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ABSTRACT 

This thesis focuses on the topics of calibrating non-overlapping cameras. Multi-

camera system has been extensively applied in action recognition, Simultaneous 

Localization and Mapping, robot navigation, scene understanding and so on. It is 

necessary to calibrate relative poses between internally calibrated cameras. However, 

sometimes the cameras of the system may have non-overlapping view. Since the FOVs 

(field of view) of the two cameras do not overlap, the conventional stereo camera 

calibration methods cannot be applied directly. This thesis deals with such a problem. 

The contributions of this thesis are two-fold: calibration of non-overlapping conventional 

RGB cameras and calibration of non-overlapping RGB-D cameras, e.g. Kinects. 

For part 1 (calibration of non-overlapping conventional RGB cameras), this thesis 

aims at calibrating two in-vehicle cameras mounted back to back. Road sign detection is 

carried out by an outward-facing camera, and the monitoring of a driver’s behavior is 

carried out by an inward-facing camera. To assess a driver’s attention level, we need not 

only measure the gaze direction of the driver using the inward camera, but also map the 

estimated gaze direction to the coordinate system of the outward camera to determine 

what the driver is looking at. However, the mapping of gaze direction cannot be done 

without knowing the relative pose between the inward and outward-facing cameras. Since 

the FOVs of the two cameras do not overlap, the conventional stereo camera calibration 
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methods cannot be applied directly. Since one camera can measure the vehicle’s motion 

while the other cannot, the consistency of motion cannot be used for camera calibration 

in this case. Since one of the cameras is situated inside the vehicle, it is difficult to set up 

a mirror with which the two cameras can observe the same scenes. This paper proposes a 

new approach to calibrate such non-overlapping cameras using a laser pointer, which can 

overcome the above problems. A laser pointer is mounted on a calibration board so that 

its pose within the coordinate system of the calibration board can be obtained. While one 

of the cameras, such as the inward camera, observes the calibration board with the laser 

pointer, the intersection of the laser ray and the outside scenery is observed by the other 

camera. Thus, the FOV of both cameras are connected and the relative pose between the 

cameras can be estimated. Two algorithms are presented based on this concept. In the 

first algorithm, the intersection of the laser ray and the object in the driver's FOV is 

observed by the second camera. In this case, the relative pose between the cameras can be 

estimated through a coplanar constraint. In the second algorithm, the second camera 

observes another calibration board set up outside the vehicle, with which the laser ray 

intersects. Thus, a more rigid constraint, namely, the collinear constraint, can be used to 

estimate the relative pose between the cameras. We compare the performance of the two 

proposed algorithms with the conventional mirror-based method through simulations and 

experiments. Finally the laser-based collinear method is applied to the calibration of an 

in-vehicle camera system. In contrast to other methods, the proposed method is simple, 
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practical, and especially well suited to the calibration of non-overlapping in-vehicle 

cameras in a factory or garage. 

For part 2 (calibration of non-overlapping conventional RGB-D cameras), this 

thesis aims at calibrating two Kinects mounted on a mobile robot. The two Kinects 

monitor front and back respectively, so that the robot can go forward or backward 

anytime. To reconstruct the environment in a unified coordinate system, the relative pose 

of two Kinects should be calibrated. However, in order to avoid interference between 

infrared rays of two Kinects, two Kinects should never have overlapping views. This 

thesis deals with the above problem. Until now, several methods of calibrating non-

overlapping RGB cameras have been reported. However, if the methods for RGB 

cameras are used directly to RGB-D cameras, the depth cues of RGB-D cameras is 

ignored without being exploited for the pose calibration of RGB-D cameras. In this thesis, 

we cope with the problem of calibrating non-overlapping RGB-D cameras, such as 

Kinects, by exploiting the depth cues. A laser pointer is fixed at one calibration board so 

that its pose at the coordinate system of the calibration board can be obtained easily. 

While one of the RGB-D cameras observes the calibration board fixed with the laser 

pointer, the laser pointer project a spot to the scene which is observed by the other. Thus, 

two 3D points, respectively located in the field of views of the two RGB-D cameras, are 

connected by a laser ray. The relative pose of two RGB-D cameras can be estimated 

through this collinear constraint. The effectiveness of the proposed method has been 

proved by results of simulation and real-world experiments. 



 

xiv 

 

ACKNOWLEDGEMENTS 

Joining the robot vision group at Tottori University was one of the best decisions 

of my life. I have to thank Prof. Li for the continuous support and for the many things he 

has taught me. He had a project ready for me as soon as I arrived at Tottori University, 

enabling me to jump into research immediately. His openness to meet at any time of day 

or night was crucial to my learning process and coming up with new ideas. His insights 

made debugging and implementing complicated algorithms relatively easy. 

Additionally, this work would not have been possible without the help of Ning 

Dai and Lei Zhang who supervised me in my master learning at the Shanghai Institute of 

Technical Physics of the Chinese Academy of Science. They taught me the foundations 

of research which I further built upon throughout my PhD. I had the opportunity to work 

with Xuebin Qin directly for the first two years of my PhD as well. His patience with my 

persistent questions was essential to my progress in the early years of the program. I also 

had the pleasure of working with Hanchao Jia. His intuition about what works in 

computer vision inspired me in the later portion of my PhD to think outside the box and 

produce some state-of-the-art results.  

I'd especially like to thank Zheng Jiao and Jianfeng Li for doing me a lot of favor 

with practical experiments. Especially thank Prof. Nakanishi for the engaging chats and 

group meetings throughout my years at Tottori University. His advises are extremely 

useful to my research. His rigorous work attitude and enthusiasm to students moved me a 



 

xv 

 

lot. I would also like to thank all the students and teachers at our lab for the interesting 

discussions and research they have all done. 

I thank my family for their continuing support in my studies and helping me with 

all the tough decisions along the way. Finally, I thank my wife Yun Huang whose 

patience with my long hours of work and her loving support helped me get through the 

thick and thin of my PhD. Despite the exciting research I had the opportunity to do, it 

was her comedic upbeat attitude and encouragement that kept me going. Without her this 

would not have been possible. 

 

Wuhe Zou 

2015.3.18, Tottori, Japan 

 



 

 

1 

 

CHAPTER 1 

Introduction 

1.1 Background 

Cameras are widely used in driving assistance [1, 2, 3, 4]. For example, road 

scene analysis, such as lane marking detection and road sign detection, is carried out by 

an outward-facing camera, and the monitoring of a driver’s behavior is carried out by an 

inward-facing camera [2]. To assess a driver’s attention level, we need not only measure 

the gaze direction of the driver using the inward camera, but also map the estimated gaze 

direction to the coordinate system of the outward camera to determine what the driver is 

looking at. However, the mapping of gaze direction cannot be done without knowing the 

relative pose between the inward and outward-facing cameras [2, 3]. 

As shown in Fig. 1.1, there is no overlapping field of view (FOV) between the 

inward camera observing the driver’s behavior, Camera 1, and the outward camera, 

Camera 2. Moreover, the inward camera is mounted inside the vehicle, meaning that the 

outward camera records a moving image, while the inward camera observes a static scene 

when the car is moving. The calibration of the extrinsic parameters (relative pose) of the 

outward and inward cameras is the problem addressed in this research. 

Since the FOVs of the two cameras do not overlap, the conventional stereo 

camera calibration methods cannot be applied directly [1, 5, 6, 7]. Since one camera can 

measure the vehicle’s motion while the other cannot, the consistency of motion 
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mentioned discussed in [9, 13] cannot be used for camera calibration in this case. Since 

one of the cameras is situated inside the vehicle, it is difficult to set up a mirror with 

which the two cameras can observe the same scenes [11, 14, 15, 16, 20, 21]. 

1.2 Contribution  

This research proposes new approaches to calibrating such non-overlapping 

cameras using a laser pointer, which can overcome the above problems. A laser pointer is 

mounted on a calibration board so that its pose within the coordinate system of the 

calibration board can be obtained as shown in Fig. 1.2(a). While one of the cameras, such 

as the inward camera, observes the calibration board with the laser pointer, the 

intersection of the laser ray and the outside scenery is observed by the other camera, as 

shown in Figs. 1.2(b) and (c). Thus, the FOV of both cameras are connected and the 

relative pose between the cameras can be estimated. The contribution includes calibration 

of non-overlapping RGB cameras and calibration of non-overlapping RGB-D cameras. 

 

Figure 1.1 :A driving assistance system of detecting a driver’s attention. By 
mapping the head/gaze direction to the coordinate system of the outward camera, 
we can estimate what area of scene the driver pays his/her attention to. 
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For calibrating non-overlapping RGB cameras, two algorithms are presented 

based on this concept. In the first algorithm, the intersection of the laser ray and the 

object in the driver's FOV is observed by Camera 2, as shown in Fig. 1.2(b). In this case, 

the relative pose between the cameras can be estimated through a coplanar constraint. In 

  

 (a)    

 

(b)                                                                        (c)    

Figure 1.2:  Calibration of in-vehicle non-overlapping cameras with a laser pointer. (a) The laser 
pointer is mounted on a calibration board. (b) Calibrating non-overlapping cameras with a laser pointer 

and one pattern. (c) Calibrating non-overlapping cameras with a laser pointer and two patterns. 
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the second algorithm, Camera 2 observes another calibration board set up outside the 

vehicle, with which the laser ray intersects, as shown in Fig. 1.2(c). Thus, a more rigid 

constraint, namely, the collinear constraint, can be used to estimate the relative pose 

between the cameras. We compare the performance of these two algorithms with the 

conventional mirror-based method presented in [15] through simulations and experiments. 

On the other hand, we cope with the problem of calibrating non-overlapping 

RGB-D cameras, such as Kinects, by exploiting the depth cues. A laser pointer is fixed at 

one calibration board so that its pose at the coordinate system of the calibration board can 

be obtained easily, as shown in Fig. 1.2. While one of the RGB-D cameras observes the 

calibration board fixed with the laser pointer, the laser pointer project a spot to the scene 

which is observed by the other. Thus, two 3D points, respectively located in the field of 

views of the two RGB-D cameras, are connected by a laser ray. The relative pose of two 

RGB-D cameras can be estimated through this collinear constraint. 

1.3 Organization  

The rest of this thesis is organized as follows. Chapter 2 reviews previous works 

on external calibration of cameras, giving particular attention to calibration methods for 

non-overlapping cameras. Particularly, the state-of-the-art method for calibrating non-

overlapping cameras is introduced, which use a mirror to calibrate non-overlapping 

cameras. Chapter 3 introduces basic knowledge of camera model, including intrinsic 

parameters, extrinsic parameters, projection matrix and stereo geometry. The background 

knowledge makes our methods easier to understand. Chapter 4 introduces how to 
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estimate the pose of the laser pointer relative to the calibration pattern. An error analysis 

has been carried out to show the effectiveness of this technic. The pose of the laser 

pointer will be used as initial value throughout this dissertation. Chapter 5 introduces how 

to calibrate non-overlapping RGB cameras with one calibration pattern using a coplanar 

constraint method. Chapter 6 introduces how to calibrate non-overlapping RGB cameras 

with tow calibration patterns using a collinear constraint method. Chapter 7 introduces 

how to calibrate non-overlapping RGB-D cameras with one calibration pattern. Finally, 

conclusions are presented in Chapter 8. 
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CHAPTER 2 

Relative Research 

Camera calibration is a fundamental problem in the field of computer vision. The 

relative positions and orientations of cameras have to be considered in many 

computer/robot vision applications such as 3D reconstruction, motion estimation, 

augmented reality, visual surveillance, and intelligent transportation systems. In these 

applications, it is necessary to calibrate cameras in a single coordinate frame. 

2.1 Calibrating cameras with overlapping view 

Various methods have been proposed to calibrate cameras using calibration 

objects. Generally there are two classes of methods: the first class uses a calibration 

object and provides the external camera parameters within the coordinate system of the 

calibration object as a byproduct of the internal calibration; the second class does not use 

any calibration object and delivers an external camera calibration up to scale. 

We first review the methods that can be used in conjunction with our method. A 

variety of methods use fixed 3D geometry [30, 39]. Orthonormal properties of the 

rotation matrix have been used in plane-based approaches [32, 31, 37, 7, and 38]. A 

planar pattern viewed from at least three different orientations is used in [7]. Other 

calibration objects include: spheres [26, 40], circles [33], surfaces of revolution [29], 
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shadows [28] and even fixed stars in the night sky [35]. Most of these methods are based 

on the constraints provided by vanishing points along perpendicular directions. 

The method in [12] uses a moving plate to calibrate multi-camera environments 

and does not require a 3D calibration object with known 3D coordinates. Kitahara et al. 

[34] calibrated their large scale multi-camera environment by using a classical direct 

method [39]. The necessary 3D points are collected by a combined use of a calibration 

board and a 3D laser-surveying instrument. Svoboda et al. [24] have calibrated a system 

of at least three cameras by obtaining a set of virtual 3D points made by waving a bright 

spot throughout the working volume. Baker and Aloimonos [27] proposed a calibration 

method for a multi-camera network which requires a planar pattern with a precise gird. 

Lee et al. [36] established a common coordinate frame for sparse set of cameras so that 

all cameras observe a common dominant plane. They tracked objects moving in this 

plane and from their trajectories they estimated the external parameters of the cameras in 

a single coordinate system. Sinha et al. [10] have calibrated a camera network by using 

epipolar geometry constraints derived from dynamic silhouettes. All above conventional 

methods for camera network calibration assume that the cameras have overlapping views 

such that points lying in these views can be used to determine the relative positions of the 

cameras. Here, we focus on the calibration of cameras with non-overlapping views. 

2.2 Calibrating cameras with non-overlapping view 

An approach to aligning non-overlapping image sequences was proposed by 

Caspi and Irani [8] for the case of multi-camera systems sharing the same projection 
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center. In this approach, a calibration object is not used. However, the requirements of a 

common optical center and rigid motion are strict limitations. Thus, this approach is 

inapplicable to camera calibration with a large baseline separation. 

Esquivel [9] proposed an approach to calibrate a pair of cameras with non-

overlapping views based on the motion consistency of rigid coupling. This approach used 

image sequences synchronously captured by internally calibrated cameras with non-

overlapping views to calibrate the cameras’ extrinsic parameters. The approach computes 

the camera motion up-to-scale independently for each camera. Then, all reconstructions 

are aligned with a similarity transformation. However, this approach is not suitable for 

the calibration of cameras which do not satisfy motion consistency, such as the two 

vehicle-mounted cameras shown in Fig. 1.1. 

2.3 State-of-the-art method for calibrating non-overlapping cameras 

State-of-the-art methods of calibrating non-overlapping cameras using mirrors 

have been proposed by Kumar [11], Hesch [14] [21], Rodrigues [15], Agrawal [16], and 

Sturm [20]. The extrinsic parameters of the camera network are estimated from the 

mirrored camera poses by formulating constraints between the cameras. The calibration 

object provides a unique reference frame for computing a family of mirrored camera 

poses. However, it may be difficult to apply this approach to the estimation of the relative 

pose between the outward and inward-facing cameras in our setup, due to the following 

considerations. 
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 Because Camera 1 is inside the vehicle, the setup space is limited. A simpler 

and more practical method is desirable. 

 When the baseline between the two cameras is large, the virtual pattern inside 

the mirror will be far from Camera 2, as shown in Fig. 2.1(a). A sample 

image using this method for our setup is shown in Fig.2.1 (b). It is apparent 

that the image of the mirrored pattern captured by Camera 2 becomes small. 

This influences the accuracy of detecting the corners of the checkered 

 

(a) 

 

(b) 

Figure 2.1: (a) Using a mirror to calibrate cameras with a big baseline facing in almost the 
opposite direction, the image of the virtual pattern captured by the Camera2 is rather small 
due to the distance between it and Camera2. (b) Example of the pattern’s image captured 

by the outside camera via a mirror. 
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calibration pattern. In an extreme case, if we want to calibrate cameras set up 

in a stadium, it will be nearly impossible to apply the mirror-based approach. 

 Because the cameras are pointing in opposite directions to each other, when 

Camera 1 observes the calibration board, the calibration board image inside 

the mirror observed by Camera 2 can be occluded by Camera 1, as shown in 

Fig. 2.1(b). 

 The windscreen may blur the image; the light reflected by the windscreen 

may also obstruct the observation of the calibration pattern, as shown in Fig. 

2.1(b). 
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CHAPTER 3 

Fundamentals 

As the subject of this thesis is calibrating non-overlapping cameras, we start with 

physical model of single camera and stereovision in this chapter. Some basic mathematic 

fundamentals for camera calibration will also be mentioned, which will make this thesis 

easy to understand. In this chapter, we firstly introduce pinhole camera model. Then the 

intrinsic and extrinsic parameters will be introduced. Finally stereovision system and its 

epipolar problem will be introduced. 

3.1 Pinhole camera model 

In this section, we describe the image acquisition process known as the pinhole 

camera model, which is regularly employed as a basis in this thesis. More specifically, 

we first discuss the model that integrates the internal or intrinsic camera parameters, such 

as the focal length and the lens distortion. Secondly, we extend the presented simple 

camera model to integrate external or extrinsic camera parameters corresponding to the 

position and orientation of the camera. 

3.2 Intrinsic parameters 
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The pinhole camera model defines the geometric relationship between a 3D point 

and its 2D corresponding projection onto the image plane. When using a pinhole camera 

model, this geometric mapping from 3D to 2D is called a perspective projection. We 

denote the center of the perspective projection (the point in which all the rays intersect) 

as the optical center or camera center and the line perpendicular to the image plane 

passing through the optical center as the optical axis (see Fig. 3.1). Additionally, the 

intersection point of the image plane with the optical axis is called the principal point. 

The pinhole camera that models a perspective projection of 3D points onto the image 

plane can be described as follows. 

 

Figure 3.1:  The ideal pinhole camera model describes the relationship between a 
3D point (X,Y,Z)T and its corresponding 2D projection (u,v) onto the image 

plane. 
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3.2.1 Perspective projection using homogeneous coordinates 

Let us consider a camera with the optical axis being collinear to the Zcam-axis 

and the optical center being located at the origin of a 3D coordinate system (see Fig. 3.1). 

The projection of a 3D world point (X,Y,Z)T onto the image plane at pixel position 

(u,v)T can be written as: 

Z
fYv

Z
fXu

   (3.1) 

Where, f denotes the focal length. To avoid such a non-linear division operation, the 

previous relation can be reformulated using the projective geometry framework, as 

TT ZYfXfvu ),,(,, .   (3.2) 

This relation can be expressed in matrix notation by 

0
0
0

1
0
0

0

0

0
0

1
f

f
v
u

,   (3.3) 

Where, Z  is the homogeneous scaling factor. 

3.2.2 Principal-point offset 
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Most of the current imaging systems define the origin of the pixel coordinate 

system at the top-left pixel of the image. However, it was previously assumed that the 

origin of the pixel coordinate system corresponds to the principal point (ox,oy)T , located 

at the center of the image (see Fig. 3.2(a)). A conversion of the coordinate systems is thus 

necessary. Using homogeneous coordinates, the principal-point position can be readily 

integrated into the projection matrix. The perspective projection equation becomes now 

 

(a) 

 

(b) 

Figure 3.2:  (a) The image (x,y) and camera (u,v) coordinate system. (b) Non-
ideal image sensor with non-square, skewed pixels. 
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3.2.3 Image-sensor characteristics 

To derive the relation described by Equation (3.4), it was implicitly assumed that 

the pixels of the image sensor are square, i.e., aspect ratio is 1:1 and pixels are not 

skewed. However, both assumptions may not always be valid. In practice, the pixel 

aspect ratio is often provided by the image-sensor manufacturer. Second, pixels can 

potentially be skewed, especially in the case that the image is acquired by a frame 

grabber. In this particular case, the pixel grid may be skewed due to an inaccurate 

synchronization of the pixel-sampling process. Both previously mentioned imperfections 

of the imaging system can be taken into account in the camera model, using the 

parameters 
x

y
f

f  and , which model the pixel aspect ratio and skew of the pixels, 

respectively (see Fig. 3.2(b)). The projection mapping can be now updated as 

PZ
Y
X

o
o

f
f

y
x

y

x

y

x
0M

10
0
0

100
0

1
   (3.5) 

With TZYXP )1,,,( being a 3D point defined with homogeneous coordinates. In 

practice, when employing recent digital cameras, it can be safely assumed that pixels are 

square (fx=fy) and non-skewed )0( . The projection matrix that incorporates the 
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intrinsic parameters is denoted as M throughout this thesis. The all zero element vector is 

denoted by 0 . 

3.2.4 Radial lens distortion 

Real camera lenses typically suffer from non-linear lens distortion. In practice, 

radial lens distortion causes straight lines to be mapped as curved lines. The radial lens 

distortion appears more visible at the image edges, where the radial distance is high. A 

standard technique to model the radial lens can be described as follows. 

Let (xu,yu)T and (xd,yd)T be the corrected and the measured distorted pixel 

positions, respectively. The relation between an undistorted and distorted pixel can be 

modeled with a polynomial function and can be written as 

yd

xd
d

yu

xu
oy
ox

rLoy
ox

)( ,   (3.6) 

Where, 

2
11)( dd rkrL  and 222 )()( ydxdd oyoxr .   (3.7) 

In the case k1=0, it can be noted that xu=xd and yu=yd, which corresponds to the 

absence of radial lens distortion. 

It should be noted that Equation (3.6) provides the correct pixel position using a 

function of the distorted pixel position. However, to generate an undistorted image, it 

would be more convenient to base the function L(r) on the undistorted pixel position. 

This technique is usually known as the inverse mapping method. The inverse mapping 

technique consists of scanning each pixel in the output image and re-sampling and 
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interpolating the correct pixel from the input image. To perform an inverse mapping, the 

inversion of the radial lens distortion model is necessary and can be described as follows. 

First, similar to the second part of Equation (3.7), we define 

222 )()( yuxuu oyoxr    (3.8) 

Then, taking the norm of Equation (3.6), it can be derived that 

))()(()()()( 2222
ydxddyuxu oyoxrLoyox ,   (3.9) 

Which is equivalent to  

ddu rrLr )( .   (3.10) 

When taking into account Equation (3.7), this equation can be rewritten as a cubic 

polynomial: 

01

11

3

k
rr

k
r u

dd .   (3.11) 

The inverted lens distortion function can be derived by substituting 

Equation (3.10) into Equation (3.6) and developing it from the right-hand side: 

yu

xu

u

d

yd

xd
oy
ox

r
r

oy
ox

,   (3.12) 

Where rd can be calculated by solving the cubic polynomial function of Equation 

(3.11). This polynomial can be solved using Cardano’s method, by first calculating the 

discriminant ∆ = q2 + 4 / 27 p3 where p = 1 / k1 and q = - ru / k1. Depending on the sign of 

the discriminant, three sets of solutions are possible.  

If >0, then the equation has one real root rd1 defined as 
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33
1 22

qqrd .   (3.13) 

If  >0, then the equation has three real roots rdk defined as 

3

2)27
2

arccos(
cos

3
2

3 k
p

q
prdk ,   (3.14) 

For k={0, 1, 2}, where an appropriate solution rdk should be selected such that 

rdk > 0 and rdk < ruk. However, only one single radius corresponds to the practical solution. 

Therefore, the second case Δ < 0 should not be encountered. The third case with Δ = 0 is 

also impractical. In practice, we have noticed that, indeed, these second and third cases 

never occur. 

 

(a)     (b) 

Figure 3.3:  (a) Distorted image. (b) Corresponding corrected image using the 
inverted mapping method. 
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As an example, Fig. 3.3 depicts a distorted image and the corresponding corrected 

image using the inverted mapping method, with Δ > 0. 

The discussed lens-distortion correction method requires knowledge of the lens 

parameters, i.e., k1 and (ox,oy)T . The estimation of the distortion parameters can be 

performed by minimizing a cost function that measures the curvature of lines in the 

distorted image. To measure this curvature, a practical solution is to detect feature points 

belonging to the same line on a calibration rig, e.g., a checkerboard calibration pattern. 

Each point belonging to the same line in the distorted image forms a bended line instead 

of a straight line. By comparing the deviation of the bended line from the theoretical 

straight line model, the distortion parameters can be calculated. 

3.3 Extrinsic parameters 

As opposed to the intrinsic parameters that describe internal parameters of the 

camera (focal distance, radial lens parameters), the extrinsic parameters indicate the 

external position and orientation of the camera in the 3D world. Mathematically, the 

position and orientation of the camera is defined by a 3 × 1 vector t and by a 3 × 3 

rotation matrix R (see Figure 3.4). 

3.3.1 Direct mapping (from world to camera coordinate systems) 

To obtain the pixel position p = (x,y,1)T of a 3D-world homogeneous point P, the 

camera should be first translated to the world coordinate origin and second, rotated. This 

can be mathematically written as 
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P
T

101
0 t0

0
R0Mp .   (3.15) 

Alternatively, when combining matrices, Equation (3.15) can be reformulated as 

MRtMR0
RtR0Mp

Z
Y
X

P1 .   (3.16) 

3.3.2 Indirect mapping (from camera to world coordinate systems) 

Previously, the process of projecting a 3D point onto the 2D image plane was 

described. We now present how a 2D point can be back-projected to the 3D space and 

derive the corresponding coordinates. Considering a 2D point p in an image, there exists 

a collection of 3D points that are mapped and projected onto the same point p. This 

collection of 3D points constitutes a ray connecting the camera center t = (tx,ty,tz)T and p 

 

Figure 3.4:  The relationship between the camera and world coordinate system is 
defined by the translation t and rotation R of the camera. 
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= (x,y,1)T . From Equation (3.16), the ray P(λ) associated to a pixel p = (x,y,1)T can be 

defined as 

pMRt 11

Z
Y
X

,   (3.17) 

Where is the positive scaling factor defining the position of the 3D point on the ray. In 

the case Z is known, it is possible to obtain the coordinates X and Y by calculating λ 

using the relation 

pMR 11
321

3
),,(,, Tz zzzwhere

z
tZ .   (3.18) 

The back-projection operation is important for depth estimation and image 

rendering, which will be extensively addressed later in this thesis.  

3.4 Stereovision system 

In the previous section, we have described the geometry of a single camera. We 

now examine the case of two camera views capturing the same scene from two different 

viewpoints. Given two images, we are interested in estimating the 3D structure of the 

scene. The estimation of coordinates of a 3D point P can be performed in two steps. First, 

given a selected pixel pl in the image Il, the position of the corresponding pixel pr in 

image Ir is estimated. Similarly to the previous section, a pair of corresponding points 

pl and pr is called a point-correspondence. This correspondence in points pl and pr comes 

from the projection of the same point P onto both images Il and Ir. Second, the position of 

P is calculated by triangulation of the two corresponding points, using the geometry of 
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the two cameras. The geometry of the two cameras relates to the respective position and 

orientation and internal geometry of each individual camera. The underlying geometry 

that describes the relationship between both cameras is known as the epipolar geometry. 

The estimation process of the epipolar geometry is known as weak calibration, as 

opposed to the strong calibration. The epipolar geometry addresses (among others) the 

following two aspects. 

 Geometry of point-correspondence: considering a point in an image, the 

epipolar geometry provides a constraint on the position of the corresponding 

point. 

 Scene geometry: given point-correspondences and the epipolar geometry of 

both cameras, a description of the scene structure can be recovered. 

3.5 The stereo correspondence e problem 

Let us now describe the geometry of two images and define their mutual relation. 

Consider a 3D point P that is projected through the camera centers Ol and Or onto two 

images at pixel positions pl and pr, respectively (see Fig. 3.5). 
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Obviously, the 3D points P, Ol, Or and the projected points pl, pr are all located 

within one common plane. This common plane is known as the epipolar plane. The 

epipolar plane is fully determined by the back-projected ray going through Ol and pl and 

the camera center Or. The property that the previously specified points belong to the 

epipolar plane provides a constraint for searching point-correspondences. More 

specifically, considering the image point pl, a point pr lies on the intersection of the 

epipolar plane with the second image plane. The intersection of both planes corresponds 

to a line known as the epipolar line. Therefore, the search of point-correspondences can 

be limited to a search along the epipolar line instead of an exhaustive search in the image. 

Additionally, it is interesting to note that this constraint is independent of the scene 

structure, but instead, uniquely relies on the epipolar geometry. The epipolar geometry 

can be described using a 3 × 3 rank-2 matrix, called the fundamental matrix F. 

 

Figure 3.5:  Epipolar geometry. The epipolar plane is defined by the point P and 
the two camera centers Ol and Or.  
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We now introduce some terminology related to the epipolar geometry employed 

further in this thesis. 

 The epipolar plane is the plane defined by a 3D point and the two cameras 

centers. 

 The epipolar line is the line determined by the intersection of the image plane 

with the epipolar plane. 

 The baseline is the line going through the two cameras centers. 

 The epipolar pole is the image-point determined by the intersection of the 

image plane with the baseline. Also, the epipolar pole corresponds to the 

projection of the first camera center (Ol) onto the second image plane, or vice 

versa. 
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CHAPTER 4 

Estimating the Pose of the Laser Pointer Relative to the Calibration Pattern  

A laser pointer mounted on a checkerboard (Board A) is used in both the coplanar 

and collinear calibration methods (introduced in chapter 5, chapter 6 and chapter 7 

respectively). Therefore, in this chapter, I preliminarily estimate the pose of the laser ray. 

The parameters of the laser ray consist of its orientation and the location of its starting 

point in the coordinate system of Board A.  

4.1 Notation 

In this thesis, we denote 2D points by minuscule, e.g., q ,3D points by majuscule, 

e.g., Q , vectors by bold minuscule, e.g., n , matrices by bold majuscule, e.g., R , and 3D 

lines of Plücker coordinates by and δ. Unless otherwise stated, homogeneous 

coordinates are used for points and other geometric entities. Equality between vectors and 

matrices, up to a scalar factor, is denoted by . The cross-product of two vectors a and 

b is written as ba . A coordinate system is denoted by a symbol, e.g., 1C . Superscripts 

are used to identify the reference frame that the points or vectors belong to. For example, 

1Q  denotes the 3D point Q  in coordinate system 
1C . A transformation between two 

coordinate systems is denoted such that 1Q can be represented by 2Q  via the 

transformation 
1_2T : 2

1_2
1 QQ T , where 
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1
1_21_2

1_2 T0
tR

T  

To project a 3D point Q  to its image projection q , a perspective projection model is used. 

4.2 Problem definition 

The front of Board A has a checkered pattern used for calibration. The laser 

pointer is mounted almost vertically on the back of the board such that its ray passes 

through a small hole in the board.  

The main idea is that, because of the ideal central projecting model and the 

unidirectional property of the laser, when the laser is viewed by the camera, the laser 

should be pointing to the optical central of the camera.  

A sketch (see Fig. 4.1) is used to define the problem. The coordinate systems of 

 

      (a)      (b) 

Figure 4.1:  Calibrating the pose of the laser pointer. (a) Diagram of the 
calibration. (b) A laser spot appears in the image when the laser pointer points to 

the optical center of the camera.  
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Board A and the camera are denoted by aC  and 0C . The transformation from 
aC  to 

0C  is 

0_aT . The laser pointer’s pose is described by the location P  and the direction vector n . 

4.3 Computation of laser pointer parameters 

Normally you don’t have a single heading 2 or 3. With the fundamentals 

mentioned before, the following relations can be draw: 

imageboard pp H    (4.1) 

a
a PP 0_

0 T     (4.2) 

00 Pn     (4.3) 

01
0_ nRn a

a     (4.4) 

Here, boardp  and imagep  are the 2D point p  on the plane of Board A and the image 

plane, respectively. H  is a homography matrix between the board and image planes. In 

Equation (4.3), 0P is a nonhomogeneous coordinate. Using the method proposed by 

Zhang [7, 12], the transformation 0_aT and the homography matrix H can be calculated. 

Thus, with the image of the checkered pattern, H , imagep , 0_aR , and 0_at  can be obtained. 

Since the board plane is the plane 0z in aC , the 3D point aP  can be obtained from 

the 2D point boardp . Therefore, using Equations (4.1), (4.2), (4.3), and (4.4), the pose of 

the laser pointer, ( aP , an ), can be estimated. 
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4.4 Experiments 

To calibrate the pose of the laser pointer, the laser is projected in the general 

direction of the camera as shown in Fig. 4.1. Then, the ray’s direction is tuned by 

 

(a) 

 

(b) 

Figure 4.2:  Calibrating the pose of the laser pointer. (a) When the laser pointer 
does not point to the optical center of the camera. (b) A laser spot appears in the 

image when the laser pointer points to the optical center of the camera.  
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adjusting the orientation of Board A so that the ray can be seen by the camera lens; that is, 

the laser pointer is pointing exactly at the optical center of the camera as required. The 

result is a laser spot as shown in Fig. 4.2 (b) appearing in the image captured by the 

camera. Then, the laser is turned off and an image is captured with the checkered pattern 

and the hole p . Even when the laser ray is deviating a little from the optical center of the 

camera, an image likes Fig. 4.2 (a) instead of Fig. 4.2 (b) will be captured by the camera.  

4.5 Estimation of the computational error 

The following estimations of the relative pose parameters rely on the estimation 

of the laser pointer’s pose. Thus, the accuracy of the latter has a significant effect on the 

overall precision. Ideally, the laser should be pointing at the camera’s optical center when 

the laser spot appears in the center of the image. However, in the actual experiments, the 

estimation will be slightly influenced by the lens’s refraction, introducing experimental 

error. Moreover, during operation, it is difficult to confirm that a laser spot such as that in 

Fig. 4.2(b) is located exactly in the center of the image. However, we can estimate the 

upper error limit of the laser pointer’s orientation which is denoted by max . 

When a laser spot appears in the image, it is confirmed that the laser has at least 

passed through the lens, even if it is not projected directly onto the optical center. Thus, 

the radius of the camera lens can be used in the calculation of the upper error limit. As 

shown in Fig. 4.3, the radius of the camera lens is denoted by r  and the distance between 

the board and the camera is L .  L is approximately perpendicular to r  in Fig. 4.3; thus, 
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L
rarctanmax  

where 5.0r  cm in our experiment. In order to capture a clear, large image of the 

pattern, L  is usually set to about 0.8 m in the experiment. In this case, the upper error 

limit is just 36.0max . Note that here the initial values of the parameters ( 00, aaP n ) 

of the laser ray are estimated. They are refined in subsequent processes. 

4.6 Conclusion and contribution 

In this chapter, a novel technique is proposed to estimate the pose of a laser 

pointer, which is fixed on a calibration board. It is based on the principals that according 

to laser’s unidirectional property and ideal central perspective camera model, laser ray 

should be pointing to the optical center of camera when it is viewed by the camera. It is a 

practical and flexible method to calibrate the pose of laser pointer. Moreover, it is very 

effective and used throughout this thesis. 

 

Figure 4.3:  Estimating the upper error limit of the laser pointer’s orientation. 
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CHAPTER 5 

Calibrating Non-overlapping Cameras with One Calibration Pattern 

In this chapter, we propose a novel method of calibrating the relative pose of two 

non-overlapping cameras with a laser pointer. A laser pointer is fixed at a calibration 

board so that its pose at the coordinate system of the calibration board can be obtained. 

While one of the cameras observes the calibration board, the intersection of the ray of the 

laser pointer with scenes is observed by the other. Thus, the view field of both cameras is 

connected, and the relative pose between the cameras can be estimated. In contrast with 

other methods, the proposed method is simple and practical, and especially suitable to the 

calibration of non-overlapping in-vehicle cameras at a factory or a garage. 

This chapter is organized as follows. Firstly the fundamentals about quaternion 

and Levenberg-Marquardt method will be introduced beforehand. Then the key principle 

of our novel calibration method of non-overlapping cameras is drawn. Next, the results 

and performance of this method are shown on both synthetic data and real-world 

experiment. Finally, come to a conclusion. 

5.1 Quaternion for rotation 

Up until now we represent a rotation about an axis through the origin by a 3x3 

orthogonal matrix with determinant 1. However, the matrix representation seems 

redundant because only four of its nine elements are independent. Also the geometric 

interpretation of such a matrix is not clear until we carry out several steps of calculation 
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to extract the rotation axis and angle. Furthermore, to compose two rotations, we need to 

compute the product of the two corresponding matrices, which requires twenty-seven 

multiplications and eighteen additions. So first of all, we would like to introduce a little 

about the quaternion, which will be used in this thesis. 

Quaternions are very efficient for analyzing situations where rotation are involved. 

A quaternion is a 4-tuple, which is a more concise representation than a rotation matrix. 

Its geometric meaning is also more obvious as the rotation axis and angle can be trivially 

recovered. The quaternion algebra to be introduced will also allow us to easily compose 

rotation. This is because quaternion composition takes merely sixteen multiplications and 

twelve additions. 

The development of quaternions is attributed to W. R. Hamilton in 1843. Legend 

has it that Hamilton was walking with his wife Helen at the Royal Irish Academy when 

he was suddenly struck by the idea of adding a fourth dimension in order to multiply 

triples. Excited by this breakthrough, he carved the newfound quaternion equations 

1222 ijkkji  into the stone of the bridge. 

A common notation for writing a quaternion is:  ),( vsq  where s is a scalar 

and v a vector. From this it is easy to see that a real number x can be written as the 

following quaternion ),( 0xq . Similarly a vector v is also the quaternion ),0( vq . 

Operations can be defined on quaternions: 

- addition  ),( vvssqq  
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- multiplication ),( vvvvvv ssssqq  

- conjugate  ),( vsq  

- norm  
222 vsqqqqq  

- inverse  2
1

q
qq  

It can be proven that unit quaternions represent 3D rotation. If the rotation is 

represented by the quaternion q, then a point ),0( pp is rotated into a point p’ given 

by: 1qpqqpqp . 

To convert from an axis and angle representation to quaternion, use the following 

formula where u is a unit vector describing the axis and θ is the rotation angle around u: 

))2/sin(),2/(cos( uq  

To convert from Euler angles to quaternion, just apply the above formula and 

respect the order of multiplications. For example with the convention ω, Φ and κ: 

qqqq  

))0,0),2/(sin(),2/cos((q  

))0),2/sin(,0(),2/cos((q  

)))2/sin(,0,0(),2/cos((q  

To convert from a rotation matrix M to quaternion q can be worked on using 

these formulas: 
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)),,(,( zyxwq  

22

22

22

2212222
2222122
2222221

yxwxyzwyxz
wxyzxzwzxy
wyxzwzxyzy

Μ  

Checking of course that the norm of the quaternion is 1, i.e. 12222 zyxw . 

5.2 Levenberg-Marquardt method for nonlinear optimization 

As the non-linear optimization method of Levenberg-Marquardt method is 

extensive used later, we firstly give a short introduction to it. Levenberg and later 

Marquardt suggested to use a damped Gauss-Newton method. The step lmh is defined by 

the following equation: 

ghIJJ lm
T u )(  with  fTJg and 0u  

Here, )(xJJ and )(xff . The damping parameter u has several effects: 

(1) For all u>0 the coefficient matrix is positive definite, and this ensures that 

lmh is a descent direction. 

(2) For large values of u we get )('11 xFgh
uulm  is a short step in the 

steepest descent direction. This is good if the current iterate is far from the 

solution. 
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(3) If u is very small, then gnlm hh , which is a good step in the final stages of 

the iteration, when x is close to *x . If 0*)(xF (or very small), then we 

can get (almost) quadratic final convergence. 

Thus, the damping parameter influences both the direction and the size of the step, 

and this leads us to make a method without a specific line search. The choice of initial u-

value should be related to the size of the elements in )()( 000 xJxJA T , eg by letting  

0
0 max iii au , 

Where is chosen by the user. During iteration the size of u can be updated. The 

updating is controlled by the gain ratio 

)()(
)()(

lm

lm

LL
FF

h0
hxx

 

Where the denominator is the gain predicted by a linear model. 
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Note that both lm
T

lm hh and gh T
lm are positive, so )()( lmLL h0 is guaranteed to be 

positive. 

A large value of indicated that )( lmL h is a good approximation to )( lmF hx , 

and we can decrease u so that the next Levenberg-Marquardt step is closer to the Gauss-
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Newton step. If is small (maybe even negative), then )( lmL h is a poor approximation, 

and we should increase u with the twofold aim of getting closer to the steepest descent 

direction and reducing the step length. These goals can be met in different ways. 

The stopping criteria for the algorithm should reflect that at a global minimizer 

we have 0xgxF *)(*)(' , so we can use 

1g  

Where 1 is a small, positive number, chosen by the user. Another relevant criterion is to 

stop if the change in x is small, 

)( 22 xxxnew  

This expression gives a gradual change from relative step size 2 when x is large to 

absolute step size 2
2 if x  is close to 0 . Finally, as in all iterative processes we need a 

safeguard against an infinite loop, 

maxkk  

Also 2 and maxk are chosen by the user. 

The last two criteria come into effect eg if 1 is chosen so small that effects of rounding 

errors have large influence. This will typically reveal itself in a poor accordance between 

the actual gain in F and the gain predicted by the linear model, and will result in u being 

augmented in every step. The strategy for augmenting u implies that in this case u grows 
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fast, resulting in small lmh , and the process will be stopped by the stopping criteria 

1g . 

The algorithm is summarized below. 

 

5.3 Plücker coordinates 

Three-dimensional lines are represented either by two distinct 3D points, or by 6-

vectors of so-called Plücker coordinates. We use the following convention. Let A and 

B be two 3D points, in homogeneous coordinates. The Plücker coordinates of the line 

spanned by them, are then given as: 

BA
BA 44 AB  
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Where A is the 3-vector consisting of the first three coordinates of A  and likewise for 

B . 

The action of displacements on Plücker coordinates is as follows. Let t and R be 

a translation vector and rotation matrix that map points according to: 

Q0
tRQ 1T  

Plücker coordinates are then mapped according to: 

LRRt
0RL  

Where 0 is the 3x3 matrix composed of zeroes. 

Two lines cut one another exactly if  

01
3333

3333
2 L0I

I0L T  

5.4 Coplanar constraint method 

In this section, the first calibration method proposed is explained in detail. Two 

non-overlapping cameras are calibrated with one pattern and a laser pointer. A coplanar 

constraint is used to estimate the relative pose of the two cameras. 

5.4.1 Problem definition 
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The problem is illustrated in Fig. 5.1. The two non-overlapping cameras are 

labeled Camera 1 and Camera 2. The coordinate systems of Board A, Camera 1, and 

Camera 2 are aC , 1C , and 2C , respectively. After the cameras' internal parameters are 

computed using the conventional method [7], the extrinsic parameters 1_21_2 ,tR  

between the two cameras are estimated. 

 

Figure 5.1:  Calibrating non-overlapping cameras with a laser pointer. 

 

Figure 5.2:  Calibrating non-overlapping cameras with a laser pointer. 
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5.4.2 Process 

The cameras’ intrinsic parameters are calibrated beforehand using a calibration 

board and the conventional method described in [7]. The initial pose of the laser pointer 

mounted on the calibration board has been estimated using the method mentioned in 

chapter 4. Then, we calibrate the extrinsic parameters (relative pose) of the two cameras 

using the laser ray connecting the FOVs of the two cameras as a reference. The method, 

which uses a coplanar constraint, is proposed to compute the extrinsic parameters and the 

laser pointer’s pose based on this concept. A block diagram of the process is presented in 

Fig. 5.2. 

5.4.3 Coplanar constraint for relative pose via a laser ray 

We consider a ray of light PQ  starting from point P  that intersects with an 

external feature at pointQ ; Q  is observed by Camera 2 as a laser dot q . The Plücker 

coordinates a  of the laser ray in aC is estimated in Chapter 4. The transformation 

1_1_ , aa tR  can be calculated using the image of Board A captured by Camera 1 using 

the method described in [12]. Thus, the Plücker coordinates 1  of the laser ray in 1C  can 

be computed by multiplying a  by a 66  matrix [17]: 

a

aa

a

1_1_

1_1
Rt

0R
   (5.1) 
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The position of the image of the laser dot q gives the back-projection ray 2q in the 

second view (Camera 2) that must be incident with 1. 

qdist 112 Mq    (5.2) 

Here, M is a perspective projection matrix and 1dist is a reverse processing of 

the distortion function with respect to Camera 2’s internal parameters. 

Next, 2  is used to denote the Plücker coordinates of the laser dot’s back 

projection ray in the reference frame 2C , which are expressed as );( 222 q0q . The 

Plücker coordinates 1of the back-projection ray in 1C  can be computed by multiplying 

2  by a 66  matrix that contains the relative pose 1_21_2 ,tR . 

2

1_21_2

1_21
Rt

0R
   (5.3) 

Based on the fact that the laser ray and laser dot’s back-projection rays intersect at 

point Q , 1  and 1  should be coplanar. Thus, the two Plücker coordinates 1 and 1 

satisfy the following necessary and sufficient condition [18]: 

011    (5.4) 

Substituting a  and 2  with );( aaa P nn  and );( 22 q0q , and consolidating 

Equations (5.1), (5.2) and (5.3), allows Equation (5.4) to be expanded as 

01_1_1_1_2
1

1_2
11 a

aa
a

a
T

Pqdist nRtRtRM   (5.5) 
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where aP  is used as a nonhomogeneous coordinate and 1_1_1_2 a
a

a P tRt  is 

a 33 skew-symmetric matrix. 

5.4.4 Relative pose estimation 

For Equation (5.5), M , aP , and an  are calibrated beforehand. 1_aR , 1_at , and 

q  can be obtained from each pattern image and corresponding laser spot images. 1_2R  

and 1_2t  are unknown parameters. 

By changing Board A’s position and orientation, we obtain new observations 

)(1_1_ ,,
kaa qtR  and corresponding equations: 

a
kaka

a
ka

T
kk PqdistF nRtRtRM

)(1_)(1_)(1_1_2
1

1_2)(
11

)(1 ][  (5.6) 

Finally, the relative pose between the two cameras can be computed by 

minimizing the following objective function: 

K
k k dcbaFf 1

222222
)(11_21_2 1, tR    (5.7) 

where K is the total number of observations; aaP n, is fixed as 00 , aaP n ; and 

the rotation 1_2R is represented in the form of a quaternion dcba ,,; . 

The nonlinear objective function above is optimized using the Levenberg-

Marquardt method for preciseness. 
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5.4.5 Parameters refinement 

The laser ray’s pose is estimated in Chapter 4. The cameras’ relative pose is 

estimated by fixing the laser ray’s pose in last section (Section 5.4.4). As explained in 

Chapter 4, experimental errors may be introduced in the process of determining the laser 

ray’s pose ( aP , an ). In this section, the laser ray’s pose and the cameras’ relative pose 

will be refined together using their initial values estimated in Chapter 4 and last 

subsection, respectively. Specifically, we minimize the following objective function 

using the Levenberg-Marquardt method. 

K
k k

aa dcbaFPf 1
222222

)(11_21_2 1,,, ntR    (5.8) 

 in Equations (5.7) and (5.8) is a coefficient, which maintains a balance between 

the coplanar constraint and the rotation matrix constraint. An empirical value of 

01.0 is used. 

5.5 Experiments and results 

In this section we show the experimental results of the proposed method. We first 

evaluate the performance of our method on synthetic data. Then, we apply this calibration 

method in an in-vehicle camera system which can be used for extracting driver’s 

viewpoint. 

5.5.1 Evaluation on synthetic data 

We take the intrinsic parameters calibrated from real ones as the intrinsic 

parameters of synthetic cameras. We set the image resolution to 480640 . Then we 
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create a synthetic pattern with 69  corners. The side length of pattern’s gridding is set 

to be 0.026m. We set the laser pointer perpendicular to the chessboard and located nearly 

at the center of pattern. Concretely the source point of laser ray is )0,065.0,117.0( mmm  in 

the coordinate system of pattern. The extrinsic parameters’ ground truth of two cameras 

is set as: translation )5.0,1.0,1.0(1_2t  and roll, pitch, yaw of 

rotation )173.55, 9.32,159.61( ooo
1_2R , which is approximate to the real one of in-

vehicle experiment configuration. During the simulation process, the pose )(1_1_ ),( iaa tR  

of the pattern keeps changing. )(1_ iat is randomly chosen from these position: 

.02m,0.3m)(-0.03m,-0 , ).03m,0.32m(-0.05m,-0 , )01m,0.40m-0.06m,-0.( , )0.40m-0.06m,0m,( ,

)2m,0.35m-0.08m,0.0( , )06m,0.35m-0.01m,-0.( , ).05m,0.36m(-0.06m,-0 ,

)).02m,0.36m((-0.03m,0  to make sure the pattern is seen by Camera1. Initially, pattern 

is looking towards Camera1. 
)(1_ iaR  is set to anticlockwise rotate i around an unit vector 

in  from the initial pose. The unit vector is randomly chosen in a uniform sphere. i is 

randomly chosen from 2/,1.0  to make sure the pattern observed by Camera1. For 

every pose )(1_1_ ),( iaa tR  of the pattern, corners are projected to image of Camera1. To 

simulate the quantizing of digital image, the pixel coordinate of image points are changed 

to integer. Afterwards, the image points are attached with a White Gaussian Noise 

(AWGN) with a standard deviation . Then these image points are used to calculate the 

observation of pattern’s pose )','( )(1_)(1_ iaia tR  using the method proposed by Zhang [7, 12]. 
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So the observation of laser’s pose in the coordinate of Camera1 can be calculated. On the 

other hand, a synthetic wall is created in front of Camera2 at the distance of 0.6m. The 

ground truth of laser’s pose, pattern’s pose and extrinsic parameters of cameras is used to 

calculate the laser spot’s position on the wall. The laser spot is projected to image of 

Camera2. Quantizing and AWGN are also applied to the laser spot’s image point to get 

its observation. Finally, our algorithm is applied on the noisy data. This method can adapt 

a wide range of initial value, so the initial value can be randomly given as long as the 

initial 1_21_2 ,tR  corresponding to two cameras with non-overlapping FOV. 
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Figure 5.3:  Results with synthetic data of different number of laser spots: 
extrinsic calibration error and reprojection epipolar error with respect to noise 
level. Note that, quantizing error of digital image has been considered before 

adding noise. And with real data, the noise standard deviation is below 0.1 pixel. 
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For every measure, N laser spots are observed. And for every  value, 100 

measures have been repeated. The calibration accuracy is given by the reprojection 

epipolar error, the norm Td of the translation error vector (and also TTd  express 

as percentage of the magnitude of the camera baseline) and the angular error dR  whose 

expression is given by: 

2
1)(arccos),(

*
* RRRRR

T

tracedd ,   (5.9) 

Where *R  is the ground truth rotation and R  is the estimated rotation. And the 

reprojection epipolar error is explained latter during the evaluation of real data. Fig.5.3 

shows the performances of the algorithm. 

If the quantizing error and image noise is not considered, the translation relative 

error, angular error and reprojected epipolar error are 

pixel 005-,1.7355e 35%,0.004336 005-4.70404e o  and 

pixel 005-,1.4638e 88%,0.004895  005-3.08981e o , respectively, for 100 and 300 laser 

spots. After considering the quantizing error and image noise, the calibration results are 

shown in Fig.5.3. Comparing to the results proposed in [13], the accuracy in Fig.5.3 is a 

little lower. But here we have considered the quantizing error, which can lead to a 

uniform random error from -0.5 to 0.5 pixels. For example, in Fig.5.3, when the laser spot 

number is 100, translation error and epipolar error corresponding to standard 

deviation 0  are bigger than that of standard deviation 05.0 . It is thought to be 
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caused by the quantizing error. If only the image noise ( 1.0 ) is considered, the 

translation relative error, angular error and reprojection epipolar error can reach 

pixel ,0.0542977 %,0.211341 0.199841 o  for 300 laser spots in our simulation. Besides, as 

shown in Fig.5.3, the calibration error is influenced by the number of laser spots used for 

calibration, especially for the translation relative error and reprojection epipolar error. So 

the calibration accuracy is expected to further improve by increasing the laser spot 

number. 

5.5.2 Evaluation on real-world data 

We applied our method to calibrate an in-vehicle camera system. This system 

consists of two Kinects. Here, we calibrate the relative pose of the RGB camera of the 

two Kinects. As shown in Fig. 1.2 (b), Camera1 was inside the vehicle and used to 

observe the driver. And Camera2 was outside the vehicle and used to observe the front of 

 

Figure 5.4:  Example images. Left is the laser source on the pattern captured by 
Camera 1 inside the vehicle. Right is the laser spot captured by Camera 2 outside 

the vehicle (in an ordinary scene). 
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the vehicle. The RGB resolution was set as 480640 . We used a 69  chessboard 

pattern with 54 corner points. The pattern was printed on an A4 paper. The two cameras 

were fixed on the vehicle. The chessboard was held in the Camera1’s field of view. The 

laser line got through the windscreen and projected to the Camera2’s field of view. Fig. 

5.4 shows example images seen by the two cameras. 

Since the ground truth of the relative pose between the cameras is unknown in this 

real-world experiment, we evaluate the experimental results based on the statistical 

indices of relative pose, ( 1_21_2 ,tR ), and the value of objective function of equation (5.8). 

Note that equation (5.8) is induced from the coplanar constraint of QOPQPO 22 ,,  , 

as shown in Fig. 5.1. It is the same as the epipolar constraint of conventional stereo. Here, 

we compute the epipolar errors, which measure the distance of the laser point, observed 

by camera 2 from the epipolar line. 

With the synthetic data we have shown that the calibration accuracy can be 

greatly improved by increasing the number of observations. To check this, we compare 

the experiment results of different data volume, 48 spots, 96 spots and 192 spots 

respectively. For every data volume, 6 measures have been performed. The averages and 

standard deviations of relative position, relative orientation and reprojection error for 

different data volume are shown in Table 5.1. Although ground truth is unknown, when 

the number of laser spots increases, standard deviation obviously decreases. So we come 

to a conclusion that, the calibration accuracy can be improved by increasing the data 

volume. For 192 laser spots, the standard deviation of baseline is about 1.8 cm (3.08%) 
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and the average reprojection epipolar error is 0.7602 pixel with a standard deviation 

0.0548 pixel. Comparing to the paper [11], where the epipolar error can reach 0.1 pixel 

after a global bundle-adjustment together with intrinsic parameters, our epipolar accuracy 

has yet to be improved. As we only concern about extrinsic parameters’ calibration in this 

paper, the calibration accuracy is influenced by the error of intrinsic parameters during 

real world experiment. So a global bundle-adjustment together with intrinsic parameters 

is one of our future works. 

Table 5.1: Experiment results corresponding to different data volume (48, 96 and 
192 laser spots). 

Data 
volume 

Average 
and 

standard 
deviation 

Baseline 
(m) 

Relative orientation 
 roll pitch yaw 

(degree) 

Reprojection 
epipolar 

error (pixel) 

48 laser 
spots 

AVG 0.5923 159.627 9.374 173.863 0.8028 

STDEV 0.0368 0.480 1.597 0.513 0.1705 

96 laser 
spots 

AVG 0.6051 159.615 9.622 173.827 0.7676 

STDEV 0.0273 0.273 0.417 0.075 0.1366 

192 laser 
spots 

AVG 0.6029 159.381 9.503 173.766 0.7602 

STDEV 0.0179 0.092 0.139 0.039 0.0548 

5.6 Conclusion and contribution 

In this chapter, we proposed a novel method of calibrating the relative pose of 

cameras with non-overlapping field of views using a laser pointer fixed on calibration 

pattern. We show the effectiveness of this method on both synthetic data and an in-
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vehicle camera system. Compared to other calibration methods of non-overlapping 

cameras, our proposed method is simple, practical, and especially suitable to the 

calibration of non-overlapping in-vehicle cameras at a factory or a garage, where the 

existing methods are difficult to be applied. For a camera network consist of more than 

two non-overlapping cameras, relative transformation between arbitrary two non-

overlapping cameras can be estimated with our proposed method. 
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CHAPTER 6 

Calibrating Non-overlapping Cameras with Two Calibration Patterns 

This chapter proposes a new approach to calibrating inward and outward-facing 

in-vehicle cameras using a laser pointer and two calibration patterns. Since inward 

cameras, which observe the driver's behavior, and outward cameras, which observe the 

driver's field of view, do not have overlapping views, the conventional calibration 

methods for stereo cameras cannot be applied directly. A method is presented in which 

the two cameras can be connected by a laser emitted from a laser pointer. The laser 

pointer is mounted on a calibration board so that the laser ray’s pose within the 

calibration board’s coordinate system can be calculated. The collinear method is 

presented based on this idea. We compare the performance of the proposed collinear 

algorithm with both coplanar algorithm (proposed in Chapter 5) and the conventional 

mirror-based method through simulations and experiments. Finally the laser-based 

collinear method is applied to the calibration of an in-vehicle camera system. In contrast 

to other methods, the proposed method is simple, practical, and especially well suited to 

the calibration of non-overlapping in-vehicle cameras in a factory or garage. 

6.1 Collinear constraint method 

In this section, the second calibration method is proposed. We calibrate two non-

overlapping cameras with two patterns and a laser pointer. A collinear constraint is used 

to estimate the relative pose of the two cameras. 
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6.1.1 Problem definition 

The problem is illustrated in Fig. 6.1. There are two cameras, Camera 1 and 

Camera 2, which observe calibration boards A and B, respectively. A laser pointer is 

mounted on Board A. The coordinate systems of Board A, Board B, Camera 1, and 

Camera 2 are denoted by aC , bC , 1C , and 2C , respectively. The intrinsic parameters of the 

two cameras and the transformations 1_1_ , aa tR  and 2_2_ , bb tR  are computed using 

Zhang’s method [7, 12]. 

6.1.2 Process 

Next, the method used to estimate the extrinsic parameters 1_21_2 ,tR  between 

the two cameras through a collinear constraint is explained. A block diagram of our 

calibration method is shown in Fig. 6.2. 

 

Figure 6.1:  Calibrating non-overlapping cameras with a laser pointer and two 
patterns. 
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6.1.3 Linear estimation of the relative pose 

To calibrate the relative pose between the two cameras, Board A and Board B are 

connected by a laser ray. The laser ray connects point P on Board A to point Q on Board 

B. As described in the last subsection, the Plücker coordinates 1  of the laser ray in 1C  

can be represented by 1_1_ ,, aa
a tR  in terms of Equation (5.1). The 3D location 2Q  of 

the laser spot in 2C  can be computed similarly to the computation of 0P in Chapter 4. 

Moreover, the coordinate 1Q can be computed by multiplying  2Q  by a transformation 

matrix that contains the relative pose 1_21_2 ,tR . 

21_21_21

1
QQ T0

tR
.   (6.1) 

 

Figure 6.2:  Flow diagram of the proposed calibration algorithm based on the 
collinear constraint method. 
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Based on the fact that the 3D laser dot 1Q  lies in the laser ray 1 , the following 

necessary and sufficient condition is obtained [18]: 

01111 QQ .    (6.2) 

If 

vu;1  

Then 

0
1

T

def

v
vu  

where u is the 33  skew-symmetric matrix. 

Let 1111 ; nn P , where 1P is a nonhomogeneous coordinate in 1C ; 

T
zyx nnn 1111 ,,n , 

T
zyx PPPP 1111 ,, , 

T
zyx QQQQ 2222 ,, , 

T
zyx ttt ,,1_2t , and 
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Then, Equation (6.2) can be expanded as 
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   (6.3) 

where aaP n, is fixed as 00 , aaP n , and 11, Pn  can be calculated from 

aaP n, through the transformation 1_1_ , aa tR . 2Q can be calculated from the image of 
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Board B. In the two linear constraint equations of (6.3), the relative pose 1_21_2 ,tR is the 

only unknown. When a pair of images is captured by Camera 1 and Camera 2, one group 

of data )(
211 ,, iQPn  is obtained. 

Equation (6.3) is a basic linear equation for the relative pose of the two cameras. 

During the calibration process, we change the pose of Board A to obtain a series of data 

)(
211 ,, iQPn , yielding two linear equations. However, there are 12 parameters in the 

relative pose 1_21_2 ,tR . Thus, theoretically speaking, at least six sets of data are needed 

to solve the problem linearly. In practice, however, a solution is obtained through an 

over-constrained linear system of equations. 

After solving the over-constrained linear system of equations for 1_21_2 ,tR , SVD 

is used to approximate the estimated linear rotation matrix 1_2R with the closest rotation 

matrix 0R . Then, the rotation matrix 0R is fixed and is substituted back into Equations 

(6.3). Consequently, an over-constrained linear system of equations about 1_2t is 

obtained. Next, 0t  is solved through a least-squares approach and 0R is parameterized 

into a quaternion. The linear solution 00 , tR  is used as the initial value in the latter non-

linear optimization. 

6.1.4 Nonlinear estimation of the relative pose 

During the linear estimation of the relative pose, we did not strictly consider the 

constraint of the rotation matrix. However, it is useful to consider the collinear constraint 
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together with the constraint of the rotation matrix and represent the rotation matrix 1_2R  

as a quaternion ),,;(1_2 dcbaR . We arrive at the following constraint conditions: 

1
0

2222

11

dcba
Q    (6.4) 

An error function can be derived from Equations (6.4): 

N
i

iiiii

dcba

PQPQ
f 1

22222
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1
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1
)(

2
1_2

1_21_2

1
,

TnT
tR   (6.5) 

where N  is the total number of groups of observations. 

As described in Subsection 6.1.3, by changing the checkerboard’s position and 

orientation, we obtain a data series )(
211 ,, iQPn . The relative pose 1_21_2 ,tR  is the 

only unknown in Equation (6.5). 

Once the initial 00 ,tR has been found via the linearity estimation described in 

Subsection 6.1.3, nonlinear optimization can be used to estimate the relative pose. The 

error function is minimized using the Levenberg-Marquardt method. 

6.1.5 Parameter refinement 

First, the laser ray’s pose is estimated in Chapter 4. Then the cameras’ relative 

pose is estimated by fixing the laser ray’s pose as discussed in last section (Section 6.1.4).  

In Chapter 4, it was explained that in the process of determining the pose ( aP , an ) of the 

laser pointer, an experimental error may be introduced. Therefore, the pose of the laser 

pointer is refined together with the relative pose between the two cameras using their 
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initial values 0000 ,,, aa PntR  (estimated in Chapter 4 and Section 6.1.4). This is 

achieved by minimizing the following objective function using the Levenberg-Marquardt 

method: 

N
i ia

a
iai

a
iaia

a
iai

aa

dcba

PQ
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tRtR
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ntR   (6.6) 

The 3D point )(
2

iQ is computed by
)(2_)(2_ ,

ibib TH in the same way that 0P is 

calculated in Chapter 4. As in Equation (6.5),  is a coefficient that maintains a balance 

between the collinear constraint and the rotation matrix constraint. If is too big, the 

collinear constraint will be too weak for convergence to occur. If is too small, the 

rotation constraint will be too weak, allowing a solution to be obtained that does not 

strictly meet the requirement of the rotation matrix. In this thesis, an empirical value 

of 0001.0 was used here. 

6.2 Experiments and results 

In this section, the experimental results for the proposed collinear method are 

presented. First, we evaluated and compared the performance of the two proposed 

collinear method against the coplanar method and the mirror-based method using 

synthetic data. Then, the proposed method was applied to an in-vehicle camera system 

and was compared again with the mirror-based method using real-world data and a 
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configuration that models an in-vehicle camera system. Finally an experiment was carried 

out to prove the robustness of our methods against lighting condition. 

6.2.1 Simulations 

The experimental intrinsic parameters for the synthetic cameras (Camera 1 and 

Camera 2) are given in this section. The resolution of the two cameras was set as 480640 . 

Two synthetic patterns (Pattern A and Pattern B) with 69  grids were created virtually. 

The side length of a square in Pattern A was 0.026 m and that in Pattern B was 0.075 m. 

The laser pointer was located near the center of Pattern A and aligned perpendicularly to 

it. The laser ray’s origin was thus )0,065.0,117.0( m in the coordinate system of 

Pattern A. The extrinsic parameters’ ground truth between the two cameras was set as the 

following: translation )5.0,1.0,1.0(1_2t m and rotation 1_2R expressed as roll, pitch, 

and yaw )173.55, 9.32,159.61( ooo . These values were set according to the actual in-

vehicle experimental configuration. Pattern A and Pattern B were viewed by Camera 1 

and Camera 2, respectively. The following simulation setup was valid for both the 

coplanar and collinear method. However, for the coplanar constraint, Pattern B was 

considered a blank surface. 

To simulate the experimental environment, Pattern B was set to face Camera 2 at 

a distance of 0.6 m. 2_bt and 2_bR were set as )6.0,2.0,3.0(2_bt m and 

)0,22,22;0(2_bR , where the rotation is given as a quaternion. Pattern A was set 

0.2 m from Camera 1 such that their relative translation 
)(1_ iat was 
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)2.0,065.0,104.0(1_at m.  During the simulation, the orientation of Pattern A 

relative to Camera 1, 
)(1_ iaR , evolved temporally as follows: Initially, Pattern A faced 

Camera 1 directly. Then, an anti-clockwise rotation angle )(iA  around a unit vector 

)(iAn  was introduced. The unit vector )(iAn was randomly chosen from a unit sphere. The 

rotation angle )(iA was randomly (uniformly) chosen from 2/,1.0  to ensure that 

Pattern A could be observed by Camera 1. For every pose )(1_1_ ),( iaa tR  of Pattern A, 

Pattern A’s corners were projected onto Image 1 of Camera 1, while Pattern B’s corners 

were projected onto Image 2 of Camera 2. The point of intersection of the laser ray and 

Pattern B was calculated and was also projected onto Image 2 of Camera 2. Then, the 

position values of the image points of Image 1 and Image 2 (including the laser spot) 

were summed with an additive white Gaussian noise (AWGN) with a standard 

deviation . Finally, our algorithm was applied to this noise-inclusive data to provide an 

estimate of 1_21_2 ,tR . Note that, for the collinear constraint method, the images of 

Pattern B’s corner points captured after the noise was added were used to calculate the 

3D coordinates of the laser spots. 

To compare with the mirror-based method proposed by Rodrigues [15], a second 

setup was created. A synthetic mirror was added to our existing simulation environment 

in front of Camera 1. Via the mirror, Camera 1 could view the virtual image of Pattern B. 

The mirror was parameterized with ),( mm dn , where md was the distance from Camera 
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1’s optical center to the mirror plane and mn was the surface normal vector of the mirror 

plane in the coordinate system 
1C . During the simulation, the pose of the mirror relative to 

Camera 1 changed over time. )(imd was randomly (uniformly) chosen from 

0.5] 0.45, 0.4, 0.35, 0.3, 0.25, 0.2,[0.1,0.15, m. )(imn was generated by rotating the 

vector T1,0,0 by an angle )(im around a unit vector )(0 imn  in the anti-clockwise 

direction. The unit vector )(0 imn was randomly chosen from a unit sphere. )(im was 

randomly (uniformly) chosen from 6/,1.0 . The corner points of the mirrored Pattern 

B were created according to the mirror’s pose )(, immn  via a symmetry transformation 

[15]. Then, the corners of the mirrored Pattern B were projected onto Image 1 of Camera 

1. As before, the position values of the image points of Image 1 and Image 2 were 

summed with an AWGN with a standard deviation . Finally, the mirror-based algorithm 

[15], for which the code was made publicly available by the authors, was applied to the 

noise-inclusive data to estimate 1_21_2 ,tR . 
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The calibration accuracy is given by the norm dt of the translation error vector 

 

(a) Influence of data volume 

 

(b) Influence of noise level 

 

(c) Influence of baseline 

Figure 6.3:  Evaluation of the accuracy for varying data volumes, noise levels and 
baselines for the laser and mirror based methods. 
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(and also tdt  expressed as a percentage of the magnitude of the camera baseline) and 

the angular error dR  which is given by [13] 

2
1)(arccos),(

*
* RRRR

T

traceddR    (6.7) 

where rotation *R  is the ground truth and R  is the estimated rotation. Fig. 6.3 

shows the performances of the algorithms. For convenience, the three algorithms 

introduced in this thesis, the mirror-based algorithm, the laser-based collinear algorithm, 

and the laser-based coplanar algorithm, are denoted as Mirror, Laser nPQ, and Laser nPq, 

respectively. 

To test the sensitivity to the volume of data for different algorithms, we set the 

translation )5.0,1.0,1.0(1_2t m and the rotation 1_2R , )173.55, 9.32,159.61( ooo  

according to the actual in-vehicle experimental configuration. The standard deviation of 

the AWGN was fixed at 0.1 pixels (the noise standard deviation for real-world data is 

usually below 0.1 pixels [13]). In order to compare with Mirror, the data volume (the 

number of virtual patterns and laser dots) was changed from 3 to 20 which is exactly the 

same as the setup used in the simulation in [15]. For every data volume, the test was 

carried out 50 times and the average accuracy was obtained, as shown in Fig. 6.3 (a). For 

Mirror and Laser nPQ, solutions can be acquired with few data (N>=3) due to the 

linearity of the constraints. Since the constraint of Laser nPq is nonlinear, more data are 

necessary (N>=6). As shown in Fig. 6.3 (a), the orientation accuracy of Mirror and Laser 
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nPQ are similar, but Laser nPQ outperforms Mirror in terms of translation accuracy. It is 

also shown that Laser nPq is influenced significantly by the data volume as expected. In 

spite of slightly reduced accuracy, Laser nPq is also a new approach different from the 

Mirror method.  Because Laser nPq does not use the second checkerboard outside the 

vehicle, it is more convenient than Laser NPQ and is thus an attractive method when the 

accuracy requirements are not high. 

Next, the sensitivity to the noise level for the three algorithms was examined. The 

translation and orientation were set to the same as before. The data volume used was ten. 

was varied from 0.0 to 0.5. For every standard deviation, the test was carried out 50 

times and the average accuracy was taken as shown in Fig. 6.3 (b). The accuracy of Laser 

nPq was restricted by the data volume. When there was no noise ( 0 ), Mirror 

obtained the highest accuracy. However, it was outperformed by Laser nPQ in terms of 

translation accuracy when noise was added ( 0 ). The reason is that the effect of the 

noise is amplified (especially for translation) during the mirroring projection when the 

two cameras’ baseline is large (see Fig. 2.1(a)). 

Finally, the sensitivity to the baseline for the three algorithms was tested. A data 

volume of ten was used again and   was fixed at 0.1. 1_2R was set to the same as 

before and ),1.0,1.0(1_2 zt m. z was varied from 0.1 to 1.0 (the baseline changed 

from 173.205 mm to 1009.95 mm). For every baseline, the test was carried out 50 times 

and the average accuracy was obtained as shown in Fig. 6.3 (c). As before the accuracy 

of Laser nPq was restricted by the data volume. The orientation accuracy for Mirror and 
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Laser nPQ are similar. The translation accuracy shows that Laser nPQ outperforms 

Mirror, especially when the baseline is large. However, there are fluctuations in the 

curves of Fig. 6.3 due to the addition of synthetic data with random noise (AWGN). 

Despite this, the curves reflect the overall trends. 

6.2.2 Real-world experiments 

Apply the laser-based method to in-vehicle cameras 

Since the collinear method outperforms the coplanar method as demonstrated by 

the simulation, the collinear constraint method was applied to calibrate an in-vehicle 

camera system. This system consisted of two cameras (Camera 1 and Camera 2) 

positioned as shown in Fig. 1.2 (c). Here, the relative pose 1_21_2 , tR  of the two cameras 

was calibrated. As shown in Fig. 1.2 (c), Camera 1 was inside the vehicle and used to 

observe the driver and Camera 2 was outside the vehicle and was used to observe the 

driver’s FOV. The RGB resolution was 480640 . Two 69  checkerboard patterns 

(Pattern A and Pattern B) were used. The side lengths of the squares in Pattern A and 

Pattern B were 0.026 m and 0.075 m, respectively. Pattern A was positioned in Camera 

1’s FOV and Pattern B was positioned in Camera 2’s FOV (see Fig. 1.2 (c)). The laser 

ray was directed through the windscreen and onto Pattern B. Fig. 6.4 shows example 

images captured simultaneously by the two cameras. 
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Since the ground truth of the relative pose between the cameras is unknown in the 

real-world experiments, the experimental results was evaluated based on the statistical 

indices of the relative pose ( 1_21_2 , tR ) and the mean reprojection error (MRE). 

MRE is defined as follows: using the calibrated relative pose 1_21_2 , tR , the laser 

ray can be determined in the coordinate system of Camera 2. Thus, the point of 

intersection of the laser ray and Pattern B, 
^
Q , can be calculated, as can the 3D coordinate 

of point Q . The Euclidean distance between these two points is denoted by d . The 

distance, )(id , for every group of observations, )(
211 ,, iQPn , is obtained. MRE is thus 

defined as the average value of )(id  for every group of observations. 

The experiment was carried out ten times, and each time 48 spots were used. The 

calibration results and corresponding MRE are shown in Table 6.1. When the 

 

Figure 6.4:  Example images. Left is the laser source captured by Camera 1 inside 
the vehicle. Right is the laser spot captured by Camera 2 outside the vehicle. 
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displacement between the two cameras is about 90 cm, the standard deviation is about 1 

cm and the average reprojection error is 2.1 mm. 

When carrying out the comparative experiment with the Mirror method, we were 

confronted by a problem existing in real-world environments: the calibration pattern 

image appeared smaller and blurred due to the windscreen, as shown in Fig. 2.1 (b). Thus, 

another comparative experiment was designed to imitate the configuration of in-vehicle 

cameras as described in the next subsection. 

Comparative experiment using real-world data 

Fig. 6.5 shows the camera configuration for the comparative experiment. To 

imitate the in-vehicle camera system, two intrinsic-parameter-calibrated cameras 

(Camera 1 and Camera 2) were set about 80 cm apart, pointing in opposite directions. 

Two positions, Position A and Position B, were chosen such that the two tips of Position 

A and Position B were able to be connected by two 20 cm parallel lines on a planar board, 

as shown in Fig. 6.5. Since the ground truth of the two cameras’ relative pose was 

unknown, Camera 1 was moved from Position A to Position B along the parallel lines. 

The displacement was estimated using the methods under evaluation before and after the 

movement. 

              Table 6.1: Results for in-vehicle experiment 

Data 
volume 

Average and 
standard 
deviation 

Relative position (m) Relative orientation (Quaternion 
form) 

Reprojection 
error (m) 

48 Spots 
AVG 0.0325 0.0704 0.8670 -0.1141 0.0513 0.9793 0.1589 0.0021 

STDEV 0.0095 0.0141 0.0099 0.0055 0.0016 0.0017 0.0084 0.0004 
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The two cameras were set with a certain angle so that Pattern B could be viewed 

by Camera 1 via the mirror without occlusion. Camera 2 and Pattern B’s positions were 

fixed during the experiments. First, Camera 1 was set at Position A. The transformation 

( 1_21_2 , tR ) from Camera 2 to Camera 1 was estimated using our collinear method, and the 

transformation ( 1_1_ , bb tR ) from Pattern B to Camera 1 was estimated using the mirror-

based method employing the code mentioned previously [15]. After moving Camera 1 

from Position A to Position B, the transformations, and thus the displacements, were 

estimated again using the two methods for comparison. The test was carried out ten times 

and the results were averaged, as shown in Table 6.2. The result obtained using the 

proposed collinear method was closer to the ground truth and had a smaller deviation. As 

shown in Fig. 2.1 (a), when the baseline between the two cameras was large, the image of 

 

Figure 6.5:  Setup used for the comparison experiment. 
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the calibration pattern became small, greatly influencing the accuracy of the pose 

estimation. 

Table 6.2: Results of comparison experiment 

Methods Movement (mm) 
Laser based collinear method 012.11509.194  

Mirror based method 241.23266.191  

Ground truth 2199  

Robustness under different lighting conditions 

The performance of vision systems is usually dependent on the lighting conditions, 

so we also carried out experiments on the calibration of our in-vehicle camera system to 

elucidate this dependence. The input data in our method are obtained from two features: 

the corner points of the calibration patterns and the extracted laser spots. Therefore, we 

evaluate the robustness of the technique with respect to these two features. 

Example experimental environments and corresponding results are shown in Fig. 

6.6. Eight fluorescent lamps (L1–L8) were distributed around the garage as in Fig. 6.6 (a). 

There were five different lighting conditions: all eight fluorescent lamps in the room were 

turned on (Fig. 6.6 (b)); four fluorescent lamps (L3, L4, L7, L8) were turned on (Fig. 6.6 

(c)); only two fluorescent  lamps (L3, L4) were turned on (Fig. 6.6 (d)); no fluorescent 

lamps were turned on but the vehicle’s head lamps and interior lights were used (Fig. 6.6 

(e)); and finally outdoor daytime conditions (Fig. 6.6 (f)). 
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The results show that our method is robust in the lighting conditions of Figs. 6.6 

(b), (c), (d), (e), and (f) (both corner points and laser spots can be recognized). Even in 

darkness, calibration was possible using the vehicle’s head lamps and interior lights. 

Therefore, the proposed method is robust to a variety of lighting conditions, making it 

 

(a) The lamps’s distribution in the garage (topview). 

 

(b) All the eight fluorescent  lamps in the room were turned on (indoor). 

 

(c) Four fluorescent  lamps (L3, L4, L7, L8) in the room were turned on (indoor). 



 

71 

 

suitable for use in real environments such as garages. 

6.3 Conclusion and contribution 

In this Chapter, a novel approach was proposed for the calibration of cameras 

with non-overlapping fields of view using two calibration patterns and a laser pointer 

 

(d) Only two fluorescent  lamps (L3, L4) in the room were turned on (indoor). 

 

(e) No fluorescent  lamps but the vehicle head lamps and the lamps inside vehicle 

were used (indoor). 

 

(f) Outdoor and daytime. 

Figure 6.6:  Experiments in five different lighting conditions: environment (left), 
pattern inside vehicle (middle), pattern outside vehicle (right). 
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mounted on a calibration pattern. A collinear constraint algorithm, were presented and 

tested with synthetic data and for an in-vehicle camera system. In comparison with the 

conventional mirror-based method [15], the collinear constraint algorithm achieved 

higher accuracy in terms of the estimation of the displacement between the two cameras. 

The technique was also found to be robust in a range of different lighting conditions. The 

proposed laser-based approach is simple and practical, and especially well suited to the 

calibration of the relative pose between inward and outward-facing in-vehicle cameras in 

a factory or garage. 

In future work we will carry out further real-world experiments with ground truth. 

In-vehicle camera systems using calibration techniques such as ours will undoubtedly be 

used to monitor driver behavior in the future. 
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CHAPTER 7 

Calibrating Non-overlapping RGB-D Cameras with One Pattern 

In this chapter, a novel method for calibrating non-overlapping RGB-D cameras is 

proposed using one pattern and a laser pointer. Compared to the two algorithms 

mentioned previously (in Chapter 5 and Chapter 6), the depth cues have been exploited. 

Two 3D points, respectively located in the field of views of the two RGB-D cameras, are 

connected by a laser ray. The relative pose of the two RGB-D cameras can be estimated 

through this collinear constraint.  

This chapter is organized as follows. Firstly we give an introduction to the 

background and the related work. And the fundamentals about camera model and 

calibration of Kinect will be introduced beforehand. Then the key principle of our novel 

calibration method of non-overlapping Kinects is drawn. Next, the results and 

performance of this method are shown on both synthetic data and real-world experiment. 

Finally, come to a conclusion. 

7.1 Introduction 

As a low-cost RGB-D camera, Kinect, has become a hot topic. It has been applied 

in action recognition [41], SLAM (Simultaneous Localization and Mapping) [42], robot 

navigation [43], scene understanding [44] and so on. In some cases, multiple Kinects are 

used in a system, and we need to calibrate their relative pose. 



 

74 

 

Fig. 7.1 (a) shows a mobile robot mounted with two Kinects.  The two Kinects 

monitor front and back respectively, so that the robot can go forward or backward 

anytime. To reconstruct the environment in a unified coordinate system, the relative pose 

of two Kinects should be calibrated. Also, when use two Kinects in the motor chair for 

the disabled to construct a driving assistance system, one Kinect analyses the front scene 

 

(a) Robot navigation 

 

(b) Driving assistance 

Figure 7.1:  Systems with two non-overlapping Kinects 
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and the other Kinect monitors the user’s behavior, as shown in Fig. 7.1 (b). When we 

want to capture the user’s attention, we need not only to measure the gaze direction of the 

user, but also to map the gaze direction estimated from the user-looking Kinect to the 

coordinate system of the scene-looking Kinect so that the scene that the user is observing 

can be determined. Note that in the two cases above, both the two Kinects have not 

overlapping views. 

Until now, several methods of calibrating non-overlapping RGB cameras have 

been reported. However, if the methods for RGB cameras are used directly to RGB-D 

cameras, the depth cues of RGB-D cameras is ignored without being exploited for the 

pose calibration of RGB-D cameras. 

This Chapter copes with the problem of calibrating non-overlapping RGB-D 

cameras, such as Kinects, by exploiting the depth cues. A laser pointer is fixed at one 

calibration board so that its pose at the coordinate system of the calibration board can be 

obtained easily, as shown in Fig. 1.2 (a). While one of the RGB-D cameras observes the 

calibration board fixed with the laser pointer, the laser pointer project a spot to the scene 

which is observed by the other. Thus, two 3D points, respectively located in the field of 

views of the two RGB-D cameras, are connected by a laser ray. The relative pose of two 

RGB-D cameras can be estimated through this collinear constraint. 

7.2 Related works 

A Kinect consists of a RGB camera and a depth camera. To use a Kinect, we first 

need to calibrate its parameters, which include the intrinsic parameters of both RGB 
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camera and the depth camera, and the relative pose between them. For a single Kinect, 

many researches on the calibration are reported [45] [46]. 

If we use multiple Kinects simultaneously, we also need to calibrate the relative 

pose among them. Since the depth camera of a Kinect uses a structure light, the light 

pattern of the different cameras can interfere with one another causing incorrect depth 

measurements for the commonly visible areas. Besides the applications shown in Fig. 7.1, 

a simple method of setting up multiple Kinects is not to allow them with overlapping 

views. In these cases, we need to calibrate the relative pose of non-overlapping Kinects. 

A straight method is first to determine the Kinects’ relative pose via their RGB 

cameras. Several research on the calibration of non-overlapping RGB cameras have been 

reported, such as using a mirror to allow the different RGB cameras observing the same 

calibration pattern [11] [16]. However, it’s often difficult to change the orientation of the 

pattern from one snapshot to another when calibrating using a mirror. Moreover, it’s not 

easy to make both pattern and virtual image of pattern respectively seen by two cameras 

pointing to the opposite directions. Especially, for cameras with large volume, such as 

Kinect, the occlusion of the calibration pattern is difficult to avoid. Above all, this 

approach of calibrating Kinects’ relative pose via their RGB cameras ignores the depth 

cues of the Kinects. That is, the depth cues are not exploited for the pose calibration 

along with their RGB cues. 

 

 



 

77 

 

7.3 Introduction to Kinect 

Kinect (see Fig. 7.2) is a composite device consisting of an IR projector of a 

pattern and IR camera, which are used to triangulate points in space. It works as a depth 

camera, and a color (RGB) camera, which can be used to recognize image content and 

texture 3D points. As a measuring device, Kinect delivers three outputs: IR image, RGB 

image, and (inverse) Depth image. 

7.3.1 IR image 

IR (1280x1024 pixels for 57x45 degrees FOV, 6.1 mm focal length, 5.2 um pixel 

size) camera is used to observe and decode the IR projection pattern to triangulate 3D 

scene. According to [45], if suitably illuminated by a halogen lamp [53, 55] and with the 

IR projector blocked, it can be reliably calibrated by [49] using the same calibration 

pattern used for the RGB camera. However, in this thesis, we calibrate the IR camera 

 

Figure 7.2:  Kinect consists of Infrared (IR) projector, IR camera and RGB 
camera (illustration from [52]). 
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without a halogen lamp. We use a tissue to block the IR projector. Then a smoother IR 

image can be captured and used to extract the corner points of the same calibration 

pattern. The camera exhibits non-negligible radial and tangential distortions. 

7.3.2 RGB image 

RGB (1280 x 1024 pixels for 63x50 degrees FOV, 2.9 mm focal length, 2.8 um 

pixel size) camera delivers medium quality images. It can be calibrated by [49] and used 

to track the camera motion by SfM system, e.g. [54, 52]. 

7.3.3 Depth image 

The main raw output of Kinect is an image that corresponds to the depth in the 

scene. Rather than providing the actual depth z, Kinect returns “inverse depth” d. Taking 

into account the depth resolution achievable with Kinect, we adopted the model Equation 

5 suggested in [50]. The Depth image is constructed by triangulation from the IR image 

and the projector and hence it is “carried” by the IR image, Equation 5. 

7.3.4 Depth resolution 

The resolution in depth is a function of the distance. The size of the quantization 

step q, which is the distance between the two consecutive recorded values, is the 

following function of the depth z 

][58.074.073.2)( 2 mmzzzq .   (7.1) 
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With z in meters. According to the experiments of [45], the values of q at the beginning, 

resp. at the end, of the operational range were mmmq 65.0)50.0( , resp. 

mmmq 685)7.15( . 

7.3.5 Shift between IR image and depth image 

IR and Depth images are found to be shifted. That’s because the Depth image is 

generated from the IR image through a convolution with a window of certain size. To 

determine the shift Tvu 00 , , [45] captured several different targets in IR and Depth 

images. Then the contrast target was segmented out from the background and the shifts 

were determined bringing the segmented shapes in the best alignment. Finally the shift 

was estimated as the mean over all experiments. Their result suggests using a correlation 

window of size 7x7 pixels in the depth calculation process. And a 9x9 window size was 

estimated in [52]. 

 

Figure 7.3:  Geometrical model of Kinect. 
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7.4 Geometrical model of Kinect 

In this thesis, we model Kinect as a multi-view system consisting of RGB, IR and 

Depth cameras. Geometrical model of RGB and IR cameras, which project a 3D point X 

into image point Tvu, , is given by [49] 
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With distortion parameters 521 ,,, kkkk , camera intrinsic matrix M , rotation 

R and camera center C [5]. 

The Depth camera of Kinect is associated to the geometry of the IR camera. It 

returns the inverse depth d along the z axis, Fig. 7.3, for every pixel Tvu, of the IR 

cameras as  
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Where u,v are given by Equation (7.3), true depth z by Equation (7.4). 

Tvu 00 , is set to be T3,3 according to experiments. X  stands for 3D coordinates of a 
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3D point, and 01,cc are parameters of the model. We associate the Kinect coordinate 

system with the IR camera and hence get IR IR and 0IRC . A 3D point IRX is 

constructed from the measurement dyx ,, in the depth image by 

IRIRIR kvy
ux

dis
cdc

X ,
1

1
0

0
11

01

M    (7.6) 

And projected to the RGB images as 

)),(( RGBRGBIRRGBRGBRGB kCXdisu RM    (7.7) 

Where dis is the distortion function given by Equation (7.3), RGBIR kk ,  are 

respective distortion parameters of the IR and RGB cameras, IRM is the IR camera 

intrinsic matrix and RGBRGBRGB C,,RM are the intrinsic matrix, the rotation matrix and 

the center, of the RGB camera, respectively. 

7.5 Calibrating one Kinect 
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As our purpose is to calibrate a camera system consisting of non-overlapping 

 

(a) RGB image 

 

(b) IR image (with IR camera blocked) 

 

(c) IR image (with IR camera unblocked) 

Figure 7.4:  RGB and IR images of a calibration pattern 
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Kinects, we firstly calibrate single Kinect, including intrinsic parameters of IR and RGB 

cameras and relative pose between IR and RGB cameras. Fig. 7.4 (c) shows the IR image 

of the calibration board under the normal Kinect operation when it is illuminated by its 

IR projector. In the experiment, we found it is difficult to recognize all the corner points 

of the calibration board in such an IR image. Here, we used a little trick. A piece of tissue 

blocks in front of the IR camera, then a smoother IR image of the calibration board can 

be captured (see Fig. 7.4 (b)). And the corner points now can be detected robustly. We 

calibrate IR and RGB camera of a single Kinect by showing the same calibration target to 

them (Fig. 7.4). In this way, both cameras are calibrated w.r.t. the same 3D points and 

           Table 7.1: Intrinsic parameters for Kinect1  

IR camera 

Focal length Principal point 

fx (pixel) fy (pixel) x0 (pixel) y0 (pixel) 

588.26 588.26 319.84 231.88 

Distortion coefficient 

k1 k2 k3 k3 

-0.0916 0.2065 0.0011 0.0006 

RGB camera 

Focal length Principal point 

fx (pixel) fy (pixel) x0 (pixel) y0 (pixel) 

519.73 519.33 326.18 240.55 

Distortion coefficient 

k1 k2 k3 k3 

0.0290 -0.1198 0.0011 -0.0022 
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hence the poses of the cameras w.r.t. calibration pattern can be chained to give their 

relative pose. Table 7.1, 7.2 shows intrinsic parameters of both Kinect1 and Kinect2 

Parameters c0, c1 of the Depth camera are calibrated as follows. We get n 

measurements ,,,1,,, nidyxX T
iiiiD  of all the calibration points from Depth 

images. Moreover, in order to improve robustness against distance of object, the 

calibration pattern is moved from 0.5m to 1.0 m. For example, if we would like to use 10 

Depth image, the calibration board will be placed in 10 different positions distribute from 

0.5 m to 1.0 m. Note that, this distance range is chosen because in the later non-

               Table 7.2: Intrinsic parameters for Kinect2 

IR camera 

Focal length Principal point 

fx (pixel) fy (pixel) x0 (pixel) y0 (pixel) 

585.68 583.66 323.26 241.49 

Distortion coefficient 

k1 k2 k3 k3 

-0.0825 0.2008 0.0035 0.0006 

RGB camera 

Focal length Principal point 

fx (pixel) fy (pixel) x0 (pixel) y0 (pixel) 

533.43 532.23 321.96 240.17 

Distortion coefficient 

k1 k2 k3 k3 

0.0294 -0.0731 0.0022 -0.0003 
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overlapping calibration the distance from scene to Kinect will also be 0.5~1.0 m. The 

Cartesian coordinates 
iIRX of the same calibration points were measured in the IR 

Cartesian system by intersecting the rays projecting the points into IR images with the 

best plane fits to the reconstructed calibration points. Parameters 10 ,cc were optimized to 

best fit 
iDX to 

iIRX using Equation (7.6).  

7.6 3D point reconstruction from its 2D RGB image projection 

A sketch for estimating the depth of laser spot is shown in Fig. 7.5. By taking 

RGB2 and IR2 as a stereo system, an epipolar line in IR image can be calculated 

according to the known laser spot 2RGBq and the calibrated fundamental matrix 22 IRRGBF . 

Assume there are N points i
IRq 2 ( Ni ,1 ) in the epipolar line. Corresponding IR image 

and Depth image are found to be shifted by 00,vu . Depth camera of Kinect2 is associated 

to the geometry of the IR2 [45]. For every point i
IRq 2 , corresponding depth 

is 0
2

0
2

, vyuxdd i
IRqi

IRqi . The corresponding 3D point is: 

22

2
11
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IR Dy

x
dis

cdc
Q M    (7.8) 

Where dis  is the distortion processing according to the distortion parameters IRD of IR2. 

IRM is the projection matrix of IR2. 

And the corresponding 3D point in the coordinate system of RGB camera is: 
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2222 tRi
IR

i
RGB QQ    (7.9) 

where 22 ,tR is the relative pose between RGB2 and IR2. 

3D point i
RGBQ 2 can be projected to the RGB image as: 

),( 2222 RGB
i

RGBRGB
i

RGB DQdisq M    (7.10) 

We search on the epipolar line, and choose the point j
IRq 2 , whose corresponding 

point j
RGBq 2 is nearest to the observed laser spot 2RGBq . 

i
RGBqRGBq

i
IR

j
IR qq

22min22    (7.11) 

Where, the value j
RGBRGB qqerrorpixel 22_  is thought to be the pixel error of 

point j
RGBq 2 found through this method. 

By equations (7.8) (7.9) (7.10) (7.11), we can determine the point j
IRq 2 , which is 

approximately thought to be the projection of the same laser point. Next we take the 

depth jz of point j
RGBQ 2  as the depth of point 2RGBq . The average of errorpixel_  is about 0.4 

pixel in our experiment. Therefore the error of depth determined in this way is acceptable. 

As the depth of the laser spot Q in the coordinate of RGB2 (coordinate of 

Kinect2) has been determined, we can calculate its 3D coordinate: 

22

2
11

22 ,
1

RGBRGBq

RGBq

RGB
j

RGB Dy
x

diszQ M    (7.12) 
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7.7 Calibrating two Kinects with non-overlapping views 

7.7.1 Problem definition 

A sketch is shown in Fig. 7.5 to give the problem definition. The two non-

overlapping Kinects to be calibrated are denoted as Kinect1 and Kinect2. Kinect1 has two 

cameras, RGB1 and IR1, and three images, RGB image1, IR image1 and Depth image1. 

Kinect2 also has two cameras, RGB2 and IR2, and three images, RGB image2, IR 

image2 and Depth image2. Note that, internal parameters of every Kinect are calibrated 

previously, using the method proposed by Jan Smisek [45]. Here, internal parameters of 

one Kinect consist of intrinsic matrix and distortion parameters of IR and RGB cameras, 

parameters of Kinect’s depth model and relative pose between IR camera and RGB 

 

Figure 7.5:  A sketch for calibrating non-overlapping Kinects with laser pointer 
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camera of the same Kinect. What we want to do is to estimate the external parameters 

(relative pose), tR, , between the two Kinects. 

We define the camera coordinate system of RGB1 as the coordinate system of 

Kinect1 and define the camera coordinate system of RGB2 as the coordinate system of 

Kinect2. Assume that there is a ray of light, PQ , starting from point, P , and intersecting 

with scene at point , Q  ; the points P  and Q , can be observed by Kinect1 and Kinect2, 

respectively. Note that the starting point P  and direction vector of the ray, lasern , 

represented at the coordinate system of the calibration board, 3333 ZYXO , can be 

represented at the coordinate system of Kinect1, 1111 ZYXO , via the transformation 

00 ,tR . According to the depth cues, the length of QO2  along with its direction can be 

obtained at the coordinate system of Kinect2, 2222 ZYXO . Then, the coordinate of point 

Q  at the coordinate system of Kinect1, 1111 ZYXO , can be computed via the 

transformation tR, . Since the length of PO1  along with its direction can also be obtained 

at the coordinate system of Kinect1, 1111 ZYXO , vector PQ  is determined. Since PQ  and 

laser ray lasern exist at the same line, the collinear constrain of PQ  and lasern  is obtained. 

Note that if the depth cue of point Q  is unknown, only the direction of QO2  can 

be determined. By computing the coordinate of point P  at the coordinate system of 

Kinect2, 2222 ZYXO , via the transformation tR, , the coplanar constraint for lasern , 

PO2 , and QO2  is obtained. 
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Obviously, a collinear constraint is much more rigid than a coplanar constraint. 

Therefore, it is expected that more accurate result is obtained by exploiting the Kinects’ 

depth cues. The expectation is verified by the experiment results later. This also 

discriminates the proposed method from the non-overlapping RGB camera calibration 

methods in essence. 

7.7.2 Process 

Next, we explain how to estimate the parameters, including the start point P , 

direction vector of the ray lasern  and the 3D pointQ , and how to establish an equation 

according to the constraint, in detail. A block diagram of our calibration method is 

presented in Fig. 7.6. 

Estimate the internal parameters of one Kinect 

Initial estimation of the laser pointer’s pose 

Linearized solution for the external parameters of 

Nonlinear optimization for the external parameters 

Global refinement of  the parameters 

Calculate the 3D laser spot using depth information 

 

Figure 7.6:  A sketch for calibrating non-overlapping Kinects with laser pointer 
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7.7.3 Linear estimation of relative pose 

The collinear constraint for the vector PQ  and the vector lasern  can be written in 

the form of Equation (7.13): (at the coordinate system of Kinect1) 

11
laserPQ n     (7.13) 

Here, the coefficient  is an arbitrary constant. As shown in Fig. 7.5: 

12111
PQPQPQ tR    (7.14) 
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If we define the vectors with x, y and z coordinate. 
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Then we get these relationships from Equation (7.13): 
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Define, 
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According to Equation (7.14), Equation (7.17) can be rewritten as: 
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   (7.18) 

The relative pose 00 ,tR  between Kinect1 and chessboard can be easily calculated 

using the image of the pattern [7, 12]. The laser pointer’s pose 33, laserP n  has been 

estimated in Chapter 4. And 3D point 2Q  has been calculated in Section 7.6. So when a 

group of images (RGB1 image, IR2 image, RGB2 image and Depth2 image) are captured 

by Kinect1 and Kinect2, one group of data 211 ,, QPlasern  can be calculated using 

Equations (7.12) (7.15) (7.16). In Equation (7.18), only the relative pose tR,  is 

unknown. 

Equation (7.18) is basic linear equation for relative pose of two Kinects. During 

the calibration process, we change the pose of pattern to get a series of data, 

)(
211 ,, ilaser QPn . At least 3 groups of data are required for a direct solution according to  

D. Nister [47]. During the calibration we typically obtain the initial solution through an 

over-constrained linear system of equations. 

7.7.4 Nonlinear estimation of relative pose 

During the linearity estimation of relative pose, we didn’t consider the constraint 

of rotation matrix strictly. Next, we consider the collinear constraint together with the 
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constraint of rotation matrix and represent the rotation matrix R with a 

quaternion. ),,;( dcbaR . 

These constraint conditions can be obtained: 

12222

111

dcba

PQPQ lasern    (7.19) 

Considering equation (7.14), an error function can be derived from equation (7.19): 

N
i

laser

dcba
PQPQ

f 1 22222

212112

1
,

tRntR
tR    (7.20) 

Here, N  is the total number of groups of observations. As described in Section 

7.7.3, by changing the chessboard’s position and orientation, we obtain a series of 

data
)(

211 ,, ilaser QPn . Only relative pose tR,  is unknown in equation (7.20). 

Once the initial )','( tR has been found via the linearity estimation mentioned in 

Section 7.7.3, nonlinear optimization can be used to estimate the relative pose. The error 

function is minimized using Levenberg-Marquardt algorithm. 

7.7.5 Parameter refinement 

As explained in Chapter 4, in the process of determining the pose ( boardP , boardn ) 

of the laser pointer, the manual operation may give rise to a measurement error. Finally, 

we refine the pose of the laser pointer and the relative pose between the two Kinects, ( R , 

t , boardP , boardn ), taking the calibration result estimated in Chapter 4 and Section 7.7.4 as 
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initial values. Concretely, we minimize the following objective function by the 

Levenberg-Marquardt method. 
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7.8 Experiments and results 

In this section, using synthetic data, we first compare our collinear-constraint-

based method with the coplanar-constraint-based method and mirror-based method, 

which ignore the depth cues. Then, we apply our collinear-constraint-based method in a 

real-world Kinects system. Note that the coplanar-constraint-based method and mirror-

based method correspond to RGB cameras mentioned in the problem definition of 

Section7.7.1, which means calibrating the relative pose of RGB-D cameras as that of 

RGB cameras. 

7.8.1 Simulations 

During the simulation experiment, the Kinect’s internal parameters and image 

resolution are set the same as real ones. A synthetic Pattern1 with 69  corners is 

created (Side length of Pattern1’s gridding is 0.026m.). Laser pointer is set to be 

perpendicular to the Pattern1 and locate nearly at the center of the Pattern1. Concretely, 

the starting point of laser ray is )0,065.0,117.0( mmm  in the coordinate system of the 
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Pattern1. The extrinsic parameters’ ground truth between two Kinects is set as: 

translation )1.0,1.0,1.0( mmmt  and rotation R expressed with roll, pitch, 

yaw )173.55, 9.32,159.61( ooo . A scene (wall) is created 0.6 m in front of Kinect2. The 

Pattern1 is set 0.2m in front of Kinect1. Translation 0t is fixed 

as m)2.0,065.0,104.0(0t . During the simulation, the orientation of the Pattern1 

relative to Kinect1 keeps changing. Orientation 0R  is created like this: Initially, the 

Pattern1 is facing directly to Kinect1. Then, an anticlockwise rotational angle
)(ip is set 

around unit vector )(ipn  from the initial orientation. The unit vector )(ipn is randomly 

chosen in a unit sphere. Rotational angle 
)(ip is randomly (uniformly) chosen from 

2/,1.0  to make sure the Pattern1 can be observed by Kinect1. For every pose 

)(00 ),( itR  of the Pattern1, Pattern1’s corners are projected to RGB1 image of Kinect1. 

The point of intersection of laser ray with the wall is calculated and also projected to 

RGB2 image of Kinect2. Then, the position values of image points in RGB1 and laser 

spot in RGB2 are added with a White Gaussian Noise (AWGN) with a standard 

deviation . Finally, the coplanar-constraint-based method and our collinear-constraint-

based method are respectively applied on this noisy data to estimate tR, . Note that, for 

our collinear constraint method, depth cues can be used to calculate 3D information of 

laser spot.  The depth of laser spot is noised by adding the ground truth with a White 

Gaussian Noise with a standard deviation mm3.1 . According to the research of J. 
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Smisek [45], the standard deviation of the residuals of the plane fit to the measurement of 

a planar target is about 1.3 mm. 

To compare with mirror-based-method proposed by R. Rodrigues [15], a synthetic 

mirror is created in front of Kinect1. A Pattern2 with 69  corners is created (Side 

length of Pattern2’s gridding is 0.075m). The Pattern2 is presumed to stick on the wall. 

The Kinect1 can view the virtual image of Pattern2 via the mirror. The mirror is 

parameterized with ),( mm dn , where md is the distance from Kinect1’s optical center to 

mirror plane and mn is the surface normal vector of mirror plane at the coordinate system 

of Kinect1. During the simulation, the pose of mirror relative to Kinect1 keeps changing. 

)(imd is randomly (uniformly) chosen from 

0.5) 0.45, 0.4, 0.35, 0.3, 0.25, 0.2,(0.1,0.15, m. )(imn is generated by anticlockwise 

rotating vector T1,0,0 with angle )(im around unit vector )(0 in . The unit vector )(0 in is 

randomly chosen in a unit sphere. Rotation angle )(im is randomly (uniformly) chosen 

from 6/,1.0 . Corner points of mirrored Pattern2 are created according to the mirror’s 

pose )(, immn via a symmetry transformation [15].  Then, corners of mirrored Pattern2 

are projected to RGB1 image of Kinect1. The position values of image points of RGB1 

Image and RGB2 Image are added with a White Gaussian Noise (AWGN) with a 

standard deviation . Finally, the mirror-based algorithm [15], for which the code 



 

96 

 

implementation is made publicly available by the authors, is applied on the noisy data to 

estimate tR, . 

The calibration accuracy is given by the norm dT of the translation error vector 

(also TdT  expressing as percentage of the magnitude of the camera baseline) and the 

angular error dR  whose expression is given by [13]: 

2
1)(arccos),(

*
* RRRR

T

traceddR    (7.22) 

Where rotation *R  is the ground truth and R  is the estimated rotation. Fig.7.7 

shows the performances of the algorithms. Note that, for convenience, the mirror-based 

algorithm, the laser-based coplanar algorithm and the laser-based collinear algorithm are 

denoted as Mirror-Method, Laser-Method and Laser-Depth-Method, respectively. 
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To test the sensitivity to the amount of data for different algorithms, the standard 

deviation of AWGN is fixed as 0.1 pixels [13]. Data volume is changed from 3 to 20 

(Virtual patterns’ number and laser dots’ number). For every data volume, the test is 

carried out 50 times, and the average accuracy is shown in Fig.7.7 (a). For Mirror-

Method and Laser-Depth-Method, the problem can be solved with little data (N>=3), due 

 

(a) Influence of data volume 

 

(b) Influence of noise level 

 

Figure 7.7: Evaluate accuracy against data volume and noise level for Mirror-
Method, Laser-Method and Laser-Depth-Method. 
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to the linearity of constraints. Since the constraint of Laser-Method is nonlinear, more 

data is necessary (N>=6). As shown in Fig.7.7 (a), the accuracy of Mirror-Method and 

Laser-Depth-Method is close. Besides, according to the simulation, the accuracy can be 

improved by increasing data volume. Especially for the Laser-Method, accuracy is 

influenced significantly by the data volume due to the nonlinearity. 

Next, we test the sensitivity to the noise level for the three algorithms. Data 

volume is fixed to 10. Noise standard deviation is changed from 0.0 to 0.5. For every 

standard deviation, the test is carried out 50 times, and the average accuracy is shown in 

Fig. 7.7 (b). The Laser-Method is still restrained by data volume. Besides, when noise is 

small ( 1.0 ), the Mirror-Method outperforms, because for the Laser-depth-Method a 

fixed error has been added to the depth of laser spot (White Gaussian Noise with a 

standard deviation mm3.1 ). However, with the increasing of noise ( 1.0 ), our 

proposed Laser-Depth-Method outperforms especially in the term of translation accuracy. 

It comes to a conclusion that, our proposed Laser-Depth-Method is more robust to pixel 

noise by using depth cues. 

7.8.2 Real-world experiments 

We applied our method to calibrate relative pose of two Kinects mounted on 

motor chair as shown in Fig. 7.1. The resolution of Depth, RGB and IR images were 

set 480640 . A pattern with 54 corner points was used. The grid side length of pattern is 

0.026m. 48 spots are used in every experiment. It’s repeated for 10 times. Calibration 

results are shown in Table 7.3. Since the ground truth of the relative pose between the 
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Kinects is unknown in the real-world experiments, we evaluate the experimental results 

based on the statistical indices of relative pose ( tR, ). The results are consistent with each 

other. For the about 150mm displacement between the two Kinects, the standard 

deviation is less than 7mm. 

On the other hand, we evaluate the calibration result by calculating the 

reprojection error. With the calibrated relative pose ( tR, ), the pose of the laser pointer is 

determined in the coordinate system of Kinect2. Depth of scene is also determined in 

Section 7.6. Then the 3D coordinate of laser spot 
^
Q  can be calculated. Comparing to its 

measured valueQ , the 3D distance QQd
^

is defined as reprojection error. As shown in 

Table 7.3, the average reprojection error is about 1.82 mm. 

Moreover, we compare our method with the coplanar constraint method 

mentioned in the simulation. The same experiment data except depth information are 

used to calibrate relative pose of the two Kinects using the coplanar constraint. The 

performance of two methods is compared by reprojection error, as shown in Fig. 7.8. It’s 

clear that the calibration result has been improved by using the depth information in our 

collinear method. It’s also consistent with the conclusion of simulation. 

As shown in the simulation, the limitation of our method is requiring high 

accuracy of depth information. Therefore, the scene used to project the laser spot should 

be in the range of best depth accuracy (0.5-1.5 m for Kinect) [45, 48]. On the other hand, 

there may not be corresponding depth information at every pixel where the laser would 
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be detected in the 2nd Kinect image. An approximate estimate has been carried out. The 

error between real point without depth information and approximate pixel with depth 

information is about 0.4 pixels on average. Therefore, the scene used to project the laser 

spot had better to be a plan (e.g. wall), so that depth deviation between two points apart 

with 0.4 pixels can be ignored. 

7.9 Conclusion and contribution 

In this chapter, we propose a novel method of calibrating non-overlapping RGB-

D cameras using one chessboard fixed with a laser pointer by exploiting the depth cues. 

The relative pose between the RGB-D cameras is estimated based on the collinear 

constraint. In comparison with the approach of using only RGB cues, which results in the 

looser coplanar constraint, the proposed method achieves a higher accuracy, as shown in 

               Table 7.3: Result of real-world experiments 

 

Relative Pose Average 

Reprojection  

Error (m) 
Relative position (m) Relative orientation (Quaternion form) 

Average 0.04159 0.04675 0.14410 0.02078 0.01326 0.99585 0.07756 0.00182 

Standard 

Deviation 
0.00608 0.01075 0.00659 0.00388 0.00080 0.00106 0.01343 0.00048 
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Figure 7.8: Compare two calibration methods 

both simulation and real-world experiment results. To the point that depth cues are 

exploited along with RGB cues, this is the first work on the calibration of non-

overlapping RGB-D cameras as far as we know. 

The contribution of this paper is as follows: 

 A novel method of calibrating two Kinects with non-overlapping view by a 

laser pointer is proposed. The start point and direction vector of laser ray at 

the coordinate system of first Kinect is estimated by mount a laser pointer on 

a chessboard. 3D position of the laser spot located on RGB image of the 

second Kinect is estimated according to depth cues and epipolar geometry. 

Thus, a collinear constraint for start point and laser spot can be used to 

calibrate the relative pose of two non-overlapping Kinects. 

 The proposed method is flexible and especially suitable to calibrate two 

Kinect with non-overlapping. Calibration can be carried out as long as the 
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laser can get through from one Kinect’s field of view to another’s. In contrast 

with the conventional method of using a mirror, in the proposed method 

humans perform the operation more easily. 

 In the calibration process of non-overlapping Kinects, the depth cues are 

exploited for the pose calibration of Kinects along with the RGB cues. This 

discriminates the proposed method from the existing non-overlapping RGB 

camera calibration methods. To this point, this work is the first research on 

the calibration of a pair of non-overlapping RGB-D cameras as far as we 

know. 

Another feature of the proposed method is that we use laser pointer instead of a 

mirror; this increases the flexibility of calibration operation work in a real world 

environment. 
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CHAPTER 8 

Conclusions and Contributions 

8.1 Conclusion 

In this thesis, we focus on the problem that, when we would like to improve the 

accuracy of an advanced driving assistance system or apply multi-camera system in robot, 

it will be necessary to calibrate the relative pose between non-overlapping cameras. The 

multi-camera system may consist of non-overlapping RGB cameras or RGB-D cameras. 

Some novel methods have been proposed to solve these problems in this thesis. The 

contributions are as following. 

1. A novel technic is proposed to estimate the pose of a laser pointer, which is 

fixed on a calibration board. It is based on the principals that, according to 

laser’s unidirectional property and ideal central perspective camera model, 

laser ray should be pointing to the optical center of camera when it is viewed 

by the camera. It is a practical and convenient method to calibrate the pose of 

a laser pointer. Moreover, it is very effective and can be extensive used in 

many fields such as camera calibration. 

2. A novel approach for calibrating the relative pose of two non-overlapping 

cameras with a laser pointer and one calibration pattern has been proposed. A 

laser pointer is fixed at a calibration board so that its pose at the coordinate 

system of the calibration board can be obtained. While one of the cameras 

observes the calibration board, the intersection of the ray of the laser pointer 
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with scenes is observed by the other. Thus, the view field of both cameras is 

connected, and the relative pose between the cameras can be estimated 

through solving a coplanar constraint. Besides, 3D position of the laser spot 

located on RGB image of the second Kinect is estimated according to depth 

cues and epipolar geometry. We show the effectiveness of this method on 

both synthetic data and an in-vehicle camera system. Compared to the 

conventional calibration methods of non-overlapping cameras, our proposed 

method is simple, practical, and especially suitable to the calibration of non-

overlapping in-vehicle cameras at a factory or a garage, where the existing 

methods are difficult to be applied. For a camera network consist of more 

than two non-overlapping cameras, relative transformation between arbitrary 

two non-overlapping cameras can be estimated with our proposed method. 

3. A novel approach to calibrate inward and outward-facing in-vehicle cameras 

using a laser pointer and two calibration patterns is proposed. Since inward 

cameras, which observe the driver's behavior, and outward cameras, which 

observe the driver's field of view, do not have overlapping views, the 

conventional calibration methods for stereo cameras cannot be applied 

directly. A method is presented in which the two cameras can be connected 

by a laser emitted from a laser pointer. The laser pointer is mounted on a 

calibration board so that the laser ray’s pose within the calibration board’s 

coordinate system can be calculated. Two points lying on two calibration 



 

105 

 

boards respectively can be connected by the laser ray. A collinear method is 

presented based on this idea. We compare the performance of the proposed 

collinear algorithm with both coplanar algorithm (proposed in Chapter 5) and 

the conventional mirror-based method through simulations and experiments. 

In comparison with the conventional mirror-based method, the collinear 

constraint algorithm achieved higher accuracy in terms of the estimation of 

the displacement between the two cameras. The technique was also found to 

be robust in a range of different lighting conditions. Finally the laser-based 

collinear method is applied to the non-overlapping calibration of an in-

vehicle camera system. In contrast to other methods, the proposed method is 

simple, practical, and especially well suited to the calibration of the relative 

pose between inward and outward-facing in-vehicle cameras in a factory or 

garage. 

4. A novel method for calibrating non-overlapping RGB-D cameras is proposed 

using one calibration pattern and a laser pointer. Compared to the two 

algorithms previously mentioned, the depth cues have been exploited. Two 

3D points, respectively located in the field of views of the two RGB-D 

cameras, are connected by a laser ray. The relative pose of the two RGB-D 

cameras can be estimated through this collinear constraint. In comparison 

with the approach of using only RGB cues, which results in the looser 

coplanar constraint, the proposed method achieves a higher accuracy, as 
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shown in both simulation and real-world experiment results. The proposed 

method is flexible and especially suitable to calibrate two Kinect with non-

overlapping. Calibration can be carried out as long as the laser can get 

through from one Kinect’s field of view to another’s. In contrast with the 

conventional method of using a mirror, in the proposed method humans 

performs the operation more easily. In the calibration process of non-

overlapping Kinects, the depth cues are exploited for the pose calibration of 

Kinects along with the RGB cues. This discriminates the proposed method 

from the existing non-overlapping RGB camera calibration methods. To this 

point, this work is the first research on the calibration of a pair of non-

overlapping RGB-D cameras as far as we know. 

In future work we will carry out further real-world experiments with ground truth. 

In-vehicle camera systems using calibration techniques such as ours will undoubtedly be 

used to monitor driver behavior in the future. 

Another feature of the proposed method is that we use laser pointer together with 

a mirror; this will further increases the flexibility of calibration operation work in a real 

world environment. 

8.2 Publications 

The content of this thesis is based on the material published in the following 

papers: 
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Journals 

 

1) Wuhe Zou,Shigang Li. Calibration of Non-overlapping In-vehicle Camera with Laser 

Pointer. IEEE Transactions on Intelligent Transportation Systems, Volume:PP, 

Issue:99, pp. 1~12, 2014 

 

2) 
IEICE, Vol.J97-D,No.11,pp.-,Nov. 2014. 

 

 

International Conferences 

 

1) Wuhe Zou, Shigang Li. Calibrating non-overlapping RGB-D camera. International 
Conference on Pattern Recognition (ICPR) (pp.4200-4205) , 2014.08 

 

2) Wuhe Zou, Shigang Li. Calibrating relative pose of non-overlapping in-vehicle 
cameras with laser pointer. 21st World Congress on Intelligent Transport Systems 
(ITSWC) , 2014.09 
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