
Numerical Methods for Large-scale Quantum

Material Simulations

Hiroto Imachi

Tottori University

January 2017

Contents

1 Introduction 7

2 Background 11
2.1 Basics of parallel computing . 11

2.1.1 Hardware . 11

2.1.2 Software . 12

2.1.3 Performance evaluation of parallel program 12

2.1.4 Trends of large-scale parallel computing 13

2.2 Basics of numerical linear algebraic routines 14

2.3 Basics of electronic state calculations 15

2.3.1 Theoretical foundation of electronic state calculation . . . 15

2.3.2 Derivation of generalized eigenvalue problem 17

2.3.3 Numerical aspect of large-scale calculations 18

2.4 Notes on physical and methodological concepts 18

2.4.1 Participation ratio . 18

2.4.2 Mobility . 21

2.4.3 Diffusion constant . 22

2.4.4 Atomic unit . 23

3 Hybrid parallel eigenvalue solver 25
3.1 Concept of hybrid solver . 25

3.2 Parallel eigenvalue solvers of ScaLAPACK, EigenExa and ELPA 27

3.3 Mathematical formulation . 28

3.4 Benchmark result . 30

3.4.1 Result with the matrix size of M = 430, 080 31

3.4.2 Benchmark with the matrix sizes of M=90,000, 22,500 . 35

3.4.3 Benchmark for a million dimensional matrix 39

3.5 Discussions . 39

3.5.1 Preparation of initial distributed data 39

3.5.2 Data conversion overhead 40

3.5.3 Reducer analysis and future outlook 41

3

4 CONTENTS

3.6 Details of the code . 43

3.6.1 Execution flow of EigenKernel 43

3.6.2 Quick start of EigenKernel 44

3.6.3 Use with real applications 45

3.6.4 ELSES matrix library 46

4 Extreme scalable organic material simulations 47
4.1 Problem and previous works . 47

4.1.1 Ultra-flexible device and organic materials 47

4.1.2 Electronic wavefunction in organic materials 48

4.1.3 Concept of order-N method 49

4.1.4 Highly parallelizable mathematical structure 51

4.2 Ground algorithm design . 52

4.2.1 Generalized shifted linear equations 52

4.2.2 Calculation of projected physical quantity 53

4.3 Methodological details for large scale calculations 54

4.3.1 Quantum molecular dynamics simulation for organic poly-

mers . 54

4.3.2 Details in parallelization 55

4.3.3 Sparsity of matrices . 55

4.3.4 MPI Communication . 56

4.3.5 Use of Extensible Markup Language (XML) in File I/O . 56

4.3.6 Performance tuning on the K computer 57

4.4 Benchmarks and their analysis on the K computer 58

4.4.1 Architecture . 58

4.4.2 Conditions of benchmarks 59

4.4.3 Preparation of disordered structures of condensed polymers 60

4.4.4 Analysis on strong scaling and time-to-solution 61

4.4.5 Detailed analysis . 63

4.5 Wavepacket dynamics simulation 66

4.5.1 Concept of multi-time-scale quantum wavepacket simula-

tions . 67

4.5.2 Basic mathematical formulation of generalized eigenvalue

equation . 68

4.5.3 Multi-time-scale simulation (I) 69

4.5.4 Multi-time-scale simulation (II) 71

4.5.5 Simulation with modeled thermal atomic motion 72

4.5.6 Calculation of diffusion coefficient 73

4.6 Organic material simulations . 74

4.6.1 Quantum molecular dynamics simulation 74

CONTENTS 5

4.6.2 Transport calculations with wavepacket dynamics simula-

tions . 76

4.7 Data scientific research for prescreening 77

4.8 108-atom simulation . 80

4.8.1 Network analysis of electronic wavefunctions 80

4.8.2 Quantum wavepacket dynamics simulation on polymer

networks . 83

5 Summary and future outlook 85

Chapter 1

Introduction

Nowadays, quantum material simulations, electronic state calculations, form a rig-

orous theoretical foundation of material science and engineering [1]. These simu-

lations treat each electron as a quantum ‘wave’. Several simulation softwares, like

Gaussian [2] and VASP [3], are the de facto standards and are used widely among

experimental and industrial researchers, as well as theoretical ones. Small system,

such as benzene molecule (C6H6), can be calculated even by a laptop computer.

These simulations, however, are not applicable to large-scale systems, for exam-

ple, one-hundred-nanometer-scale systems, owing to heavy computational costs

and a strong need appears for numerical methods in such large-system calcula-

tions. On the other hand, the current and next-generation supercomputers work as

massively parallel computing and the numerical methods for these machines are

crucial issues in computational science.

The present thesis is devoted to numerical methods for large-scale quantum

material simulation, so as to satisfy the need, in particular, for industrial appli-

cation [4, 5, 6]. We focused on fundamental numerical problems in quantum

material simulations and these problems appear the Schrödinger equations in the

time-independent or time-dependent forms. The thesis consists of three main is-

sues; hybrid parallel generalized eigenvalue problem solver, quantum wavepacket

dynamics simulation solver, and extreme parallelism on the full system of the

K computer for an order-N electronic structure calculation code (N is the num-

ber of atoms in a system). The three parts are relevant as follows; an order-

N electronic structure calculation code ELSES(=Extra Large Scale Electronic

Structure calculations) [7] enables one-hundred-nm-scale quantum molecular dy-

namics (MD) simulations. Electronic structure can be calculated via generalized

shifted linear equations or generalized eigenvalue equations. The order-N calcu-

lation is achieved when generalized shifted linear equations are solved. General-

ized eigenvalue problem solver gives more reliable numerical result with larger

(O(N3)) computational costs. The order-N solver and the hybrid parallel general-

7

8 CHAPTER 1. INTRODUCTION

ized eigenvalue problem solver are complement to each other. They are massively

parallel numerical solvers and show high scalability up to the full system of the K

computer, one of the fastest supercomputers in the world. Based on the quantum

MD results, quantum wavepacket dynamics simulations are executed to calculate

transport properties.

At first the background of the thesis such as overview of parallel computing

and organic materials is explained. Organic materials play a crucial role among

next-generation IoT (Internet of Things) products, such as display, battery and

sensor, since they form flexible atomic structures and enable ultra-thin, light, flex-

ible (wearable) devices with a low fabrication cost. Because disorder (or random-

ness) in atomic structures is important for properties of organic materials, large-

scale (100nanometer or 108 atom scale) quantum material simulation methods are

required. Efficient parallel computation is a key technique for realization of such

large-scale quantum material simulations. Algorithms and implementations must

be carefully chosen depending on a required physical quantity and parallel com-

puter architecture.

Hybrid parallel generalized eigenvalue problem solver Optimal hybrid nu-

merical solvers are constructed for massively parallel generalized eigenvalue prob-

lem (GEP). The strong scaling benchmark was carried out on the K computer and

other supercomputers for electronic structure calculation problems in the matrix

sizes of M = 104 − 106 with up to 105 processor cores. The procedure of GEP

is decomposed into the two subprocedures of the reducer from the GEP to the

standard eigenvalue problem (SEP) and the solver of SEP. A hybrid solver is con-

structed, when a routine is chosen for each subprocedure from the three parallel

solver libraries of ScaLAPACK, ELPA and EigenExa. The hybrid solvers with

the two newer libraries, ELPA and EigenExa, give better benchmark results than

the conventional ScaLAPACK library. The detailed analysis on the results implies

that the reducer can be a bottleneck in next-generation (exa-scale) supercomput-

ers, which indicates the guidance for future research of parallel generalized eigen-

value problem solvers.

Quantum wavepacket dynamics simulation solver This part focuses on

transport calculations for condensed organic polymers. One-hundred-nm-scale

electronic structure calculations were carried out by ELSES on the K supercom-

puter. The transport calculations were carried out as a theoretical extension for the

quantum (hole) wavepacket dynamics simulation. The calculation is based on a

time-dependent Schrödinger type equation i d
dtψ = HWPψ for a hole wavefunction

ψ(t) with a modelled Hamiltonian HWP. Analysis of time evolution of ψ(t) gives

mobility, which is an important parameter for electronic device performance. The

method was applied to a single polymer chain and condensed polymers. The result

of mobility calculation is consistent to the experimental trend.

Order-N electronic structure calculation code A novel parallel linear-algebraic

9

algorithm was introduced to electronic state calculations. The benchmark shows

an extreme strong scaling (75% in parallel efficiency) and a qualified time-to-

solution (less than 102 sec in elapsed time) on the full system of the K computer.

Their mathematical foundation is generalized shifted linear equations ((zS−H)x =
b), instead of conventional generalized eigenvalue equations. The foundation has

a highly parallelizable mathematical structure and applicable to many scientific

areas. The simulation of organic polymer devices was carried out in academic-

industrial collaboration. Using the electronic state calculations, a network anal-

ysis on connected polymer networks was carried out. Small networks of several

polymers that electronically connected are extracted. The quantum wavepacket

dynamics simulation was employed for transport calculations for the extracted

networks. The simulation and data analysis reveal that electronic waves propagate

on connected polymer networks and contribute the electrical current. The present

simulation method will give the insights of next-generation electronic devices and

their fabrication process.

Chapter 2

Background

2.1 Basics of parallel computing

Parallel computing is a form of computational methods which exploits concur-

rency in a program to execute efficiently. Concurrency is a character of a program

that its partial tasks can be executed simultaneously at overlapping time intervals.

Here efficiency means mainly shortening of the elapsed time for a program. In an-

other context, efficiency also means reduction of required memory on a machine,

which leads to enable larger computation on whole machines. Transforming a

program to assign processors for the simultaneous partial tasks so that the elapsed

time is shorten is called parallelization. Parallelism, chance of parallelization, ap-

pears in various levels of a program. Parallelism is called coarse-grain when each

of the partial tasks is relatively large and consumes long elapsed time. Conversely,

it is called fine-grain when they are relatively small. Generally, coarse-grain par-

allelism requires smaller additional computational costs on parallelization. Paral-

lelization needs support from both sides of hardware and software.

2.1.1 Hardware

A parallel computer is a computer which has multiple processors and parallel

programs can run on it. Most of recent computers are kind of parallel computer

because they ordinarily have multiple cores on a CPU chip. A supercomputer

is a parallel computer which has very high computational capacity and mainly

used for scientific computing. In general, computational capacity of supercom-

puters is compared by FLOPS (value of how many floating-point operations can

be executed per second). For example, the K computer, one of the fastest super-

computers in the world, has theoretical peak performance of 11.28 Peta FLOPS.

Parallel computers are classified into two classes, shared memory machines or

11

12 CHAPTER 2. BACKGROUND

distributed memory machines, by their memory architecture. On a shared memory

machine all the CPU cores are able to access to the single memory unit. On a

distributed memory machine, there are multiple memory units and a CPU core

is able to access to a part of them. One should use communication between the

memory units to share data on a distributed memory machine. Although it is

easier to implement a parallel program on a shared memory machine than on a

distributed memory machine, there is a limitation on the number of computational

cores on a shared memory machine due to costs for preserving memory coherence.

Therefore almost all of modern supercomputers are distributed memory machines

that connect many shared memory computer nodes by communication network.

As stated above, a parallel computer consists of processors, memory units, and

network. Among these, costs of memory access and network access are relatively

large in modern supercomputers. Therefore it is important to reduce memory and

network access as much as possible for implementation of an efficient parallel

program.

2.1.2 Software
Programming models for parallel computation are classified by their memory

model. On the shared memory model which a single memory space are shared

by all processors, APIs (application programming interface) like pthreads (POSIX

threads) or OpenMP [8] are commonly used. On the other hand, on the distributed

memory model which each processor refers local memory space, required data are

shared by an explicit send and receive. This style of sharing data is called mes-

sage passing. De facto standard API for the message passing programming model

is MPI [9]. Almost all of modern supercomputers provide an implementation of

OpenMP and MPI. An example of famous MPI implementation is MPICH [10].

It should be noted that the classification of programming models is indepen-

dent from the classification of memory architecture of hardware (shared memory

machine or distributed memory machine). One can run MPI parallel program on

a shared memory machine. Also, one can run a shared memory parallel program

written in such as a PGAS (Partitioned Global Address Space) language on a dis-

tributed memory machine [11].

2.1.3 Performance evaluation of parallel program
Performance of a parallel program is often evaluated by how the elapsed time T
decreases with increase of the number of processors n. It is called scaling prop-

erty. There are two measures of scaling property, weak scaling and strong scaling.

In weak scaling, the problem size (computational complexity) is increased in pro-

portion to the number of processors. In strong scaling, the problem size is fixed

2.1. BASICS OF PARALLEL COMPUTING 13

and only the number of processors is changed. Ideally, T is independent of n in

weak scaling, and T is inversely proportional to n in strong scaling. However,

in reality, T is larger than them because there are costs for parallelization itself.

Generally, it is more difficult to improve strong scaling property than weak one

because the fraction of costs for parallelization itself increases as n increases.

Strong scaling property can be predicted by Amdahl’s argument (or Amdahl’s

law) [12]. Suppose that there are a program which is divided into two parts and

an amount of a computational resource s (for example, the number of processors).

The elapsed time of one part decreases in proportion to s. That of the other part

does not change while the amount of the resource changes. p is the percentage of

the elapsed time for the former part when s = 1. Ts is the total elapsed time as s
changes. Under the above condition, speedup ratio r(s) ≡ T1/Ts is determined by

r(s) =
1

(1 − p) +
p
s

. (2.1)

In context of parallelization, it indicates that benefit from parallelization is small

when the fraction of the non-parallelized part 1 − p is large. Also the upper limit

of the speed up ratio is determined by

lim
s→∞ r(s) =

1

1 − p
. (2.2)

For example, when p = 0.9, the maximum speedup is ten times as fast as the

baseline.

2.1.4 Trends of large-scale parallel computing
Past research of parallel computing had a tendency to increase solvable problem

size, in other words, a tendency to improve weak scaling property, not strong

scaling property. Because recent supercomputers have very high computational

capacity, the maximum solvable problem size for them is sometimes out of the

range of interest from a viewpoint of real application. Therefore strong scaling

property is becoming more and more important.

In recent supercomputers, although performance increase of computational

units is rapid, that of data transfer functions such as memory access and commu-

nication is relatively slow. The separation between them will expand and existing

parallel programs may suffer from low scalability on next generation supercom-

puters.

Those problems on modern large-scale parallel computing cannot be solved

by effort in a single field. Related fields of hardware architecture, algorithm, im-

plementation and application must be simultaneously considered and adjusted for

each other. Such a style of design with collaboration of related fields is often

called co-design.

14 CHAPTER 2. BACKGROUND

2.2 Basics of numerical linear algebraic routines
Numerical linear algebraic solvers are fundamental components of scientific com-

puting. Examples of typical problems in numerical linear algebra are linear equa-

tion and eigenvalue problem. Elementary methods for the problems such as cal-

culating inverse matrix for linear equation or solving characteristic polynomial

for eigenvalue problem are often not suitable to calculation on computers due to

large computational cost and numerical error. Instead of them, algorithms and

implementations suitable to computers has been extensively studied [13, 14, 15].

Especially, numerical linear algebraic solvers for large matrices have strong needs

among various applications with the current and next-generation supercomputers.

Numerical linear algebraic solvers are classified into two categories. One is

dense-matrix solver and the other is sparse-matrix solver. In the dense-matrix

solvers, all the matrix elements are treated as non-zero values and a routine re-

quires O(M2) memory cost and O(M3) operation cost, typically, where M is the

matrix dimension. In the sparse-matrix solvers, on the other hand, only non-zero

elements are treated explicitly and a routine typically requires O(N) memory cost

and cheaper operation cost, where N is the number of non-zero elements. Sparse-

matrix solvers are again classified into two categories. One is sparse direct solver

and the other is sparse iterative solver. Sparse direct solvers sequentially transform

a matrix into some standard form to compute a solution. Sparse iterative solvers

do not transform a matrix and use it only for matrix-vector multiplications to com-

pute a solution. The thesis does not treat sparse direct solvers. Sparse matrices

emerge from various areas of scientific computing. For example, discretization

of differential equation often generates a sparse matrix, reflecting spatial locality

of differential operators. In the thesis, the hybrid generalized eigenvalue solver

in Chap. 3 is classified into dense eigenvalue problem solvers, and the electronic

state calculation solver in Chap. 4 is classified into sparse linear equation solvers.

Design of dense-matrix solvers does not relatively depend on property of in-

put matrices. Therefore, there are de facto standard libraries for dense numeri-

cal linear algebra calculation, such as BLAS 1, LAPACK 2 and ScaLAPACK 3.

BLAS [16] is an API set of basic linear algebra operations like summation and

multiplication of matrices and vectors. LAPACK [17] is a solver collection of

numerical linear algebra problems like linear equation, eigenvalue decomposition

and singular value decomposition. LAPACK is constructed based on BLAS. This

separation of implementation level realizes both of high performance and porta-

bility. ScaLAPACK [18, 19] is the distributed parallel version of LAPACK. These

libraries are available on almost all of modern supercomputers and highly opti-

1BLAS = Basic Linear Algebra Subprograms
2LAPACK = Linear Algebra PACKage
3ScaLAPACK = Scalable Linear Algebra PACKage

2.3. BASICS OF ELECTRONIC STATE CALCULATIONS 15

mized for each architecture. But several routines give severe bottlenecks in the

computational speed with current massively parallel architectures.

On the other hand, design of sparse-matrix solvers highly depends on property

of input matrices. Moreover, parallelization and optimization are generally more

difficult than dense-matrix solvers due to lack of regularity in calculation. There-

fore, it is important to consider specific structures in a problem when designing

sparse-matrix solvers. In sparse iterative solvers, the most time-consuming proce-

dure is often matrix-vector multiplication. CRS (Compressed Row Storage) [15]

is a common sparse matrix format. In CRS format, a matrix data is stored by

two integer arrays colind, rowptr and a floating-point value array values. values
stores the values of the non-zero elements of the matrix in row-wise order. colind
has the same length with values and contains the column indices of the corre-

sponding non-zero elements. rowptr has the length of the number of rows in the

matrix and contains indices in values and colind where the data of each row starts.

Pseudo-code of matrix-vector multiplication y = Ax in CRS format is as follows:

1: procedure matrix-vector multiplication in CRS format(A, x)

2: for i = 1 . . . m do
3: for k = A.rowptr[i] . . . A.rowptr[i + 1] − 1 do
4: j = A.colind[k]

5: y[i]+ = A.values[k] ∗ x[j]
6: end for
7: end for
8: end procedure

2.3 Basics of electronic state calculations
This section is devoted to a brief review of the theoretical foundation of electronic

state calculation. The explanation focuses on the mathematical structure of the

theory and ignores several physical aspects, such as spin freedom of electron, for

simplicity.

2.3.1 Theoretical foundation of electronic state calculation
The fundamental theory of quantum material simulation or electronic state calcu-

lation stems from Schrödinger’s equation for many electron wavefuntions

Ψ ≡ Ψ(r1, r2,, rNelec
), (2.3)

a complex scalar function, where Nelec is the number of electrons and r j is the

position of the j-th electron. It is very difficult, however, to solve the equation

16 CHAPTER 2. BACKGROUND

with materials directly, because the computational cost increases exponentially

as the function of Nelec. Walter Kohn, a Nobel Prize winner in Chemistry on

1998, called the situation ‘exponential wall’ [20]; If the continuum space of r j is

discretized into p points, the number of elements for the discretized wavefunction

is M = pN
elec

. In the case of Nelec = 36 electrons with p = 2, for example, the

number M is given as

M = pNelec = 236 = 68, 719, 476, 736 ≈ 70G (2.4)

and the required memory size to store the wavefunction as complex double preci-

sion complex array is estimated to be

16B × M ≈ 1TB. (2.5)

The above estimation indicates that the above calculation can not be carried out

with one hundred electrons.

Most of the present electronic state calculations are carried out with one-

electron wavefunction φ(r), instead of the many-electron wavefunction Ψ. See

textbooks for detail [1]. Effective equations appear as eigenvalue equations in

continuum space

Ĥeffφ j = λ jφ j (2.6)

with the Hamiltonian operator Ĥ of

Ĥeff ≡ − �
2

2me

Δ + Ueff(r). (2.7)

Here me is the mass of electron and � is Planck’s constant (me = 9.109534 ×
1031kg, � = 1.0545887 × 10−34Js). The scalar function Ueff(r) is the potential

function for electrons and differs among materials. Since the potential function

includes the quantum mechanical interactions between electrons, Eq. (2.6) is a

nonlinear equation. The solution of Eq. (2.6) gives the eigenpairs of {λ j, φ j(r)}.
The eigenvalues of {λ j} are real and the index j is determined as λ1 ≤ λ2 ≤
λ3, The lowest Nelec eigenpairs are those for the electrons in material. The j-th
eigenvalue and eigenfunctions means the energy and state (wavefunction) of the

j-th electron, respectively. The wavefunctions satisfy the orthogonality relation of

∫
φk(r)φl(r)dr = δkl, (2.8)

unless the eigenvalues are degenerated (λk � λl). The Nelec-th eigenvalue or eigen-

function is usually called, highest occupied (HO) energy or state, respectively.

2.3. BASICS OF ELECTRONIC STATE CALCULATIONS 17

The numbers of electrons Nelec in material and is usually proportional to the num-

ber of atoms N (Nelec ∝ N).

It is noteworthy that the one-electron wavefunction theory corresponds to an

approximation on the many-electron wavefuntion by the determinant form called

Slater determinant. The case of Nelec = 2, for example, is written as

Ψ(r1, r2) :=
1√
2

∣∣∣∣∣∣φ1(r1) φ2(r1)

φ1(r2) φ2(r2)

∣∣∣∣∣∣ =
1√
2

(φ1(r1)φ2(r2) − φ2(r1)φ1(r2)). (2.9)

The determinant form satisfies the mathematical relation of

Ψ(r1, r2) = −Ψ(r2, r1), (2.10)

known as a Fermion property of electrons.

2.3.2 Derivation of generalized eigenvalue problem
Here a generalized eigenvalue problem (GEP) is derived by discretization of real

space. The problem will be the central linear algebraic problem in this thesis.

When an electronic wavefunction φk(r) is expressed by the linear combination

with given basis functions of {χ j(r)} j=1,...M

φk(r) =
∑

j

y jkχ j(r), (2.11)

a generalized eigenvalue problem of

Hyk = λkSyk. (2.12)

appears with M × M Hermitian matrices of H and S that are defined as

Hi j ≡
∫
χ∗i (r)Ĥeffχ j(r)dr (2.13)

S i j ≡
∫
χ∗i (r)χ j(r)dr. (2.14)

The matrix S is positive definite from the definition. The matrices H and S are

called Hamiltonian and the overlap matrices, respectively.

In the thesis, the real-space atomic-orbital representation is used and the ma-

trix dimension is proportional to the number of atoms (M ∝ N). A basis function

χ j(r) is a localized function, called atomic orbital, of which center is located at

the position of one atom (nucleus). In addition, the basis functions are chosen as

real functions and the matrices of H and S are real symmetric. Since the basis

functions are normalized, all the diagonal elements of S are the unity (S ii = 1)

and all the off-diagonal elements satisfy the inequality of |S i j| < 1(i � j). The

orthogonality relation in continuum real space, Eq. (2.8), is transformed into

yT
k Syl = δkl. (2.15)

18 CHAPTER 2. BACKGROUND

2.3.3 Numerical aspect of large-scale calculations

As explained in the previous subsections, the GEP of Eq. (2.12) gives the math-

ematical foundation of electronic structure calculations or quantum mechanical

calculations of materials, in which an electron is treated as a quantum mechanical

‘wave’. Fig. 2.1(a) shows an example of the wavefunction. The number of the

required eigenvalues is, at least, on the order of the number of the electrons or the

atoms in calculated materials.

When one think about large scale calculations, however, a potential difficulty

in parallelism is the orthogonality relation between eigenvectors. Since the eigen-

vectors should satisfy an orthogonality relation of Eq. (2.15), an explicit orthogo-

nalization procedure is required. An orthogonalization procedure requires an op-

eration cost of (O(N3)) and can be a bottleneck in parallelism. Since the orthog-

onality is inherent in quantum mechanics, the above potential difficulty appears

commonly among the large-scale electronic state calculations.

Here an order-N electronic state calculation code ELSES [7, 21] is explained

briefly, since the present research is a theoretical extension of the methods devel-

oped previously for ELSES. The simulations use novel ‘order-N’ linear-algebraic

methods in which the computational cost is ‘order-N’ (O(N)) or is proportional to

the number of atoms N. Their mathematical foundation is sparse-matrix (Krylov-

subspace) solvers. The detailed theories are explained later in this thesis. Efficient

massively parallel computation is found in Fig. 2.1, a strong scaling benchmark

on the K computer [22, 23] with one hundred million atoms or one-hundred-

nanometer scale materials. The simulated materials are a nano-composite carbon

solid with N = 103, 219, 200 or M = 412, 876, 800 [22] and an amorphous-like

conjugated polymer with N = 102, 238, 848 or M = 230, 776, 128 [23]. All the

calculations in this thesis were realized with first-principles-based modeled (tight-

binding-form) theory. The details can be found in Ref. [21] and will be explained

later in this thesis.

2.4 Notes on physical and methodological concepts

2.4.1 Participation ratio

Participation ratio (PR) was introduced in theoretical condensed matter physics,

mainly for the theory of localized electron wavefunctions [24, 25, 26, 27].

Originally the PR is defined for a normalized wavefunction φ(r) as

PR(org)(φ) ≡
(∫
|φ(r)|4dr

)−1

. (2.16)

2.4. NOTES ON PHYSICAL AND METHODOLOGICAL CONCEPTS 19

(a) (b)

R R

The number of processor cores

El
ap
se
 ti
m
e
(se
c)

Figure 2.1: (a) The upper panel is a π-type electronic wavefunction in an

amorphous-like conjugated polymer (poly-((9,9) dioctyl fluorine)). The lower

panel shows the atomic structure (R≡C8H17) [22]. (b) Strong scaling plot by

ELSES for one-hundred-million-atoms calculations on the K computer. [22, 23]

The calculated materials are a nano-composite carbon solid (the upper line) and

the amorphous-like conjugated polymer (the lower line). The number of used

processor nodes is from P = 4,096 to 82,944 (full nodes of the K computer).

Suppose D is a closed area whose volume is Ω and φ is uniformly distributed in

D as

φ(r) =

⎧⎪⎪⎨⎪⎪⎩
1√
Ω

(r ∈ D)

0 (otherwise).
(2.17)

Then the PR of φ is

PR(org)(φ) =

(
1

Ω2

∫
D

dr
)−1

= Ω. (2.18)

Namely, the PR indicates how the wavefunction spreads in space.

An analogue of the PR for a finite dimensional vector is defined. In context of

the thesis, it is defined for an eigenvector y of the generalized eigenvalue equation

Eq. (2.12) as

PR(y) ≡
(
yT Sy

)2
∑

j |y j|4 . (2.19)

Note that the definition is invariant under scaling. The PR indicates a measure of

the number of non-zero elements, namely, how broadly the elements exist on the

20 CHAPTER 2. BACKGROUND

indices. For example, the case of S = I and

y ≡
(

1√
3
,

1√
3
,

1√
3
, 0, 0, ..., 0

)T
, (2.20)

gives the PR as

PR(y) =

⎧⎪⎪⎨⎪⎪⎩
∑

j

|y j|4
⎫⎪⎪⎬⎪⎪⎭
−1

=

⎧⎪⎪⎨⎪⎪⎩3
(

1√
3

)4⎫⎪⎪⎬⎪⎪⎭
−1

= 3. (2.21)

In cases of S � I, the value of PR can be smaller than one (PR(y) < 1) and

the PR does not indicate the measure of the number of non-zero elements. In

calculation of PRs for the eigenvectors of a generalized eigenvalue problem, such

cases appear in high eigenvalue regions. For example, the case of

H =
(

0 −t
−t 0

)
, S =

(
1 s
s 1

)
(2.22)

with t > 0 and 0 < s < 1. The eigenpairs are obtained as

λ1 =
−t

1 + s
, y1 =

1√
2(1 + s)

(
1

1

)
(2.23)

and

λ2 =
t

1 − s
, y2 =

1√
2(1 − s)

(
1

−1

)
. (2.24)

The PR of the eigenvectors are given by

PR(y1) =

⎧⎪⎪⎨⎪⎪⎩2
(

1√
2(1 + s)

)4⎫⎪⎪⎬⎪⎪⎭
−1

=

{
1

2(1 + s)2

}−1

= 2(1 + s)2 (2.25)

and

PR(y2) =

⎧⎪⎪⎨⎪⎪⎩2
(

1√
2(1 − s)

)4⎫⎪⎪⎬⎪⎪⎭
−1

=

{
1

2(1 − s)2

}−1

= 2(1 − s)2. (2.26)

The latter value can be smaller than one (PR(y2) < 1), when s > 1 − 1/
√

2.

However, only low eigenvalue regions are interesting in most cases and the

value of PR in these regions usually larger than one and indicate the measure of

the number of non-zero elements.

It is noteworthy that the unit vector of y ≡ (1,0)T satisfies the normalization

condition of yT Sy = 1 and gives the PR of PR(y) = 1.

2.4. NOTES ON PHYSICAL AND METHODOLOGICAL CONCEPTS 21

2.4.2 Mobility
In this section, mobility of a carrier in semiconductors is derived by Einstein’s

relation as in many textbooks, for example, Ref. [28]. Mobility is an important

physical quantity of semiconductor and means the ability of a carrier to move

through a material. Since a material with higher mobility value can be a better

device material, the material exploration for higher mobility is crucial for material

design.

Here the derivation is explained in the one-dimensional case for a carrier, hole

or exited electron. The theoretical extension to two- and three-dimensional cases

is straightforward. The mass, charge, position of the carrier is denoted as m, q and

x, respectively. The sign of q is denoted as s ≡ sign(q) (s = +1 for q > 0 and

s = −1 for q < 0). The velocity is denoted as v ≡ dx/dt. The potential for the

carrier is denoted as V(x). The electric field is given as

E(x) ≡ −dV
dx
. (2.27)

The density of carriers, denoted as ρ(x), is given as

ρ(x) = ρ0 exp

(
− sqV(x)

kBT

)
(2.28)

by the Boltzmann distribution with the temperature T and Boltzmann’s constant

kB.

The drift current is derived from Newton’s equation of motion

m
dv
dt
= qE − m

τ
v. (2.29)

The second term of the right hand side is a modeled friction force with the time

constant of τ(> 0) called mean free time. A stationary state results in dv/dt = 0

and

v =
qτ
m

E. (2.30)

The drift current is defined as

jdrift ≡ ρqv = ρq
2τ

m
E. (2.31)

If the mobility μ is defined as

μ ≡ s
qτ
m
, (2.32)

22 CHAPTER 2. BACKGROUND

one obtains

jdrift = sρqμE. (2.33)

Hereafter, Eq. (2.33) is used as the definition of the mobility μ.
The diffusion current, on the other hand, is defined as

jdiff ≡ −sqD
dρ
dx

(2.34)

with the diffusion coefficient D(> 0). The diffusion current appears from the

particle flow from a higher density region into a lower density region.

The total current is given as

jtot ≡ jdrift + jdiff

= sqρμE − sqD
dρ
dx

= −sqρμ
dV
dx
− sqD

dρ
dV

dV
dx

= −sq
dV
dx

{
ρμ + D

dρ
dV

}
(2.35)

If no voltage is imposed, the total current is zero (jtot = 0) and one obtains

μ = −D
1

ρ

dρ
dV

= −D
d

dV
(
log ρ
)

= D
d

dV

(
sqV
kBT

)

=
Dsq
kBT

=
D|q|
kBT
. (2.36)

Eq. (2.36) is Einstein’s relation.

2.4.3 Diffusion constant
In diffusion phenomena, a characteristic diffusion speed called diffusion constant

D, which has dimension of L2T−1, can be obtained. In the one dimensional diffu-

sion equation

∂ f
∂t
= D
∂2 f
∂x2
, (2.37)

2.4. NOTES ON PHYSICAL AND METHODOLOGICAL CONCEPTS 23

the solution of the initial value problem from f (x, 0) = δ(x) is

f (x, t) =
1

2
√
πDt

exp

(
− x2

4Dt

)
, (2.38)

which is the normal distribution with variance ofσ2 = 2Dt. Inversely the diffusion

constant D is determined from the solution f (x, t) as

D =
〈x2(t)〉

2t
(2.39)

where

〈x2(t)〉 ≡
∫

x2 f (x, t)dx. (2.40)

2.4.4 Atomic unit
The atomic unit (a.u.) is widely employed in electronic state theory papers and is

used throughout this thesis, except where indicated. The atomic unit is defined so

that

me = 1, � = 1,
e2

4πε0
= 1, (2.41)

where me, e, � and ε0 are the mass of electron, the charge of electron (e > 0),

Planck’s constant, and the permittivity of vacuum, respectively. The length atomic

unit

aB ≡ �
2

me

(
e2

4πε0

)−1

≈ 0.52918 × 10−10m (2.42)

is called Bohr radius. The energy atomic unit

EH ≡ me

�2

(
e2

4πε0

)2
≈ 4.3598 × 10−18J (2.43)

is called Hartree unit. The time atomic unit is given by

Tau ≡ �EH

≈ 2.4189 × 10−17s ≈ 1

40
fs. (2.44)

Several energy conversion relations among the atomic unit, electron volt (eV) and

Kelvin (K) are noted below;

1 a.u. = 27.211 eV, 1 eV = 11, 604 K. (2.45)

Chapter 3

Hybrid solver for massively parallel
eigenvalue computation

3.1 Concept of hybrid solver
The present chapter presents a hybrid solver collection, EigenKernel [29], for

massively parallel eigenvalue computation, as a foundation of large-scale elec-

tronic state calculations. Nowadays ScaLAPACK[18, 19] 1 is the de facto stan-

dard solver library for parallel computations but several routines give severe bot-

tlenecks in the computational speed with current massively parallel architectures.

Novel solver libraries were proposed so as to overcome the bottlenecks. Since

the performance of numerical routines varies significantly with problems and ar-

chitectures, the best performance is achieved, when one constructs an optimal

‘hybrid’ among the libraries.

The concept of hybrid solver is illustrated in Fig. 3.1. It is a numerical mid-

dleware and has a unique data interface to real applications. One can choose the

optimal workflow for each problem without any programming effort.

The present thesis focuses on dense-matrix solvers for generalized eigenvalue

problems (GEPs) in the form of

Ayk = λkByk (3.1)

with the given M×M real-symmetric matrices of A and B. The matrix B is positive

definite. The eigenvalues {λk} and the eigenvectors {yk} will be calculated. The

computational cost is O(M3) or is proportional to M3. The present hybrid solvers

are constructed among ScaLAPACK and the two newer libraries of ELPA [30, 31,

32] 2, and EigenExa [33, 34, 35, 36]. The ELPA and EigenExa libraries are written

1 ScaLAPACK = Scalable Linear Algebra PACKage
2 ELPA = Eigenvalue soLvers for Petascale Applications

25

26 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Figure 3.1: Concept of hybrid solver; Structure of the program code (a) without

and (b) with hybrid solver or numerical middleware.

in Fortran and appeared in 2000’s for efficient massively parallel computations.

The present dense-matrix solvers are complementary methods to the order-N
calculations, because the order-N calculation gives approximate solutions, while

the dense-matrix solvers give numerically exact ones with a heavier (O(M3)) com-

putational cost. The use of the two methods will lead us to fruitful researches.

The exact solutions are important, for example, when the system has many nearly

degenerated eigen pairs and one would like to distinguish them. The exact solu-

tions are important also as reference data for the development of fine approximate

solvers.

The matrices of A and B in the present benchmark appear on ‘ELSES Ma-

trix Library’. [37] See Sec. 3.6.4 for details of ELSES Matrix Library. The

benchmark was carried out with the data files of ‘NCCS430080’, ‘VCNT22500’

‘VCNT90000’ and ‘VCNT1008000’ for the matrix sizes of M=22,500, M=90,000,

M=430,080, M=1,008,000, respectively. A large matrix data (> 0.5GB) is up-

loaded as a set of split files for user’s convenience.

The physical origin of the matrices is explained briefly. The files in the present

benchmark are carbon materials within modeled tight-binding-form theories based

on ab initio calculations. The matrix of ‘NCCS430080’ appears in the material

research on a nano-composite carbon solid (NCCS) [38]. An sp-orbital form [39]

is used and the system contains N = M/4 = 107, 520 atoms. The other files are

generated for thermally vibrated single-wall carbon nanotubes (VCNTs) within a

supercell. An spd-orbital form [40] is used and each system contains N = M/9
atoms. The VCNT systems were prepared, so as to generate matrices systemati-

cally in different size with similar eigenvalue distributions. These matrices were

3.2. PARALLEL EIGENVALUE SOLVERS OF SCALAPACK, EIGENEXA AND ELPA 27

Figure 3.2: Workflow of the hybrid GEP solver.

used for the investigation on π-electron materials with the present dense-matrix

solver and the order-N solver. 3

3.2 Parallel eigenvalue solvers of ScaLAPACK, EigenExa
and ELPA

A hybrid solver is constructed, when a routine is chosen for each subprocedure

from ScaLAPACK, EigenExa and ELPA. The code was developed as a general

middleware that can be connected not only to ELSES but also to any real appli-

cation software, as in Fig. 3.1. A mini-application was also developed and used

in the present benchmark. In the benchmark, ScaLAPACK was used as a built-in

library on each machine. EigenExa in the version 2.2a 4 and ELPA in the version

2014.06.001 were used. ELPA and EigenExa call some ScaLAPACK routines.

3 The present matrices are sparse, which does not lose the generality of the benchmark, since

the cost of the dense matrix solver is not dependent on the number of non-zero elements of the

matrix.
4 The present EigenExa package does not include the GEP solver. The GEP solver routine for

EigenExa in the present thesis is that of the version 2.2b of KMATH EIGEN GEV [41] that shares

the SEP solver routine with the EigenExa package.

28 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

3.3 Mathematical formulation
The GEP of Eq. (3.1) can be written in a matrix form of

AY = BYΛ, (3.2)

where the matrix Λ ≡ diag(λ1, λ2, . . .) is diagonal and the matrix Y ≡ (y1 y2 · · ·)
satisfies YT BY = I. In the solvers, the GEP of Eq. (3.1) is reduced to a standard

eigenvalue problem (SEP) of

A′Z = ZΛ, (3.3)

where the reduced matrix A′ is real symmetric [14] and the matrix of Z ≡ (z1 z2 · · ·)
contain eigenvectors of A′. The reduction procedure can be achieved, when the

Cholesky factorization of B gives the Cholesky factor U as an upper triangle ma-

trix:

B = UT U. (3.4)

The reduced matrix A′ is defined by

A′ = U−T AU−1. (3.5)

The eigenvectors of the GEP, written as Y ≡ (y1 y2 · · ·), are calculated from those

of the SEP by

Y = U−1Z. (3.6)

This procedure is usually called backward transformation.

The GEP solver is decomposed into the two subprocedures of (a) the solver of

the SEP in Eq. (3.3) and (b) the reduction from the GEP to the SEP ((A, B)⇒ A′)
and the backward transformation (Z ⇒ Y). The subprocedures (a) and (b) are

called ‘SEP solver’ and ‘reducer’, respectively, and require O(M3) operations.

Figure 3.2 summarizes the workflows of the possible hybrid solvers. A hybrid

solver is constructed, when one choose the routines for (a) the SEP solver and (b)

the reducer, respectively.

For (a) the SEP solver, five routines are found in the base libraries; One rou-

tine is a ScaLAPACK routine (routine name in the code : ‘pdsyevd’) that uses the

conventional tridiagonalization algorithm. [42] The ELPA or EigenExa library

contains a SEP solver routine based on the tridiagonalization algorithm. The rou-

tine in ELPA is called ‘ELPA1’ (routine name in the code : ‘solve evp real’) in

this thesis, as in the original paper [31], and the one in EigenExa called ‘Eigen s’

or ‘EIGS’ (routine name in the code : ‘eigen s’). ELPA and EigenExa also con-

tain the novel SEP solvers based on the narrow-band reduction algorithms without

3.3. MATHEMATICAL FORMULATION 29

the conventional tridiagonalization procedure. The solvers are called ‘ELPA2’

(routine name in the code : ‘solve evp real 2stage’) for the ELPA routine and

‘Eigen sx’ or ‘EIGX’ (routine name in the code : ‘eigen sx’) for the EigenExa

routine in this thesis. See the papers [34, 32] for details.

For (b) the reducer, three routines are found in the base libraries and are called

ScaLAPACK style, ELPA style, and EigenExa style reducers in this thesis. In the

ScaLAPACK style, the Cholesky factorization, Eq. (3.4) is carried out and then

the reduced matrix A′, defined in Eq. (3.5), is generated by a recursive algorithm

(routine name ‘pdsygst’) without explicit calculation of U−1 nor U−T . Details of

the recursive algorithm are explained, for example in Ref. [43]. In the ELPA style,

the Cholesky factorization (routine name: ‘cholesky real’) is carried out, as in the

ScaLAPACK style, and the reduced matrix A′ is generated by the explicit calcula-

tion of the inverse (triangular) matrix R ≡ U−1 (routine names : ‘invert trm real’)

and the explicit successive matrix multiplication of A′ = (RT A)R (routine names:

‘mult at b real’) [31] 5. In the EigenExa style, the Cholesky factorization is not

used. Instead, the SEP for the matrix B

BW = WD, (3.7)

is solved by the SEP solver (Eigen sx), with the diagonal matrix of D ≡ diag(d1, d2, ...)
and the unitary matrix of W ≡ (w1 w2). A reduced SEP in the form of Eq. (3.3)

is obtained by

A′ = (D−1/2WT)A(WD−1/2) (3.8)

Y = WD−1/2Z, (3.9)

because of Z = D1/2WT Y and W−T = W. Equation (3.9) is solved by the SEP

solver (Eigen sx).

Though the SEP solver of Eq. (3.3) requires a larger operation cost than the

Cholesky factorization (See Fig.1 of Ref. [44], for example), the elapsed time can

not be estimated only from the operation costs among the modern supercomputers.

The benchmark of the hybrid GEP solvers was carried out for the eight work-

flows listed in Table 3.1. In general, a potential issue is the possible overhead

of the data conversion process between libraries. This issue will be discussed in

Sec. 3.5.2.

5The benchmark was carried out in an ELPA style reduction algorithm. The ScaLAPACK

routine of ‘pdtrmm’ is used for the multiplication of the triangular matrix R from right, while a

sample code in the ELPA package uses the ELPA routine (‘mult at b real’). The difference is

ignored, since the elapsed time of the above procedure is not dominant.

30 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Table 3.1: List of the workflows in the benchmark. The routine names for the SEP

solver and the reducer are shown for each workflow. Abbreviations are shown

within parentheses.

Workflow SEP solver Reducer

A ScaLAPACK (SCLA) ScaLAPACK (SCLA)

B Eigen sx (EIGX) ScaLAPACK (SCLA)

C ScaLAPACK (SCLA) ELPA

D ELPA2 ELPA

E ELPA1 ELPA

F Eigen s (EIGS) ELPA

G Eigen sx (EIGX) ELPA

H Eigen sx (EIGX) Eigen sx (EIGX)

3.4 Benchmark result

Strong scaling benchmarks are investigated for the hybrid solvers. The elapsed

times were measured for (i) the full eigenpair calculation (Tfull) and (ii) the ‘eigenvalue-

only’ calculation (Tevo). In the latter case, the elapsed time is ignored for the cal-

culation of the eigenvectors. The two types of calculations are important among

electronic structure calculations. [31] The present benchmark ignores small elapsed

times of the initial procedure for distributed data and the comments on them will

appear in Sec. 3.5.1.

The benchmark was carried out on three supercomputers; the K computer at

Riken, Fujitsu FX10 and SGI Altix ICE 8400EX. The K computer has a single

SPARC 64 VIIIfx processor (2.0GHz, 8-core) on node. The FX10 is Oakleaf-FX

of the University of Tokyo. Fujitsu FX10 is the successor of the K computer and

has a single SPARC64 IXfx processor (1.848 GHz, 16-core) on each node. 6 SGI

Altix ICE 8400EX of Institute for Solid State Physics of the University of Tokyo

was also used. It is a cluster of Intel Xeon X5570 (2.93GHz, 8-core). The byte-

per-flop value (B/F) is B/F=0.5, 0.36 or 0.68, for the K computer, FX10 or SGI

Altix, respectively. The numbers of used processor nodes P are set to be square

numbers (P = q2) except in Sec. 3.4.3, since the ELPA paper [31] reported that

the choice of a (near-)square number for P can give better performance.

When the non-traditional SEP solver algorithm of ELPA is used on Altix, one

can choose an optimized low-level routine using SSE instructions

(‘REAL ELPA KERNEL SSE’) and a generic routine

6 Additional options of the K computer and FX10 are explained; An MPI process shape on

the Tofu interconnect was not specified. The rank directory feature to alleviate I/O contention was

used.

3.4. BENCHMARK RESULT 31

(‘REAL ELPA KERNEL GENERIC’). [31] The optimized code can run only on

the Intel-based architectures compatible to SSE instructions and was prepared so

as to accelerate the backtransformation subroutine. Among the results on Altix,

the ‘ELPA2’ solver and the workflow D on Altix are those with the optimized

routine, while the ‘ELPA2′’ solver and the workflow D′ are those with the generic

routine.

3.4.1 Result with the matrix size of M = 430, 080

The benchmark with the matrix size of M = 430, 080 was carried out for up to

P = 10,000 nodes on the K computer. The elapsed times for P=10,000 nodes

is shown in Table 3.2. The elapsed times for all the cases are shown in Fig. 3.3

for the (a) full (Tfull) or (b) eigenvalue-only (Tevo) calculations. The decomposed

times are also shown in Fig. 3.3 (c) for the SEP solver (TSEP) and the reducer

(TRED) (Tfull = TSEP + TRED). Table 3.3 shows the decomposed time of the SEP

solvers for P=10,000. A SEP solver routine is decomposed into three subroutines

of (i) the tridiagonalization or narrow-band reduction (‘TRD/BAND’), (ii) the di-

vide and conquer algorithms for the tridiagonal or narrow-band matrices (‘D&C’)

so as to compute the eigenvalues, and (iii) the backtransformation of eigenvectors

(‘BACK’) so as to compute the eigenvectors of the GEP. One can observe several

features on the results; (I) In the full calculation benchmark (Fig. 3.3(a)), the best

data, the smallest elapsed time, appears in the workflow G for P=10,000. The

workflow G is the hybrid solver that uses the ‘Eigen sx’ SEP solver in EigenExa

and the ELPA style reducer, since these routines are the best among the SEP

solvers and the reducers, respectively, as shown in Fig. 3.3(c) and Table 3.3. In

Table 3.2, the speed (T−1
full

) of the workflow G is approximately four times faster

than that of the conventional workflow A (11,634 sec) / (2,734 sec) ≈ 4.3).

(II) Fig. 3.3 (c) shows that the ELPA style reducer gives significantly smaller

elapsed times than those of ScaLAPACK and those of EigenExa. The elapsed

time for P=10,000 is TRED = 1,261 sec with the ELPA style reducer and is TRED

= 2,157 sec with the EigenExa reducer. The elapsed time with the EigenExa

reducer is governed by that of the SEP solver for Eq. (3.7) (TSEP = 1,473 sec in

Table 3.3). (III) In the eigenvalue-only calculation (Fig. 3.3(b)), the best data, the

smallest elapsed time, appears in the workflow D for P=10,000. The workflow

D is the solver that uses the ‘ELPA2’ SEP solver and the ELPA style reducer

and the eigenvector calculation consumes a large elapsed time of Tvec; Tvec ≡
Tfull − Tevo = (4,242 sec) - (2,227 sec) = (2,015 sec) in Table 3.2. The time Tvec

is contributed mainly by the backward transformation subroutine (TBACK =1,892

sec) in Table 3.3, because the backward transformation subroutine in ELPA2 uses

a characteristic two-step algorithm (See Sec. 4.3 of Ref. [31]).

32 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Table 3.2: Selected results of the benchmark. The elapsed time for the full (eigen-

pair) calculation (Tfull) and that for the eigenvalue-only calculation (Tevo) with the

workflows. The recorded time is the best data among ones with different numbers

of the used nodes. The number of used nodes (P) for the best data is shown within

parentheses. The best data among the workflows are labelled by ‘[B]’. The satu-

rated data are labelled by ‘[S]’. The workflow D′ on Altix is that without the SSE

optimized routine of the ‘ELPA2’ SEP solver. See the text for details.

Size M/Machine WF Tfull (sec) Tevo (sec)

1,000,080/FX10 G 39,919 (P = 4,800) 35,103 (P = 4,800)

430,080/K A 11,634 (P = 10,000) 10,755 (P = 10,000)

B 8,953 (P = 10,000) 8,465 (P = 10,000)

C 5,415 (P = 10,000) 4,657 (P = 10,000)

D 4,242 (P = 10,000) 2,227 (P = 10,000)[B]

E 2,990 (P = 10,000) 2,457 (P = 10,000)

F 2,809 (P = 10,000) 2,416 (P = 10,000)

G 2,734 (P = 10,000)[B] 2,355 (P = 10,000)

H 3,595 (P = 10,000) 3,147 (P = 10,000)

90,000/K A 590 (P = 4,096) 551 (P = 4,096)

B 493 (P = 1,024)[S] 449 (P = 1,024)[S]

C 318 (P = 4,096) 298 (P = 4,096)

D 259 (P = 4,096) 190 (P = 4,096)[B]

E 229 (P = 4,096)[B] 194 (P = 4,096)

F 233 (P = 4,096) 210 (P = 4,096)

G 258 (P = 4,096) 240 (P = 4,096)

H 253 (P=4,096) 236 (P=4,096)

90,000/FX10 A 1,248 (P = 1,369) 1,183 (P = 1,369)

B 691 (P = 1,024)[S] 648 (P = 1,024)[S]

C 835 (P = 1,369) 779 (P = 1,369)

D 339 (P = 1,369) 166 (P = 1,024)[B][S]

E 262 (P = 1,369) 233 (P = 1,024)[S]

F 250 (P = 1,369)[B] 222 (P = 1,369)

G 314 (P = 1,024)[S] 283 (P = 1,024)[S]

H 484 (P=1,369) 456 (P=1,369)

90,000/Altix A 1,985 (P = 256) 1,675 (P = 256)

B 1,883 (P = 256) 1,586 (P = 256)

C 1,538 (P = 256) 1,240 (P = 256)

D 1,621 (P = 256) 594 (P = 256)

D′ 2,621 (P = 256) 585 (P = 256)[B]

E 1,558 (P = 256) 1,287 (P = 256)

F 1,670 (P = 256) 1,392 (P = 256)

G 1,453 (P = 256)[B] 1,170 (P = 256)

H 2,612 (P=256) 2,261 (P=256)

3.4. BENCHMARK RESULT 33

(Continuation of Table 3.2)

Size M/Machine WF Tfull (sec) Tevo (sec)

22,500/K A 65.2 (P = 1,024) 59.6 (P = 256)

B 45.8 (P = 1,024)[S] 43.2 (P = 1,024)[S]

C 41.7 (P = 2,025) 37.8 (P = 2,025)

D 28.4 (P = 2,025) 22.6 (P = 1,024)

E 28.3 (P = 2,025)[B] 22.6 (P = 1,024)[B]

F 28.8 (P = 1,024)[S] 26.9 (P = 1,024)[S]

G 29.7 (P = 1,024)[S] 27.8 (P = 1,024)[S]

H 39.3(P=1024)[S] 37.5(P=1024)[S]

22,500/FX10 A 126.2 (P = 256) 118.1 (P = 256)

B 71.3 (P = 256)[S] 67.1 (P = 256)[S]

C 103.5 (P = 256)[S] 96.3 (P = 256)[S]

D 30.5 (P = 529)[B] 24.4 (P = 529)[B]

E 34.3 (P = 256)[S] 31.2 (P = 256)[S]

F 32.1 (P = 529) 29.4 (P = 529)

G 45.3 (P = 529) 42.5 (P = 529)

H 74.9(P=529) 72.2 (P=529)

22,500/Altix A 51.4 (P = 256) 42.1 (P = 256)

B 70.0 (P = 256) 50.7 (P = 256)

C 45.6 (P = 256) 35.5 (P = 256)

D 41.8 (P = 256) 22.3 (P = 256)[B]

D′ 59.6 (P = 256) 21.8 (P = 256)[B]

E 32.3 (P = 256)[B] 26.7 (P = 256)

F 48.5 (P = 256) 37.3 (P = 256)

G 57.2 (P = 256) 39.6 (P = 256)

H 71.2 (P=256) 64.1 (P=256)

Table 3.3: Decomposition of the elapsed time (sec) of the SEP solvers with

M=430,080 and P = 10, 000. See the text for the subroutine names of

‘TRD/BAND’ , ‘D&C’ and ‘BACK’.

SEP solver TRD/BAND D&C BACK Total (TSEP)

SCLA 3,055 465 633 4,152

ELPA2 966 141 1,892 2,999

ELPA1 1,129 138 400 1,667

EIGS 1,058 196 265 1,521

EIGX 828 390 255 1,473

34 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Figure 3.3: Results with M=430,800 on the K computer. The elapsed times are

plotted with the workflows for the (a) full (Tfull) and (b) eigenvalue-only (Tevo)

calculations. (c) The decomposed times for the SEP solver (TSEP) and for the

reducer (TRED) are plotted. The routines for the reducers is labeled by ‘(RED)’.

Detailed decomposed times for subprocedures of the ELPA style reducer and the

Cholesky decomposition in the ScaLAPACK style reducer are also plotted in (c).

The ideal speedup in parallelism is drawn as a dashed gray line.

3.4. BENCHMARK RESULT 35

3.4.2 Benchmark with the matrix sizes of M=90,000, 22,500

The benchmark with the smaller matrix sizes of M = 90, 000 and 22,500 are also

investigated. The maximum number of used processor nodes is Pmax = 4,096,

1,039 and 256, on the K computer, FX10, and Altix, respectively. 7 Figures 3.4

and 3.5 show the data with M=90,000 and with M=22,500, respectively. The

decomposed times are shown in Fig. 3.6. Table 3.2 shows the best data for each

workflow among the different numbers of used nodes.

The results will help general simulation researchers to choose the solver and

the number of used nodes, since the elapsed times in Table 3.2 are less than a

half hour and such calculations are popular ‘regular class’ jobs among systematic

investigations. 8

Here, the results are discussed; (I) Table 3.2 shows that the smallest elapsed

time in the full calculation appears among the workflows with the ELPA style re-

ducer (the workflows D, E, F, and G) and that in the eigenvalue-only calculation

appears with the workflow D. The above features are consistent to the results

in the previous subsection. (II) Unlike the result in the previous subsection, the

speed up is sometimes saturated. An example is observed in Fig. 3.5 (a), in the

full calculation with M=22,500 on the K computer, because the elapsed time in

the workflow F gives a minimum as the function of P at P=1,024. The decompo-

sition analysis of Fig. 3.6(b) indicates that the saturation occur both for the SEP

solver and the reducer, which implies that the improvement both on the SEP solver

and the reducer is desirable. The saturated cases are marked in Table 3.2 with the

label of ‘[S]’. 9 (III) Finally, the SSE-optimized routine in the workflow D is com-

pared with the generic routine in the workflow D′ in the case of M = 90, 000 on

Altix with P =256. The SSE-optimized routine is prepared only in the backward

transformation process. Since the process with the SSE-optimized routine or the

generic one gives the elapsed time of TBACK = 929 sec or TBACK = 1,872 sec, re-

spectively, the process is accelerated with the SSE-optimized routine by 1, 872 sec

/ 929 sec ≈ 2.02. As shown in Table 3.2, the full calculation is accelerated with

the SSE-optimized routine by 2, 621 sec / 1, 621 sec ≈ 1.62.

7 It is observed on Altix that the ‘ELPA2’ and ‘ELPA2′’ SEP solver required non-

blocking communication requests beyond the default limit number of NMPI MAX = 16, 384

and the job stopped with an MPI error message. Then the limit number was increased to

NMPI MAX = 1, 048, 576, the possible maximum of the machine by the environment variable

‘MPI REQUEST MAX’ and the calculations were completed.
8 One should remember that supercomputers are usually shared by many researchers who run

many calculations in similar problem sizes successively and/or simultaneously.
9 No saturation is found on Altix, unlike on the K computer and FX10, partially because the

maximum number of used nodes (Pmax = 256) is smaller.

36 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Figure 3.4: Benchmark with the matrix size of M=90,000, (I) on the K computer

for the (a) full (eigenpair) and (b) eigenvalue-only calculation, (II) on FX10 for

the (c) full and (d) eigenvalue-only calculation, (III) on Altix for the (e) full and

(f) eigenvalue-only calculation. The ideal speedup in parallelism is drawn as a

dashed gray line.

3.4. BENCHMARK RESULT 37

Figure 3.5: Benchmark with the matrix size of M=22,500, (I) on the K computer

for the (a) full (eigenpair) and (b) eigenvalue-only calculation, (II) on FX10 for

the (c) full and (d) eigenvalue-only calculation, (III) on Altix for the (e) full and

(f) eigenvalue-only calculation. The ideal speedup in parallelism is drawn as a

dashed gray line.

38 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Figure 3.6: Decomposition analysis of the elapsed time into those of the SEP

solver and the reducer (I) on the K computer with (a) M=90,000 and (b)

M=22,500, (II) on FX10 with (c) M=90,000 and (d) M=22,500, (III) on Altix

with (c) M=90,000 and (d) M=22,500. The routines for the reducers is labeled

by ‘(RED)’. The ‘ELPA2′’ SEP solver is that without the SSE optimized routine.

The ideal speedup in parallelism is drawn as a dashed gray line.

3.5. DISCUSSIONS 39

3.4.3 Benchmark for a million dimensional matrix
Finally, the benchmark for a million dimensional matrix is discussed. A press

release at 2013 [45] reported, as a world record, a benchmark of a million di-

mensional SEP carried out by EigenExa, in approximately one hour, on the full

(82,944) nodes of the K computer. An eigenvalue problem with a million dimen-

sional matrix (M=106) seems to be the practical limitation of the present super-

computer, owing to the O(M3) operation cost.

We calculated a million dimensional GEP at Dec. 2014 on the full (4,800)

nodes of Oakleaf-FX. Since computational resource was limited, only one calcu-

lation was carried out with the workflow G, because it gives the best data among

those with M = 430, 080 in Table 3.2. The calculation finished in approximately

a half day, as shown in Table 3.2 (Tfull = 39,919 sec and Tevo = 35,103 sec). The

elapsed time of the reducer (TRED = Tfull − TSEP = 15,179 sec) is smaller than but

comparable to that of the SEP solver (TSEP = 24, 740). The benchmark proved

that the present code qualifies as software applicable to massively parallel com-

putation with up to a million dimensional matrix.

The million dimensional GEP was also solved with the workflow G by the K

computer. The elapsed time was Telaps = 9, 939 sec with nnode = 41, 472 nodes

and Telaps = 5, 516 sec on the full system (with nnode = 82, 944 nodes).

3.5 Discussions

3.5.1 Preparation of initial distributed data
In the benchmark, the initial procedures including file reading are carried out for

the preparation of distributed data. Its elapsed time is always small and is ignored

in the previous section. 10 These procedures, however, may consume significant

elapsed times, when the present solver is used as a middleware with real appli-

cations. The discussions on such cases are beyond the present scope, since they

depend on the program structure of the real applications. Here, several comments

are added for real application developers; In general, the matrix data cost is, at

most, O(M2) and the operation cost is O(M3) in the dense-matrix solvers and one

should consider a balance between them. In the case of M = 430, 080, for exam-

ple, the required memory size for all the matrix elements is 8 B ×M2 ≈ 1.5 TB,

which can not be stored on a node of the K computer. Therefore, the data should

be always distributed. In the real application (ELSES), the initial distributed data

10 In the case of the workflow G on the K computer with M=430,080 and P=10,000, for exam-

ple, the elapsed time of the initial procedures is Tini =123sec and is much smaller than that of the

total computation (Ttot = 2, 734sec. See Table. 3.2). It is noteworthy that the present matrices are

sparse, as explained in Sec. 3.1.

40 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Table 3.4: The elapsed times for data conversion; ‘(b→ 1)’, ‘(1→ b)’ and ‘TRED’

are the times in seconds for, the conversion process from block cyclic into cyclic

distributions, the inverse process and the whole reducer procedure, respectively.

The saturated data of TRED are labelled by ‘[S]’. The ‘ratio’ is ((b → 1) + (1 →
b)) / TRED.

Size M Machine(P) (b→ 1) (1→ b) TRED ratio[%]

1,008,000 FX10(4,800) 51.4 51.7 8,208 1.26

430,080 K(10,000) 13.4 6.48 1,261 1.58

90,000 K(4,096) 6.89 0.797 124[S] 6.21

FX10(1,369) 1.89 0.973 84.0[S] 3.41

Altix(256) 2.01 2.02 394 1.02

22,500 K(2,025) 0.571 0.610 11.3[S] 10.4

FX10(529) 0.328 0.176 9.20 5.48

Altix(256) 0.120 0.279 11.9 3.35

is prepared, when only the required elements are generated and stored on each

node.

3.5.2 Data conversion overhead

As explained in Sec. 3.3, several workflows require data conversion processes be-

tween distributed data formats, since ScaLAPACK and ELPA use block cyclic

distribution with a given block size nblock(> 1) and EigenExa uses cyclic distribu-

tion (nblock ≡ 1). In the present benchmark, the block size nblock in ScaLAPACK

and ELPA was set to be nblock = 128, a typical value. Consequently, the workflows

B, F, G require data conversion processes. In the present thesis, the elapsed time

of the conversion procedures is included in the reducer part (Tred).

Table 3.4 shows the elapsed time for the data conversion. The elapsed times

are shown in the cases with the maximum numbers of used nodes (P = Pmax)

among the present benchmark. Two data conversion procedures are required. One

is the conversion from the block cyclic distribution into the cyclic distribution,

shown as ‘(b→ 1)’ in Table 3.4 and the other is the inverse process shown as ‘(1

→ b)’. The two procedures are carried out, commonly, by the ‘pdgemr2d’ routine

in ScaLAPACK.

Table 3.4 indicates that the overhead of the data conversion procedures is al-

ways small and is not the origin of the saturation. In general, the conversion

requires an O(M2) operation cost, while the calculation in a dense-matrix solver

requires anO(M3) operation cost. The fact implies the general efficiency of hybrid

solvers, at least, among dense-matrix solvers.

3.5. DISCUSSIONS 41

3.5.3 Reducer analysis and future outlook
The decomposition analysis of the ELPA-style reducer is focused on, since the

ELPA-style reducer is fastest among the three libraries. Figure 3.3 (c) shows the

case on the K computer with M=430,080. The elapsed times of the subprocedures

of the ELPA-style reducer are plotted; ‘ELPA(R1)’ is the Cholesky factorization

of Eq. (3.4), ‘ELPA(R2)’ is the explicit calculation of the inversion R = U−1 of the

Cholesky factor U, ‘ELPA(R3)’ and ‘ELPA(R4)’ are the successive matrix mul-

tiplication of Eq. (3.5) and ‘ELPA(R5)’ is the backward transformation of eigen-

vectors by matrix multiplication of Eq. (3.6). The elapsed times of the Cholesky

factorization in the ScaLAPACK style reducer is also plotted as ‘SCLA(R1)’ as

a reference data. The same decomposition analysis is carried out also for other

cases, as shown in Fig. 3.7. One can observe that the Cholesky factorization of

the ELPA-style reducer does not scale and sometimes is slower than that of the

ScaLAPACK reducer. In particular, the saturation of the ELPA-style reducer is

caused by that of the Cholesky factorization in Fig. 3.7 (a)(b)(c).

The above observation implies that the reducer can be a serious bottleneck in

the next-generation (exa-scale) supercomputers, though not in the present bench-

mark. One possible strategy is the improvement on the Cholesky factorization for

better scalability and another is the development of a reducer without the Cholesky

factorization, as in the EigenExa-style reducer.

As a future outlook, the present code for the hybrid solvers is planned to be

extended by introducing the solvers with different mathematical foundations. A

candidate is the parallel block Jacobi solver [46, 47]. Since the solver is applicable

only to standard eigenvalue problems, the hybrid solver enables us to use the

solver in generalized eigenvalue problems.

42 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

Figure 3.7: Decomposition analysis of the elapsed time of subprocedures of the

ELPA style reducer and the Cholesky factorization in the ScaLAPACK style re-

ducer (I) on the K computer with (a) M=90,000 and (b) M=22,500, (II) on FX10

with (c) M=90,000 and (d) M=22,500, (III) on Altix with (c) M=90,000 and (d)

M=22,500. The ideal speedup in parallelism is drawn as a dashed gray line.

3.6. DETAILS OF THE CODE 43

3.6 Details of the code

3.6.1 Execution flow of EigenKernel
The code of the hybrid eigenvalue problem solver collection, named EigenKernel,

is released at GitHub [29]. EigenKernel can be built to a static library and a

standalone executable. The executable form of EigenKernel is called eigbench.

execution flow of eigbench is as follows. The list mostly corresponds to the source

file src/main.f90.

1. Read commandline arguments

Read commandline arguments in the standard Unix style. eigbench can

solve both of SEP and GEP in almost the same manner. In the minimum,

eigbench takes one option (-s) to choose the solver name and one (in SEP)

or two (in GEP) arguments of matrix file paths. Names of GEP solvers

have the prefix of ’general ’ like ’general scalapack’. In commandline ar-

guments, output file paths of eigenvalues (-o), inversed participation ratios

(see Sec. refSEC-PR-INTRO) of eigenvectors (-i), eigenvectors (-d) and

execution log file (-l) can be specified. The range of the indices of eigen-

vectors to be output can also be specified (-p <start>,<end>).

2. Read matrix files in MatrixMarket format and broadcasting

Input file format in eigbench is the MatrixMarket format [48]. An input file

is read only on the master node (0-th node in MPI) and broadcast to all the

nodes. After broadcasting, matrix data are converted into a format for the

main calculation. As explained in Sec. 3.5.2, EigenKernel uses block cyclic

or (non-block) cyclic format in the main calculation.

3. Main solver routine call

Call the specified SEP or GEP solver. The data conversion process runs

when needed as explained in Sec. 3.5.2. When EigenKernel is used in the

static library form, users can call only the main solver routines.

4. (Partially optional) output eigenvalues, inversed participation ratios and eigen-

vectors

Output calculated eigenvalues, inversed participation ratios of eigenvectors

and eigenvectors itself. Output of eigenvectors is optional process executed

only when the -p option is specified because in most cases the eigenvector

matrix is dense even if the input matrices are sparse and therefore requires

large disk space. Also, output of eigenvectors is parallelized by MPI. Output

eigenvector indices are partitioned into the compute nodes evenly in cyclic

44 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

manner. This parallelization is especially effective in systems which have a

local file system for each compute node.

5. (Optional) compute residual norms and orthogonality of calculated eigen-

pairs

EigenKernel has two accuracy checking routines. One is to compute resid-

ual norms

rk ≡ ‖Ayk − λkByk‖ (k = 1, . . . ,M), (3.10)

and the other is to compute orthogonality of eigenvectors

t ≡ ‖YT BY − I‖F (3.11)

where ‖·‖F is the Frobenius norm.

3.6.2 Quick start of EigenKernel
In minimum configuration, EigenKernel can be built with an MPI Fortran com-

piler and ScaLAPACK (without ELPA and EigenExa). Settings depend on a ma-

chine environment should be written in Makefile.in. The sample Makefile.in

in the repository supposes there are mpif90 over gfortran as a fortran compiler and

libgomp as an OpenMP library. Following commands will test solving a general-

ized eigenvalue problem with the matrix size of M = 30.

tar zxvf eigenkernel-*.tar.gz

cd eigenkernel-*

cp Makefile.in.gfortran.noext Makefile.in

make

mpirun -np 4 bin/eigbench -s general_scalapack \

matrix/ELSES_MATRIX_BNZ30_A.mtx matrix/ELSES_MATRIX_BNZ30_B.mtx

After executing eigbench, there are output files named eigenvalues.dat, ipratios.dat,

log.json. eigenvalues.dat and ipratios.dat contain computed eigenvalues and in-

versed participation ratios of computed eigenvectors respectively. log.json con-

tains execution information such as given commandline options in the JSON for-

mat and elapsed time for some routines. In the execution command -s <solver> is

a mandatory option to specify the solver routine. The general scalapack solver is,

of course, a pure ScaLAPACK solver. The last two arguments are paths to input

matrix files in the MatrixMarket format. Note that the input matrices must be real

symmetric and moreover the latter one must be positive definite. You can also

solve standard eigenvalue problems.

3.6. DETAILS OF THE CODE 45

mpirun -np 4 bin/eigbench -s scalapack \

matrix/ELSES_MATRIX_VCNT400std_A.mtx

To utilize full functions of EigenKernel, it should be built linking ELPA and

EigenExa. After installing them, edit Makefile.in and set LIBS variable prop-

erly to indicate the paths where .a and .mod are installed. Then EigenKernel with

ELPA and EigenExa should be rebuilt like

emacs Makefile.in # Edit $LIBS properly

make clean

make WITH_EIGENEXA=1 WITH_ELPA=1

If the rebuild is succeeded, truly hybrid solvers can be selected by the -s option.

mpirun -np 4 bin/eigbench -s general_elpa_eigensx \

matrix/ELSES_MATRIX_VCNT900_A.mtx \

matrix/ELSES_MATRIX_VCNT900_B.mtx

3.6.3 Use with real applications
EigenKernel can be built into a Fortran library as well as the standalone mini-

application eigbench. For example, one of optional solvers in ELSES uses EigenKer-

nel. The library is automatically generated in default build setting. A minimal

example of calling EigenKernel library to solve a positive symmetric generalized

eigenvalue problem is as follows.

integer :: ierr

type(process) :: proc

type(eigenpairs_types_union) :: eigenpairs

call mpi_init(ierr)

call setup_distribution(proc)

call reduce_generalized(dim, A, desc_A, B, desc_B)

call eigen_solver_scalapack_all(proc, desc_A, A, eigenpairs)

call recovery_generalized(dim, dim, B, desc_B, &

eigenpairs%blacs%Vectors, eigenpairs%blacs%desc)

call mpi_finalize(ierr)

Call of the subroutines ‘mpi init’ and ‘mpi finalize’ is mandatory in MPI pro-

grams. ‘setup distribution’ determines the processor grid layout in ScaLAPACK.

‘reduce generalized’ and ‘recovery generalized’ execute the reduction and the in-

verse reduction between GEP and SEP in the ScaLAPACK style, respectively.

‘eigen solver scalapack all’ solves the reduced SEP. After calculation, eigenpairs

are stored in the variable ‘eigenpairs’. Variables ‘A’, ‘B’, ‘desc A’ and ‘desc B’

46 CHAPTER 3. HYBRID PARALLEL EIGENVALUE SOLVER

are the standard distributed matrices and their descriptors in ScaLAPACK. There

are also subroutines of solvers using external libraries like ELPA or/and EigenExa.

They have a unified interface and users can easily exchange solver routines.

3.6.4 ELSES matrix library
ELSES Matrix Library [37] is a collection of matrix data generated by ELSES

for quantum material simulations. They appears in standard or generalized eigen-

value problems. It contains from small (dimension M = 30) to very large (M =
1, 008, 000) matrices. The matrices are sparse, real-symmetric or Hermitian. The

matrix data are recorded in the MatrixMarket format [48]. The atomic unit is

used for energy unit. Some matrix packages contain a list of all eigenvalues and

inversed participation ratios of eigenvectors.

Chapter 4

Extreme scalability of 108-atom
simulation for organic materials

4.1 Problem and previous works

4.1.1 Ultra-flexible device and organic materials
Ultra-flexible devices are based on organic materials and play a crucial role among

next-generation IoT products, such as display, battery and sensor. Organic mate-

rials form flexible atomic structures and enable ultra-thin, light, flexible (wear-

able) devices with a low fabrication cost [49, 50, 51]. Alan J. Heeger, Alan G.

MacDiarmid and Hideki Shirakawa won the Nobel Prize in Chemistry in 2000

for their pioneering research on organic polymer devices in 1970’s. The atomic

structure of organic materials is disordered [52, 53, 54, 55] and the simulation

of huge, 100-nanometer-scale, disordered systems are required. Nowadays many

electronic state calculation codes are available but such large-scale calculations

are far beyond their computational limit.

The present thesis reports that a new electronic state calculation code ELSES

[7] is based on novel linear algebraic algorithms suitable to massive parallelism

[56, 57, 58, 21, 59, 60, 23, 4, 5], and was applied to the above challenging in-

dustrial problem. Since the algorithm has a highly parallelizable mathematical

structure, the code shows excellent results both in the strong scaling and the time-

to-solution. The code realized calculations with one-hundred-million (108) atoms

or 100-nm-scale systems, the largest system among electronic state calculations.

Since the algorithms are mathematical, the method is applicable to various mate-

rials, such as semiconductor and metal. The algorithm is applicable also to other

computational science area. The code has been developed for large-scale and/or

fast electronic state calculations by academic-industrial collaboration. A recent

collaboration research is one for organic device materials (Refs. [21, 60, 5] and

47

48CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

<
1,
00
0
nm

 (≒200nm)

close-up

70 nmclose
 -up

2 nm

simulation of
condensed
polymers

device
(schematic)

C C
n

 (108 atoms or
 105 polymers)

close-up:
connected
polymers

Figure 4.1: Overview of the present material research on organic polymer device;

The comparison of the length scales in real device and the present simulation of

poly-(phenylene-ethynylene) (PPE).

the present work) with Sumitomo Chemical Co., Ltd, and another is one for bat-

tery materials [61, 62] with Toyota Motor Corporation. The other application

researches can be found in the reference lists of the above papers.

Figure 4.1 indicates the overview of the present material research. The length

scales of real device and the present simulation are compared.

4.1.2 Electronic wavefunction in organic materials
The electric conductivity in organic devices and related materials like graphene

stems from the characteristic electronic wavefunction called π wavefunction. A π
wavefunction lies, typically, on a benzene ring. Figure 4.2(a) shows a πwavefunc-

4.1. PROBLEM AND PREVIOUS WORKS 49

(a) (b)

Figure 4.2: Organic materials and π electronic wavefunction. (a) Atomic struc-

ture of benzene and an example of π electronic wavefunction. (b) A schematic

figure of condensed organic polymers in a disordered structure. The vectors of

n1,n2,n3,n4 are defined as ones perpendicular to the benzene ring planes.

tion in benzene (C6H6). The charge of the π wavefunction of |φ(r)|2 is depicted

as isosurfaces. The wavefunction extends to the direction perpendicular to the

plane of benzene, which is the origin of the strong anisotropy in electric conduc-

tivity. Figure 4.2(b) shows schematically the structure of condensed polymers in

real devices. Disorder appears both in intra- and inter-chain structures. Here the

vectors of n1,n2,n3,n4 are depicted as ones perpendicular to the benzene ring

planes. When neighboring two vectors of ni and n j are almost parallel (ni ‖ n j),

the π wavefunctions on their benzene rings connect easily with each other and the

electrical current can propagate between them.

In conclusion, quantum simulations with π-type wavefunctions are crucial for

the organic electronic devices, which is a challenging problem in computational

science.

4.1.3 Concept of order-N method

‘Order-N’ method is a general name of the large-scale calculation methods in

which the computational cost is O(N) or proportional to the number of atoms

N. The present code is one of them. Other order-N calculation codes were also

developed [63, 64, 65, 66].

A key concept for the order-N method was stated by Walter Kohn. His paper

in 1996 shows that the above potential difficulty in electronic state calculation can

50CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

be avoided, when the theory is not based on an eigenvalue equation [67].

The theory [67] focuses on a physical quantity defined as

〈X〉 ≡
∑

k

f (εk)y
T
k Xyk, (4.1)

with a given sparse real-symmetric matrix X. Equation (4.1) is found in ele-

mentary textbooks of electronic state calculations. Here the function of f (ε) is

a weight function, called Fermi function, and is defined as

f (ε) ≡
{
1 + exp(

ε − μ
τ

)
}−1

. (4.2)

The weight function is a ‘smoothed’ step function with a smoothing parameter

τ(> 0), because the Heaviside step function will appear in the limiting case of

τ → +0 (f (ε) = 1(ε < μ) and f (ε) = 0(ε > μ)). The smoothing parameter τ has

a physical meaning of temperature of electrons. The parameter μ is the chemical

potential and the value should be determined so that the number of electrons is the

correct one. The case in X = H, for example, gives the electronic energy

〈H〉 ≡
∑

k

f (εk) εk. (4.3)

Other quantities, such as the force on atom and the density of states (eigenvalue

histogram), are also described in the above form.

A quantity in Eq.(4.1) is transformed into the trace form of

〈X〉 = Tr[ρX] (4.4)

with the density matrix

ρ ≡
∑

k

f (εk)yk y
T
k . (4.5)

The order-N property can be found, as follows; A density matrix element ρ ji

is not required when Xi j = 0, because the element ρ ji does not contribute to the

physical quantity

Tr[ρX] =
∑

i, j

ρ jiXi j, (4.6)

even if its value is nonzero (ρ ji � 0). Consequently, the number of the required

density matrix elements ρ ji is O(N). The above principle is called ‘quantum lo-

cality’ or ‘nearsightedness principle’ [67].

4.1. PROBLEM AND PREVIOUS WORKS 51

・ potential difficulty in parallelism
 (ex. orthogonalization procedures)

・ highly parallelizable
 mathematical structure (See (c))

・ O(N3) operation costs ・ O(N) operation costs
・ max. target size: 105 atoms ・ max. target size: 108 atoms,

 within the elapsed time < 102 s

 physical
 quantitiesmatrix solver

iteration step

matrix
 generation

G. Eigenvalue eqn.GG. EEiigenvallue eqn.

G. Shifted Linear eqns.

present

conventional

physical
quantities (wavefunction)

 (Propagation (Green’s) fn.)

(a)

(c)

(b) conventional method present method

highly parallelizable mathematical structure

Figure 4.3: Overview of the algorithm for large-scale electronic state calculations

in the extreme strong scaling; (a) The ground algorithm design. (b) Compari-

son between the conventional method with eigenvalue equation and the present

method with generalized shifted linear equations. (c) Schematic figure of the

highly parallelizable mathematical structure.

4.1.4 Highly parallelizable mathematical structure

The above formulation has a highly parallelizable mathematical structure and the

original problem is decomposed mathematically into parallel subproblems. The

52CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

trace in Eq. (4.4) can be decomposed as

〈X〉 = Tr[ρX] =

M∑
j

eT
j ρXe j, (4.7)

with the j-th unit vector of e j ≡ (0, 0, 0,1 j, 0, 0, ..., 0)T. Here the quantity of

eT
j ρXe j is called ‘projected physical quantity’, because the quantity is defined by

the projection onto the vector of e j. The essence of the parallelism is the fact

that the projected physical quantity of eT
j ρXe j is calculated almost independently

among different indices of j.

4.2 Ground algorithm design

4.2.1 Generalized shifted linear equations

The ground algorithm design of the present method is summarized in Fig. 4.3(a).

The method is based not on the eigenvalue equation of Eq. (2.12) but on linear

equations in the form of

(zS − H)x = b. (4.8)

Here z is a (complex) energy value and the matrix of (zS − H) can be non-

Hermitian. The vector b is an input and the vector x is the solution vector. A set of

linear equations in the form of Eq. (4.8) with different energy values (z = z1, z2, ...)
is called generalized shifted linear equations. The equations in the case of S = I
are called shifted linear equations.

The generalized shifted linear equations are solved on an iterative Krylov-

subspace solver. Such solvers are sometimes called shifted Krylov-subspace solvers.

Krylov subspace is defined as the linear space of

Kν(A; b) ≡ span[b, Ab, A2b, ..., Aν−1b], (4.9)

with a given vector b and a given square matrix A. Krylov subspace solver is the

solver in which the solution is calculated within a Krylov subspace. An example

is Conjugate Gradient method and the dimension of the subspace ν is the number

of iterations.

The use of Eq. (4.8) results in the Green’s (propagation) function formalism,

since the solution x of Eq. (4.8) is written formally as

x = Gb (4.10)

4.2. GROUND ALGORITHM DESIGN 53

with the Green’s function G ≡ (zS − H)−1. The Green’s function and the eigen-

vectors holds the relationship of

G(z) =

M∑
k

yk y
T
k

z − εk
. (4.11)

The density matrix is also given by the Green’s function as

ρ =
−1

π

∫ ∞

−∞
f (ε) Im[G(ε + i0)] dε. (4.12)

The use of the (generalized) shifted linear equations, instead of eigenvalue

equations, is a powerful strategy among large scale calculations. Such method-

ologies have been investigated, in particular, from 2000’s, partially because the

strategy is suitable to parallelism. Since the solver algorithms are mathematical,

they are applicable to many scientific areas, such as, QCD [68], large-scale elec-

tronic state calculation [56, 57, 58, 21], quantum many-body electron problem

[69], nuclear shell model problem [70], first-principle electronic excitation prob-

lem [71], and first-principle transport calculation [72].

4.2.2 Calculation of projected physical quantity
In the present method, the formalism has a highly parallelizable mathematical

structure and the projected physical quantity of eT
j ρXe j, should be calculated as

explained in Sec. 4.1.4. Figure 4.3(b) shows the comparison between the conven-

tional method with eigenvalue equation and the present method with generalized

shifted linear equations. The parallel procedure is illustrated in Fig. 4.3(c).

In the code, the projected physical quantity of eT
j ρXe j is obtained from the

generalized shifted linear equations of

(zS − H)x(j) = e j (4.13)

within an iterative Krylov-subspace solver, called multiple Arnoldi solver [21]. In

short, Eq. (4.13) is solved within the subspace of

Lν(e j) ≡ Kν/2(H; e j) ⊕ Kν/2(H; S −1e j) (4.14)

with an even number of ν. The number ν is typically, ν = 30 − 300 and the

calculations in the present thesis was carried out with ν = 30 as in the previous

one [21]. The second term in the right hand side of Eq. (4.14) appears so as to

satisfy several conservation laws [21]. A reduced (small) ν×ν eigenvalue equation

is solved and the solution vector of Eq. (4.13) is given by

x(j) := G(j)(z)e j (4.15)

54CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

with

G(j)(z) ≡
ν∑
m

v(j)
m v(j)T

m

z − ε(j)
m

. (4.16)

Here ε
(j)
m and v(j)

m is an eigenvalue and eigenvector of the reduced equation (m =
1, 2,ν). When the Green’s function of G in Eq. (4.12) is replaced by G(j)(z) in

Eq. (4.16), the projected physical quantity with the index of j is given by

eT
j ρXe j :=

−1

π

∫ ∞

−∞
f (ε) Im[eT

j G
(j)(ε+i0)Xe j] dε

=

ν∑
m

f (ε(j)
m)eT

jv
(j)
m v(j)T

m Xe j. (4.17)

Equation (4.17) will be exact, if the subspace dimension of ν increases to the

original matrix dimension (ν = M). As an additional technique in large-scale

calculations, the real-space projection method [21] was also used. In short, the

Krylov subspace is generated by a Hamiltonian matrix projected in real space

H(j) ≡ P(j)HP(j), where the projection matrix P(j) projects a function onto the

spherical region whose center is located at the atomic position of the j-th atomic

basis function (χ j(r)). The radius of the spherical region is determined with an

input integer parameter κ, so that the region contains κ atoms or more. The same

technique is used also for the overlap matrix S . The value of κ is set to κ = 100 in

the present thesis as in the previous one [21]. As results, numerical problems in

the form of Eq. (4.13) are solved with the matrix size of, typically, M′ = 200−400

among the simulations of the present thesis.

4.3 Methodological details for large scale calcula-
tions

4.3.1 Quantum molecular dynamics simulation for organic poly-
mers

The present code is written in Fortran 90 with the MPI/OpenMP hybrid paral-

lelization and the main purpose is quantum molecular dynamics simulation. Here

an electron is treated as a quantum mechanical wave in the Green’s (propagation)

function formalism, while an atom (a nucleus) is treated as a classical particle in

Newtonian equation of motion

MI
d2RI

dt2
= FI , (4.18)

4.3. METHODOLOGICAL DETAILS FOR LARGE SCALE CALCULATIONS 55

where MI and RI are the mass and the position of the I-th atom and FI is the

force on the I-th atom. Other variables, such as the electronic charge on each atom

{qI}I , can be calculated also in the dynamical simulation. As technical details, the

quantum molecular dynamics simulations are realized with first-principles-based

modeled (tight-binding-form) theory. See Refs. [21, 5] and the references therein

for details. In the code, these variables that consume O(N) memory cost are stored

redundantly among nodes. All the matrix elements of H and S are generated from

these variables on each node without any inter-node communications. Several

matrix elements are generated redundantly among nodes. The force and charge

on each atom is calculated in the trace form of Eq. (4.4)(See Ref. [21] for details).

The time evolution was realized numerically by the velocity-Verlet algorithm. The

finite-temperature simulations were realized by a thermostat method.

4.3.2 Details in parallelization
The details in parallelization are explained here, so as to clarify the condition of an

efficient parallelism. In the present parallel computation, the parallel subproblems

for calculating the projected physical quantity of eT
j ρXe j should be carried out,

as in Fig. 4.3(c). In the code, the basis index j is treated as a composite index.

When a wavefunction is expressed by atomic orbitals in Eq. (2.11), a couple of

atomic orbitals χ j(r) are prepared at each atom. These atomic orbitals are different

in shape. Among the present calculations, one (s-type) orbital is prepared at each

hydrogen (H) atom, while four (s-, px-, py-, pz-type) atomic orbitals at each carbon

(C) atom. Consequently, the basis index j is the composite indices of the atom

index J and the orbital index β (j ≡ j(J, β)). The projected physical quantity

of eT
j ρXe j is calculated under the double loop of J and β. In the present code,

the outer loop, the loop with the atom index (J) is parallelized both by the MPI

and OpenMP methods, and a projected physical quantity of eT
j ρXe j is calculated

within a thread (a CPU core). An efficient parallel computation is realized on the

condition that the number of atoms is larger than that of cores (N > ncore).

4.3.3 Sparsity of matrices
Sparsity of the matrices of Hi j and S i j are explained briefly. See Ref. [21] and

reference therein for details. As explained in the previous subsection, the indices i
and j are the composite indices of the atom indices I and J and the orbital indices α
and β, respectively (i ≡ i(I, α), j ≡ j(J, β))). Therefore, an element of the matrices

H and S is expressed by the four indices as HIα;Jβ and S Iα;Jβ, respectively. Since a

matrix element value decreases quickly and monotonically as the function of the

inter-atomic distance between the I-th and J-th atoms (rIJ), a cutoff distance rcut

was introduced. A matrix element, HIα;Jβ or S Iα;Jβ, is ignored, if rIJ > rcut, which

56CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

makes the matrices to be sparse. In the present thesis, the cutoff distance rcut is set

to be rcut = 5au(≈ 0.2646nm) for diamond crystal and rcut = 10au(≈ 0.5292nm)

for condensed polymers. A longer cutoff distance is used for condensed polymers,

so as to include the interaction between polymers.

4.3.4 MPI Communication

The communication among nodes is required, only when a summation is per-

formed in the form of Eq. (4.7), as shown in Fig. 4.3(c). See Ref. [21] for detailed

formulations. The code is written in the MPI/OpenMP hybrid parallelization and

the summation is carried out hierarchically; First, the summation is carried out

on each node by OpenMP directives and then the summation is carried out be-

tween nodes by MPI_Allreduce(). The pure MPI parallelism is also possible

but consumes larger memory costs.

4.3.5 Use of Extensible Markup Language (XML) in File I/O

In our simulations, the main input and output files are written in the format of

Extensible Markup Language (XML), since the XML format is simple, flexible

and widely used on the Internet [23]. For example, the minimum information for

an atom is written as follows;

<atom element="C">

<position unit="angstrom"> 1.0d0 0.0d0 0.0d0 </position>

</atom>

The above description means that a carbon atom is located at the position of

(x, y, z) = (1, 0, 0), where Angstrom unit (1 Angstrom = 10−10 m) is used. The

method for reading XML files should be chosen properly, according to the pur-

pose. In our simulations, the XML files are read by two methods, Document

Object Model (DOM) method and Simple API for XML (SAX) method. In gen-

eral, the DOM method is easier in programming and results in huge memory and

time consumption for large-size data, while the SAX method is more difficult in

programming and results in tiny memory and time consumption. Two input files,

configuration and structure XML files should be prepared for each simulation and

they are quite different in their file size. (i) The configuration XML file describes

calculation conditions, such as temperature of the system. A typical file consists

of several tens of lines and the file size does not depend on the system size N. The

configuration file is read by the DOM method, since its file size is always tiny. (ii)

The structure XML file describes the atomic structure data, as shown in the above

example. The structure XML file is read by the DOM method, since the file size is

proportional to the system size N and can be huge. Since the atomic structure data

4.3. METHODOLOGICAL DETAILS FOR LARGE SCALE CALCULATIONS 57

contains three (x, y, z) components in the double precision (8 B) value for each

atom, the required data size with 107 (= 10 M) atoms is estimated to be 3 × 8 B

×10 M = 240 MB. A typical size of the structure XML file with 107 atoms is one

GB. In addition, the parallel file reading is used for large-scale calculations with

split XML files for the structure file and gives a significant acceleration [38]. The

K computer and FX10 support the parallel file IO, called ’rank directory’ function,

at the hardware level and are suitable to the parallel file reading with split XML

files.

4.3.6 Performance tuning on the K computer
Performance tuning on two bottlenecks, matrix-vector multiplication (matvec) in

the iterative Krylov-subspace solver and frequent access to shared disk space, was

carried out on the K computer as follows.

For old implementation, performance profiling using the basic profiler on the

K computer showed that matvec routine in the iterative Krylov-subspace solver

took 39% execution time in the whole program. Because parallelism is already

utilized by higher levels of the algorithm (see Sec. 4.3.2), only single node tuning

was enough. Because the matvec routine in old implementation had a loop over

four indices of matrix elements (see Sec. 4.3.3), loop length was short and locality

of reference was low, which led to low efficiency. Accordingly, the matvec routine

was split into two subroutines. The one is to generate matrix data in compressed

row storage (CRS) format, and the other is to compute matvec with the CRS

format matrix. Now the latter subroutine only has a loop over two indices.

Moreover, matrix data formats other than CRS are implemented for matvec

routine, because the most efficient matrix data format depends on sparsity of ma-

trices. In the present code, the conventional quadruple loop (called ‘quad’), CRS

format (‘crs’) and dense format (‘dense’) are implemented. For CRS and dense

format, matvec routines that utilize symmetry of matrices are also implemented

(‘crs-sym’ and ‘dense-sym’, respectively). The dense matvec routines use LA-

PACK library for efficiency. When sparsity of matrices is high and low, the CRS

matvec routines and the dense ones will be efficient, respectively. The user can

select an optimal matvec routine with a configuration file.

The elapsed times per step Telaps by the five matvec routines (quad, crs, dense,

crs-sym and dense-sym) were measured, for two systems that have the same num-

ber of atoms N=1,228,800 and different sparsity. The systems are a disordered

systems of condensed polymers called ‘P1’ and the ideal diamond solid called

‘D1’. Details of the systems and definition of Telaps will be described in Sec. 4.4.2.

The matrix generated from ‘D1’ is more sparse than ‘P1’ case. The number

of nodes nnode was fixed to 2, 592. Table 4.1 shows comparison of Telaps by the

matvec routines. When the best matvec routines for each system are chosen, Telaps

58CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

is 1.3−1.6 times faster than cases of the conventional quadruple loop code. It was

also found that a dense matvec is suitable for the dense system ‘P1’, and a sparse

matvec is suitable for the sparse system ‘D1’, as expected. However, utilization

of symmetry of matrices did not contribute much to speed up because the matrix

size for each node was small.

Table 4.1: The measured elapsed times Telaps (sec) by the five matvec routines for

the ideal diamond solid (‘D1’) and the condensed polymer system with (‘P1’).

The best elapsed time for each system is written in bold. Note that the matrices

generated from the two systems have different size though the number of atoms N
is the same, due to difference of elements.

System quad crs crs-sym dense dense-sym

P1 16.5 11.2 11.3 10.6 10.4
D1 15.5 11.6 11.5 22.8 20.8

On the K computer, access to a disk space that is shared by all the compute

nodes happens when, for example, nameless file in Fortran is used. Frequent

access to the shared disk space can cause unexpected performance decrement.

To avoid this, an environment variable TMPDIR which specifies the directory

to create temporary files can be set to ’.’, which means the local filesystem of

compute nodes.

4.4 Benchmarks and their analysis on the K com-
puter

The present benchmarks were carried out so as to show (i) the extreme strong scal-

ing, on the full system of the K computer, and (ii) the time-to-solution qualified

for a practical research. Our target value of the time-to-solution is Telaps = 102s

for the elapsed time per step in a quantum molecular dynamics simulation, so

that a dynamical simulation of nstep = 103 steps can be executed within one day

(Telapsnstep = 105s ≈ one day).

4.4.1 Architecture
The architecture of the K computer is explained briefly. The K computer achieved

10 PetaFLOPS Linpack performance for the first time in the world.

The K computer consists of 82,944 compute nodes which have one CPU, one

Inter Connect Controller (ICC) , which is responsible for interconnection between

4.4. BENCHMARKS AND THEIR ANALYSIS ON THE K COMPUTER 59

compute nodes, and 16GB off-chip memory. Each CPU has 8 cores and 6MB L2

cache shared by cores and each core has 4 double precision FMA units, which can

be driven by 2 × 2way SIMD operations, and frequency is 2GHz. Therefore, total

double precision peak performances are 16 GigaFLOPS per core, 128 GigaFLOPS

per CPU and 10.62 PetaFLOPS per whole system, respectively [73].

The interconnection between compute nodes of the K computer is named

‘Tofu’ which constructs physical 6 dimensional mesh/torus network topology.

User can use it as logical 3 dimensional torus network with redundant links which

contribute robustness of the connection and flexibility of the operation. Each com-

pute node has 6 links for 3 dimensional directions to connect neighboring nodes

for each direction. Each link has 5GB/s full-duplex bandwidth for each direction.

The official operation of the K computer started at September 2012, the K

computer has been kept one of the largest and fastest super computer in the world.

Actually, the K computer keeps top level position in major benchmark rankings.

For example, according to the TOP500 list NOVEMBER 2015 [74], the K com-

puter is ranked in No.4 as well as No.1 in Graph500 list November 2015 [75]

which is a benchmark for capability of graph analysis and No.2 in November

2015 HPCG Results [76] which is a benchmark for applications with iterative

matrix solver in Conjugate Gradient method.

The results show that the K computer is applicable to general purpose com-

puting.

In general massive parallel computations, collective communication uses syn-

chronizations among compute nodes, which requires extremely high overhead

caused by increased number of compute nodes. To address the problem, the

ICC of the K computer provides hardware barrier function which is applied to

MPI_Barrier(),

MPI_Allreduce(), and so on. In particular, the feature is strongly effective in

reduction of MPI_Allreduce().

4.4.2 Conditions of benchmarks
The benchmark jobs were executed in the MPI/OpenMP hybrid parallelization.

The number of the MPI processes is set to that of the compute nodes and the

number of the OpenMP threads is set to be eight, the number of cores per compute

node. All the numerical calculations were carried out in double precision. The

jobs were executed by specifying the three-dimensional node geometry on the

K computer (nnode ≡ n(x)

node
× n(y)

node
× n(z)

node
) for optimal performance or minimum

hop count. The number of used nodes (node geometry) is listed below; nnode

= 2, 592(= 12 × 12 × 18), 5, 184(= 12 × 18 × 24), 10, 368(= 18 × 24 × 24),

20, 736(= 24 × 27 × 32), 41, 472(= 27 × 32 × 48), and 82, 944(= 32 × 48 × 54,

the full system). The MPI_Allreduce() optimized on the K computer were used

60CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

[77].

The simulations were carried out for three disordered systems of condensed

polymers, poly-(phenylene-ethynylene) (PPE). The three systems are called ‘P100’,

‘P10’ and ‘P1’ and contain N=101,606,400 (≈ 108 or 100M), N=10,137,600 (≈
10M) and N=1,228,800 (≈1M) atoms, respectively. The periodic boundary con-

dition is imposed. The size of the periodic simulation box is 134 nm × 134 nm ×
209 nm for the ‘P100’ system. Among them, the systems with N = 108, 107 atoms

are the main targets for the full-system calculation. As another reference data for

an ‘ideal’ system without structural disorder, the simulations were carried out also

for the ideal diamond solid called ‘D100’ that contains N = 106, 168, 320 (≈ 108

or 100M) atoms in the ideal periodicity, because the structural disorder can be a

source of load imbalance.

A calculation job contains the initial preparation procedure including the read-

ing of the input (atomic structure) file and the simulation procedure for five steps,

as shown in Fig. 4.3(a). In the benchmark, a finite-temperature dynamics simu-

lation was carried out with N = 106, 107 atoms, while a ‘snapshot’ simulation, a

successive calculation of the given atomic structures with slightly different values

of volume, was carried out with N = 108 atoms. The snapshot was carried out

with N = 108 atoms, because of the limitation of built-in memory size (16GB

per node). For example, the position data RI ≡ (xI , yI , zI) with N = 108 atoms

occupies the memory size of 8B ×3N = 2.4GB. The present snapshot calculation

consumes 9 GB per node. A dynamical simulation should store additional vari-

ables such as velocity and force, and requires a larger memory size. The memory

size is estimated to be 60 GB per node, which exceeds the limitation of built-

in memory. The above difference between the simulations does not change the

conclusions of the present discussions on elapsed time, since the elapsed time is

dominated by that for electronic state calculation.

The elapsed time per step (Telaps) is recorded by averaging the elapsed times

among the four steps except the first step, because the first step includes several

initial procedures, unlike the other steps. Since the elapsed time for the initial

preparation procedure and the first step is in the same order of that for one step, it

is negligible in practical dynamical simulations with ntime = 103 steps or more.

4.4.3 Preparation of disordered structures of condensed poly-
mers

The initial atomic structures for the disordered systems were generated from clas-

sical molecular dynamics simulations by GROMACS [78]. GROMACS is free

software for various kind of classical molecular dynamics simulations and highly

parallelized with MPI. Classical simulations work faster but do not treat elec-

4.4. BENCHMARKS AND THEIR ANALYSIS ON THE K COMPUTER 61

tronic (quantum) waves that are responsible for the device property explained in

Sec. 4.1.2.

The detailed procedure for generating the three initial disordered structures of

condensed polymers ‘P100’, ‘P10’ and ‘P1’ was as follows. At first a straight

polymer chain of PPE with 100 monomers (N = 1200 atoms) is generated. Then

copies of the chain are bundled in parallel on a lattice. The number of copies is

84672, 8448 and 1024 for ‘P100’, ‘P10’ and ‘P1’ respectively. For further de-

tails, when the direction of the chain axis is set to z-axis, the number of copies for

each axis (nx, ny, nz) is (168, 168, 3), (44, 48, 4) and (32, 32, 1) for ‘P100’, ‘P10’

and ‘P1’ respectively. The numbers are determined so that the entire bundle ap-

proximates a cubic region. In the bundles each chain is randomly rotated around

the z-axis and random displacement along the z-axis is imposed. By the method,

structures which have moderate density are generated without MD simulations

with pressure coupling.

After that molecular dynamics simulations by GROMACS were carried out for

the bundle structures to generate totally disordered systems. Generalized AMBER

Force Field (GAFF) [79, 80] was used for the force field. In the simulations

the periodic boundary condition is imposed. Total simulation time is 10 ps and

temperature is 1, 200 K. Simulation time step is 10−4 ps and therefore the number

of time steps is 105. This simulation condition is enough for relaxation of the

initial lattice bundle configuration. All the simulations were carried out on SGI

ICE XA whose each compute node consists of two Intel Xeon 2.5 GHz (12 cores)

processor. The elapsed time was 12,109 sec on 36 nodes for ‘P100’, 4,024 sec on

9 nodes for ‘P10’ and 737 sec on 4 nodes for ‘P1’.

4.4.4 Analysis on strong scaling and time-to-solution

The elapsed time per step was analyzed so as to observe the strong scaling prop-

erty and the qualified time-to-solution. The measured elapsed time is summarized

in Table 4.2. Here the parallel efficiency ratio α is defined by

α ≡ Telaps(n0)/Telaps(nnode)

nnode/n0

(4.19)

with n0 ≡ 2592. For example, the parallel efficiency ratio α with 108 atoms and

the maximum number of nodes (nnode = 82, 944) is α = 0.92 for ‘D100’ and

α = 0.75 for ‘P100’.

62CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

Table 4.2: The measured elapsed times Telaps (sec) for ideal diamond solid with

108 atoms (‘D100’) and condensed polymer systems with 108 atoms (‘P100’),

with 107 atoms (‘P10’) and with 106 atoms (‘P1’). The ideal or measured speed-

up ratio is shown inside the parenthesis.

nnode D100 P100 P10 P1

2,592 (1) 1001.4 (1) 741.1 (1) 81.4 (1) 10.3 (1)

5,184 (2) 502.2 (1.99) 378.5 (1.96) 43.7 (1.86) 5.95 (1.73)

10,368 (4) 252.6 (3.96) 195.2 (3.80) 24.3 (3.35) 3.28 (3.14)

20,736 (8) 127.9 (7.83) 103.0 (7.19) 11.4 (7.14) 1.96 (5.26)

41,472 (16) 65.6 (15.3) 57.1 (13.0) 6.32 (12.9) 1.25 (8.23)

82,944 (32) 34.1 (29.4) 30.9 (24.0) 3.60 (22.6) 0.84 (12.2)

Table 4.3: Communication time Tcomm and barrier time Tbarr of the elapsed time

Telaps. See the caption of Table 4.2 for notations. The values are listed as Tcomm /

Tbarr (sec).

nnode D100 P100 P10 P1

2,592 1.04 / 7.16 1.60 / 28.14 0.382 / 6.69 0.0617 / 2.68

5,184 1.04 / 3.34 1.60 / 20.75 0.378 / 4.86 0.0689 / 1.85

10,368 1.05 / 2.22 1.61 / 14.97 0.384 / 4.34 0.0734 / 1.13

20,736 1.05 / 1.34 1.61 / 9.05 0.218 / 3.31 0.0712 / 0.674

41,472 1.06 / 1.03 1.64 / 6.87 0.215 / 2.18 0.0727 / 0.409

82,944 1.06 / 0.485 1.65 / 5.96 0.218 / 1.28 0.0613 / 0.227

Table 4.4: Communication time Tcomm and barrier time Tbarr of the elapsed time

Telaps (sec) for the molecular dynamics simulation in the ‘P10’ case.

nnode Telaps Tcomm Tbarr

2,592 81.8 0.635 6.84

5,184 43.9 0.637 4.95

10,368 24.5 0.674 4.42

20,736 14.4 0.676 3.44

41,472 9.38 0.696 2.37

82,944 6.62 0.677 1.45

The data of Table 4.2 is plotted in Fig. 4.4. One can find that the target time-

to-solution of Telaps ≈ 102s is fulfilled by nnode = 20,736 and 2,592 for the polymer

systems with 108 and 107 atoms, respectively. The above results indicate that the

present simulation method is qualified for practical device material research with

107-108 atoms.

4.4. BENCHMARKS AND THEIR ANALYSIS ON THE K COMPUTER 63

El
ap
se
d
tim
e
(s)

Number of nodes

Figure 4.4: Strong scaling benchmarks for ideal diamond solid with 108 atoms

(‘D100’) and condensed polymer systems with 108 atoms (‘P100’), with 107

atoms (‘P10’) and with 106 atoms (‘P1’). Dashed lines are drawn for ideal scaling.

Since the computational cost is proportional to the number of atoms in the

order-N method, the number of atoms per cores NA/C ≡ N/nnode is an important

parameter for qualified simulations. The above two cases with the qualified time-

to-solution (Telaps ≈ 102s) give, commonly, the value of NA/C ≡ N/nnode ≈500.

The condition of NA/C = 500 will be a typical condition for qualified simulations.

Figure 4.4 indicates also that the strong scaling property is found in all cases,

because the elapsed time Telaps decreases monotonically as the function of the

number of used nodes. As explained in Sec. 4.3.2, an efficient parallelism appears

on the condition that the number of atoms per core is larger than one (NA/C ≡
N/ncore > 1). In the case of ‘P1’, for example, the number of atoms per core is

NA/C ≈ 1.85 with the maximum number of nodes (nnode ≡ 82, 944). The value of

NA/C ≈ 1.85 is close to the lower limit and the simulation shows a lower value of

the parallel efficiency ratio (α = 0.38).

4.4.5 Detailed analysis
Detailed analysis was carried out for the effect of communication time and load

imbalance. In the simulations, not only the total elapsed time Telaps, but also the

accumulated MPI communication time Tcomm, and the accumulated barrier time

Tbarr, are recorded at every step on all nodes. The barrier time includes the time

to wait for other processors. Table 4.3 shows the average value among the nodes

64CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

for Telaps and Tcomm and the maximum value for Tbarr. The communication time

Tcomm is consumed by inter-node data communications, while the barrier time Tbarr

appears from a load imbalance.

Figure 4.5 plots the data in Table 4.3. Three points are discussed; (i) The

communication time Tcomm is almost constant among all the four cases, because

the communication time is consumed by MPI_Allreduce() within a tree algo-

rithm. (ii) Among all the cases, the barrier time Tbarr seems to include a term

T (1)

barr
that is proportional to the total elapsed time Telaps (T (1)

barr
∝ Telaps), though the

ratio of T (1)

barr
/Telaps is not serious. (iii) Among the condensed polymer systems

(Figs. 4.5(b)-(d)), the barrier time Tbarr is always much larger than the communi-

cation time Tcomm and can affect the efficiency in parallelism with the maximum

number of nodes (nnode = 82, 944).

To end up this section, two comments are addressed; (I) The further tuning

should be focused mainly on single-core calculations, since the most routines are

executed as single-core calculations as in Fig.4.3(c). The profiler reported that the

performance is 2.3 % of the peak for the ‘P100’ case with nnode = 82, 944 in Table

4.2. The severest limitation in the present calculations is the memory size of the

K computer (16GB per node) and the present code was written in the memory-

saving style, in which the memory cost should be minimized and the time cost

is sometimes sacrificed. Since the situation can differ among materials and/or ar-

chitectures, a possible way is to add another workflow in the time-saving style.

The routines can be classified into those for the generation of matrix elements

and for the Krylov subspace solver as in Fig.4.3(a). The matrix-vector multiplica-

tion gives a large fraction of the total elapsed time, as usual in a Krylov-subspace

solver, and a typical fraction is 21 % among the present condensed polymer sys-

tems. The result suggests that the matrix generation part gives a larger fraction.

(II) Table 4.4 shows the detailed elapsed time for the molecular dynamics simula-

tion in the ‘P10’ case, the possible maximum size (See Sec. 4.4.2). For example,

the elapsed time per molecular dynamics time step is T (MD)

elaps
= 81.8 sec or 6.62

sec in nnode =2,592 or 82,944, respectively. Fig. 4.6 plots the data in Table 4.4

in the same manner of Fig. 4.5(c). For comparison, Fig. 4.6 also shows the data

in Fig. 4.5(c), the data with the electronic structure calculation part. The elapsed

time is much smaller than the target time-to-solution (102s) and the method is

qualified well for a real research. However, non-negligible time costs appear in

the total elapsed time (T (MD)

elaps
) among the cases with nnode > 2 × 104, because of

the additional routine for MD simulation. Therefore, further tuning of the code

for faster MD simulations is needed.

4.4. BENCHMARKS AND THEIR ANALYSIS ON THE K COMPUTER 65

El
ap
se
d
tim
e
(s)

Number of nodes

(a) (b)

(c) (d)
El
ap
se
d
tim
e
(s)

El
ap
se
d
tim
e
(s)

El
ap
se
d
tim
e
(s)

Number of nodes Number of nodes

Number of nodes

)

Figure 4.5: Decomposition analysis of the elapsed times. The total elapsed time

Telaps, the communication time Tcomm and the barrier time Tbarr are plotted for (a)

ideal diamond solid with 108 atoms (‘D100’) and condensed polymer systems (b)

with 108 atoms (‘P100’), (c) with 107 atoms (‘P10’) and (d) with 106 atoms (‘P1’).

Dashed lines are drawn for ideal scaling.

El
ap
se
d
tim
e
(s)

Number of nodes

Figure 4.6: Decomposition analysis of the elapsed time for the MD simulation in

the ‘P10’ case. The total elapsed time T (MD)

elaps
(Tot(MD)), the barrier time T (MD)

barr

(Barr(MD), and the communication time T (MD)
comm (Comm(MD)) are plotted per MD

step in the same manner of Fig. 4.5(c). The data for the electronic state calculation

(Tot, Barr, Comm) are also plotted for comparison.

66CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

4.5 Wavepacket dynamics simulation

To investigate transport property of organic device materials, quantum wavepacket

dynamics simulations are carried out. The simulation is based on a Schrödinger-

type equation

∂tΨ = −iHeffΨ (4.20)

for a hole wavefunction Ψ(r, t) with a modelled Hamiltonian Heff . In general,

the time interval of simulation step is much smaller than that in the molecular

dynamics simulation (hWP � hMD) and is hWP = 0.1 fs or smaller. A typical

post-simulation analysis is the estimation of mobility explained in Sec. 2.4.2. The

estimation procedure is explained; After the wavepacket simulation, the mean

square displacement (MSD) of the wavepacket is calculated at each time step

(〈r2(t)〉). Then the MSD behavior is plotted as the function of time. See Fig. 4.7

for typical graphs. One can find a linear behavior in Fig. 4.7 and the diffusion

constant D can be fitted as

D = lim
t→∞
〈r2(t)〉

2t
. (4.21)

Finally mobility μ is given as

μ =
De
kBT

(4.22)

under Einstein’s relation in Sec. 2.4.2.

In a previous paper, [55] a wavepacket dynamics simulation was carried out

for an organic polymer, in which a π-orbital-only model is constructed for dis-

ordered atomic structures in dynamical simulations. The analysis of the result

gives mobility. The present method is a theoretical generalization of the previ-

ous one. The methodological details will be explained in rest of this section and

a brief outline is explained here. The initial wavepacket Ψ(r, t = 0) is set as an

eigenstate, such as the HO state. Two kinds of dynamical simulation methods are

constructed; The first simulation method is called ‘multi-time-scale simulation’ or

the combined simulation between molecular dynamics and wavepacket dynamics

simulations. In the simulation, a double loop structure is used in the code for the

time evolution; The outer loop is used for the atomic thermal motion, a slower dy-

namics, while the inner loop is the quantum wavepacket dynamics, as explained

in Sec. 4.5.1. The second simulation method is called ‘simulation with modeled

atomic motion’, in which the atomic motion is introduced as a modeled stochastic

term in the wavepacket dynamics. The latter method gives a faster simulation.

4.5. WAVEPACKET DYNAMICS SIMULATION 67

Time [ps]

 [
A
]2

mean square
 displacement

a

b

c

Figure 4.7: Examples of the mean square displacement during the wavepacket

dynamics simulations. The three simulated samples of (a)(b)(c) are disordered or-

ganic polymer (poly-(phenylene-ethynylene);PPE) with disordered structures by

the thermal motion.

4.5.1 Concept of multi-time-scale quantum wavepacket simu-
lations

Rest of this section is devoted to the investigation on the practical methods of

quantum wavepacket dynamics, as a real-time non-stationary simulation, in which

the atomic position and the wavepacket are updated iteratively. The method should

be beyond the adiabatic theory and is not yet well established. The purpose of

the present method is to construct a modeled theory for a practical large-scale

device material simulation within a moderate computational cost. The simulated

system is a material with a single carrier, hole or excited electron, and the carrier

is described as a wavepacket. Such simulations were carried, for decades, on site

models, in which a (small) molecule is treated as a site. See Ref. [81] for example.

In the present thesis, a multi-time-scale simulation is adopted, since the atomic

motion is much slower than the wavepacket dynamics. In other words, the situ-

ation is assumed to be nearly adiabatic. Therefore, the time evolution is realized

by a double loop structure in the code; The atomic position is updated in the outer

loop, while the wavepacket is updated in the inner loop. The time interval of the

outer loop is set to be h = 40au(≈ 1fs), a typical value for molecular dynamics

68CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

simulation, while the time interval of the inner loop should be set to be hWPD � h.

4.5.2 Basic mathematical formulation of generalized eigenvalue
equation

The basic mathematical formulation is summarized for the generalized eigenvalue

equation

H0yk = λkSyk. (4.23)

The eigenvectors satisfy the orthogonality relation

y†k Syl = δkl. (4.24)

Eq. (4.23) is rewritten as

∑
j

Hi jY jk = λk

∑
j

S i jY jk (4.25)

or

HY = S YΛ, (4.26)

where yk ≡ (Y1k,Y2k,,YMk), Λ ≡ diag(λ1, λ2, ...λM). Eq. (4.24)) is rewritten as

Y†S Y = I (4.27)

or

Y−1 = Y†S . (4.28)

The wavepacket vector on the LCAO basis u ≡ (u1, u2, ..., uM)T is expressed

by the linear combination of the eigenvectors

ui =
∑

k

αkYik (4.29)

or

u = Yα. (4.30)

with α ≡ (α1, α2, ..., αM)T. Eqs. (4.30) and (4.28) give

α = Y−1u = Y†Su. (4.31)

4.5. WAVEPACKET DYNAMICS SIMULATION 69

4.5.3 Multi-time-scale simulation (I)
Our multi-time-scale simulation is explained. The wavepacket dynamics, the in-

ner loop, is considered for the time period of

nh ≤ t ≤ (n + 1)h, (4.32)

where n indicates the MD time step or the iteration number of the outer loop. The

wavepacket is written as the linear combination of atomic orbitals {χ(n)
j (r)} as

Ψ(r, t) =
∑

j

u(n)
j (t)χ(n)

j (r). (4.33)

The suffix of ‘(n)’ indicates that the used atomic orbital basis set is that for the

atomic position at the n-th MD time step (t = nh). The atomic orbitals {χ(n)
j (r)}

are real functions. Here we consider an effective Schrödinger-type equation of the

wavepacket

∂tΨ = −iĤeffΨ (4.34)

with an effective Hamiltonian operator Ĥeff . Eqs. (4.33) and (4.34) lead us to the

equation of

S (n)u̇(n) = −iH(n)u(n), (4.35)

with the definitions of

H(n)
i j ≡

∫
χ(n)

i (r)Ĥeffχ
(n)
j (r)dr (4.36)

S (n)
i j ≡

∫
χ(n)

i (r)χ(n)
j (r)dr. (4.37)

As a practical methodology, the matrix of H(n) is set to be that in Eq. (4.23) (H(n) =

H(n)

0
). When the generalized eigenvalue equation

H(n)y(n)

k = λ
(n)

k S (n)y(n)

k (4.38)

is solved, the wavepacket vector u(n)(t) is expressed by the eigenvectors of Eq. (4.38)

as

u(n)(t) =
∑

k

α(n)

k (t)y(n)

k (4.39)

with the coefficient vector of α(n) ≡ (α(n)

1
, α(n)

2
, ...α(n)

M)T. Since Eqs. (4.35) and

(4.39) are reduced to

α̇(n)

k (t) = −iλ(n)

k α
(n)

k (t), (4.40)

70CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

the time evolution of α(n)

k (t) is solved analytically as

α(n)((n + 1)h) = D(n)α(n)(nh) (4.41)

with the diagonal matrix of

D(n) ≡ diag(e−iλ(n)
1

h, e−iλ(n)
2

h, ..., e−iλ(n)
M h). (4.42)

At the time of t = (n+1)h, the wavepacket Ψ should be expressed as the linear

combination for the updated atom position (R(t = (n + 1)h))

Ψ(r, t) =
∑

j

u(n+1)
j (t)χ(n+1)

j (r) (4.43)

for the time period of

(n + 1)h ≤ t ≤ (n + 2)h (4.44)

and a relation between u(n+1)((n + 1)h) and u(n)((n + 1)h) is needed for the simu-

lation. A reasonable relation is

u(n+1)((n + 1)h) := u(n)((n + 1)h), (4.45)

because the relation will be exact, when all the atoms are not mobile and the basis

set is unchanged (χ(n+1)
j (r) = χ(n)

j (r)).

Since Eqs. (4.30) and (4.31) give

u(n)((n + 1)h) = Y (n)α(n)((n + 1)h) (4.46)

α(n+1)((n + 1)h) = Y (n+1)†S (n+1)u(n+1)((n + 1)h), (4.47)

the relation between α(n+1)((n + 1)h) and α(n)((n + 1)h) is obtained as

α(n+1)((n + 1)h) = A(n)α(n)((n + 1)h) (4.48)

with

A(n) ≡ Y (n+1)†S (n+1)Y (n). (4.49)

Eqs. (4.41) and (4.48) result in

α(n+1)((n + 1)h) = A(n)D(n)α(n)(nh). (4.50)

Finally, the normalization procedure is imposed on the resultant vector of α(n+1)((n+
1)h), since Eq. (4.45) introduces a deviation in the normalization condition, when

4.5. WAVEPACKET DYNAMICS SIMULATION 71

S (n+1) � S (n). All the multi-time-scale simulations in Sec. 4.6.2 were carried out

by the above formulation.

In Eq. (4.30), the eigenvectors for the expansion of the wavepacket vector can

be partially selected. This approximation is called eigenvector filtering. Namely,

a matrix of filtered eigenvectors

Yf = (yl yl+1 ... yl+m−1) ∈ CM×m (4.51)

is used instead of Y . Small m is advantageous in computational cost, and unphysi-

cal artifacts can be removed when the filtering region l, . . . , l+m−1 is adequately

selected. Although Y−1
f

is no longer exists in this case, the relations Y†
f
S Yf = Im

and Y+
f
= Y†

f
S hold instead of Eqs. (4.27) and (4.28), respectively, where Y+

f
is

the pseudo-inverse of Yf . In general, for any (not necessarily square) matrix A, its

pseudo-inverse A+ solves the least square problem

minx||Ax − b||2 (4.52)

by x = A+b. In this case, A = Yf . By these relations, almost the same formulation

with the original case is valid. Hereafter the subscript f is dropped.

4.5.4 Multi-time-scale simulation (II)
Although the methodology in the previous subsubsection can realize a multi-time-

scale simulation code, the present subsubsection will introduce several correc-

tions for better description of the wavepacket dynamics. The corrections were

introduced from the energetic aspect based on the fact that, since the wavepacket

dynamics is motivated from the atomic thermal motion, the energy of wavepacket

uTHu should fluctuate only within the energy scale of the atomic thermal motion.

The energy discontinuity can appear in Eq. (4.48) and the correction is introduced

by

α(n+1)((n + 1)t) = Ãα(n)((n + 1)t) (4.53)

Ãi j ≡ δ̃(λ(n+1)
i − λ(n)

j)Ai j (4.54)

with the ‘smoothed’ delta function of

δ̃(x) ≡ 1√
2πb

e−(1/2)(x/b)2

. (4.55)

The energy parameter b(> 0) should be given in the order of the thermal fluctu-

ation. The correction is introduced so that the transition between different eigen-

states (j→ i) can occur only when the two eigenenergies is so close that

|λ(n+1)
i − λ(n)

j | ≤ b. (4.56)

72CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

Another correction is introduced by the fact that the thermal relaxation effect

should induce an energy flow from the wavepacket into the atomic motion. The

standard equilibrium state theory gives the carrier energy distribution in the Boltz-

mann distribution (∝ exp(−|λ − λF|/kBT)). If the k-th eigenenergy is far from the

Fermi level (|λk − λF| � kBT), its component αk tends to be relaxed into other

levels nearer the Fermi level. Such relaxation effect is realized, when the diagonal

matrix D(n) is replaced by

D̃(n) ≡ diag(e−iλ(n)
1

h−γ1h, e−iλ(n)
2

h−γ2h, ...e−iλ(n)
k h−γkh, .., e−iλ(n)

M h−γMh). (4.57)

with the definition of

γk ≡ |λk − λF|
kBTτ

. (4.58)

The relaxation effect is governed by the time parameter τ(> 0), since the k-th

eigenstate component αk decays as

∝ exp

(
−h
τ

|λk − λF|
kBT

)
(4.59)

with the time interval of h. In short, the parameter τ means a relaxation time,

since the k-th eigenstate component with |λk − λF| ≈ kBT decays in the time order

of τ. It might be noteworthy that Eq. (4.57) can be understood, formally, as the

introduction of the imaginary part of the eigenenergy

D̃(n)

kk ≡ exp
(
−iλ(n)

k h − γkh
)
= exp

(
−i(λ(n)

k − iγk)h
)
. (4.60)

The above two corrections modify Eq. (4.50) into

α(n+1)((n + 1)h) = Ã(n)D̃(n)α(n)(nh). (4.61)

The method with the corrections is now under test, in which the test simulations

are running with several different values of the parameter set. The computational

cost of the corrections is negligible. Quantitative discussion will be a future topic.

4.5.5 Simulation with modeled thermal atomic motion
The present subsection explains the simulation method with modeled atomic mo-

tion, in which the atomic thermal fluctuation is treated as a modeled stochastic

term in the wavepacket dynamics. In the simulation, only the input matrices are

required only for the initial structure (H(0), S (0)). When Eq.(4.35) is solved, the

Hamilton matrix at the n-th MD step, H(n), is determined by

H(n) := H(0) + H(n)

therm
(4.62)

4.5. WAVEPACKET DYNAMICS SIMULATION 73

and S (n) := S (0). The matrix H(n)

therm
is introduced for the atomic thermal fluctuation

term. The matrix was chosen to be the diagonal and the element is

(
H(n)

therm

)
ii
=

kBT
2

cos 2πxi (4.63)

with the temperature of T and a random number of xi. The random numbers of

{xi}i are updated with the time interval of MD (h = 1fs) or the time scale of the

atomic thermal motion. The same random number is applied for the bases on

the same atom. The above method will be exact in the zero-temperature limit, in

which the matrices of (H(n), S (n)) are unchanged throughout the simulation.

This method runs faster than the multi-time-scale simulation in the previous

subsections. We believe that the two methods are complementary. Since our

purpose is the systematic survey among different samples, so as to obtain insights

for better device materials and their fabrication process, the problem is the balance

between the computational cost and the accuracy. If the simulation runs faster, one

can investigate a dynamics simulation among many sample in different structures.

The number of the samples is crucial, in particular, among data scientific research

and the present method should be fruitful.

4.5.6 Calculation of diffusion coefficient
As explained in Sec. 2.4.2, the mobility μ is proportional to the diffusion coeffi-

cient D (Eq. (2.36)). In the present thesis, D is determined from time evolution

of the wavepacket Eq. (4.33) as follows. At first the Mulliken charge [82] for j-th
atomic orbital mj(t) is defined as

mj(t) ≡ Re
[
u(n)

j (t)S (n)u(n)(t)
]
. (4.64)

Note that a normalization condition∑
j

m j(t) = 1 (4.65)

is satisfied due to the normalization condition of α(t), Eqs. (4.30) and 4.27). De-

noting the coordinate of the atom which the j-th atomic orbital belongs to by r j(t),
the mean square displacement (MSD) 〈r(t)2〉 is determined as

〈r(t)2〉 ≡
∑

j

m j(t)‖r j(t) − 〈r(t)〉‖2 (4.66)

where 〈r(t)〉 is the mean coordinate of the atoms weighted by the Mulliken charge

〈r(t)〉 ≡
∑

j

m j(t)r j(t). (4.67)

74CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

In the same manner as Sec. 2.4.3, diffusion constant for the wavepacket simu-

lations is determined as the slope of

d(t) ≡ 〈r(t)2〉/2. (4.68)

Because d(t) is generally not a linear function of time, the slope is calculated by

least-square fitting. Moreover, trajectories of d(t) by wavepacket simulations from

different initial atomic structures should be averaged for reliable values of D.

4.6 Organic material simulations
Organic materials play a crucial role among next-generation IoT products, such as

display, battery and sensor, since they form flexible atomic structures and enable

ultra-thin, light, flexible (wearable) devices with a low fabrication cost. Since the

atomic structure of organic device materials is disordered, the simulation of such

materials requires 100-nanometer-scale systems, which is beyond the computa-

tional limit of the present standard electronic structure calculations.

The transport of organic device is governed by π-type wavefunctions that ap-

pears typically on benzene-ring regions. Figure 4.8(a) shows an example of π-type

wavefunctions in an organic polymer, poly-((9,9)-dioctyl fluorene) with n = 2.

The transport property stems from both ballistic and diffusive conduction mech-

anisms and can be simulated by wavepacket dynamics. In an ideally ordered

sample, for example, several wavefunctions are extended throughout the sample

and the sample shows ballistic conduction. In a fairly disordered sample, on the

other hand, wavefunctions are localized and the sample shows diffusive conduc-

tion motivated by the atomic thermal motion.

4.6.1 Quantum molecular dynamics simulation
Quantum molecular dynamics simulations were carried out for condensed organic

polymers using the order-N method. Figure 4.9 shows an example of bundle-like

poly-(phenylene vinylene) (PPV), The sample consists of 169 PPV polymers and

each polymer has n = 50 monomers.

The length of a polymer is L ≈ 40nm. The total number of atoms is N =
117, 962. The van der Waals force [83] is included in the simulation. The parallel

computation was carried out by 960 nodes (15,360 cores) of the supercomputer

Oakleaf-FX of the University of Tokyo. The time interval of simulation step is

hMD = 1 fs. A finite-temperature simulation in T = 600 K was performed for

nstep = 5000 iteration steps or the period of hMD nstep = 5ps. The total elapsed

time is approximately 10 hours.

4.6. ORGANIC MATERIAL SIMULATIONS 75

Figure 4.8: (a) Example of organic polymer: poly-((9,9) dioctyl-fluorene) (PFO)

with n = 2. The HO state is drawn as an example of π wavefunction. (b) Quantum

wavepacket dynamics on a polymer of poly-(phenyleneethynylene). The number

of monomer unit of n = 1000 and the length of the polymer chain is L ≈ 700 nm.

The figure is a close-up. (c) Quantum wavepacket dynamics on pentacene thin

film with single layer. (d) A condensed polymer of poly-((9,9)-dioctyl fluorene).

The three polymers in a periodic cell form an amorphous-like structure. The three

polymers are painted in different colors for better understanding. (e)-(f) Quantum

wavepacket dynamics on the condensed polymers. The initial state at t = 0 (e)

and the final state at t = 1 ps (f) are drawn.

76CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

Figure 4.9: Quantum molecular dynamics of poly-(phenylene vinylene) (PPV) at

the initial time (t = 0) and the final time (t = 5ps).

4.6.2 Transport calculations with wavepacket dynamics simu-
lations

Several results for transport calculation of organic materials are discussed be-

low. The calculations were carried out with the multi-time-scale simulation, ex-

cept where indicated. Figure 4.8(b) shows the wavepacket dynamics simulation

in organic polymers of poly-(phenyleneethynylene), where the maximum poly-

mer lengths is L = 700 nm the figure is shown as a close-up. A characteris-

tic semi-localized wavepacket was observed, since the wavepacket spreads over

several monomer units but does not over the whole region of the polymer. Pre-

liminary results on calculated mobility by the present method are consistent to

the experimental trend [55] in which the mobility of meta (zig-zag) type poly-

mers is larger than that of para (linear) type polymers. The mobility values were

measured as the average of three samples in the simulation method with mod-

eled atomic motion. The calculated mobility values of the meta- and para-type

polymer are (μmeta, μpara) = (1.41, 0.98) [cm2 / V s], which are comparable to

the experimental values of (μmeta, μpara) = (2.1, 0.75) [cm2 / V s]. Figure 4.8(c)

shows the wavepacket dynamics simulation in a disordered pentacene thin film

with a single layer. The periodic boundary condition is imposed on in the up-

per and lower area in Fig. 4.8(c). The wavefunction propagates from a molecule

into another. Figure 4.8(d)-(f) shows condensed polymers of poly-((9,9)-dioctyl

fluorene). The initial structure was generated by a classical molecular dynamics

simulation, so as to save the total computational time in research. Three polymers

in a periodic cell form an amorphous-like structure, as shown in Fig. 4.8(d). The

number of atoms in a polymer is Npolymer = 692 and the total number of atoms is

N = 692 × 3 = 2076. Figure 4.8(e)-(f) shows a result of wavepacket dynamics.

4.7. DATA SCIENTIFIC RESEARCH FOR PRESCREENING 77

The initial wavepacket is localized in one polymer and extends over different poly-

mers. More quantitative discussions are under development and will be a future

topic.

4.7 Data scientific research for prescreening
In this section, a machine learning approach to the research of organic polymer de-

vice materials is presented 1. The purpose is a pre-screening procedure of atomic

structures before large-scale quantum wavepacket dynamics calculations. Atomic

structures of condensed polymers are highly varied due to their flexibility and dis-

order. Therefore we should filter hopeful structures in the sense of high mobility

before we actually execute quantum wavepacket dynamics calculations. The pre-

vious simulation research [5, 6] implies that the relative rotation angles between

benzene rings strongly affect locality of π-electron wavefunctions and then mobil-

ity.

As a method for the pre-screening procedure, clustering of disordered poly-

mer structures by locality of π-electron wavefunctions was carried out. K-means

method, which is a simple clustering method [84], is used. K-means method can

be found in standard textbooks of machine learning, such as Ref. [85]. At first

PPE polymer chains with 240 atoms (20 monomers) whose relative rotation an-

gles between adjacent benzene rings are given from the normal distribution with

standard deviation of 20 / 60 degree are generated 100 times for each class (total

N = 200 samples). After the rotations, small fluctuations taken from the normal

distribution with standard deviation of 0.01 Åis given to all the coordinates of all

atoms to remove degeneracy. For each structure (i = 1, . . . ,N), a singleshot cal-

culation by ELSES generates Hamiltonian H(i) and overlap matrix S (i), and the

generalized eigenvalue problem is solved numerically as

H(i)y(i)
j = λ

(i)
j S (i)y(i)

j (j = 1, . . . ,M). (4.69)

The matrix size M, which is determined by the number of each element in the

atomic structure, was M = 714. Then the K-means clustering method is applied

for the atomic structures using the list of the participation ratios of the eigenvectors

defined in Sec. 2.4.1

p(i) := (PR(y(i)
1

), . . . , PR(y(i)
M))T (4.70)

as a feature vector for the i-th structure.

1H. Imachi, Y. M. Tsai, T. Hoshi, and W. Wang, A data scientific research on organic polymer

device materials, The 19th Asian Workshop on First-Principles Electronic Structure Calculations,

National Chiao Tung University, Hsinchu, Taiwan, 31. Oct.- 2. Nov., 2016.

78CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

Figure 4.10: Eigenvector participation ratio diagrams of different atomic structure

classes. The x-axis is the eigenvalue and the y-axis is the participatin ratio of the

correspoiding eigenvector. (a) and (b) are diagrams of a structure with adjacent

rotation angles in standard deviation of 20 and 60 degree, respectively. (c) and (d)

are the same diagrams in partial eigenvalue range (−0.6 ≤ λ ≤ −0.4 au).

Figure 4.10 shows typical examples of the eigenvector participation ratios for

the two structure classes. It indicates that participation ratios of π-electrons are

strongly affected by the disorder in rotation angles. When the disorder in rotation

angles is small (Fig. 4.10(a)), π-electrons are delocalized and their participation

ratios are high, and vice versa, because the participation ratio of an eigenvector in-

dicates its spatial extent. For each structure classes, a typical shape of π electronic

wavefunction is visualized in Fig. 4.11. One can confirm the relation between the

disorder in rotation angles and the participation ratio, because in Fig. 4.11(b), the

wavefunction is more localized than in Fig. 4.11(a) due to the high rotation angles

at the edges of the wavefunction.

The number of clusters, a parameter for the K-means algorithm, was two.

4.7. DATA SCIENTIFIC RESEARCH FOR PRESCREENING 79

Figure 4.11: Typical atomic structures and π electronic wavefunctions of different

atomic structure classes. Structures of (a) and (b) have adjacent rotation angles in

standard deviation of 20 and 60 degree, respectively. The participation ratios of

the wavefunctions (a) and (b) are 122.7 and 48.9, respectively.

Figure 4.12 shows the result of the K-means clustering. Each atomic structure is

plotted on the plane by two statistical quantities with markers corresponding to

the cluster labels given by the K-means algorithm. As a result, the two clusters

perfectly matched to the structure classes. Namely, all the structures with adjacent

rotation angles in standard deviation of 20 degree are clustered into one group, and

all the structures with adjacent rotation angles in standard deviation of 60 degree

are clustered into the other group.

Figure 4.12: K-means clustering of polymer structures by their eigenvector par-

ticipation ratios. Each structure is plotted by two statistical quantities. The x-axis

is the mean of the rotation angles between adjacent benzene rings. The y-axis is

the resulting standard deviation of the small fluctuation to the coordinates. Two

markers, red circle and blue triangle, correspond to the two clusters labeled by the

K-means algorithm.

The result of K-means clustering indicates that the PRs of the eigenvectors in-

80CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

= 53 nm

=
41
 n
m

(a) (b)

= 9 nm

=
7
nm

(c) (d)

time

Figure 4.13: Visualization of partial regions in a 108-atom system of condensed

polymers (PPE). The system has the periodic cell lengths of (265nm, 206nm,

239nm). (a) The region has the edge lengths of (Lx, Ly, Lz)=(53 nm, 41 nm, 48

nm) and contains approximately 8×105 atoms. (b) The region has the edge lengths

of (Lx, Ly, Lz)=(9 nm, 7 nm, 8 nm) and contains approximately 4 × 103 atoms. (c)

(d) Schematic figures of a local network of connected polymers.

herit the disorder property in atomic structures of polymers, and inversely, atomic

structures can be classified using the PRs before executing wavepacket simula-

tions for them.

4.8 108-atom simulation
This section is devoted to the scientific investigation with the ‘P100’, 108 atom

(largest) system of condensed organic polymers. A smaller system with 105 atoms

was calculated as a finite temperature simulation by 104 cores and the whole

elapsed time is 10 hours for 5000 iteration steps, as reported in Sec. 4.5.1

Such a dynamical simulation is, however, impractical with 108 atoms at the

present day and this section demonstrates a part of the possible future research.

4.8.1 Network analysis of electronic wavefunctions
A large-scale data analysis was carried out for a fundamental research of elec-

tronic devices, so as to characterize the propagation of electronic wave through a

disordered structure.

Figures 4.13(a)(b) show partial regions of a 108 atoms and one can observe that

4.8. 108-ATOM SIMULATION 81

the structure is disordered. In general, electronic wavefunctions are localized in

a disordered structure. The electrical current can propagate among polymers that

are ‘connected’ locally by π electronic wavefunctions, as explained in Sec. 4.1.2.

Therefore, the local network of connected polymers should be investigated.

Figures 4.13(c)(d) show schematically small local networks of connected poly-

mers. Three polymers are drawn and atoms are depicted as filled circles. The

figures include a small local network that consists of two polymers connected by

a dashed line. The networks are dynamical, as seen later in this section.

A network analysis on connected polymer networks was carried out from

electronic states, since a connection between polymers is formed by the elec-

tronic waves that spread over the polymers. The analysis was carried out with the

Green’s function G obtained by the parallel order-N simulation, as follows; Stage

I: The order-N simulation gives a ‘connectivity’ matrix of BIJ

BIJ ≡
∑
α

∑
β

ρIα;JβHJβ;Iα (4.71)

where I and J are the atom indices. The connectivity matrix is called integrated

crystal orbital Hamiltonian population (ICOHP) among physics papers [86, 59].

The quantity is a partial sum of the electronic energy 〈H〉 in Eq. (4.3) (〈H〉 =∑
IJ BIJ). Since the matrix elements are calculated always during the parallel

order-N simulation, the elements can be obtained independently among nodes,

without any additional operation or communication cost. A matrix element BIJ

has a physical meaning of a local bonding energy between the I-th and J-th atoms;

If the value of |BIJ | is significantly large, the two atoms are ‘connected’ by elec-

tronic wave. The matrix B is sparse, since only atoms within a short distance

can be ‘connected’ with each other. Stage II: Since every atom belongs to one of

polymers, the connectivity matrix for polymers is defined by

B(poly)

PQ ≡
∈P∑
I

∈Q∑
J

BIJ, (4.72)

where the summation of
∑∈P

I , for example, means the summation among the atoms

that belong to the P-th polymer. If an element B(poly)

PQ shows a meaningful non-zero

value, the P-th and Q-th polymers are connected by electronic wave. The matrix

B(poly) is sparse. The dimension of B(poly) is equal to the number of polymers

N(poly) = 83, 349 and is much smaller than that of B (N = 108). Stage III: As

a coarse grained analysis, the eigenvalue equation of B(poly)z = λz in the matrix

dimension of N(poly) was solved by the parallel eigenvalue solver [4]. Then the

participation ratio PR(z) is computed for each eigenvector z.

82CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

Figure 4.14: Participation ratio histogram of the eigenvectors {zk} of the con-

nectivity matrix for the PPE polymers B(poly). The highest participation ratio

PR(z61731) = 2.814 is achieved for the eigenvector z61731.

Table 4.5: The number of eigenvectors zk of the connectivity matrix for the PPE

polymers B(poly) in some characteristic ranges of the participation ratio PR(zk).

Note that PR(zk) ≥ 1.0 holds for any k because the standard eigenvalue problem

is considered here (See Sec. 2.4.1).

Range of PR(zk) Count of eigenvectors zk

1.0 ≤ PR(zk) < 1.05 80,521

1.05 ≤ PR(zk) < 1.5 2,135

1.5 ≤ PR(zk) < 2.0 654

2.0 ≤ PR(zk) < 2.5 36

2.5 ≤ PR(zk) 3

4.8. 108-ATOM SIMULATION 83

Fig. 4.14 shows the participation ratio histogram for the eigenvectors of B(poly),

and Table 4.5 summarizes the histogram by selecting some characteristic ranges.

Several eigenvectors with participation ratios PR(z) ∼ 3.0 are found, which means

the presence of small local polymer networks with several (about 3) polymers, as

illustrated schematically in Fig. 4.13(c). Such networks are responsible for the

electrical current, which will be confirmed in Sec. 4.8.2. Fig. 4.14 and Table 4.5

also show the almost all of eigenvectors have the participation ratios PR(z) ∼ 1.0,

which means that many other polymers are almost isolated or are not connected

to others.

4.8.2 Quantum wavepacket dynamics simulation on polymer
networks

The quantum wavepacket dynamics simulation was carried out, so as to confirm

that electronic wave can propagate on the small polymer networks detected in the

previous subsection. From the eigenvectors z with high PR value PR(z), the small

polymer networks were extracted as isolated systems by selecting several polymer

indices which have the largest absolute values. Then the wavepacket simulations

were carried out for them.

Several tens of the wavepacket simulations were carried out in different atomic

structures and initial wavepackets (Ψ(r, t=0)). Figure 4.15 shows a typical result,

in which the dynamical simulation was carried out approximately for 1 ps. The

initial structure is extracted from the eigenvector z61731 with the highest partic-

ipation ratio shown in Fig. 4.14. Because the participation ratio is PR(z61731) =

2.814 ∼ 3, 3 polymers are selected by the 3 indices with the largest absolute values

in z61731. The simulation consumes six hours with 128 nodes. The wavepacket as

well as the atom positions change dynamically, though the atomic motion is much

slower than that of the wavepacket. In Fig. 4.15, the initially localized wavepacket

propagates first through one polymer (Fig. 4.15(a)→(b)) and then propagates to

others (Fig. 4.15(b)→(c)). The above behavior is reasonable, because the connec-

tion between polymers is much weaker than that within a polymer. The above

observation confirms that the network analysis is fruitful for the investigation of

charge propagation in organic device materials.

84CHAPTER 4. EXTREME SCALABLE ORGANIC MATERIAL SIMULATIONS

(a)

(b)

(c)

(d) (e) (f)
15 nm

70 nm

Figure 4.15: Quantum wavepacket dynamics of the condensed polymers. The

charge density |Ψ(r, t)|2 is plotted at (a) t = 0, (b) t = 50 and (c) t = 948fs,

respectively. Figures (d), (e) or (f) is a close up of (a), (b) or (c), respectively.

Chapter 5

Summary and future outlook

Numerical linear algebraic methods were developed for large-scale electronic

state calculations on modern massively parallel supercomputers, for example, the

full system of the K computer.

The optimal hybrid generalized eigenvalue solver was constructed with the

three parallel dense-matrix solver libraries of ELPA, EigenExa and ScaLAPACK.

The hybrid solvers with ELPA and EigenExa give better benchmark results than

the conventional ScaLAPACK library. The code was developed as a middleware

and a mini-application and is available online. The benchmark was carried out

with up to a million dimensional matrix on the K computer and other supercom-

puters. The decomposition analysis of the elapsed time reveals a potential bot-

tleneck part on next-generation (exa-scale) supercomputers, which indicates the

guidance for future development of the algorithms and the codes.

An extreme scalability was realized by the code optimization based on the

novel Krylov-subspace solver. The simulation was carried out with 108-atom sim-

ulations for flexible (organic) electronic devices, key devices of next-generation

IoT products. The mathematical foundation is generalized shifted linear equations

((zS − H)x = b), instead of conventional eigenvalue equations. Since the foun-

dation has a highly parallelizable mathematical structure, the benchmark shows

an extreme strong scaling on the full system of the K computer and a qualified

time-to-solution for material researches in industrial purpose. The method was

applied to the condensed polymer materials in academia-industrial collaboration.

A combined research of the quantum simulation and the data analysis reveals that

polymers form small local networks and electronic waves propagate on the net-

works. The present research will give insights of flexible devices and their fabrica-

tion process. Since the present method is general, the combined research of huge

(100-nm-scale) quantum material simulations and the post-simulation data analy-

sis will be fruitful not only for organic devices but also for many other industrial

materials.

85

86 CHAPTER 5. SUMMARY AND FUTURE OUTLOOK

Finally two points are discussed as the future outlook; The first point is to

develop efficient numerical method for the real-time quantum dynamics simula-

tions with better computational speed and higher reliability. Very recently, for

example, we have developed a mini-application for a novel structure-preserving

numerical solver [87] with the two-dimensional non-linear Schrödinger equation
1. The second point is the convergence between simulation and machine learning.

Preliminary results are reported on organic polymer device materials in this the-

sis. The convergence will realize the industrial application of a high-throughput

material design.

1S. Kudo, H. Imachi, Y. Miyatake, Y. Yamamoto, and T. Hoshi, Application of the

mathematical-structure-preserving method to computational material science, The 2nd CDSMI

Symposium : Creation of new functional Devices and high-performance Materials to Support

next-generation Industries, The University of Tokyo, 6-7. Dec. 2016.

Acknowledgment

The author thanks to Takeo Hoshi, the supervisor of this work, and colleagues for

their devoted guidance and discussions. The author also thanks to Toshiyuki Ima-

mura in RIKEN Advanced Institute of Computational Science (AICS) and Takeshi

Fukaya in Hokkaido University for fruitful discussions on EigenExa. The author

has greatly benefited from Kiyoshi Kumahata, Masaaki Terai, Kengo Miyamoto,

Kazuo Minami and Fumiyoshi Shoji in RIKEN AICS for helpful advice on perfor-

mance tuning of ELSES. Tomofumi Tada in Tokyo institute of Technology gives

the author invaluable comments about quantum wavepacket simulation methods.

The author is deeply grateful to Yusaku Yamamoto and Shuhei Kudo in The Uni-

versity of Electro-Communications, and Shao-Liang Zhang, Tomohiro Sogabe

and Dongjin Lee in Nagoya University, and Takafumi Miyata in Fukuoka institute

of technology for insightful comments on numerical linear algebra algorithms.

The author appreciates the suggestions on structure-preserving methods by Yuto

Miyatake in Nagoya University and Takayasu Matsuo in The University of Tokyo.

The author also appreciates precise feedback by Wei-Chung Wang and Yuhsiang

Tsai in National Taiwan University. The author also thanks to Masaya Ishida

(Sumitomo Chemical Co.) for providing several atomic structure data.

The K computer of RIKEN was used in the research projects of hp150144,

hp150281, hp160066 and hp160222.

The supercomputer Oakleaf-FX of The University of Tokyo was used in the

research project of 14-NA04 in ‘Joint Usage/Research Center for Interdisciplinary

Large-scale Information Infrastructures’ in Japan, in the ‘Large-scale HPC Chal-

lenge’ Project, Information Technology Center, The University of Tokyo and Ini-

tiative on Promotion of Supercomputing for Young or Women Researchers, Su-

percomputing Division, Information Technology Center, The University of Tokyo.

The supercomputer of Kyoto University was used in Collaborative Research

Project for Young, Women Scientists, Institute for Information Management and

Communication, Kyoto University.

The author also used the supercomputers SGI altix ICE 8400EX and SGI ICE

XA/UV hybrid system at the Institute for Solid State Physics of The University of

Tokyo and the supercomputers at the Research Center for Computational Science,

87

88 CHAPTER 5. SUMMARY AND FUTURE OUTLOOK

Okazaki.

Bibliography

[1] R. M. Martin, “Electronic Structure: Basic Theory and Practical Methods,”

Cambridge University Press, Cambridge, 2004.

[2] http://www.gaussian.com/

[3] http://www.vasp.at/

[4] H. Imachi and T. Hoshi, “Hybrid numerical solvers for massively parallel

eigenvalue computation and their benchmark with electronic structure cal-

culations,” J. Inf. Process. 24, pp. 164–172, 2016.

[5] H. Imachi, S. Yokoyama, T. Kaji, Y. Abe, T. Tada, and T. Hoshi, “One-

hundred-nm-scale electronic structure and transport calculations of organic

polymers on the K computer,” AIP Conf. Proc. 1790, 020010, 4pp., 2016.

[6] T. Hoshi, H. Imachi, K. Kumahata, M. Terai, K. Miyamoto, K. Minami, and

F. Shoji, “Extremely scalable algorithm for 108-atom quantum material sim-

ulation on the full system of the K computer,” In Proceedings of ScalA16:

Workshop on Latest Advances in Scalable Algorithms for Large-Scale Sys-

tems, held as a part of SC16, Nov. 13, 2016, Salt Lake City, Utah, USA.

[7] http://www.elses.jp/

[8] http://openmp.org/

[9] http://mpi-forum.org/

[10] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance,

portable implementation of the MPI message passing interface standard,”

Parallel Comput. 22, 6, pp. 789–828, 1996.

[11] A, J. Van der Steen, “Overview of recent supercomputers,” Publication of

the NCF, 2008.

89

90 BIBLIOGRAPHY

[12] G. M. Amdahl, “Validity of the single processor approach to achieving large

scale computing capabilities,” In Proceedings of the April 18-20, 1967,

spring joint computer conference (AFIPS ’67 Spring), 1967.

[13] L. N. Trefethen and D. Bau, Numerical Linear Algebra, Society for Indus-

trial and Applied Mathematics, Philadelphia, 1997.

[14] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hop-

kins University Press, Baltimore, 2013.

[15] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., Society for

Industrial and Applied Mathematics, Philadelphia, 2003.

[16] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry,

M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington,

and R. C. Whaley, “An Updated Set of Basic Linear Algebra Subprograms

(BLAS),” ACM Trans. Math. Soft., Vol. 28, Issue 2, pp. 135–151, 2002.

[17] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J.

Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,

“LAPACK Users’ Guide,” Society for Industrial and Applied Mathematics,

Philadelphia, 1999.

[18] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,

and R. C. Whaley, “ScaLAPACK Users’ Guide,” Society for Industrial and

Applied Mathematics, Philadelphia, 1997.

[19] http://www.netlib.org/scalapack/

[20] W. Kohn, “Nobel Lecture: Electronic structure of matter - wave functions

and density functionals,” Rev. Mod. Phys. 71, 1253, 1999.

[21] T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, and S.-L. Zhang, “An

order-N electronic structure theory with generalized eigenvalue equations

and its application to a ten-million-atom system,” J. Phys. Condens. Matter

21, 165502, 2012.

[22] T. Hoshi, K. Yamazaki, and Y. Akiyama, “Novel Linear Algebraic Theory

and One-Hundred-Million-Atom Electronic Structure Calculation on The K

Computer,” JPS Conf. Proc. 1, 016004, 2014.

BIBLIOGRAPHY 91

[23] T. Hoshi, T. Sogabe, T. Miyata, D. Lee, S. L. Zhang, H. Imachi, Y. Kawai,

Y. Akiyama, K. Yamazaki, and S. Yokoyama, “Novel linear algebraic the-

ory and one-hundred-million-atom quantum material simulations on the K

computer,” PoS(IWCSE2013) 065, 13pp, 2014.

[24] R. J. Bell and P. Dean, “Atomic vibrations in vitreous silica,” Disc. Faraday

Soc. 50, pp. 55–61, 1970.

[25] R. J. Bell, “The dynamics of disordered lattices,” Rep. Prog. Phys. 35, 1315,

1972.

[26] D. J. Thouless, “Electron in disordered systems and the theory of localiza-

tion,” Phys. Rep. 13, 93, 1974.

[27] F. Wegner, “Inverse Participation Ratio in 2 + ε Dimensions,” Z. Physik B

36, 209, 1980.

[28] B. L. Anderson and R. L. Anderson, “Fundamentals of Semiconductor De-

vices,” McGraw-Hill, New York, 2005.

[29] EigenKernel; https://github.com/eigenkernel/eigenkernel/

[30] http://elpa.rzg.mpg.de/

[31] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Hei-

necke, H. J. Bungartz, and H. Lederer, “The ELPA Library – Scalable Paral-

lel Eigenvalue Solutions for Electronic Structure Theory and Computational

Science,” J. Phys. Condens. Matter 26, 213201, 2014.

[32] T. Auckenthaler, V. Blum, H. J. Bungartz, T. Huckle, R. Johanni, L. Krämer,

B. Lang, H. Lederer, P. R. Willems, “Parallel solution of partial symmetric

eigenvalue problems from electronic structure calculations,” Parallel Com-

puting, Vol. 37, Issue 12, pp. 783–794, 2011.

[33] http://www.aics.riken.jp/labs/lpnctrt/index_e.html

[34] T. Imamura, S. Yamada, and M. Yoshida, “Development of a high-

performance eigensolver on a peta-scale next-generation supercomputer sys-

tem,” Prog. Nucl. Sci. Technol., Vol. 2, pp. 643–650, 2011.

[35] T, Imamura, Y. Hirota, T. Fukaya, S. Yamada, and M. Machida,

“EigenExa: high performance dense eigensolver, present and future,” 8th

International Workshop on Parallel Matrix Algorithms and Applications

(PMAA14), Lugano, Switzerland, 2014; http://www.aics.riken.jp/

labs/lpnctrt/index_e.html

92 BIBLIOGRAPHY

[36] T. Imamura, “The EigenExa Library – High Performance & Scalable Direct

Eigensolver for Large-Scale Computational Science,” ISC 2014, Leipzig,

Germany, 2014.

[37] http://www.elses.jp/matrix/

[38] T. Hoshi, Y. Akiyama, T. Tanaka, and T. Ohno, “Ten-million-atom electronic

structure calculations on the K computer with a massively parallel order-N
theory,” J. Phys. Soc. Jpn. 82, 023710, 4pp, 2013.

[39] G. Calzaferri and R. Rytz, “The Band Structure of Diamond,” J. Phys. Chem.

100, pp. 11122–11124, 1996.

[40] J. Cerdá and F. Soria, “Accurate and transferable extended Hckel-type tight-

binding parameters,” Phys. Rev. B 61, pp. 7965–7971, 2000.

[41] http://www.aics.riken.jp/labs/lpnctrt/KMATH_EIGEN_GEV_e.

html

[42] F. Tisseur and J. Dongarra, “Parallelizing the divide and conquer algorithm

for the symmetric tridiagonal eigenvalue problem on distributed memory ar-

chitectures,” SIAM J. Sci. Comput., Vol. 20, Issue 6, pp. 2223–2236, 1999.

[43] J. Poulson, R. van de Geijn, and J. Bennighof, “Parallel algorithms for reduc-

ing the generalized hermitian-definite eigenvalue problem,” FLAME Work-

ing Note #56, The University of Texas at Austin, Department of Computer

Science, Tech. Rep. TR-11-05, 2011.

[44] M. P. Sears, K. Stanley, and G. Henry, “Application of a High Performance

Parallel Eigensolver to Electronic Structure Calculations,” In Proceedings of

the 1998 ACM/IEEE conference on Supercomputing (SC ’98), Orlando, FL,

1998.

[45] RIKEN, Press Release at 5. Dec. 2013 (in Japanese); available from http:

//www.riken.jp/pr/press/2013/20131205_1/

[46] Y. Takahashi, Y. Hirota, and Y. Yamamoto, “Performance of the block Jacobi

method for the symmetric eigenvalue problem on a modern massively paral-

lel computer,” In Proceedings of ALGORITMY 2012, pp. 151–160, 2012.

[47] Y. Yamamoto, L. Zhang, and S. Kudo, “Convergence analysis of the par-

allel classical block Jacobi method for the symmetric eigenvalue problem,”

JSIAM Letters, Vol. 6, pp. 57–60, 2014.

[48] http://math.nist.gov/MatrixMarket/

BIBLIOGRAPHY 93

[49] M. Lefenfeld, G. Blanchet, and J. A. Rogers, “High-performance contacts in

plastic transistors and logic gates that use printed electrodes of DNNSA-

PANI doped with single-walled carbon nanotubes,” Adv. Mater. 14, pp.

1188–1191, 2003.

[50] M. C. Choi, Y. Kim, and C. S. Ha, “Polymers for flexible displays: from

material selection to device applications,” Prog. Polym. Sci. 33, pp. 581–

630, 2008.

[51] Sony Corporation, “Sony develops a ‘Rollable’ OTFT-driven OLED display

that can wrap around a pencil,” News Release, 26. May. 2010; http://www.

sony.net/SonyInfo/News/Press/201005/10-070E/index.html

[52] H. Bässler, “Localized states and electronic transport in single component

organic solids with diagonal disorder,” Phys. Stat. Solidi B 107, pp. 9–54,

1981.

[53] S. H. Chen, H. L. Chou, A. C. Su, and S. A. Chen, “Molecular pack-

ing in crystalline poly(9,9-di-n-octyl-2,7-fluorene),” Macromolecules 37, pp.

6833–6838, 2004.

[54] R. Noriega, J. Rivnay, K. Vandewal, F. P. V. Koch, N. Stingelin, P. Smith,

M. F. Toney, and A. Salleo, “A general relationship between disorder, aggre-

gation and charge transport in conjugated polymers,” Nature Mater. 12, pp.

1038–1044, 2013.

[55] J. Terao, A. Wadahama, A. Matono, T. Tada, S. Watanabe, S. Seki, T. Fu-

jihara, and Y. Tsuji, “Design principle for increasing charge mobility of

π-conjugated polymers using regularly localized molecular orbitals,” Nat.

Commun. 4, 1691, 2013.

[56] R. Takayama, T. Hoshi, and T. Fujiwara, “Krylov subspace method for

molecular dynamics simulation based on large-scale electronic structure the-

ory,” J. Phys. Soc. Jpn. 73, pp. 1519–1524, 2004.

[57] R. Takayama, T. Hoshi, T. Sogabe, S. L. Zhang, and T. Fujiwara, “Linear

algebraic calculation of the Green’s function for large-scale electronic struc-

ture theory,” Phys. Rev. B 73, 165108, 2006.

[58] H. Teng, T. Fujiwara, T. Hoshi, T. Sogabe, S. L. Zhang, and S. Yamamoto,

“Efficient and accurate linear algebraic methods for large-scale electronic

structure calculations with nonorthogonal atomic orbitals,” Phys. Rev. B 83,

165103, 2011.

94 BIBLIOGRAPHY

[59] T. Hoshi, Y. Akiyama, T. Tanaka, and T. Ohno, “Ten-million-atom electronic

structure calculations on the K computer with a massively parallel order-N

theory,” J. Phys. Soc. Jpn. 82, 023710, 2013.

[60] T. Hoshi, K. Yamazaki, and Y. Akiyama, “Novel linear algebraic theory and

one-hundred-million-atom electronic structure calculation on the K com-

puter,” JPS Conf. Proc. 1, 016004, 2014.

[61] S. Nishino, T. Fujiwara, H. Yamasaki, S. Yamamoto, and T. Hoshi, “Elec-

tronic structure calculations and quantum molecular dynamics simulations

of the ionic liquid PP13-TFSI,” Solid State Ionics 225, pp. 22–25, 2012.

[62] S. Nishino, T. Fujiwara, and H. Yamasaki, “Nanosecond quantum molecular

dynamics simulations of the lithium superionic conductor Li4−xGe1−xPxS4,”

Phys. Rev. B 90, 024303, 2014.

[63] J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera, P. Ordejön, and D.

Sänchez-Portal, “The SIESTA method for ab initio order-N materials simu-

lation,” J. Phys. Condens. Matter 14, 2745, 2002.

[64] C. K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne, “Introducing

ONETEP: Linear-scaling density functional simulations on parallel comput-

ers,” J. Chem. Phys. 122, 084119, 2005.

[65] T. Ozaki, “O(N) Krylov-subspace method for large-scale ab initio electronic

structure calculations,” Phys. Rev. B 74, 245101, 2006.

[66] M. J. Gillan, D. R. Bowler, A. S. Torralba, and T. Miyazaki, “Order-N first-

principles calculations with the conquest code,” Comp. Phys. Commun. 177,

14, 2007.

[67] W. Kohn, “Density functional and density matrix method scaling linearly

with the number of atoms,” Phys. Rev. Lett. 76, pp. 3168–3171, 1996.

[68] A. Frommer, “BiCGStab(l) for Families of Shifted Linear Systems,” Com-

puting 70, pp. 87–109, 2003.

[69] S. Yamamoto, T. Sogabe, T. Hoshi, S. L. Zhang, and T. Fujiwara, “Shifted

Conjugate-Orthogonal-Conjugate-Gradient Method and Its Application to

Double Orbital Extended Hubbard Model,” J. Phys. Soc. Jpn., 77, 114713,

2008.

[70] T. Mizusaki, K Kaneko, M. Honma, and T. Sakurai, “Filter diagonalization

of shell-model calculations,” Phys. Rev. C 82, 024310, 2010.

BIBLIOGRAPHY 95

[71] F. Giustino, M. L. Cohen, and S. G. Louie, “GW method with the self-

consistent Sternheimer equation,” Phys. Rev. E 81, 115105, 2010.

[72] S. Iwase, T. Hoshi, and T. Ono, “Numerical solver for first-principles trans-

port calculation based on real-space finite-difference method,” Phys. Rev. E

91, 063305, 2015.

[73] K. Yamamoto, A. Uno, H. Murai, T. Tsukamoto, F. Shoji, S. Matsui, R. Sek-

izawa, F. Sueyasu, H. Uchiyama, M. Okamoto, N. Ohgushi, K. Takashina, D.

Wakabayashi, Y. Taguchi, and M. Yokokawa, “The K computer Operations:

Experiences and Statistics,” In Proceedings of the International Conference

on Computational Science (ICCS2014), pp. 576–585, 2014.

[74] TOP500 list; http://www.top500.org/

[75] The Graph 500 List; http://www.graph500.org/

[76] HPCG Benchmark; http://www.hpcg-benchmark.org/index.html

[77] T. Adachi, N. Shida, K. Miura, S. Sumimoto, A. Uno, M, Kurokawa, F.

Shoji, and M. Yokokawa, “The design of ultra scalable MPI collective com-

munication on the K computer,” Comput. Sci. Res. Dev. 28, pp. 147–155,

2013.

[78] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS

4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molec-

ular Simulation,” J. Chem. Theory Comput., 4 (3), pp. 435-447, 2008.;

http://www.gromacs.org/

[79] J. Wang, W. Wang, P. A. Kollman, and D. A. Case, “Automatic atom type and

bond type perception in molecular mechanical calculations,” J. Mol. Graph.

Model. 25, 247260, 2006.

[80] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “De-

velopment and testing of a general AMBER force field,” J. Comp. Chem. 25,

pp. 1157–1174, 2004.

[81] A. Troisi and G. Orlandi, “Charge-transport regime of crystalline organic

semiconductors: diffusion limited by thermal off-diagonal electronic disor-

der,” Phys. Rev. Lett. 96, 086601, 2006.

[82] R. S. Mulliken, “Electronic Population Analysis on LCAO-MO Molecular

Wave Functions. I,” J. Chem. Phys. 23, pp. 1833–1840, 1955.

96 BIBLIOGRAPHY

[83] F. Ortmann, F. Bechstedt, and W. G. Schmidt, “Semiempirical van der Waals

correction to the density functional description of solids and molecular struc-

tures,” Phys. Rev. B 73, 205101, 2006.

[84] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” In Proceedings of the Fifth Berkeley Symposium on Mathe-

matical Statistics and Probability, Volume 1: Statistics, pp. 281–297, 1967.

[85] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag

New York, Inc., Secaucus, 2006.

[86] R. Dronskowski and P. E. Blöchl, “Crystal orbital Hamilton populations

(COHP): energy-resolved visualization of chemical bonding in solids based

on density-functional calculations,” J. Phys. Chem. 33, 97, 1993.; http:

//www.cohp.de/

[87] Y. Miyatake and J. C. Butcher, “A characterization of energy-preserving

methods and the construction of parallel integrators for Hamiltonian sys-

tems,” SIAM J. Numer. Anal., 54, 1993, 2016.

