も高い濃度が予測された. これは, 水温による飽和 度の差であり、すべての層とケースで3mg/L 以下の貧酸素現象はなかった(図4.3中). SS は3つの層でケース間に大きな差はみられなかったが、取水水深の変化による流入SSの

図 4.3 SWS の運用による将来の表層·中層·底層の水温·溶存酸素·SS の変化

図 4.4 SWS の運用による将来の表層·中層·底層の TN·TP·Chl.a の変化

貫入水深の変動が生じ、日平均濃度の最大値について表層–中層の差を比較するとケース1 は 39 mg/L, ケース 2 は 176 mg/L, ケース 3 は 672 mg/L, ケース 4 は 544 mg/L 程度中 層で高い濃度がみられた(図4.3下). TN の表層において平均濃度は0.81~0.83 mg/L の範 囲であり、ケース間の差は少ないが、ケース1>ケース4>ケース2>ケース3の順に高く なり, 取水水深が深いほど低い濃度であった(図 4.4 上). また, 中層と底層及び TP の表層, 中層、底層でも同じ変動パターンがみられた(図 4.4 中). これは、高濃度の有機物と栄養 塩が濁水の同じ層に貫入するため,高濁水層の TN と TP の濃度が高くなったと考えられ る. Chl.a は濃度が最も高い表層について表層取水(2~4 m)を行ったケース1, 洪水期間を 除く Chl.a が成長できる期間である 4~11 月に 4~6 m 間から取水したケース 4 の予測で高 い濃度がみられた(図4.4 下). Chl.a の成長は水温と密接な関係があり、表層において平均 水温はケース 1(16.8℃)よりケース 3(18.6℃)で 1.8℃高く,日平均最高水温もケース 3 で 2.3° C高くなり. Chl.a の成長に最適な水温範囲を超え成長がしにくくなるため. ケース 3 の Chl.a 濃度が最も低くなることが予測された.

(2) SWS の運用による水温成層の変化

SWS による取水水深の違いによる水温成層の変化を検討するため、将来において冬 (12~2 月の平均)と夏(6~8 月の平均)における毎年の水温鉛直分布を図 4.5 と図 4.6 に示し た. 結果をみると循環期である冬には各ケースにおいて表層はそれぞれ 8.5℃, 8.6℃, 9.1℃, 8.8℃, 中層は8.0℃, 8.0℃, 8.1℃, 8.1℃, 低層は6.1℃, 6.1℃, 6.3℃, 6.2℃となり, ケース3において表層と底層の水温差が高かった. 夏において表層と底層での水温差を比 較するとケース 1 は 19.7℃(表層:25.7℃,底層:6.0℃),ケース 2 は 22.7℃(表層:28.7℃、 底層:6.0℃),ケース3は23.3℃(表層:29.4℃,底層:6.1℃),ケース4は22.1℃(表層:28.2℃, 底層:6.1℃)となり、ケース3でより水温差が高く、取水水深が深いほど水温躍層が破壊さ れにくくなることが分かった.また,毎年8月の水温の平均鉛直分布を比較すると,ケー ス0の赤線で示す1年を除いては、表水層において現在より将来の年ごとの変動幅が大き くなることが予測された(図 4.7). これは、表層水温の影響を強く受ける Chl.a において, 毎年のように優占種の変化や新たな藻類種の発生などが起る可能性があると考えられる.

図 4.5 SWS 運用による将来の冬(12~2月)における水温の鉛直分布

図 4.6 SWS 運用による将来の夏(6~8月)における水温の鉛直分布

図4.7 将来における各年の8月における SWS 運用による水温の平均鉛直分布

(3) SWS の運用による濁水層の変化

現在(ケース0)と将来(ケース1)におけるSSは、流入量から算出したL-Q式の影響で、流 入量が多い将来に平均的に高い濃度がみられた。また、将来におけるSSの鉛直分布は、水 温の上昇に伴う厚い表水層のため,出水時に流入する濁水層が現在より下層から流入し, 濁水の貫入幅が広がるパターンがされた(図 4.8). 将来におけるSWS運用による濁水挙動 の違いをみるため、2つの出水規模(ピーク流入量:179 m3/s, 302 m3/s)を考慮し、濁度の ピーク付近時刻について濁度と水温の鉛直分布を図4.9に示した. まず、流入量179m³/s の出水(図 4.9 上)では、各ケースで水温躍層に沿って濁水が貫入し、水温躍層付近に濁度 のピークがみられた. さらに, 10~12 m間から取水するケース3は, すべてのケースで最 も深い水深の水温躍層(約12m)を生じ表水層が厚いため、ダム湖に貫入した濁水の幅が鉛 直方向により広がる現象がみられた. なお、300 m³/s以上の出水(図4.9下)では出水の以前 は水温躍層が存在するが、出水発生後はそれが破壊され、貯水池のほぼ全層に濁水が広が ることが確認できた。この結果からは、水温躍層が破壊される出水規模では、取水水深が より深いケース 3 とケース 4 で長時間の濁水取水が可能であり、破壊されない規模の出水 では、浅い水深での取水と高濁度層から取水を行う弾力的運用が濁水の排出に効果的であ ると考えられる.

図4.8 現在と将来における水温鉛直分布と濁水層の挙動

図 4.9 SWS 運用と出水規模による濁水と水温の鉛直分布

4.3.2 下流河川における水質変化検討

ダム貯水池の取水水深と水質の影響を強く受ける下流河川について現在と将来における SWS の運用による水質変化の検討を行った. まず、現在においてケース毎の9年間の平均 放流水温はケース 1 で 13.1℃, ケース 2 で 11.2℃, ケース 3 で 10.4℃, ケー4 で 12.0℃ となり、取水水深が浅いケース 1(2~4 m)で最も高い放流水温であった(図 4.10 左上). 溶存 酸素の平均濃度は各ケースでそれぞれ 10.0 mg/L, 10.1 mg/L, 10.2 mg/L, 10.0 mg/L と なり、すべてのケースで大きな差はみられなかった(図 4.10 左中). SS の 9 年間の平均濃 度はケース1で25.2 mg/L, ケース2で26.1 mg/L, ケース3で28.7 mg/L, ケース4で 28.8 mg/L となり, 通常 10~12 m と洪水時の 10~12 m 間から取水するケース 3 と 4 で高 い放流濃度がみられた。これは、水温分布によって濁水層が中層に分布するため、その近 くから取水するケース3と4で高い濃度がみられたと考えられる(図4.10 左下). TNは各 ケースで平均 0.81~0.82 mg/L, TP は各ケースで平均 0.016 mg/L となり、ケース間の大き な差はみられなかった.一般的に水面が一番高く,中層と底層に行くほど濃度が低くなる Chl.a は水深による水温分布によって鉛直分布が異なるため、水面と最も近いケース 1 で 平均濃度は 1.54 µg/L, ケース 2 は 0.69 µg/L, ケース 3 は 0.47 µg/L, ケース 4 は 0.92 µg/L となり、取水水深が一番浅いケース1で最も高く、Chl.aの成長がよく成り立っている 4~11 月(洪水時は除外)に 4~6 m 間から取水するケース 4 で高い放流濃度がみられた(図 4.10 右 $\overline{\mathrm{F}}$).

4.4 水質問題に着目した検討

4.4.1 植物プランクトン (Chl.a)の増殖問題

植物プランクトン増殖については、日平均 Chl.a 濃度が 20 μg/L 以上を超える日数とそ れの連続日数に着目して評価を行った. SWS の運用による将来のケース毎の日平均 Chl.a 濃度において 20 µg/L 以上超える日数を調べると、ケース 1 で 66 日, ケース 2 で 44 日, ケース3で17日,ケース4で47日となった (図4.11). 表層取水を行うケース1の Chl.a 濃度が最も高く、深い水深から取水するケース3で一番低い濃度がみられた.これは、表 層水温の変化と関係があり、取水水深は深いほど表層水温が高くなり、水温制限因子 $f(T)$ が小さくなるため、Chl.a の成長が阻害され濃度が低くなったと考えられた. さらに, 現 在と将来におけるケース毎の基準濃度(20 µg/L)を超える連続日数の調べると現在(74 日)に 対し、将来にはそれぞれ最大 49 日, 21 日, 14 日, 20 日となり、将来には気温上昇に伴 う水温上昇と流入量増加に伴う出水頻度の増加によって植物プランクトンの増殖はあまり 起らないことが明らかになった. Chl.a 濃度の観点から藻類種毎に比較すると、緑藻類. 鞭毛藻類,珪藻類が主な占有種であり、合計濃度の平均9割程度を占めていた. なお、表 層取水を行うケース0とケース1における水温制限因子をみると、藍藻類と緑藻類はケー ス1が高いが、濃度は低かった(表 4.4). これは、将来における出水の頻度多いため、表層 の Chl.a が流されて濃度が低くなったと考えられる.

		ケース0	ケース1	ケース2	ケース3	ケース4
	藍藻類	0.82	0.56	0.62	0.36	0.68
	珪藻類	2.55	1.05	1.12	0.72	1.12
濃度 $(\mu g/L)$	緑藻類	6.67	3.02	2.40	1.17	2.89
	鞭毛藻類	3.54	0.96	0.90	0.56	0.95
	合計	13.58	5.59	5.04	2.81	5.64
水温	藍藻類	1.16	1.21	1.04	0.95	1.08
制限	珪藻類	1.19	1.15	0.86	0.74	0.91
因子	緑藻類	1.20	1.22	0.98	0.87	1.03
f(T)	鞭毛藻類	1.07	0.95	0.64	0.54	0.69
	水温(°C)	17.97	25.58	28.32	29.04	27.96

表4.4 ダム湖内の表層における夏場(6~9月)の藻類毎の平均濃度,平均水温制限因子及び 平均水温

図4.11 SWS の運用によるダム湖内における Ch1.a 濃度の基準値を超過する日数

4.4.2 冷・温水放流の問題

農業と漁業に被害を与える冷・温水放流について第3章に示したように現在の流入水温 から下限(冷水放流の基準)と上限(温水放流の基準)を求めて、将来における SWS の運用に よる冷・温水放流の日数を評価した(図4.12と図4.13). 将来においてケース毎の冷水放流 日数はケース 1 で計 429 日, ケース 2 で計 1,109 日, ケース 3 で計 1,470 日, ケース 4 で 計 813 日となり, 温水放流日数はケース 1 で計 2.432 日, ケース 2 で計 1.687 日, ケース 3 で計 1,458 日, ケース 4 で計 2,056 日となった. また, 将来には気温上昇による流入水温の 上昇も予想されるため、これに合わせた冷・温水放流の評価が必要である. これは、人工的 な流れのダム貯水池に比べ、自然的な流れである河川は気候変動による河川水温の変化が自 然的な現象と考えられるためである.水温の下限と上限を将来の流入水温から求めて検討す ると下限と上限の水温がそれぞれ上昇し、冷水放流日数はケース1で計1,040 日、ケース2 で計 1,762 日, ケース 3 で計 1,940 日, ケース 4 で 1,402 日となった. その結果, 現在の基 準に比べてそれぞれ 611 日(142%),653 日(59%),470 日(32%),589 日(72%)の冷水放流日 数が増加した. また、温水放流については各ケースでそれぞれ 739 日(30%), 633 日(38%), 458 日(31%), 661 日(32%)の温水放流日数が減少することが予測された(図 4.12).

図 4.12 現在と将来の流入水温に基づく冷·温水放流評価による増減率

図 4.13 SWS 運用による冷·温水放流の下限と上限水温の範囲と年変動パターン
4.4.3 濁水と土砂堆積の問題

将来における濁水放流問題を評価するために、水道用水1·2·3級の河川環境基準であ る 25 mg/L(日平均値)に基づく日平均濃度が基準値を超える日数を評価した(図4.14). 将来 におけるSWS運用による濁水放流の日数はケース 1 で計 597 日, ケース 2 で計 672 日, ケース3で計739 日、ケース4で計739 日となることが予測された. これは、現在より将 来に出水の規模と頻度が増加され,基準値を超える濁水の放流が増えることが明らかにな った. また, 25 mg/Lを超過する濁水の連続放流日数は各ケースで 266 日, 291 日, 320 日, 291日となり、表層取水を行ったケース1で最も短い濁水放流期間であることが検討 された(表 4.5). 表層取水を行ったケース 1 に比べ、取水水深がより深くなるケース 2, 3 で濁水放流日数及び最大連続放流日数が増加することが予測された、これは、取水以後に、 取水水深が深いほど沈降するSSをより長い時間取水するためであると考えられた。ケース 4 は出水が始まると水深 4~6 mの取水を 10~12 mに変更するため、ケース 3 と同様に表層 から沈降するSSの取水が起った. このように濁水の早期排除を意図したケース3と4とも に濁水放流の低減効果はみられず、濁水放流を避けるためには浅い水深からの取水が有効 であることが分かった. さらに, 表 4.6 に将来におけるSWS運用によるダム湖内の土砂堆 積量と堆積率を示した. 現在, ダムに流入する9年間の総土砂量は約105千m3, 将来は約 443 千m³と大幅に増加する流入土砂量が予想された. その中, 表層取水の時, 現在は 91 千m3(流入土砂の 87.5%)堆積し,将来は 346.9 千m3(流入土砂の 78.3%)が堆積することが 予測された。これは現在より将来の出水頻度が増加し、ダム湖内の水の滞留時間が短くな るため、将来により多くの土砂の排除が可能となっていると考えられる.また、将来のSWS 運用によるケース 2 は 346.7 千m³(38.5 千m³/年), ケース 3 は 348.5 千m³(38.7 千m³/年), ケース 4 は 346.0 千m³(38.4 千m³/年)がダムに堆積することが予測された. これら運用ケ 一スごとに大きな差がないのは、洪水吐きがダム上部にあり、大きな流量はここから放流 されるため、SWSの運用にあまり差がなかったものと考えられる. 特に比較的に大きな洪 水が発生した 2066年(時間最大流入量:302 m3/s)と 2070年(時間最大流入量:311 m3/s)は それぞれ約 156 千m3, 200 千m3の土砂が流入し、それぞれ約 121 千m3, 150 千m3が堆積 した. これは、年計画堆砂量 20 千m3/年の6倍以上となった.

単位	2002	2003	2004	2005	2006	2007	2008	2009	2010	最大
(\boxplus)	2062	2063	2064	2065	2066	2067	2068	2069	2070	連続日数
ケース0	Ω	30	Ω	θ	Ω	97	Ω	30	24	79
ケース1	44	$\overline{4}$	30	18	116	231	27	Ω	127	266
ケース2	101	8	58	19	127	232	$\overline{0}$	Ω	127	291
ケース3	102	12	81	31	147	239	$\overline{0}$	Ω	127	320
ケース4	102	12	63	31	152	244	8	Ω	127	291

表4.5 現在と将来における毎年の濁水放流日数と最大連続日数

表 4.6 SWS 運用による将来のダム湖内における毎年の土砂堆積量と堆積率

単位: $m3$	流入土砂量	ケース0	ケース1	ケース2	ケース3	ケース4	
2062	4,860/21,518	4,641	19,638	19,463	19,618	19,586	
2063	14,616/10,562	13,519	10,004	99,44	9,863	9,851	
2064	2,848/31,722	2,558	26,317	26,414	26,925	26,559	
2065	526/10,777	184	9,642	9,573	9,565	9,589	
2066	4,658/156,605	4,371	121,343	121,208	122,142	121,083	
2067	57,081/11,762	48,054	10,053	10,105	9,912	9,925	
2068	4,251/323	3,590	-339	-279	-275	-331	
2069	6,108/416	5,571	25	74	85	34	
2070	9,807/199,600	9,192	150,206	150,157	150,671	149,745	
累積	104,755						
堆積量	/443,285	91,681	346,890	346,659	348,505	346,041	
堆積率(%)		87.5	78.3	78.2	78.6	78.1	

4.5 結語

本章では、浦山ダムにおける現在と将来の長期間(9年間)の水質の予測計算を行い、将来 において危惧される湖内の植物プランクトンの大増殖、冷・温水放流、堆砂問題に対して SWS の運用条件による浦山ダムの水質変化を評価した. ここで得られた結果をまとめる.

1) 現在と将来における気象データはWRF, ダムへの流入量はYHyM/BTOPMCを適用し て得られた結果にバイアス補正を行った結果、気温は将来に現在より平均 2.9℃上昇し、 ダムへの流入量は0.4 m3/s増加した. さらに、ダム湖内は将来に気温上昇とともに特に表 水層の水温が上昇し、水温躍層位置も低下することが予測された.また、流入量の増加に よるSSの増加が予測されたが、水温上昇と出水頻度の増加により平均Chl.aは減少するこ とが予測された.

2) SWS の運用条件に伴う将来の水質変化を予測した結果、ダム湖内は表層取水(ケース 1)より取水水深が 10~12 m のケース 3 で表層の水温が上昇し、それによる水温躍層の位置 も低下した. SS については取水水深に伴う水温分布の変化による貫入位置の変化により取 水水深が深いほど出水時に濁度層が広がることが明らかになった. なお、Chl.a は取水水 深が深いほど表層水温が上昇し、成長最適水温範囲を超えるため、Chl.a が低下すること が予測された.

3) 下流河川における放流水温はダム湖内の水温に依存し、気温上昇に伴うダム湖内の水 温上昇により冷水放流は減少、温水放流は増加することが予測された.また、現在の水温 を基準にした場合、将来に SWS の運用による冷·温水放流を評価した結果、冷水放流に ついて表層取水の場合に 47 日/年, 水深 10~12 m から取水する場合に 163 日/年, 温水放 流は各ケースでそれぞれ 270 日/年, 162 日/年となることが予測され, 表層近くで取水す るほど冷水放流期間は短くなるが,温水放流期間が長くなることが明らかとなった.

4) 将来における SWS の運用方法に伴う濁水放流を評価した結果、将来は循環期に入る 10月に大きな洪水が発生し、成層が破壊されたため、濁水の早期排除を意図したケース3 と 4 ともにその効果はみられず、濁水放流を避けるためには浅い水深からの取水(ケース 1)が有効であることが分かった. また、ダム湖内に流入する SS と基づく流入土砂量と堆 積土砂量を評価した結果、現在より将来に多くの土砂が流入するが、将来は現在より出水 頻度が多く、それらは沈降する前に洪水吐きあるいは SWS から放流されるため、将来に おける流入土砂に対する土砂の堆積率は小さかった. また、SWS 運用による堆積率は、ダ ム構造上の原因ため大きな違いはなかった.

5) 将来における SWS の運用についてはダム湖内の植物プランクトン成長と温水放流に

着目すると取水水深が深いほど,冷水放流に着目すると表層と近いほど良い結果が得た. 従って、植物プランクトンの成長を防ぐために深い取水水深を設定すると冷水放流が起こ るため,本研究で行った運用方法では表層取水することが最も効果が高いと考えられる. これは, 表層取水は 10~12 m の取水より Chl.a の基準濃度(20 ug/L)を超える期間が 5 日/ 年程度増加することに対し、冷水放流期間の減少(116 日/年)がよりできるためである. ま た、SS については SWS 運用による明確な差は得られなかったが、下流河川の基準濃度を 超える放流期間に着目すると表層取水する方法が最も良い運用方法であると考えられる.

以上のことにより、植物プランクトンの増殖、冷・温水放流、高濁水放流と土砂堆積の 問題に対し、SWSの運用により3つの問題を同時に解決することは困難であることが明ら かになった.従って,それぞれの水質問題に対する特性を把握することにより最も効果が 高い項目に着目して、SWSの運用を行う必要がある。まず、本研究で得られた結果を参考 に 4~11 月まで水面~水深5m間の表層取水を行うと, 水深 10~12mから取水する運用に 比べて、ダム湖内の表層におけるある程度 Chl.a 濃度の増加が予想されるが、これに対す る冷水放流期間の短縮効果がより高くなることができると考えられる.また、循環期であ る12~3月においてはどの層でもほぼ同じ水温と濃度の分布であるため,3月以後の取水水 深を考えると水面~水深5m間から取水を行うと SWS の操作による費用の低減が予想され る.さらに, SS についても表層取水を行うと, 本研究で得られた結果ように下流河川にお ける SS の基準濃度を超える放流期間を短くすることができると期待される.

← 第4章 参考文献 –

- [1] 総合科学技術会議環境担当議員·内閣府政策統括官(科学技術政策担当)共編, 2003. 地 球温暖化研究の最前線ー環境の世紀の知と技術 2002,総合科学技術会議・地球温暖化 研究イニシャティブ·気候変動分野報告書, 財務省印刷局.
- [2] Jha, M., Arnold, J. G., Gassman, P. W., Giorgi, F. and Gu, R. R., 2006. Climate changes sensitivity assessment on upper mississippi river basin streamflows using SWAT. Journal of the American Water Resources Association, 42, 997-1015.
- [3] Ma, S., Kassinos, S. C., Fatta Kassinos, D. and Akylas, E., 2008. Effects of selective water withdrawal schemes on thermal stratification in Kouris Dam in Cyprus. Lakes & Reservoirs: Research and Management, 13, 51-61.
- [4] 堀田哲夫, 陳飛勇, 山下芳浩, 東海林光, 2002. 成層型ダム湖における濁水特性と選 択取水効果に関する事例的研究, 水工学論文集, 第46巻, 1079-1084.
- [5] 矢島啓, 石黒潤, 2005. 異高同時選択取水によるダム貯水池の水質保全効果に関する研 究, 水工学論文集, 第49卷, 1135-1140.
- [6] 牧野育代, 寶馨, 立川康人, 2007. 選択取水方式の導入が植物プタンクトンの鉛直分 布と成長環境に及ぼす影響, 水工学論文集, 第51 巻, 1379-1384.
- [7] Vollenweider, R. A. and Kerekes, J., 1980. Synthesis report. Cooperative Programme on Monitoring of Inland Waters (Eutrophication Control), Rep. Technical Bureau, Water Management Sector Group, Organization for Economic Cooperation and Development (OECD), Paris, 290.
- [8] 国土交通省, 2003. ダム事業ー地域に与える様々な効果と影響の検定, 平成 13年度~14 年年度プログラム評価書.
- [9] 国土交通省河川局河川環境課, 2005. 曝気循環設備及び選択取水設備の運用マニュア ル(案).

第5章 結論

本論文においては東京都, 埼玉県及び秩父市に 1 日最大 35 万m3の水道用水を提供して いる重要な水ガメである浦山ダムを対象に、将来(2062~2070年)における得た気象と流出 データに対してより信頼性が高い将来予測結果を得るために行ったバイアス補正の妥当性 を確認した。また、その結果を利用し、浦山ダムにおいてダム湖内と下流河川の水質変化 を検討した上で,水質保全施設であるSWSの運用方法に伴う水質変化を検討した. そして, 将来の浦山ダムにおけるSWSの最適運用方法を提案した.

以下に、各章で得られた主な知見を要約して本論文の結論とする.

第1董においては、気候変動が水資源に及ぼす影響に関する既往の研究についてレビュ ーして、また水質保全施設毎の運用効果を明らかに確認したとともに、その現状および不 足した点より本研究の必要性を明確にし、本論文の構成および内容について示した.

第2 章においては,浦山ダムを対象に平水年である 2000 年をもとに WRF を用いた力学 的ダウンスケーリングを行った結果を用い、その結果を複数の方法でバイアス補正を行っ た. 補正を行ったデータについて精度を評価するとともに3次元湖沼生態系モデルである ELCOM-CAEDYM を適応したときの、バイアス補正が貯水池水質に与える影響を評価し た.その結果、将来時への適応を考慮した場合、頻度分布マッピングが最も適切な補正方 法と考えられた. また、補正後の精度から気温, 気圧, 日射量, 雲量, 湿度についてはバ イアス補正が可能であることを明らかにした.なお,風向については統計的ダウンスケー リングが有効であり,風向についてはもっと詳細なダウンスケーリング等の対応が必要で あると考えられた。また、ダウンスケーリングから得られた気温や日射量などに適切なバ イアス補正を行うことにより、ELCOM-CAEDYM モデルを用いた計算を行い、ダム内と それの影響を強く受ける下流河川(ダム直下流 90 m)の変化を検討した. その結果, SS, TN や TP 濃度に与える影響は小さかった. しかしながら、水温、溶存酸素と植物プランクト ン(Chl.a)には大きな影響を与えることが分かった. さらに、植物プランクトンのバイオマ スに大きな影響を与える表層水温に重要な熱収支の問題を少なくすることができることが 分かった.

第3章においては、第2章と同様に浦山ダムを対象とし、WRFによりダウンスケールさ れた長期間の将来予測情報及びその結果の降水量から算定された浦山ダムへの流入量を用 い、気象データと流量データのバイアス補正を行った. さらに、濁度や植物プランクトン

の指標であるSSやChl.aを含む浦山ダムの水質予測を行い、ダム湖内と下流河川における 水質変化を検討した. WRFによりダウンスケールされた気象予測にバイアス補正を行った 結果、9年間の将来平均気温は現在平均気温より2.9℃上昇し、また、ダウンスケール結果 にYHyM/BTOPMCを適用して得られた現在と将来の浦山ダムへの流入量のバイアス補正 結果、将来は現在より 0.4 m3/s程度増加することが予測された. また、将来予測のために 構築したELCOM-CAEDYMモデルの入力データの 1 つである流入水温は気温から求める 回帰式を用い、将来は現在より9年間平均で2.0℃上昇した結果を得た。さらに、流入水 温から飽和濃度で算出される流入溶存酸素は 0.7 mg/L低下した. 流入SS濃度は流入量から 求めるL-Q式を用いたため、流入量がより多い将来に現在と比べて9年間平均6.5 mg/L増 加することが予測された. さらに, 2002~2010年の再現計算から概ね再現できたパラメー タを用いて現在と将来予測を行った結果、ダム基準点において将来には気温の上昇に伴い 表層水温が平均 2.8℃高くなるとともに水温成層も強くなることが予測された. また, 将 来は出水の規模と頻度増加により頻繁な高濁水の流入・残留・放流が予測された. 一方, 逆に将来のChl.aは、表層水温の上昇や放流、出水による濁水がChl.aの成長を阻害し現在 より低くなる可能性が高いことを明らかにした。ダムからの放流による下流河川の水質変 化をみると,9 年間に,将来における冷水放流(計 429 日)は現在(880 日)より短くなるが, 将来の温水放流(計 2,432 日)は現在(計 1,915 日)より長くなることが予測された. さらに, 25 mg/Lを超えるSSの放流は現在(計 181 日)よりも将来(計 597 日)に大幅に増加し、放流 された土砂量を比較すると将来(21.7%)は現在(12.5%)より放流されたことが明らかになっ た. 以上のことにより、今後は将来に起こる可能性が高い温水放流や高SSの放流期間をで きるだけ短縮できる選択取水設備などの水質保全施設の運用方法を検討し、将来における ダム湖内と下流河川, 両方の水質の向上させる方法を提案する必要があることを示した.

第4章においては、浦山ダムにおける現在と将来の長期間(9年間)の水質の予測計算を 行い、将来において危惧される湖内の植物プランクトンの大増殖,冷・温水放流,堆砂問 題に対して SWS の運用条件による浦山ダムの水質変化を評価した. SWS の運用条件に伴 う将来の水質変化を予測した結果, ダム湖内は表層取水より取水水深を 10~12 m にすると 表層の水温が上昇し、それによる水温躍層の位置も低下した. SS については取水水深に伴 う水温分布の変化にまめ変化により取水水深が深いほど出水時に濁度層が広が ることが明らかになった. なお, Chl.a は取水水深が深いほど表層水温が上昇し, 成長最 適水温範囲を超えるため、Chl.a が低下することが予測された. 下流河川における放流水 温はダム湖内の水温に依存し, 気温上昇に伴うダム湖内の水温上昇により冷水放流は減少, 温水放流は増加することが予測された. また、現在の水温を基準にした場合、将来に SWS の運用による冷・温水放流を評価した結果、冷水放流について表層取水の場合に 47 日/年, 水深 10~12 m から取水する場合に 163 日/年, 温水放流は各ケースでそれぞれ 270 日/年, 162 日/年となることが予測され、表層近くで取水するほど冷水放流期間は短くなるが、温 水放流期間が長くなることが明らかとなった. ダム湖内に流入する SS と基づく流入土砂

量と堆積土砂量を評価した結果、現在より将来に多くの土砂が流入するが、将来は現在よ り出水頻度が多く、それらは沈降する前に洪水吐あるいは SWS から放流されるため、将 来における流入土砂に対する土砂の堆積率は低くなった.また, SWS 運用による堆積率は, ダム構造上の原因ため大きな違いはなかった.

将来における SWS の運用についてはダム湖内植物プランクトンの成長と温水放流に着 目すると取水水深が深いほど、冷水放流に着目すると表層と近いほど良い結果を得た。従 って,植物プランクトンの成長を防ぐために取水水深を深く設定すると冷水放流が起るた め、本研究で行った運用方法では表層取水することが最も効果が高いと考えられる. これ は、表層取水は 10~12 m の取水より Chl.a の基準濃度(20 μg/L)を超える期間が5日/年程 度増加することに対し、冷水放流期間の減少(116 日/年)がよりできるためである. また, SS については SWS 運用による明確な差は得られなかったが、下流河川の基準濃度を超え る放流期間に着目すると表層取水する方法が最も良い運用方法であると考えられる.

以上のことにより、植物プランクトンの増殖、冷・温水放流、高濁水放流と土砂堆積の 問題に対し、SWSの運用により3つの問題を同時に解決することは困難であることが明ら かになった。従って、それぞれの水質問題に対する特性を把握することにより最も効果が 高い項目に着目して、SWSの運用を行う必要がある。まず、本研究で得られた結果を参考 に 4~11 月まで水面~水深5m間の表層取水を行うと、水深10~12mから取水する運用に 比べて、ダム湖内の表層におけるある程度 Chl.a 濃度の増加が予想されるが、これに対す る冷水放流期間の短縮効果がより高くなることができると考えられる.またた、循環期であ る12~3月においてはどの層でもほぼ同じ水温と濃度の分布であるため,3月以後の取水水 深を考えると水面~水深5m間から取水を行うと SWS の操作による費用の低減が予想され る.さらに, SS についても表層取水を行うと, 本研究で得られた結果ように下流河川にお ける SS の基準濃度を超える放流期間を短くすることができると期待される.

以上述べたように、本論文では将来予測時に気象データに含まれているバイアスが水質 予測結果に及ぼす影響について検討を行い、バイアス補正の必要性を明らかにした.また, 適切なバイアス補正を行った将来の気象と流出データを用い、浦山ダムの湖内と下流河川 における将来水質予測を行うとともに、選択取水設備の運用方法に伴う水質変化の検討を 行った.

本研究で得られたバイアス補正に関する成果は将来の気象データを使用する流域の流出 計算とダム貯水池の水質予測に関した研究にバイアス補正の必要性と当為性の情報提供を 通じ、予測結果の信頼性向上に大きな役立つことができると考えられる。また、得られた 将来の水質予測結果および選択取水設備の運用方法に伴う水質変化予測結果は、将来にお ける浦山ダムの選択取水設備の運用による水質管理に重要な参考資料になると考えられる.

本研究の遂行と論文の執筆に当たっては、多くの方々からの御指導、御助言、御支援を 頂きました.

鳥取大学工学部土木工学科 矢島啓准教授には,筆者の博士後期課程における主指導教官 として留学時に細かい書類から宿舎などの生活の準備まですべての御支援を頂きました. また,論文執筆の際に終始温かい御指導ならびに御教授を頂いて,先生の研究に対する熱 意や姿勢からは数多くのことを教えて頂きました. ここに記して深く感謝の意を表します. 鳥取大学工学部土木工学科 檜谷治教授には,本研究の遂行と論文の執筆に当たって多数の 貴重な御意見、御助言を頂きました.ここに記して改めて深く感謝いたします.鳥取大学 工学部社会開発システム工学科 増田貴則准教授には,本論文を御高覧して頂くとともに非 常に貴重な御意見、御助言を頂きました。ここに記して深く感謝いたします。鳥取大学工 学部土木工学科 梶川勇樹助教には,本研究の遂行と論文の執筆に当たっていつも優しく御 指導, 御助言を頂きました. ここに記して深く感謝いたします. また本研究は, 科学技術 振興機構(JST)の戦略的創造研究推進事業(CREST)の研究課題"気候変動に適応した調和型 都市圏水利用システムの開発"(研究代表:東京大学大学院工学系研究科附属水環境制御研 究センター 古米弘明教授)のもとで行いました. そこでは、古米教授をはじめとする研究 グループの皆様に様々の御意見、御助言を頂きました。ここに記して深く感謝いたします. 特に、金沢大学理工研究域環境デザイン学系 谷口健司准教授には、本研究を遂行に貴重な 現在と将来の気象データや御助言を頂きました。また、山梨大学生命環境学部環境科学科 石平博准教授、馬籠純助教には、本研究を遂行に貴重な現在と将来の流出データや御助言 を頂きました.ここに記して深く感謝いたします.さらに,水資源機構荒川ダム総合管理 所からは水質モデルの構築に必要な流入量・放流量を含む多くののデータをご提供頂きま した. ここに記して深く感謝いたします.

本研究を遂行するにあたり、鳥取大学工学部土木工学科水工学研究室の学生の皆様には、 公私にわたり多くの御支援と御協力を頂きました。特に、本論文の執筆の際に細川達也君 と山田康弘君から日本語の修正に大変な御助力を頂きました. ここに記して深く感謝いた します. また、忠北大学工学部環境工学科 環境システム工学研究室の鄭世雄教授、李興洙 博士には、遠いところから多くの御助言や精神的に多大なる御支援を頂きました。ここに 記して改めて深く感謝いたします.

最終に、筆者の大学院博士後期課程までの進学を許して頂き、これまで物質的に、精神 的に援助し続けてきてくれた両親,高校から大学の卒業まで私を育ててくださった祖母, そして有一の兄と兄嫁、また寂しい留学時に生活の活力を与えてくれた甥に対し、深く感 謝の意を表します.