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ABSTRACT 

There are two challenging tasks in computer vision. One is to construct a vision 

system to execute scene analysis in the special environment, for the case which humans 

are not able to do, such as an endoscope for visual examination in hospitals, an 

omnidirectional camera for surveillance with a large field of view. On the other hand, we 

want computers to understand our world the way we do, make scene understanding more 

human-centric, referring to scene understanding. 

This thesis focuses on the application of omnidirectional cameras in scene 

analysis and scene understanding. At first, a method of scene analysis based on a horse 

vision system is proposed. A horse vision system (HVS) consists of a pair of fisheye 

cameras which have a hemispherical field of view, respectively, and are laid to overlap 

each other partially. The characteristics of the HVS result in a representation which 

enables a wide omnidirectional monocular vision and a limited-field-of-view binocular 

vision simultaneously. The method for the realization of the proposed HVS and the 

preliminary experimental results of scene analysis based on the HVS are presented. 

Secondly, the problem of recovering the structure of an indoor scene from a single 

image is studied. A novel method of estimating the spatial layout of rooms from a single 

fisheye image is introduced. However, fisheye images involve just partial scene, which 

result in visually open boundary condition, called open geometry. A full-view image 



 

ix 

 

results in a visually close boundary condition, called close geometry. The characteristics 

of close geometry are employed to explore indoor scene understanding from a single full-

view image.  

Additionally in scene analysis, it is often necessary to transform the unfamiliar 

images captured by special cameras into the view similar to that of humans’ vision. For 

example, the street view of city is shown and changed smoothly from panoramic images 

in Google Street View on the web. As a basic processing operation of omnidirectional 

images, a method of quickly generating the perspective display from a full view image 

according to users’ view direction and zoom-in/out operation is proposed. 
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CHAPTER 1 

Introduction 

This thesis focuses on the application of omnidirectional cameras in scene 

analysis and scene understanding. It can be organized in three parts: Horse-Vision-

System-based scene analysis, single-view scene understanding from omnidirectional 

images and fast generation of perspective display from full-view images. A brief 

introduction for each is given in the following. 

Vision-based scene analysis is a basic research topic in machine vision, and many 

approaches have been developed until now for this task. What kind of approaches should 

be used depends on the concrete task of scene analysis. For example, for motion detection 

by a stationary single camera, the method of background subtraction is popular and 

effective; for the construction of 3D structure of environment, a stereo method is usually 

used. While the processing of background subtraction by a single camera is simple, the 

construction of 3D structure of environment by a stereo method not only needs multiple 

cameras, but also costs a large amount of computation relatively. The scene analysis 

using a single camera is referred to as monocular vision while that using two cameras is 

referred to as binocular vision. 

When we construct a vision system for a general scene analysis task, biological 

vision systems often give us a hint. Human beings have a binocular vision system; 

however, the scene in the rear cannot be observed. To cope with a dynamic environment 
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in real time, a wide field of view (FOV) brings definite merits to a vision system. In the 

first part of the thesis, a pair of fisheye cameras is used to imitate horses’ eyes, 

constructing a vision system, called horse vision system (HVS), with two modes of vision, 

monocular vision and binocular vision. A mobile robot can detect obstacles by using the 

HVS with the narrow FOV binocular vision, and meanwhile, monitor the surrounding 

environment with the wide omnidirectional monocular vision. 

On the other hand, though the research in computer vision has developed rapidly, 

scene understand is still a challenging task for computers. From a single image, humans 

can immediately grasp the spatial layout of the scene and understand what the image tells. 

However it is difficult for computers. How to make computers consider images like 

humans? As images are reflections of the reality, we cannot understand them without 

prior knowledge on the real world. A person may have nothing about a picture of the one 

he has not known, for example, a view of atom. Compared to complex natural condition, 

a familiar structured man-made environment is easier to be modeled. 

Recent years have seen a growing interest in indoor scene understanding from a 

single image. Compared to a full dense reconstruction, this technique is more efficient 

and more robust for indoor environments with less texture. Moreover, it may provide 

strong indicators to the structure of rooms to easily distinguish objects from background 

in scene interpretation task. However, existing approaches typically rely on the pinhole 

camera geometry. These conventional cameras have a relative small field of view; on the 

other hand, omnidirectional systems that can provide a wide field of view are gaining 
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popularity. Obviously, the wider the field of view is, the more information we can gather 

from the environment. Therefore, why not employ an omnidirectional camera to carry out 

scene understanding task, which enable computers to predict more valuable information 

from indoor scene, as well as recognize the whole room by only one or two images. 

In the second part of this thesis, scene understanding for a fisheye image is first 

explored. A novel method is given to estimate the spatial layout of rooms only from a 

collection of line segments. Then, we pay our attention to full-view images. Nowadays, 

360-degree panorama display becomes easily obtained and widely used in various aspects. 

An approach of indoor scene understanding from a single full-view image is proposed.  

In the third part, generation of perspective display from full-view images is 

studied. Though omnidirectional cameras enable robots to gain more valuable 

information from the environment, the acquired images are not friendly to humans 

because of large distortion. In order to overcome the deficiency, perspective display, 

which is much similar to that of humans’ vision, needs to be generated frequently. It 

benefits the application such as robot control, humanoid robot, especially for constructing 

the interfaces of robot that focused on providing users with the most current information 

as if they can see by themselves. In addition, some algorithms based on conventional 

cameras may be adapted directly to the perspective images. It is appropriate to say that 

generating perspective display is a basic operation for the research of omnidirectional 

vision. 
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In general, this processing is time-consuming because of mass non-linear 

calculation. In this thesis, omnidirectional images are represented by SCVT (Spherical 

Centroidal Voronoi Tessellation) images which are called spherical bubbles, and a 

method to generate perspective display swiftly more than before is proposed. 

In the remainder of the thesis, the detailed descriptions of these three parts are 

given. 
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CHAPTER 2 

Horse-Vision-System-based Scene Analysis 

2.1 Introduction 

A horse has two big eyes, which are located on either side of its head. On one 

hand, like people, it can see the same scene with both eyes at once, resulting in better 

depth perception and a more concentrated field of vision. On the other hand, a horse can 

also use each eye to see separate scene, which enables it to get a view of surroundings on 

both sides. It is greatly important for horses to detect stalking carnivorous animals 

sneaking up from behind in order to avoid danger. So different from people, a horse holds 

a wide, circular view with a range of vision of more than 350°. Approximately 65° 

among that is binocular vision, while the remaining 285° is monocular vision [1], [2], as 

shown in Fig 2.1. A pair of fisheye cameras is used to imitate a horse's eyes, as shown in 

Fig 2.2(a). Each of them has a hemispherical FOV. The pair of fisheye cameras is 

mounted on a rig with the overlapping region of observation fields so as to acquire the 

two modes of vision, monocular vision and binocular vision, simultaneously. 

There are following characteristics in the HVS: 

 The pair of fisheye cameras point to different directions, respectively. 

Meanwhile, between them there are overlapping regions, i.e., the common 

FOV region (CFOVR), in the fisheye images for the realization of 

binocular vision. Obviously, this setup is different from that of the 

conventional canonical stereo.  
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 The two visual modes of the HVS, omnidirectional monocular vision and 

binocular vision result in reasonable distribution of limited computation 

power of a computer. Using the HVS, a robot can monitor the surrounding 

environment by the omnidirectional monocular vision mode, and measure 

the 3D information by the binocular vision mode only for a part of 

environment which is necessary for detailed investigation. 

The main contributions of this research are as follows. 

 Construct a biologically-inspired vision system, the HVS, like horses’ eyes. 

According to our best knowledge, it may be the first system to try to imitate 

the visual function of a horse’s eye. 

 Present an algorithm of identifying the CFOVR and rectifying the CFOVRs 

for the binocular vision of the HVS. 

 Present the preliminary experimental results of the scene analysis based on 

the proposed HVS. 

The remainder of this part is organized as follows: Related research is introduced 

in the next section. In Section 2.3, the realization of the HVS is described. An application 

of scene analysis by the HVS is presented in Section 2.4. Finally, conclusions are given 

in Section 2.5. 
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(a)   

common fields of view region 

    

(b)  
Fig 2.2 The horse vision system (HVS) proposed in this thesis. (a)  The horse vision 

system. (b) A pair of sample fisheye images captured by the HVS. 

Fig 2.1  A sketch for the function of horse vision. 

monocular 

(one eye) 

monocular 

(one eye) 
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2.2 Related Research 

Omnidirectional image sensors are widely used for visual surveillance and vision-

based robot navigation. An omnidirectional image can be obtained by a catadioptric 

image sensor [3], a fisheye camera [4], or a camera cluster [5]. Thanks to the wide FOV 

of an omnidirectional camera, it is very effective to detect the motion from the 

surrounding environment speedily. However, it is difficult to measure the 3D information 

of the surrounding environment from a single omnidirectional camera. 

To measure 3D information of the surrounding environment, multiple 

omnidirectional cameras are usually used by modifying the conventional stereo method 

[6], [7]. In order to obtain the 3D information of the surrounding environment as much as 

possible, the FOV of the multiple omnidirectional cameras are laid to overlay each other 

as largely as possible. In comparison with the motion detection by the background 

subtraction, the stereo method costs a lot of computation. 

2.3 Realization of the HVS 

In this section, we first describe the method of realizing the HVS, using a pair of 

fisheye cameras. Then we express the whole vision by combing the two visual modes, 

omnidirectional monocular vision and binocular vision. 

 Omnidirectional Monocular Vision by the HVS 2.3.1

The intrinsic parameters of the two fisheye cameras used in the VHS are 

calibrated using the method in [4] beforehand. Given the correspondence of features 



 

 9 / 109 

 

between the pair of fisheye images, the relative pose between the pair of fisheye cameras 

can be computed using the method of [8]. Using the intrinsic and extrinsic parameters, 

the pair of fisheye images can be integrated into a wider omnidirectional image or a 

spherical image. 

Fig 2.3 shows the spherical image obtained by mapping the pair of fisheye images 

onto a sphere. The duplication of the scenes appears in the CFOVR. Fig 2.4 shows the 

image obtained by extending the spherical image along the longitudinal and latitudinal 

directions.  

 

 

 

     
 

(a)                                                           (b)   
 

Fig 2.3 The integrated spherical image from a pair of fisheye images in Fig 2.2(b). 
(a) The front.  (b)  The rear. 
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 Binocular Vision by the HVS 2.3.2

Here, we focus on the explanation of the difference for the rectification of the 

HVS in comparison with the conventional canonical stereo. 

2.3.2.1 Determination of the CFOVRs 

First, we explain the idea of determining the boundaries of the CFOVRs. Fig 2.5 

shows two hemispherical images which correspond to the pair of fisheye images of the 

HVS. The boundary of the hemispherical images is the great circle on the XY plane of 

the camera coordinate system, respectively. The CFOVRs to be determined are indicated 

in blue color. Obviously, one part of the boundaries of the CFOVRs is the boundary of 

the hemispherical images. Thus, only the other part needs to be determined. 

 

     
 

 

Fig 2.4  The flatten image of Fig 2.3.  
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It is estimated by mapping the boundary of one hemispherical image to the other 

in terms of the relative orientation between the two fisheye cameras. Note that the rays 

from a scene point which has a big distance from the HVS points to the two cameras are 

almost the same. It implies that the displacement between the pair of fisheye cameras can 

be ignored. We also give the detail of the algorithm of determining the boundaries of the 

CFOVRs. 

The boundary of a hemisphere refers to the great circle of the sphere on the x-y 

plane in the camera coordinate O-XYZ. Assume that p (u, v, s) is a point in spherical 

space, then the boundary can be represented as  

                           

Fig 2.5 The common fields of view of two cameras in our system. 
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Where, r is the radius of the sphere. Similarly, for corresponding points pl (ul, vl, sl) and pr 

(ur, vr, sr) on the circumference of the great circle of the hemisphere respectively, we 

have: 
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Using the relative pose ),( tRrl  between the pair of fisheye cameras computed in Section 

2.3.1, we have the following equation: 

 tpRp rrll  
(2.3) 

By ignoring the displacement t  between the pair of fisheye cameras, the equation above 

is represented as follows: 

 rrll pRp  
(2.4) 

Then, the boundaries of the left CFOVR can be presented in two parts. One is the 

same as the original image (indicated in red color), 
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and the other is the projection of the half circumference of the great circle of the 

hemisphere in the right image (indicated in dark blue color). Using the equation (2.4), it 

can be presented as follows: 

 
0)(,0)(
)()()(

11

2212121

ulrlslrl

slrlvlrlulrl

pRpR
rpRpRpR  

(2.6) 

Where, ulrl pR )( 1
, vlrl pR )( 1

, slrl pR )( 1
 are the values of )( 1

lrl pR  in each coordinate X, Y, Z, 

respectively. We use the same notation for others.  

Similarly, the right CFOVR can be determined, presented as follows: 

 
0)(,0)(,)()()(

0,0,
2222

2222
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usrsvu  

(2.7) 

Finally, we have the equations of the boundaries of two CFOVRs. To test the 

method, we map the determined boundaries of the CFOVRs onto the fisheye image of the 

HVS by the known intrinsic parameters, as shown in Fig 2.6. 
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2.3.2.2 Rectification of the CFOVRs  

Suppose that a scene point P(X,Y,Z) is projected onto the pair of the original 

hemispherical image of the HVS as pslo and psro, respectively. Using the relative pose (Rrl, 

t)  between the pair of fisheye cameras of the HVS, we have the following equations: 

 PApslo
~0 , PtRRp rlrlsro

~11  
(2.8) 

where P~ , TPP 1~ is the homogeneous coordinate of P . The symbol  means that pslo 

and psro are equal to P  multiplied by a scale factor. 

To rectify the original CFOVRs, the original hemispherical images must be 

rotated so that the axes of the two new camera coordinate systems of the rectified 

CFOVRs are parallel to each other. Suppose that, after the rectification, the rotation 

matrix Rrl is changed to R'=[r1 r2 r3]T . The projections of scene point P onto the two 

rectified spherical images psln and psrn can be represented as follows in term of (2.8): 

                           

 
 

Fig 2.6  The determined common fields of view. 
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 PRps
~0ln

, PtRRpsrn
~  

(2.9) 

According to the characteristics of the HVS, R' is determined as follows (see Fig 

2.7). 

 

1) Let X-axis be parallel to the line joining the two centers of images. Thus, we 

have: 

 𝑟ଵ = 𝑡|𝑡| (2.10) 

2) Let the vector sum of the unit vectors z1 and z2 of Z-axis of two original images 

be k, and r2 corresponding to Y-axis is presented as follows: 

 
12 rkr  

(2.11) 

Where  

                           

 

Fig 2.7   The sketch of the rectification. O-XYZ indicates the rectified camera 
coordinate system. 
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21

21 )(
zz
zzk  

(2.12) 

3) r3 corresponding to Z-axis is determined based on r1 and r2, which is shown as 

follows: 

 
213 rrr  

(2.13) 

According to the method of [7], for (2.8), (2.9) we have: 

 slos pRp ln , srorlsrn pRRp  
(2.14) 

Finally, we can get the rectified image such as Fig 2.8.  

  

2.3.2.3 Acquisition of dense disparity map 

After rectification, the epipolar lines are parallel to each other on the sphere 

model, like Fig 2.9(a). However, it has high cost of calculating the dense disparity 

because the point matching is troublesome on the sphere. Here, we transform the rectified 

                           

 
 
 

Fig 2.8   The rectified views of Fig 2.6. 
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CFOVRs to longitude-latitude representation so that the epipolar lines of the CFOVRs 

are parallel to the rows of images, as shown in Fig 2.9(b). Then, the fast conventional 

area-correlation-based method is used to compute the disparity of the CFOVRs, as shown 

in Fig 2.10. The brighter pixel has a smaller distance from the HVS. Using the disparity 

values, the 3D information of environments can be computed further according to the 

disparity of spherical stereo as defined in [7]. 
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(a)  
 

 
 

(b)  
 

Fig 2.9   The rectified views with epipolar lines. (a) The fisheye views with 
epipolar line. (b) The longitude-latitude image. 
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 The whole vision of HVS 2.3.3

Combining the binocular vision and the monocular vision, we construct the whole 

vision of our system. Two kinds of display are introduced: a panoramic view with the 

rectified binocular vision and a display with the dense disparity map. The results are 

shown below in Fig 2.11. 

                           

 
 
 

Fig 2.10   The dense disparity map computed using the longitude-latitude image. 
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2.4 Scene Analysis by the HVS 

The configuration of the proposed HVS has been introduced in Section 2.1 as 

shown in Fig 2.2(a). The pair of hemispherical FOV fisheye images is acquired by the 

                           

 
 
 

(a) 
 

 
(b) 

 

Fig 2.11   The whole vision by the VHS. (a) By using the rectified binocular view. 
(b) By using the dense disparity map. 



 

 21 / 109 

 

video cameras, Sony DCR-HC30, mounted with a fisheye conversion lens, Olympus 

FCON-02. The size of the captured fish-eye images is 640×480 pixels. A pair of sample 

images captured by the HVS is shown in Fig 2.2(b). 

In this section, we present the preliminary experiments of scene analysis by the 

HVS as an application and also test the effectiveness of the proposed method. The main 

characteristic of the experiment by the HVS system is that it can both perform motion 

detection by the whole vision for near full FOV and motion estimation by binocular 

vision for a relative narrow FOV.  

The processing is as follows: 

1)  Calibrate the intrinsic and extrinsic parameters of the pair of fisheye cameras 

in the HVS by the method in Section 2.3.1. 

2)  Do motion detection in the field of the whole vision for the captured video 

using the background subtraction algorithm [9]. 

3)  Generate the corresponding dense disparity map in the field of the binocular 

vision, for every frame of the detected motion video above. 

4)  Compute the depth map from each disparity map until the end of the video. 

Then, indicate the estimated location of the movement. Finally, we can get the whole 

depth video of detected moving object's motion. 

Here, two experiments based on the processing above are carried out. We describe 

them respectively in next two subsections. 
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 Experiment 1: Position Estimation of One Person.  2.4.1

One person walks along a fixed route, which is set in the overlapped view of 

binocular vision. A dense disparity map is generated from each frame, and then the 3D 

information of the person is calculated. The bird's-eye view in Fig 2.12 shows the 

estimated trajectory indicated in pink, which is projected from 3D position onto the 

ground. The fixed person route is marked in blue. In addition, the white line illustrates the 

border of the measurement field. More accurately, we demonstrate the results by the HVS 

coordinate in Fig 2.13, where θ refers to the angle of the polar coordinate. 

In Fig 2.14, the estimation error of the position on the ground is represented based 

on the polar coordinate system. We can see that the error in the central part is small, and 

is increasing far from the center. This tendency is consistent with the error analysis of a 

spherical stereo method reported in the reference [7]. However, the accuracy of the 

binocular vision still needs to be improved for real applications, and it will be our future 

work. 
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Fig 2.32   The bird-eye view of estimated moving track. 

                           

 
 
 

Fig 2.13   Horizontal projection of estimated moving track in the coordination of 
HVS. 

the centroid of
estimated person 

the setting route 

The horse vision  
system 
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 Experiment 2: Position Estimation of two Persons  2.4.2

Two persons walking from opposite direction in front of the VHS are captured as 

moving objects in our experiment. We also use the methods described above to deal with 

the captured video. Fig 2.15 illustrates one pair of original frames and the detected 

persons. Afterwards the disparity map is computed as shown in Fig 2.16(a). As the result 

of motion estimation, Fig 2.16(b) shows the area of detected persons in a depth map. The 

centers of gravity and the location of the VHS are also indicated. 

The results indicate that our system is effective and useful for environment 

analysis. The experiments also demonstrate our method for imitating the horse vision 

performs well. 

                           

 
 
 

Fig 2.14   The error distribution against θ variation in Fig 2.13. 
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(a) 
 

 
(b) 

 

Fig 2.15   Motion detection of one pair frames. (a) Original images captured by 
our system. (b) The result of motion detection. 
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2.5 Conclusions 

In this part, a biologically-inspired vision system, the VHS, like horses’ eyes is 

constructed. It consists of a pair of fisheye cameras which have a hemispherical field of 

view, respectively, and are laid to overlap each other partially. These characteristics 

enable the HVS to implement a wide omnidirectional monocular vision and a limited-

field-of-view binocular vision simultaneously. We also present an algorithm of 

identifying the CFOVR and rectifying the CFOVRs for the binocular vision. Finally, the 

preliminary experimental results of scene analysis based on the HVS are presented to 

show effectiveness of the proposed method. 

                           

                                       
 
 

(a)                                                                 (b) 
 

Fig 2.16   The results of position estimation. (a) The computed dense disparity 
map. (b) The result of the depth map for motion estimation. Both the location of the 
VHS (green) and the centroid of the detected persons (pink) are shown in the map.  
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For future work, we propose several ideas that extend our current framework. 

 Improve calculation accuracy of the stereo disparity in the overlapped field, 

corresponding to the binocular vision. Furthermore, improve the 

measurement accuracy of the three-dimensional position in the environment. 

 Develop active binocular vision system to achieve object tracking, when 

detecting an object of interest in the wide field of monocular vision. 

 We notice that movement detection method used in the experiment cannot 

be applied in the case that a person remains stationary within the scene. In 

order to cope with this situation, we plan to first recognize the candidate 

regions of a person by the approach of pattern recognition from the 

monocular vision, and then calculate the 3D position of the person in the 

field of the binocular vision.  
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CHAPTER 3 

Single-View Scene Understanding 

3.1 Introduction 

Some approaches [10, 11, 12] are presented to describe the structure of 3D rooms; 

Reference [13] pays much attention to recovering the objects or furniture, and in [14], an 

explicit volumetric representation of objects in 3D is incorporated. Furthermore, 

extending the humans thinking to computers, some work [15] reviews the typical 

definition of understanding. Implicitly, they exploit the physical interactions between 

human actions and scene geometry. In addition, the interest in this domain has led to 

some other related applications, such as precise reasoning about free space [16], an 

indoor navigating robot [17], real-time indoor scene understanding [18]. 

On the other hand, omnidirectional vision systems that can provide a wide field of 

view are gaining popularity (see Fig 3.1). Recent works [19, 20, 21] have showed 

omnidirectional image sensors can perform well in robot navigation, visual odometry, 

surveillance and so on. Though the aforementioned approaches of single-view 

interpretation may be able to be modified to adapt to an omnidirectional camera model 

potentially, it needs plenty of hard work from down to top, and the practical performance 

is really suspicious. Because such approaches are designed for the images captured by 

conventional cameras, which is limited in that it does not use the additional information 

conveyed by a larger view, for instance, longer line segments and the structure symmetry. 

It cannot take advantage of all the available cues for estimating the spatial layout. 
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Another to be emphasized, omnidirectional images, e.g. fisheye images, are prone to be 

affected by light; it often has less texture or lower resolution; the volume of view 

information is changeable towards direction and hard to extract. Thus, an omnidirectional 

image has its own vulnerable point in respect of describing details. The recent series of 

methods that attempt to model structured scene, estimate the parameters by learning or 

classing methods, often combined with CRF inference [22], structured SVM [23]. They 

may fail to be applied to omnidirectional images with less local information. 

 

 

Inspired by good performance of omnidirectional vision in computer vision, some 

researchers began to consider dealing with the images captured by omnidirectional 

cameras, which hold a wide field of view, such as catadioptric sensors [24], [25]. 

However, catadioptric images always lose the ceiling. It is quite different from fisheye 

                           

        
 
 

Fig 3.1   Different fields of view of images captured by a conventional camera and 
a fisheye camera. 
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images, which can cover from ceiling to floor in the vertical direction. To the best of our 

knowledge, such research based on fisheye camera models has been rarely reported up to 

now. In this chapter, we first explore scene understanding from a fisheye image. We 

impose the structure by introducing a symmetrical rule which describes geometric 

constraints. A novel method is given to estimate the spatial layout of rooms only from a 

collection of line segments. It is much different from the existing approaches, which 

often evaluate the structure hypotheses to find the best fitting one. We define a main 

structure as a basic spatial layout. By our method, a preliminary structure is constructed, 

and then optimized to a main structure. 

In essence, the model of all the aforementioned approaches either using 

conventional perspective images or omnidirectional images obey the similar geometric 

constraints, and the spatial layouts recovered refer to incomplete structures. Here, we 

describe these cases as open geometry, which implies that some parts of the space are lost 

(see Fig 3.2(a)). If we want to take advantage of all the available cues in the environment, 

is there any other more specific and comprehensive model, which enables computers to 

predict the entire structure? It seems what we have to do is to break through the limitation 

of open geometry. 

We pay our attention to full-view images. Some examples are given in Fig 3.3. 

One of well-known applications in practice refers to Google Street View. Users are 

allowed to visit cities on Internet with an immersed sense. The feature of these full-view 

images can be included as that you are able to enjoy the entire scene at the camera 
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location without losing any information. In other words, the spatial layout recovered from 

the images is complete, composing a “close” space. In this thesis, we call the geometric 

constraints of this model close geometry in contrast with the conventional open geometry 

mentioned above (see Fig 3.2(b)). We also employ the characteristics of close geometry 

to explore indoor scene understanding from a single full-view image. The proposed close 

geometry is tested in comparison with the conventional open geometry. 

 

 

                           

        
 

(a)       (b) 
 

Fig 3.2   The images of two types of geometry. (a) Open geometry refers to partial 
scene. (b) Close geometry refers to complete scene. 
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(a) 
 
 

 
(b) 

 
 

 
 

Fig 3.3   Examples of full-view images. (a) Two half scenes captured by fisheye 
cameras. (b) Longitudinal-latitudinal representation. (c) An intuitionistic spherical 

display by CG. 
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This chapter is organized as follows. Section 3.2 introduces the related research. 

Section 3.3 describes the model used in our approach. We explore scene understanding 

for a fisheye image in Section 3.4. Then, we explain the procedure to estimate structure 

from a single full-view image. Finally, we draw a conclusion. 

3.2 Related Research 

 Single-View Geometry Estimation using Perspective Images 3.2.1

The basic problem for indoor understanding is prediction of the room layout given 

a single image. Over the past few years many approaches have been developed to tackle 

the problem under the Manhattan world assumption [26]. One of the common techniques 

is a framework of basic geometric analysis. As summarized by Tretyak et al. [27], the 

bottom-up steps involve a composition of geometric primitives spanning different layers 

from low level (edges) over mid-level (line segments, lines and vanishing points) to high 

level (zenith and horizon). Beyond this pipeline paradigm, most recent approaches [22], 

[23], [28] address this challenging problem associated with a large set of local features, 

such as color, texture, location. However, we notice that an image with wide field of view 

is prone to be affected by light, and it often has less texture or lower revolution in respect 

of describing details. These methods may fail to be applied to omnidirectional images 

with less local information. 

On the other hand, some work focuses on geometric reasoning. Lee et al. [29] 

demonstrates that structure recovery from line segments is comparable with the methods 
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using full image appearance. Flint et al. [30] develop a dynamic programming to 

efficiently search all feasible indoor models. In order to choose the best hypothesis, both 

of two methods generate a map of orientations with different planar regions.  

 Single-View Geometry Estimation using Omnidirectional Images 3.2.2

Omnidirectional cameras refer to the vision sensors that can observe a wide field 

of view. Though the use of omnidirectional cameras has increased among the community 

of computer vision considerably, not so much attention is paid to scene understanding. 

The study has mainly involved the detection of geometric primitives in man-made 

environments [31], [32], [33]. As they argue in their different works, omnidirectional 

vision could be privileged in estimation of the room layout, because it provides two 

important properties. First, the wide field of view allows minimizing the possibility of 

fatal occlusions and partial views, benefiting the extracting lines. Second, the vanishing 

points usually lie inside omnidirectional images. It may bring much convenience to the 

structure recovery processing. 

Inspired by David C. Lee et al.’s method [29], Ozisk et al. [24] show a similar 

processing. Omedes et al. [25] suggest a quicker way to recover the spatial layout of a 

scene. Both of their work depends on a large set of accurate detected lines. Sometimes it 

is hard to carry out extraction step because of low resolution or bad light condition. They 

cannot cope with complex environments. 
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To be emphasized, all the methods mentioned above are designed for the problem 

of images with limited field of view, corresponding to parts of indoor environment, 

which result in visually open boundary condition, referring as open geometry. 

3.3 A Model for Indoor Scene 

Our goal is to extract the main bare structure of indoor environment ignoring all 

objects within rooms. That is to say, we aim to recover boundaries rather than facilities or 

furniture, unless they are large enough to be regarded as an inseparable part of rooms. We 

also estimate surface layout, describing the orientations of every point in the scene. Each 

image pixel is classified as belonging to floor surface, ceiling surface, or wall surface. To 

summarize, geometry estimation is referred as a problem of structure estimation and 

surface labeling. 

 Sphere Camera Model 3.3.1

Generally, it is convenient to turn the images captured by various types of 

cameras with a single viewpoint into an equivalent sphere. Considering surrounded walls 

without order, we employ sphere model to handle omnidirectional images, which 

describes a panorama view with no need to concern about specific visual sensors. Under 

this model, there are some important projection properties, as depicted in Fig 3.4 (left). A 

point 𝑀(𝑋, 𝑌, 𝑍) in 3D space is projected as a spherical point 𝑚(𝑥, 𝑦, 𝑧) onto a unitary 

sphere. The projection of a line segment L  in 3D is converted to a part of great circle l , 
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represented by a unit normal vector 𝑛ሬ⃗ . Several great circles associated with a pencil of 3D 

parallel lines intersect at two antipodal points, which correspond to the vanishing points.  

With any challenging problem, assumptions are generally imposed to add 

constraints that make the problem tractable. One such assumption is that most planes are 

aligned with three main world axes, called Manhattan world assumption introduced by 

Coughlan and Yuille [26]. It states that the scene is built on a Cartesian rig. Thus, we can 

identify three mutually orthogonal vanishing points in the sphere aligned with the three 

dominant directions in the world. For convenience of description, we assume that the 

vanishing point in absolute y-coordinate, denoted as vv , corresponds to the vertical 

direction. The other two vanishing points rv  and lv  are computed from horizontal lines of 

rooms, as depicted in Fig 3.4 (right). If vertical lines in the world do not appear vertical in 

the image, we can rectify them by easily rotating the sphere. 
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 Indoor World Model 3.3.2

Under the Manhattan world assumption, most planes can be labeled in terms of {𝑟, 𝑙, 𝑣}  corresponding to three vanishing points. Indoor environments usually have a 

single floor plane and a single ceiling plane. Successive walls are situated between 

ceiling and floor. Each wall goes along one of two horizontal orientations. We classify 

indoor scene into a set of {𝑓𝑙𝑜𝑜𝑟, 𝑤𝑎𝑙𝑙(𝑜), 𝑐𝑒𝑖𝑙𝑖𝑛𝑔} , referring as regions. 𝑤𝑎𝑙𝑙(𝑜) 

denotes the wall with orientation 𝑜, 𝑜 ∈ {𝑟, 𝑙}.  

The layout of rooms is represented as the combination of floor-wall boundaries, 

ceiling-wall boundaries and wall-wall boundaries, referring to line segments. Sometimes 

one can estimate the surface labels given the most likely spatial layout candidate; and 

                           

                           
 

 

Fig 3.4   The sphere model for full-view images. Left: spherical projection. Right: 
vanishing points and World Coordinate. 
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sometimes the surface labels, in turn, allow robust layout estimation. Therefore, the best 

structure of rooms must have both accurately estimated spatial layout and labelled surface. 

Combining these two types of models, we propose the “indoor world model” as a useful 

approximation for indoor scenes. 

3.4 Estimating the Structure of Rooms from a Single Fisheye Image 

In this section, we focus on the problem of estimating the spatial layout of rooms 

from a single fisheye image. Considering the wide field of view of fisheye cameras, we 

introduce a structure symmetrical rule which describes geometric constraints. A method 

is given to estimate and recover the preliminary spatial layout of room only from a 

collection of line segments extracted from a fisheye image. Then, an orientation map of 

structure is generated. Finally, we refine the spatial layout to obtain the main structure. 

The experiments demonstrate that our approach based on geometric reasoning can be 

used to estimate the structure of indoor scene from a single fisheye image. 

The most desirable property of our model is symmetry. We extend the symmetry 

concept argued by David C. Lee et al. [29]. Man-made buildings always have symmetric 

floor and ceiling shape. As depicted in Fig 3.1, compared to traditional cameras, which 

may not contain both floor and ceiling plane in a single image, a complete scene structure 

with a floor, a ceiling and walls is always visible in a fisheye image. It gives us a hint that 

we can recover a wall-floor boundary from the corresponding wall-ceiling boundary 

under the symmetry criterion or vice versa. The researchers so far attempt to distinguish 

segments of the layout and segments of clutter in cluttered rooms. However, they ignore a 
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serious problem that segments attained from an edge map, are easy to be missed, or be 

occluded by objects. The imperfect line detection becomes a crucial problem of such 

processing. In our case, the layout segments are visible even when some parts are 

occluded. What is more, we can use the geometric symmetry to infer the location of wall-

floor boundaries by wall-ceiling boundaries, which are rarely occluded. 

 Preliminary Spatial Layout Estimation 3.4.1

Walls between ceiling and floor are crucial parts of the whole room. Most of them 

can be divided into different wall towards orthogonal orientations by vertical lines. 

Therefore, we focus on vertical lines to generate the structure. A vertical line and a 

horizontal line next to each other are likely to come from the same wall surface in the 3D 

space. Since we know the corresponding vanishing point for each line, we can represent 

the wall plane by a pair of vertical line and horizontal line. Walls are successive in an 

image from left to right. It implies that if there is a set of wall constructed by a series of 

successive line pairs, which contains wall-floor, or wall-ceiling boundaries, we can build 

the whole structure of a room. 

Fig 3.5 (a) depicts line segments extracted from the fisheye image in Fig 3.1. We 

start by picking up the first line pair from left, referring to the first wall. Then, we search 

for line pairs that share the same line with the ones already found and add them to our 

wall set. If the processing is broken up by no shared lines because of line missing in the 

extraction step, we extend the horizontal line segment of current rightmost pair to right 
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towards its vanishing orientation until it meets another pair. By repeatedly attaching more 

pairs, we create a structure hypothesis (see Fig 3.5 (b)).  

 

Note that the structure hypothesis may have some lines which are not the 

boundaries of wall-ceiling or wall-floor. In addition, as we present before, missing lines 

often take place.  So we need a way to remove inappropriate pairs and recover the 

complete successive boundaries across the image. We implement our method by applying 

the geometric symmetry criterion. The process is illustrated in Fig 3.6. 

1) Connect the horizontal lines next to each other. We focus on horizontal 

lines only; complement them in order to obtain a series of successive wall. Extend either 

of the two horizontal lines next to each other decided by their orientations if they do not 

intersect. In the case of missing boundary, we connect the adjacent breakpoints instead of 

      
 
 

         
            

(a) (b) 
 

Fig 3.5  A structure hypothesis. (a) Line segments. (b) A structure hypothesis 
constructed by a series of successive line pairs. 
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extending lines. Then insert the vertical lines starting from the junction to its 

corresponding point. It obeys the rule that walls are defined by boundaries of wall-ceiling 

(wall-floor) and vertical lines. 

2)  Make up the horizontal lines. We check if the lines above the horizon 

have the corresponding ones below, and recover them if not. Do the same for the ones 

below the horizon.  The result is shown in Fig 3.6 (b). 

3) Check the vertical line. We turn our attention to the vertical lines in the 

hypothesis. Remove the ones that have no intersection with the horizontal lines, since it is 

much likely to belong to objections other than the layout. In addition, if there is one that 

does not intersect the horizontal lines at line endings, it tells us a boundary may be 

missing at the endings. We need to make up the boundary by searching for the nearest 

horizontal line in the collection of line segment (Fig 3.6 (c)).  

4) Deal with the left and right borders. We hope the boundaries across the 

whole image. Unfortunately, blank space often exists between the leftmost horizontal line 

and the left border of an image, so as the right side. We extend the lines following the 

way in 1). Then, make up the horizontal lines using the method in 2). To be noticed, the 

extending lines near the borders cannot cross each other when the symmetric criterion is 

used. This rule holds because there is only one boundary of the same wall and ceiling 

(floor) all the time. If it happens, keep the outside one from the crossing. 
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Finally, we are able to obtain the preliminary spatial layout, showed in Fig 3.6 (d). 

Though it still has some lines which are not the boundaries, it provides enough 

information for us to compute an orientation map. 

 

      
 

         
            

(a) (b) 
 

 

      
(c)                                                                 (d)  

 
 

Fig 3.6   Process of preliminary spatial layout estimation. (a) The horizontal lines 
of the structure hypothesis in Fig 3.5(b). (b) Recover the horizontal lines. (c) The 

result of Step 3. (d) The preliminary spatial layout.  
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 Computing the Orientation Map 3.4.2

An orientation map is referred as the local belief of region orientation. As 

interpreted in [29], a pixel is supported by two line segments having different orientations, 

and the pixel orientation is perpendicular to the plane of the two lines. Thus, the whole 

regions are classified to surfaces towards three possible orientations. Compared with 

computing from a set of line segments, it is much easier to do it from a spatial layout in 

our case.  The process is described as follows. 

Assume a small region s is surrounded by a set of line 

segments  𝐿𝑠(𝑙𝑠ଵ,௫, 𝑙𝑠ଶ,௫, ⋯ , 𝑙𝑠௡,௫) , where 𝑥 ∈ (𝑟, 𝑙, 𝑣) , denotes three orientations. Let  𝑝௦(𝑥|𝐿𝑠) be the likelihood of s belonging to the orientation 𝑥. 

 )()( LsPpLsxp ys ,    y∈ (𝑟, 𝑙, 𝑣),   y ≠ x 
(3.1) 

Where )( LsPp y is the probability of the plane defined by the lines perpendicular to the 

orientation 𝑥. It can be computed by: 
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i
y  (3.2) 

Where 1),( LslN yi , if il  belongs to the plane of orientation y; and 0),( LslN yi  otherwise. 

So as ),( LslN xi .  and  are the constants. 

For every small region, we compute the likelihood of three different orientations, 

and decide the region orientation by choosing the maximal one. Fig 3.7(a) shows the 

orientation map with regions colored in red, green, and blue. 
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 Refining the Spatial Layout 3.4.3

Once the orientation map is generated, it is not difficult to evaluate the scene 

structure. Here, the main structure is interpreted as the boundaries that can divide regions 

upon their orientations. 

Take a vertical line segment in our preliminary spatial layout estimation as an 

example. Investigate the areas the vertical line is dividing. To make orientation noise 

robust, we define the main orientation of a region as Z , which satisfies the constraint. 

 
)()()(

)( max

vArealArearArea
zArea  

(3.3) 

Where 𝑧 ∈ (𝑟, 𝑙, 𝑣), and max)(zArea donates the maximal area with orientation 𝑧 in the 

region. is a threshold. If the left region has the same main orientation with the right 

region, it is much possible that the two regions need to be merged as one and the vertical 

line is not a real boundary. So we remove it from our structure. We check every line 

segments of preliminary spatial layout to decide if they are real boundaries. The final 

refined main structure is shown in Fig 3.7 (b).  
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 Experiments 3.4.4

An experimental result concerning the proposed method is given. Fisheye images 

are acquired by the video cameras, and the intrinsic parameters are calibrated beforehand. 

We use the following strategy for extracting line segments. First, the vanishing point 

detection of [21] is employed to obtain the preliminary orientations of the Manhattan 

world. Next, we modify line detection method of [19]. The split and merge algorithm is 

applied to only extract the line segments with the Manhattan orientations approximately. 

More formally, this constraint can be expressed as follows 

 𝑛௟ሬሬሬ⃗ ∙ 𝑣పሬሬሬ⃗ < 𝜆 
(3.4) 

      
 
 

         
            

(b) (b) 
 

Fig 3.7   The result of the refined spatial layout. (a) Orientation map. The regions 
are colored according to their orientation. (b) The main structure after refining. 
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Where 𝑛௟ሬሬሬ⃗  is the normal vector of the great circle corresponding to line l , and 𝑣పሬሬሬ⃗  denotes 

the normal vector of the vanishing point iv .  is a threshold. Then, refine the vanishing 

points using the line segments. After line extraction, we test our approach. Fig 3.8 

illustrates one of the examples. 

The results indicate that the presented method is able to estimate structure of 

indoor scene. In particular, some missing segments, or occluded boundaries could be 

recovered according to the symmetry. 
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(a) (b) 
 
 

       
            

 
(c)                                                    (d) 

 
 

Fig 3.8  An example of experiments. (a)  The fisheye image. (b) Line segments.  (c) 
Orientation map. (d) The main structure. 
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3.5 Indoor Scene Understanding from a Single Full-View Image 

So far nearly all existing methods either using perspective images or 

omnidirectional images involve just partial scene, which leads to the recovered spatial 

layouts referring to incomplete structures. These cases are summarized as open geometry. 

On the other hand, a full-view image results in a visually close boundary condition, called 

close geometry. In this section, we advocate a new model based on close geometric 

constraints to explore indoor scene understanding from a single full-view image. In our 

system, we optimize the score function of the structure model to a linear presentation and 

develop a novel algorithm without necessity of implementing any orientation estimates 

beforehand. Furthermore, only fewer corners are required, which may enable our 

algorithm to run efficiently.  

 Close Geometry 3.5.1

Though a full-view image can also be segmented as some independent images, 

which follow open geometry like conventional ones, our model obeys more strict close 

geometry. It is an appropriate representation to approximate a real room. The main 

additional differences are, first, ceiling-wall or floor-wall boundaries are completely 

visible as long as we see by ourselves at the camera location. Walls go around making a 

circle, no longer left-to-right. That means walls are equivalent without a start or an end, 

avoiding the trouble of poor estimation on the edge in conventional images. Second, the 

wide field of view allows minimizing the possibility of fatal estimation caused by 

occlusions and partial views. Suppose an extreme case, when an object covers the whole 
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conventional image (if it is close enough to the camera), it is impossible to carry out any 

estimation. However, we may still be able to reconstruct the room regarding the 

conventional image just as a part of our full-view image. Third, man-made buildings 

always have symmetric floor and ceiling shape with constant ceiling height. Here, the 

planar homology used in [30] is adapted to sphere model, which describe the mapping 𝐻 

between the image locations of ceiling points and the corresponding ones in floor plane. 

We use arc length instead of Euclidean length due to our sphere model. Once 𝐻  is 

obtained, we can recover a floor-wall boundary from the corresponding ceiling-wall 

boundary, or vice versa. 

Another criterion is addressed among “wall” labels. Walls are situated between a 

ceiling and a floor successively. The vanishing points of horizontal lines must be located 

at the walls with different orientation (see Fig 3.9), which can be described as follows: 

 𝑣௥ ∈ 𝑤𝑎𝑙𝑙(𝑙),       𝑣௟ ∈ 𝑤𝑎𝑙𝑙(𝑟) 
(3.5) 

This constraint holds because of the definition of vanishing points as the 

geometric place where parallel lines appear to converge. Obviously, for the conventional 

images, this close geometry is not always guaranteed because of limited field of view. 
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 Estimating Spatial Layout 3.5.2

Here, we introduce our algorithm based on close geometric constraints to estimate 

spatial layout from a single full-view image. A set of corners is first generated and the 

expression of structure is given. Then, we find the layout which fits line segments best by 

exploring the solution to the maximization of the structure formulation. Finally, we 

recover the spatial layout and label the surface of indoor rooms. 

      
 
 

 
            

 
 

Fig 3.9   The criterions of close geometry. The pair ൫𝒑𝒄, 𝒑𝒇൯ refers to 
corresponding points in the ceiling and floor plane. Vanishing point 𝒗𝒍 lies in the 

wall with orientation towards 𝒗𝒓. 
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3.5.2.1 Preliminary work 

We start from a collection of line segments and vanishing points under the 

Manhattan world assumption. Any method capable of extracting line segments and 

optimizing the vanishing points could be applied. 

Due to close geometry, in particular of ceiling-floor symmetry, either a point in 

ceiling-wall boundary or in the floor-wall boundary is sufficient to specify the other 

corresponding one. Without loss of generality we choose to present two corresponding 

boundaries only by the floor-wall boundary. In a full-view image, the longest horizontal 

line always lies in boundaries, if it is not occluded too heavily to be visible. According to 

this assumption, we may obtain a preliminary structure containing the longest horizontal 

line. The purpose of this step is to enhance the possibility of layout estimation associated 

with the process afterwards. To be emphasized, it is not vitally necessary. We set a safe 

threshold for checking the length of lines to ensure what we choose really belongs to the 

floor-wall boundaries. In the case of failing check, always caused by occluded objects, 

this step will be omitted and it will have no impact on spatial layout estimation later. 

3.5.2.2 Generation of corners 

We are now ready to generate corners. We agree with Omedes et al. [25] that the 

detection of vertical lines is more robust and less susceptible to noise than horizontal 

lines. Moreover, most of walls towards orthogonal orientations can be divided by vertical 

lines. Therefore, we extract corners according to vertical lines. We assign a rule that one 

vertical line can contain only one corner. Corners are recognized in three cases in order, 
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as illustrated in Fig 3.10. First, define the intersection of a horizontal and a vertical line at 

their crossing point as a corner. Second, extend vertical line, and detect the intersection if 

it crosses over a horizontal line. Otherwise, extract the ending point of vertical line itself. 

However, in practice, not all the vertical boundaries of walls can be extracted. For this 

reason, we also regard the ending points of horizontal lines as corners, except the ones 

lying in X-Y plane or Y-Z plane since they are against the close geometry in (3.5). 

 

In order to express explicitly, we project these corner into X-Z plane of the sphere 

model, and order them clockwise starting from the absolute x-coordinate, as shown in Fig 

3.11. We denote these corners as a set 𝑄(𝑞ଵ, 𝑞ଶ, ⋯ , 𝑞௡). Note that all these operations are 

      
 
 

 

                            

                      
        

 

Fig 3.10   Three cases of corners generated from vertical lines and one case 
generated from horizontal lines.  
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complemented against floor-wall boundaries, so we only focus on the low ending points 

of vertical lines and the horizontal lines below horizon. The corners of ceiling-wall 

boundaries can be achieved easily by the similar way if necessary. 

 

3.5.2.3 Problem formulation 

In indoor images, floor-wall or ceiling-wall boundaries often go towards two 

orthogonal horizontal vanishing points. However, a special case occurs when one wall is 

in front of another but appears to be adjacent in the image, as illustrated in Fig 3.12. Thus 

segments of the ceiling-wall or ceiling-wall boundaries in fact are vertical lines. In 

summary, boundaries have three possible orientations towards mutually orthogonal 

      
 
 

 

 
        

 

Fig 3.11   Corners are ordered clockwise according to their projections in X-Z 
plane.  
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vanishing points. Suppose that some of the corners are the points really in floor-wall 

boundary, constituting a set of key points 𝑃(𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௠). As we state above, ceiling-

wall boundaries can be computed from floor-wall boundaries. Hence, a floor-wall 

boundary 𝑊(𝑝௜, 𝑝௝, 𝑜)  is determined by two key points  𝑝௜  , 𝑝௝  from 𝑃  comprising 

orientation 𝑜 , 𝑜 ∈ (𝑟, 𝑙, 𝑣)  (Fig 3.12). It also means that the wall is specified. We 

represent one indoor structure hypothesis of layout 𝐺(𝑊ଵ, 𝑊ଶ, ⋯ , 𝑊௧), as a close circled 

sequence of floor-wall boundaries 𝑊ଵ, 𝑊ଶ, ⋯ , 𝑊௧. 

  

Different sets 𝑃  may define different structure hypotheses. Obviously, not all 

hypotheses are physically realizable, so we need a method to identify the correctness and 

evaluate the probability. In brief, the basic idea is to evaluate globe structures by applying 

      
 
 

 

 
        

 

Fig 3.12   A special case that some segments of floor-wall boundaries are vertical 
lines. A wall is determined by two key points 𝒑𝒇,𝒊, 𝒑𝒇,𝒋 and orientation o.  
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the local information. Other than conventional orientation map, we come up with a novel 

scheme to test hypotheses only by a collection of line segments extracted at the beginning, 

since line segments coming from edge map provide us desirable local geometric 

reasoning. Considering the representation of indoor structure, we draw a conclusion that a 

hypothesis is feasible if all of its key points are feasible, and the feasibility is dependent 

on the line segments. 

Given a structure 𝐺(𝑊)  and a set of line segments 𝐿𝑠(𝑙𝑠) , a score function 𝐶௟௦(𝑙𝑠௜, 𝐺) indicates the fitness of the structure 𝐺 to segment 𝑙𝑠௜. It can be computed by 

the sum of pixel score 𝐶௫൫𝑥௝, 𝐺൯ over all the pixels in  𝑙𝑠௜ , 
 𝐶௟௦(𝑙𝑠௜, 𝐺) =  ෍ 𝐶௫൫𝑥௜,௡, 𝐺൯௫೔,೙∈௟௦೔  

(3.6) 

where 𝑥௜,௡ is a pixel in 𝑙𝑠௜. For efficiency, we parameterize 𝐶௫൫𝑥௜,௡, 𝐺൯ as a simple binary 

model, 

 𝐶௫൫𝑥௜,௡, 𝐺൯ =  ൜1 ,              𝑖𝑓 𝑥௜,௡𝜖𝐺 0 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
(3.7) 

The final score of a structure hypothesis is thus given by investigating all the segments, 

 𝐶(𝐺) = ∑ 𝜆𝐶௟௦(𝑙𝑠௜, 𝐺)௟௦೔∈௅௦     
(3.8) 

where 𝜆 is a constant, regulating the weight of scores. Since the structure is constituted by 

a series of walls, we can rewrite the final score as follows: 
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  𝐶(𝐺) = ∑ ∑ 𝜆𝐶௟௦൫𝑙𝑠௜, 𝑊௝൯௟௦೔∈௅௦௧௝ୀଵ     
(3.9) 

Here, 𝐶௟௦൫𝑙𝑠௜, 𝑊௝൯ is similar to the 𝐶௟௦(𝑙𝑠௜, 𝐺) specifically measuring wall 𝑊௝  instead of 

the structure 𝐺. 

The process of searching for the hypothesis best fitting the structure is converted 

into a maximization problem. That is to maximize (3.9) to obtain a structure with greatest 

score. More formally, we have 

    𝐺∗ = 𝑎𝑟𝑔𝑚𝑎𝑥൫𝐶(𝐺)൯    
(3.10) 

3.5.2.4 Algorithm of estimating the spatial layout 

It is impossible to generate a hypothesis unless we know a prior of key point sets 

in advance. So how to extract key points from a corner set becomes crucial. We cope 

with this problem by combining the process of deciding key points and pursuing the 

maximal score together, which makes our algorithm much more efficient and robust. 

As preliminary work mentioned in Section 3.5.2.1, we carry out a test to find if 

there exists a long enough horizontal line in the scene. If so, we can obtain a preliminary 

structure even containing one or two line segments. The next step depends on the 

detected result. This is because, in practice, we always see two types of images: one is the 

edges of either floor-wall or ceiling-wall are distinct; the other is the edges of both floor-

wall and ceiling-wall are obscure. For the latter case, it is not often seen but sometimes 

leads to fatal failure of estimation. In that situation, long horizontal line may not be 

detected. So that λ is assigned the same for every line segment. 



 

 57 / 109 

 

On the other hand, in full-view images, most times there are a few long boundary 

edges distinct enough to be detected more or less, which correspond to the former case. 

That allows us to take advantage of the extracted preliminary structure to enhance 

evaluation process, increasing the reliability of our final result. For the score function, 

since additional information about structure is obtained, we represent structure 

hypotheses using boundaries based on the preliminary structure. If the extracted long 

boundary belongs to ceiling-wall, we express 𝐺(𝑊)  by ceiling-wall boundaries, 

otherwise we apply floor-wall ones as we expressed before. As a result, (3.9) is rewritten 

as follows: 

  Cls(lsi,G)=  ∑ ∑ λ1Cls൫lsi,W1,j൯lsi∈Lst1j=1 + ∑ ∑ λ2Cls൫lsi,W2,j൯lsi∈Lst2j=1     (3.11) 

where 𝑊ଵ,௝ denotes the boundary hypothesis represented by the corner set  𝑄ଵ which is 

generated from the preliminary structure, while 𝑊ଶ,௝  denotes the boundary hypothesis 

represented by other corners from set 𝑄ଶ. We believe that the corners of the preliminary 

structure are more likely to lie in boundaries, essentially referring to key points. Thus, we 

give them a large weight, 𝜆ଵ > 𝜆ଶ. 

One simple way to solve this problem is just starting from (3.10) directly. 

Enumerate over all possible structure hypotheses by picking up corners as key points 

randomly. Then check the scores using the set of line segments by (3.11). However, that 

will be time-consuming and the result in practice is really suspicious. If we view (3.10) 

from a different perspective, our goal is to find out a series of closed boundaries which 
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pass through as many as possible segments. The corners are known and their locations 

are unchangeable. It holds the rule that a corner is independent from others adhering to 

only one wall. Flint et. al [30] also demonstrate that the placement of each wall is 

“conditionally independent” of the other walls given its left and right neighbors.  If we 

can divide all the corners in 𝑄ଵ and 𝑄ଶ into some subsets 𝑄ଵ,௦భ, 𝑄ଵ,௦మ, ⋯ 𝑄ଵ,௦೘  and 𝑄ଶ,௦భ, 𝑄ଶ,௦మ, ⋯ 𝑄ଶ,௦೙  appropriately, with that each subset corresponds to one boundary 

segment, our problem is rewritten as follows: 

  ቐ𝐶 ቀ𝑄ଵ,௦ೕቁ = ∑ 𝜆ଵ𝐶௟௦ ቀ𝑙𝑠௜, 𝑊ଵ,௝ ቁ௟௦೔∈௅௦𝑊ଵ,௝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝐶 ቀ𝑄ଵ,௦ೕቁ)     

⎩⎨
⎧𝐶 ቀ𝑄ଶ,௦ೕቁ = ෍ 𝜆ଶ𝐶௟௦ ቀ𝑙𝑠௜, 𝑊ଶ,௝ ቁ௟௦೔∈௅௦𝑊ଶ,௝∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 ൬𝐶 ቀ𝑄ଶ,௦ೕቁ൰  

(3.12) 

Finally, the resultant structure is 

   𝐺∗ = ෍ 𝑊ଵ,௝∗௠
௝ୀଵ + ෍ 𝑊ଶ,௝∗௡

௝ୀଵ  
(3.13) 

We see that it is decomposed into a series of sub-evaluation of walls. So the next step is 

to build boundary hypotheses from subsets of corners and find the key points. 

Let us turn our attention to the criterion in term of (3.5). It describes the relation 

of vanishing points and the walls. In another words, it can be interpreted as that parallel 

planes have to be one at each side of the imaginary line formed by joining their two 
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corresponding vanishing points. This constraint gives us a hint that one floor-wall 

boundary is restricted to be situated within two adjacent horizontal vanishing points. To 

be noticed, under this assumption, though a long boundary is allowed to be regarded as 

two with the same orientation, it enables us to classify the corners in the limited region 

into subsets and specify the key points to generate the most possible boundaries. As we 

states before, boundaries have three possible orientations towards mutually orthogonal 

vanishing points. A line segment in 3D is converted to a part of great circle under sphere 

model. It is appropriate to identify a great circle in a unitary sphere just from two points. 

Thus, boundaries can be decided by a corner and one of vanishing point. 

All the corners and two pairs of horizontal vanishing points are ordered clockwise 

starting from the absolute x-coordinate. First, compute the scores of two boundary 

hypotheses with different horizontal orientations starting from any corner to the next 

corresponding vanishing point by (3.12). We recommend to pick up a corner from 𝑄ଵ, 

because it is more likely to be a key point. If there is no preliminary structure detected, 

RANSAC is applied to find a line with passing through most corners and one of corners 

is picked up as the starting point. Then, do the same for the vertical hypothesis. The one 

with higher score is chosen as the resultant boundary, and the last corner belonging to this 

boundary is considered as a key point. Fig 3.13 shows an example of this procedure. 

Assuming that the corner 𝑞௜ is a key point, and next key point is required. We generate 

three boundary hypotheses from 𝑞௜ towards three vanishing points, respectively. Compute 

total scores of these hypotheses by summing up every score of segments belonging to the 
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boundaries. We can see that the one towards vanishing point 𝑣௟  passes through more 

pixels in segments than other two boundaries. Therefore, the last corner 𝑞௜ାସ belonging to 

this boundary is recognized as a key point, while 𝑊(𝑞௜, 𝑞௜ାସ, 𝑙) is regarded as a part of 

the most feasible structure during this region. Repeat the process until all the boundaries 

are extracted. Finally, we obtain the entire structure by (3.13). 

 

Due to our scheme, the boundary hypotheses in a region are evaluated at most 

three times corresponding to three vanishing points for each unique subset of corners. 

Moreover, there is no need to carry on iterative computation for the former determined 

boundaries. The overall complexity of our algorithm depends on the total number of 

corners coming from line segments, with a little relation to the indoor structure.  So 

      
 
 

 

 
        

 

Fig 3.13   The procedure of computing the most feasible boundary. Red points 
indicate the pixels of line segments. 
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different from other state-of-the-art methods, we present an approach that 

deterministically finds the global solution and exhibits computational complexity linear 

in scene complexity and the amount of segments. 

 Experiments and Results 3.5.3

Experimental results concerning the proposed method are presented. Line 

segments and vanishing points of scene are required in our method. Here, we modify the 

well-known Canny edge detection algorithm to make it suitable for sphere model, and 

then adopt the strategy in Section 3.4.4 to extract line segments and calculate vanishing 

points. 

3.5.3.1 Using full-view images from different sensors 

Real images with two camera sensors in different indoor environments are 

presented to evaluate the performance. First, we employ a sensor with a pair of fisheye 

cameras applied in [4] to generate full-view images. The intrinsic parameters are 

calibrated beforehand. Fig 3.14 shows experimental results of two examples. In order to 

see them easily, we project the full-view images in sphere model onto two opposite 

planes, much like fisheye images. In the left case, we observe that just a few segments 

belonging to ceiling-wall boundaries are detected. However, the left missing boundaries 

are completely recovered according to the ceiling-floor mapping 𝐻. For the next example, 

though the scene is relatively simple, there are a lot of segments on the walls 

corresponding to exhibition panels, which may confuse structure generation. We achieve 
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a good approximation of its structure. In particular, the right wall colored in blue in the 

right image is well reconstructed. 

 

 

      

    
 

            
        

          
 
 

Fig 3.14   An example of experimental result from a fisheye camera. Top row: 
Two half scenes captured by fisheye camera. Middle row: Line segments. Last row: 

Estimated structure. 
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Another sensor used in experiments is called RICOH THETA1, produced by 

RICOH Company. This one-click 360º camera provides us an easy way to capture full-

view images. We mainly use it in the following experiments. Some results are given in 

Fig 3.15. For a quick and easy view, we display full-view images as panoramas based on 

sphere model, much like the captured images. In these cases, scenes become complicated. 

Though there are easily confused or occluded areas, which make it hard to define 

boundaries of structure exactly, we still obtain acceptable results. Take the case of a bath 

room in the second row as an example. Left part of the scene shows a washstand and a 

washing machine, which take up so much space that we cannot observe any floor-wall 

boundary on this area (see the original panorama and the extraction of line segments). 

Obviously it brings troubles to recover the occluded structure, especially for the 

conventional images with a small field of view of only this scene. However, we notice 

that the opposite side of room is comparatively simple corresponding to the right side of 

the panorama. The mapping relation can be obtained, which allows us to infer the 

occluded floor-wall boundaries from the corresponding ceiling-wall ones. 

                                                 

1 https://theta360.com/en/. 
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3.5.3.2 Close geometry vs. open geometry 

Here, we compare the two different geometric constraints. A full-view image is 

separated into two images with each one covers a half of panoramic view. We regard 

them as independent ones obeying open geometry as the conventional ways do in [29, 30], 

and then execute our program. 

To contrast easily, the original images and estimated structures based on close 

geometry are given in the first and second column of Fig 3.16. The results of two 

     
    

 
            

 
        

   
 
 

Fig 3.15   Some cases of experimental result from RICOH THETA. First column: 
The scene captured by RICOH THETA. Second column: Line segments. Third 

column: Estimated structure. 
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separated views following open geometry are integrated as one panorama, as illustrated 

in the third column. In that column, we can see that some regions of rooms are recovered, 

while some failed, in particular near the edges areas of images. It occurs because the 

disconnected wall boundaries often cause poor estimation at the breaking points under the 

constraints in an open space. In the case of occluded bedroom, it is troublesome to obtain 

a ceiling-floor mapping in left separated image. Thus, the result turns out to be bad. In 

addition, the recovered layout is not connected to each other, since two images are used 

independently as two different scenes. More accurately, we also manually label the 

ground truth orientation for every pixel, ignoring the occluding objects. The percentage 

of pixels with the correct orientation for each image pair is reported in Table 3.1. 

 

Table 3.1  Percentage of pixels with correct orientation. 

Percentage Image 1 Image2 Image3 

Method on close geometry 0.93 0.86 0.95 

Method on open geometry 0.48 0.40 0.37 

 

 

As shown in the above experimental results, the proposed method based on close 

geometry outperforms the one based on open geometry significantly. 
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3.5.3.3 Proposed method vs. conventional method 

To show the advantages of the proposed method more clearly, a comparative 

experiment is also carried out between the proposed method and one of the state-of-the-

art methods of Lee et al. [29], which source code is available on the web. The input 

perspective images used in the method of [29] are generated from the full-view images, 

by projecting a full-view image towards the different directions on X-Z plane to generate 

projected images. 

     
    

 
            

 
        

 
 
 

Fig 3.16   The comparison between close geometry and open geometry. First column: 
The original image. Second column: The result of estimated structures based on close 
geometry. Third column: The estimated structures of two separated views following 

open geometry are integrated as one panorama. 
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We compare their results to the labeled projected images from our estimated full-

view image. Fig 3.17 shows some examples coming from the second and the third scene 

in Fig 3.16. A building structure of one image failed to be estimated. The percentage of 

the correct orientation for each image pair is given in Fig 3.18. We can see that our 

approach perform pretty well than the conventional method using an image with a narrow 

field of view. 
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Fig 3.17  The comparison between the proposed method and the method of Lee et 
al. [29]. First row: The projected original image. Second row: The projected result 

by the proposed method. Third row: The result by conventional method using a 
projected view as an input. 
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All of the experimental results shown above imply that the proposed close 

geometry is a powerful constraint and plays an important role in scene interpretation of 

full-view images. It provides more available cues, enabling computers to predict entire 

structure. We also believe that it is appropriate to consider an indoor model with a full-

view image rather than several images with partial view. 

 

 

 

 

      
 
 

 

 
        

 

Fig 3.4   The percentage of the correct orientation for the results in Fig 3.17. 
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3.6 Conclusion 

In this part, we first investigate the problem of estimating structure of rooms from 

a single fisheye image. A symmetrical rule which describes geometric constraints in 

fisheye images is introduced. Then we estimate the spatial layout of rooms starting from 

a collection of line segments. A novel method is given to refine a preliminary structure to 

obtain the final main structure. The experiments demonstrate that our approach based on 

geometric reasoning can be used to estimate the spatial layout of indoor scene. 

However, we notice that the field of view is enlarged to a hemisphere, the 

recovered structure still involves incomplete scene, referring as open geometry. In order 

to obtain the entire structure of rooms, we pay attention to full-view images and impose a 

totally different description to present geometric constraints, called close geometry. A 

novel method is given to explore indoor scene understanding by searching for the 

structure which fits the extracted line segments best. We combine the process of deciding 

boundaries and pursuing the maximal score together to make our algorithm much 

efficient and robust. As shown in the experimental results including the comparative 

experiments, the proposed method of interpreting full-view images based on close 

geometry outperforms the conventional methods which use images with limited field of 

view based on open geometry. 

As future work, we plan to test more images of various cluttered rooms and 

improve the success rate by applying a more reliable algorithm of extracting line 

segments. In addition, we believe our research is very useful in many fields. Another 
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work could be devoted to the application of indoor scene estimation from a full-view 

image, such as the detection of obstacles in a room or analyzing human activities within a 

surveillance scene. 
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CHAPTER 4 

Fast Generation of Perspective Display from Full-View Image 

4.1 Introduction 

When we do scene analysis and scene understanding using omnidirectional 

cameras, we find that perspective display needs to be generated frequently. For the case 

of the comparative experiment in the former part, we also project a full-view image 

towards the different directions on X-Z plane to generate projected images, for the 

purpose of comparing with the state-of-the-art method based on perspective images.  

In general, an omnidirectional image is based on the successive spherical model 

(Fig 4.1). However, it has high cost of mapping a spherical point to the omnidirectional 

image pixel because of mass non-linear calculation. It takes a lot of time to generate 

perspective display. That is why so far such operation is usually done by hardware in 

practice for efficiency. Is there any approach that can accelerate this processing to make a 

perspective display easily and rapidly?  
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In the research of computer graphics, an omnidirectional image can be regarded 

as bubbles, which mean a 360-degree panorama without considering the specific visual 

sensors. Thus, the problem of getting perspective display from omnidirectional cameras 

can be redefined as getting that from bubbles. Considering the isotropy of bubbles, a 

natural representation of bubbles is spherical map, or spherical image. Moreover, the 

cells, i.e., pixels, of spherical bubbles should be as uniform as possible so that the 

isotropy of the sphere around any cell point is preserved as well as possible. 

Here, we represent bubbles, by SCVT (Spherical Centroidal Voronoi 

Tessellation) images which are called spherical bubbles in our research and propose a 

method to generate perspective display swiftly more than before. 

      
 

 
        

 

Fig 4.1   Perspective display based on the successive spherical model. 
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The rest of this part is organized as follows. The related research is introduced in 

the next section. The method of fast generation of perspective displays is described in 

Section 4.3. The experimental result is presented in Section 4.4. Finally, we draw a 

conclusion. 

4.2 Related Research 

 Research about Bubbles 4.2.1

Bubbles are widely used in many fields. A famous one refers to the street-level 

images in Google Street View. Adding street-level images to traditional line-segment 

maps enhances the reality of on-line maps dramatically. Users are able to visit cities on 

the internet by navigating between bubbles. 

Bubbles are also regarded as environment maps in computer graphics. There are 

some forms of bubbles with different features and different applications. A common one 

is called a cubic environment map [34], which is stitched from the images captured by 

multiple cameras or lenses with overlapping field of view [4]. A cubic environment map 

consists of six perspective images which correspond to the six planes of a cube with the 

view point at the center of the cube [35], as shown in Fig 4.2. 

Let the distance of the center of the cube from the square plane be 1. Then, the 

distance from the center to the corner point becomes 3 . The sampling rates for the 

directions, which is defined as the ratio of the solid angle between the maximum (the 
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central pixel of the square plane) and the minimum (the pixel at the corner of the square 

plane), differ from a factor of 33 . 

Besides the cubic map, spherical environment map (which is different from the 

SCVT map) [36], paraboloid map [37] and latitude-longitude map [38] have been 

proposed. 

 

The spherical environment map [36] is based on the simple analogy of a small, 

perfectly mirroring ball; the image that an orthographic camera sees when looking at this 

ball is the environment map. However, for the spherical environment map, the sampling 

rate of this map is maximal for directions opposing the viewing direction, and goes 

towards zero for directions close to the viewing direction. Moreover, there is a singularity 

in the viewing direction because all points where the viewing vector is tangential to the 

sphere show the same point of the environment. 

      
 
 

 

 
        

 

Fig 4.2   Sampling rate of cubic environment map for the directions. 
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The paraboloid map consists of two paraboloids [37]. Although the paraboloid 

map can be reused for any given viewing direction, that is, it is view-independent, the 

sampling rate for the directions is still as great as 4. The latitude-longitude map, which is 

generated by dividing a sphere along the latitude and longitude [38], is proposed. Since 

the latitude-longitude map is severely over-sampled around the poles, the sampling rates 

for the directions differ greatly. 

 Research about SCVT 4.2.2

A SCVT image is known as its quasi-uniform property [39], which can be 

obtained by subdividing the icosahedrons iteratively, as shown in Fig 4.3. Table 4.1 

shows the corresponding sampling rate (the ratio of largest cell to smallest cell) of the 

SCVT maps for the directions. Although the sampling rate for the directions varies with 

the subdivision levels, it has a limit value, about 1.36. Therefore, spherical bubbles are a 

better representation for the isotropy in respect of direction, compared with the 

conventional environmental maps. 
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Table 4.1  Properties of the SCVT map. 

 

 

 

 

 

 

 

 

 

Subdivision level Number of cells Sampling rate for directions 

1 42 1.13 

2 162 1.29 

3 642 1.31 

4 2562 1.35 

5 10242 1.36 

6 40962 1.36 
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Perspective displays are generated from spherical bubbles according to users’ 

view direction and zoom-in/out operation.  SCVT image can be represented as 2D array

),( ss jiS , in computer [39], [40], as shown in Fig 4.4(a). To generate perspective displays, 

the pixel of perspective displays ),,( ppp fyxP , must be determined from that of the SCVT 

images. While the mapping from pixel ),( ss ji , of SCVT images to spherical coordinate, 

      
 
 

 

                  
(a)                                              (b) 

 

 
(c)        

 

Fig 4.3  Process of the geodesic division of an icosahedron. (a) The initial 
icosahedrons. (b) 1-level subdivision. (c) 2-level subdivision. 
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),( , can be carried out quickly by using a look up table, )),(),,(( jiss jiT , the inverse 

mapping is troublesome. Fig 4.4(b) shows the angle change of the pixels in a row of the 

SCVT image array of Fig 4.4(a), where the curves correspond to the rows of SCVT 

image array. It indicates that the mapping relation between spherical angle ),( and 

array number ),( ss ji is nonlinear. Therefore, search is necessary in the inverse map as 

follows. 

 

)(
)(

js

isSearch

p

p

p

j
i

f
y
x

 
(4.1) 

In the related research [39] and [40], given a spherical polar coordinate ),( , an 

initial position is first estimated in 2D array ),( ss jiS ; then, the corresponding cell point is 

found by iteratively searching for a local maximum among the estimated cell and its 

neighboring cells. That is to say, finding the corresponding pixel of perspective displays 

from spherical bubbles according to the spherical coordinates involves two search 

processes. One is to find the approximate location according to the average intervals of 

azimuth angle and polar angle between neighboring pixels, called average search, and 

the other is to find the nearest pixels according to the neighboring relations among pixels, 

called neighboring search. 
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Since users want an instant response when cameras move with a robot, the 

generation of perspective displays should be carried out as speedily as possible. We 

accelerate this processing by employing the adjacent cues between neighboring cells and 

      
 

 

                  
 

 
(b)        

 

Fig 4.4 2D array of SCVT image: (a) 2D array of cell points for 2-level subdivision 
of Fig 4.3(c). (b) Angle change of the pixels in a row of the SCVT image array. 

 

     (a) 

sj

si
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the pyramid data structure of spherical bubble. This will be much helpful that users can 

get different sequent views from the camera in a moving robot by means of 

transformation between bubbles. 

The SCVT map has the distinguished advantages over the conventional bubbles. 

Although SCVT maps have been proposed in related research [39] and [40], these studies 

focus on the algorithm of finding neighboring pixels. In comparison with them, we use 

SCVT map to represent bubbles. This research has the following characteristics. 

 Generate perspective view from spherical bubble by employing the 

neighboring relation among pixels. As mentioned above, finding the 

corresponding pixel of perspective display from spherical bubble according 

to the spherical coordinates involves two search processes: average search 

and neighboring search. If the resolution of the perspective display and that 

of the spherical bubble are approximately the same, the neighbors of a pixel 

in the perspective display should correspond to the neighbors of the 

corresponding pixel in the spherical bubble. Thus, in this case, to generate 

the perspective display, we can omit the average search, and only carry out 

neighboring search except for the first one. 

 Use the pyramidal data structure of spherical bubble to cope with the 

change of resolution of perspective display. To generate a spherical bubble 

with approximately the same resolution as the perspective display, the 

pyramidal data structure of SCVT image from the original spherical bubble 



 

 82 / 109 

 

is used. To generate perspective display, its resolution is first computed. 

Then, the corresponding layer of the SCVT image is selected from the 

pyramidal data structure. 

Using the above techniques, perspective display can be generated from spherical 

bubble with lower computation cost. 

4.3 Generating Perspective Display from SCVT Map 

 Generation of Perspective Display by Using Neighboring Relation 4.3.1

Assume that the resolution of the generated perspective display is approximately 

the same as that of the spherical bubble. Thus, if two pixels are adjacent to each other in 

perspective displays, they should also be adjacent in SCVT maps. That is, neighboring 

relation between pixels is preserved for both perspective display and spherical bubble. In 

this case, the perspective display can be generated simply from spherical bubbles as 

follows. 

1) For the first pixel at the top-left corner of the perspective display, compute 

its corresponding nearest pixels in the spherical bubble by average search and 

neighboring search. 

2)  For the next pixel to be generated, compute its corresponding nearest 

pixels in spherical bubble by starting from the known neighboring location merely with 

neighboring search. 

Thus, the average search is necessarily carried out only for the first pixel. 
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 Generation of Perspective Display by Using Pyramidal Data Structure of 4.3.2

Spherical Bubble 

In practice, the resolution of perspective display is changeable with users’ zoom-

in/out operation. This means that the resolution of perspective display may be different 

from the original spherical bubble obtained from the captured images. Here, the 

pyramidal data structure of spherical bubble is used to cope with this problem so that the 

above proposed method of generating the perspective display using neighboring relation 

can be applied. In addition, the quality of perspective image is also promoted during the 

process of up-sampling. The detail information is given below. 

The pyramidal data structure of spherical bubble corresponds to the subdivision of 

the initial icosahedron. The arrays of cell points for 0-level and 1-level subdivisions 

corresponding to Fig 4.3(a) and (b) are shown in Fig 4.5(a) and (b), respectively. The 

array of cell points for 2-level subdivision corresponding to Fig 4.3(c) is shown in Fig 

4.4(a). The pyramidal data structure of spherical bubble is generated by the down-

sampling or up-sampling of the original spherical bubble. 

Suppose that the original SCVT image corresponds to the L th-level subdivision 

array ),( LLL jiS , where Li  and Lj  correspond to the row number and column number of 

SCVT array, respectively. Let the down-sampling SCVT image corresponding to the 

)1(L th-level SCVT array be ),( 111 LLL jiS . We have 

 
11 2,2 LLLL jjii  

(4.2) 



 

 84 / 109 

 

 

To avoid the aliasing problem, the down-sampling is carried out by averaging the 

neighboring cells. Here, the neighboring cell search is carried out by the algorithm [40]. 

Fig 4.6 shows the sketch of the down-sampling with averaging the neighboring 

cells. The hexagonal cells with red lines indicate those of ),( 111 LLL jiS  while the cells 

with black line indicate those of ),( LLL jiS . Each cell of ),( 111 LLL jiS  contains the entire 

corresponding cell of )2,2( 11 LLL jiS  computed in terms of (4.2) and about half of the 

neighboring cells of )2,2( 11 LLL jiS . Thus, the pixel value of ),( 111 LLL jiS  can be 

computed as follows. 

  
 

 
(a)                                                               (b)        

 

Fig 4.5 The arrays of cell points for 0-level and 1-level subdivisions corresponding 
Fig 4.3(a) and (b). 
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Where 1LV and LV are the pixel value of ),( 111 LLL jiS  and )2,2( 11 LLL jiS , respectively. L
jV  

indicates the pixel value of the neighboring cells of )2,2( 11 LLL jiS . N  is the number of 

the neighboring cells. 6N , except for the twelve cell points of the icosahedron, where 

5N . 

 

 

To get high resolution, up-sampling is necessary. Considering the relation 

between the L th-level and the )1(L th-level SCVT array shown in (4.2), we use four 

neighboring cells of the pixel value of ),( 111 LLL jiS  to do up-sampling. Considering the 

  
 

 
 
 

Fig 4.6  The sketch of down-sampling of a SCVT image. 
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case in Fig 4.7, let the pixel value of the )1(L  th-level vertex 1L
jA be 1L

jV  . The new 

pixel value LV of the L th-level vertex LA ,  is determined as follows. 

 

)31(2
33 1

4
1

3
1

2
1

1
LLLL

L VVVVV
 

(4.4) 

 

Here, we use four neighboring cells to generate one cell in the next subdivision 

allocating different adaptable weights. It implies that the interpolation is implemented in 

a certain way. The size of SCVT image is enlarged with more pixels, because more 

points in the sphere are added. As a result, perspective display can be generated from a 

denser spherical bubble, which makes the perspective image smooth with better quality. 

  
 

 
 
 

Fig 4.7 The sketch of up-sampling of the SCVT image. 
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However, we still need a way to carry out basic interpolation for either up-sampling or 

down-sampling. We employ the method called tri-linear interpolation proposed in [41] if 

necessary. 

Note that (4.3) can be regarded as a filter only considering itself and the nearest 

neighboring cells, neglecting the ones far away. In some way, the function is much like a 

low pass Gaussian filter. Though it can smooth images to some extent, it may cause some 

loss of quality for generating a perspective image. If the quality is required, we can just 

use the pyramidal data structure of spherical bubble with the original subdivision of 

icosahedron and up-sampling. In that case, not only the computational cost of generating 

a perspective image is cut down but also the quality is improved. Moreover, it is still 

much faster than the conventional method. In the experimental section, we discuss more 

about this. 

 The Process of Generation of Perspective Display 4.3.3

Step1. Compute the resolution of the perspective display to be generated. The 

resolution of the perspective display is measured as the pixels per unit solid angle by 

mapping the perspective display to a unit sphere. Then compute the resolution of the 

same definition for every SCVT image in the pyramidal structure. 

Step2. Select the level whose resolution is closest to the perspective display, from 

the pyramidal data structure of spherical bubble. 

Step3. Generate the perspective display by using neighboring relation between 

pixels, as mentioned in Section 4.2.2. 
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4.4 Experiment 

While the mapping from the pixel of perspective display to the closest pixels of 

spherical bubble is carried out by both the average search and neighboring search in the 

conventional method in [39], [40], the proposed method employs the neighboring relation 

combined with the pyramidal data structure of spherical bubble so that the mapping can 

be achieved merely by neighboring search. In this section, we present the experimental 

results to show the performance of the proposed method in comparison with the 

conventional method. In our experiments, all the perspective images generated by both 

two methods are using closest pixel without any interpolation, unless it is expressly stated. 

 Performance of Computational Speed 4.4.1

We use the spherical image in Fig 4.8(a) to test our method for computational 

processing speed. The spherical image is represented by a compact rectangular 2D array, 

SCVT as described in the research [40], which is generated from a pair of fisheye image 

as shown in Fig 4.8 (b). The detailed information on the format can be found in the 

reference [40]. 

The original SCVT image is 640x256 pixels, corresponding to 7th-level 

subdivision of an icosahedron. The pyramidal data structure of the SCVT image 

generated by the proposed down-sampling and up-sampling algorithm is shown in Fig 4.9. 
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At first the average of the solid angle per pixel, which stands for the resolution of 

image, is computed. Then, the corresponding level of the pyramidal data structure of the 

SCVT image is selected according to the computed average of the solid angle per pixel. 

Finally, the perspective display is generated from the selected level of the pyramidal data 

structure of the SCVT image.  

  
 

 
 
(a) 
 

 
 

(b) 
 

Fig 4.8  The spherical image used in the experiment: (a) The SCVT image. (b) The 
raw full-view image captured by a fisheye camera. 
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Since the resolution of perspective display is determined by the view size and the 

view field (see Fig 4.10), we can carry out the experiments with the both conditions 

varying, respectively. 

 

  
 

 
 

 

Fig 4.9 The pyramidal data structure of the SCVT image generated referring to 
8th, 7th, 6th, 5th, 4thlevel of subdivision of spherical bubble. 
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First, the image size of the perspective display to be generated is fixed as 

100×100 pixels. The field of view of the perspective display (perspective angle) is 

changed. Table 4.2 shows the computational time of some cases, which correspond to 

different levels of subdivision of spherical bubble by the proposed method. Though only 

7th-level subdivision of the original SCVT data structure is used in the conventional 

method, the speed varies heavily because average search is carried on for every pixel, of 

which the cost of computation is sensitive to the perspective angle. However, the 

proposed method performs well. The computational time is approximately shortened to 

  
 

 
 

 

Fig 4.10  Perspective display based on the discrete spherical model.  
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the half. What is more, it holds a good property of computational stability, since the cost 

of doing neighboring search is almost the same for each cell. We also list the processing 

time of generating perspective image mapping from fisheye image directly in the 

reference [4] based on the widely used successive spherical model. It needs to solve the 

non-linear equations, and executes much slowly. 

 

Table 4.2  Comparison of computational time under the condition of the fixed 
image size. 

perspective 
angle 

level of pyramidal 
data structure 

conventional 
method 

proposed 
method 

method based on 
successive spherical 

model 

40° 8th Level 63 ms 32 ms 187ms 

90° 7th Level 78 ms 31 ms 188ms 

145° 6th Level 62 ms 31 ms 203ms 

 

 

Then, we do another experiment by changing the image size with the perspective 

angle fixed to 40°. The computational time of some cases are shown in Table 4.3. As the 

image size is enlarged, computational cost of either method increases. However, our 

method is superior to other two algorithms. 
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Table 4.3  Comparison of computational time under the condition of the fixed 
perspective angle. 

image size level of pyramidal 
data structure 

conventional 
method 

proposed 
method 

method based on 
successive spherical 

model 

300×300 8th Level 608ms 312 ms 2388ms 

200×200 7th Level 255 ms 125 ms 748ms 

100×100 6th Level 62 ms 31 ms 203ms 

 

 

Obviously, the results shows that the algorithms based on discrete spherical model, 

SCVT perform greatly better than that based on successive spherical model. Compared 

with the conventional method, the computational time of the proposed method is much 

shorter, less than the half at best. Therefore, it can generate perspective images fast 

coping with changing resolution. In other words, it means we can get perspective display 

instantly from spherical bubble according to users’ view direction and zoom-in/out 

operation. 

 Performance of Image Quality 4.4.2

In order to test our algorithm in respect of image quality, an ordinary image in Fig 

4.11 is employed. We map it back to discrete spherical model to obtain a SCVT image, 

which is indicated in Fig 4.12(a). Fig 4.12(b) gives us an intuitionistic spherical view of 

the SCVT format by CG. 
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Let Fig 4.12(a) correspond to 7th-level subdivision of an icosahedron. Then, we 

generate the pyramidal data structure by the proposed method, and resize the original 

image with interpolation to make the resolution correspond to different level of the 

pyramidal data structure, with perspective angles fixed. Regarding the resized images as 

the reference ones, we can evaluate the qualities of perspective displays generated by the 

conventional method and our new method. Note that it may bring in some absolute 

deviation between the reference images and the SCVT images because of resized 

operation and the process of discrete division. However, it is still meaningful to compare 

two methods based on the same standard. 

  
 

 

 
 

 

Fig 4.11 The original image used in the experiment in section 4.4.2. 
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The well-known MSE (Mean Square Error) and SNR (Signal to Noise Ratio) are 

used as evaluation criterion. SNR is expressed in the way of logarithmic decibel scale, 

which is defined in the reference [42] as follow: 

  
 

 

 
 

(a) 
 

 
(b) 

 

Fig 4.12  The SCVT image generated from Fig 4.11: (a) The SCVT format. (b) 
The corresponding intuitionistic spherical view by CG. 
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N
SSNR 10log10  

(4.5) 

Here, S  is the square sum of all pixels’ value in the perspective image generated, 

calculated by the formula: 

 1
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(4.6) 

Where ),( jir is the value of pixel ),( ji . And N  is the square err of all the corresponding 

pixels’ value between the generated image and the reference one. 
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(4.7) 

Where ),( jit  refers to the value of pixel ),( ji  in the reference one. We also give the 

SSIM results, which are able to reflect more subjective judgment of humans. 

First, we calculate the resolution of the resized reference image, and test 8th level 

of subdivision of spherical bubble for our proposed method, referring to up-sampling. Fig 

4.13 shows the results of perspective displays generated by the two algorithms. 

Obviously, the quality of (b) has better performance than (a). Table 4.4 lists the MSE, 

SNR and SSIM in comparison with the resized reference one. R, G, B in the second line 

indicates the RGB channels of image, respectively. From the table, we can see the quality 

of perspective display is improved apparently because of up-sampling operation. 
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Then, we turn to the case of 6th level of subdivision of the spherical bubble, 

referring to down-sampling. Though the computational time by our method is 33ms, 

greatly reduced from 78ms by the conventional method, the perspective image gets 

deteriorated as shown in Fig 4.14. In such a case, if the quality is required, we can just 

use the original subdivision of icosahedron 7-th level instead of 6-th level. Then the 

image with the same quality as Fig 4.14(a) can be obtained. The processing time is 

  
 

 

                                
 

(a) 
 

                         
 

(b) 
 

Fig 4.13 The perspective displays corresponds to up-sampling. (a) Conventional 
algorithm. (b) Proposed algorithm with 8th level of subdivision. 
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sacrificed comparing to 6-th level, however, it is still much faster than the conventional 

method, shortened from 78ms to 38ms. A good balance between the processing speed 

and the image quality can be made by adopting the pyramidal data structure skillfully 

according to our requirement. 

 

Table 4.4  Comparison of image quality with reference image. 

Method 
MSE SNR(dB) SSIM 

B G R B G R B G R 

Conventional 

Method   
180.73 180.17 185.76 19.63 19.59 19.72 

83.3

% 

83.8

% 

83.5

% 

Proposed Method  120.90 121.54 129.01 21.38 21.30 21.30 
86.1

% 

86.5

% 

86.2

% 

 

 

The results of experiments above show that our method performs well. The 

computational cost of generating perspective image is cut down and the quality is 

improved by up-sampling operation. For the pyramidal data structure of SCVT image, 

even though it is possible to do more discrete division in theory, we usually take it as far 

as 9-th level division in practice. The size of 9-th level SCVT image is 2560×1024, and it 

has enough resolution for the full view sensor often used. 
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(a) 
 

                         
 

(b) 
 

Fig 4.14  The perspective displays corresponds to down-sampling. (a) 
Conventional algorithm. (b) Proposed algorithm with 6th level of subdivision. 
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4.5 Conclusion 

Spherical bubble, represented as a SCVT image, is quasi-uniform, and has 

distinctive advantage in the sampling rate for the direction over other maps. 

Omnidirectional images can be regarded as spherical bubbles for processing. When 

omnidirectional cameras are used in robotic systems, it is necessary to frequently 

generate perspective display with changeable resolution from spherical bubble according 

to the users’ view direction and zoom-in/out operations. 

In this part, the adjacent cues among neighboring pixels combined with the 

pyramidal data structure of spherical bubble are employed to cut down the computational 

cost of generating perspective display. In addition, image quality is also improved when 

up-sampling is carried on. The experimental results are presented to show the 

effectiveness of the proposed methods. In the future, we will incorporate more 

outstanding interpolation schemes instead of linear interpolations during the process of 

generating pyramidal structure. Besides that, we also intend to use spherical bubble for 

real-time tasks in a mobile robot. 
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CHAPTER 5 

Conclusion 

Scene analysis and scene understanding are two ultimate goals in computer vision 

and remain tremendous challenges for vision researchers. Scene analysis connects vision 

sensors and human’s eyes. We hope visual display can offer friendly and useful 

information for users. On the other hand, Scene understanding also link computer to our 

brains, we would like computers to be able to think like humans with artificial 

intelligence.   

There is no doubt that the interest for omnidirectional vision in the robotics 

community is getting more and more pragmatic. Omnidirectional vision has an 

incomparable advantage of holding a large field of view. It is appropriate to carry out a 

complete representation of environment which can be used to answer virtually any 

question about our world, ranging from map building and motion estimation to object 

categorization.  

This thesis deliberately presents some of the issues in scene analysis and scene 

understanding using omnidirectional sensors, as follows: 

1) A pair of fisheye cameras is used to develop a horse vision system, by 

imitating a horse’s eyes for scene analysis.  
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2) A novel method of interpreting indoor scenes from a single 

omnidirectional image, either a fisheye image or a full-view image is proposed. 

3) As a basic processing operation of omnidirectional vison, perspective 

display plays a critical role for the application in scene analysis. A method of fast 

generation of perspective display from omnidirectional images is also given. 

This dissertation covers some of application for omnidirectional vision towards 

two major challenging tasks in computer vison. We construct a vision system for 

environment analysis, represent a framework for structure estimation, and develop a 

novel algorithm to obtain perspective display. The methods presented in this thesis 

should not be thought of as final algorithms. We believe they can be extended and 

adapted for other different tasks.  

Our work is just one small step towards the problems in omnidirectional vision. 

So many things remain to be done, and broader utilization is expected in the future. It 

may combine visual information with artificial intelligence, which links the virtual world 

to the real world, by improving interaction with humans. 
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