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ABSTRACT 

This thesis focuses on the topic of gaze estimation from cameras. Gaze 

estimation is an important topic in computer vision in such areas as driver behavior 

analysis, security monitoring, behavior investigation, and human-computer interfaces. 

In particular, gaze information can offer a new means of communication with 

machines, such as determining a human’s region of interest. In addition, there are two 

big categories in this area: one is gaze estimation from a remote camera, which is 

placed in front of an observer, and the observer would not have any direct bindings 

with the remote camera. The other is gaze estimation from a head-mounted eye 

camera, which is placed on the observer’s head. The camera can have a direct view of 

the eye. This thesis proposes novel methods of gaze estimation based on an eye model 

for the remote camera and the head-mounted camera, and is composed by two parts as 

follows. 

Part I (Gaze estimation from remote camera): The most crucial factors in the 

eye-model-based approach to gaze estimation are the three-dimensional (3D) 

positions of the eyeball and iris centers. In the proposed method, a RGB-D camera, 

Kinect sensor, is used to obtain the head pose as well as the eye region of the color 

image. Because the ray from the eyeball center to target and the ray from the eyeball 

center to the iris center should meet a relationship. Based on the knowledge, our 

method sets up a model to calibrate the eyeball center by gazing at the center of the 

color image camera. Then, to estimate the 3D position of the iris center, the 3D 

contour of the iris is projected onto the color image with the known head pose 
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obtained from color and depth cues of an RGB-D camera. Thus, the ellipse of the iris 

in the image can be described using only two parameters: the yaw and pitch angles of 

the eyeball in the iris coordinate system, rather than the conventional five parameters 

of an ellipse. The proposed method can fit an iris that is not complete due to eyelid 

occlusion. The average errors of vertical and horizontal angles of the gaze estimation 

for seven subjects are 5.9 degrees and 4.4 degrees in experiments, respectively. 

However, for lower resolution and poor illumination images, as tested on the public 

database EYEDIAP, the performance of the proposed eye-model-based method is 

inferior to that of the-state-of-the-art appearance-based method. 

Part II (Gaze estimation from head-mounted camera): As introduced in Part I. 

Gaze estimation is based on the eyeball center and the iris center, so in this proposed 

method, we divide the continuous gaze estimation of a head-mounted eye camera into 

two phases. One phase, known as the calibration phase, is used to estimate the eyeball 

center position in relation to the coordinate system of the head-mounted eye camera. 

The other phase is used to fit the iris contour in 2D images employing only two 

parameters for gaze estimation. Based on an eye-model, iris can be extracted in a 

more efficient and accurate manner by projecting the 3D iris contour onto a 2D space. 

Given the calibrated 3D eyeball center and estimated 3D iris center, the gaze tracking 

can be achieved. As seen from the experimental results, the proposed method 

demonstrates both credible eyeball center estimation and an accurate iris contour 

estimation in comparison with the conventional approach using five unknown 

parameters. At the end, the accuracy of our gaze estimation method and other existed 

methods using targets on a screen was evaluated. 
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 CHAPTER 1

Introduction 

1.1 Approaches to eye movement detection 

Our eyes are one of the most significant sense organs, which allow us to 

explore, analysis, and interact with environments by the visual information content of 

the physical world. The eye and its movements provide a key contribution to 

interpreting and understanding a person’s wishes, needs, tasks, cognitive processes, 

affective states and interpersonal relations.  

The unique geometric and photometric properties of the eyes provide 

important visual cues for obtaining face-related information. Thus, the research about 

gaze estimation becomes important.  

To measure rotations of the eye, there are principally three categories (Table 

1.1). 

 Measurement of the movement of an object attached to the eye, such as a 

special contact lens with an embedded mirror or magnetic field sensor, 

and the movement of the attachment is measured with the assumption that 

it does not slip significantly as the eye rotates [38]. 

 Measurement of electric potentials using electrodes placed around the 

eyes, the electric signal that can be derived using two pairs of contact 

electrodes placed on the skin around one eye called Electrooculogram 

(EOG). If the eyes move from the center position towards the periphery, 

the retina approaches one electrode while the cornea approaches the 

opposing one. This change in the orientation of the dipole and 

consequently the electric potential field result in a change in the measured 
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EOG signal. Inversely, by analyzing these changes, eye movement can be 

tracked [39].  

 Optical tracking without direct contact to the eye, it uses some non-

contact, optical method for measuring eye motion. Light, typically 

infrared is reflected from the eye and sensed by a video camera or some 

other specially designed optical sensors.  

In this thesis, we focus on the optical tracking approach using a camera. 

  

TABLE 1.1 
THREE CATEGORIES OF MEASURING ROTATIONS OF EYES 

Categories Devices 

Measurement of the movement of an object 
attached to the eye 

A special contact lens with an 
embedded mirror or magnetic 

field sensor 

Measurement of electric potentials Electrodes placed around the 
eyes 

Optical tracking to the eye 
A video camera or some other 

specially designed optical 
sensors 
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1.2 Eye movement detection by camera 

Gaze estimation is the process of measuring either the point of gaze or the 

motion of an eye relative to the head. Gaze estimation is a hot topic in computer 

vision in such areas as driver behavior analysis, security monitoring, behavior 

investigation, and human-computer interfaces [1]. In particular, gaze information can 

offer a new means of communication with machines, such as determining a human’s 

region of interest. The most widely used current designs are video-based gaze 

estimation. A camera focuses on one or both eyes and records their movement as the 

viewer looks at some kind of stimulus. Since gaze direction corresponds to human 

eyeball movement. The most crucial factors in estimating gaze direction are the 

eyeball and iris/pupil centers. While the iris/pupil center can be directly observed 

using a camera, the eyeball center must be calibrated. Most modern gaze estimation 

methods use the center of the pupil and infrared/near-infrared non-collimated light to 

create corneal reflections (glint). The vector between the pupil center and the corneal 

reflections can be used to compute the point of regard on surface or the gaze direction. 

A simple calibration procedure of the individual is usually needed before using the 

gaze estimation method. 

However, the gaze estimation system based on infrared illumination have 

many limitations like below: 

1. The infrared illumination can be affected by the sunshine in outdoor 

scenario.  

2. The relative position between the infrared lights and the camera need to 

be calibrated carefully. 
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3. The pupil and the glint are very small, usually a high-resolution camera is 

needed. 

So most current gaze estimation system can only work in indoor scenario. To 

solve this problem and apply the gaze estimation system in outdoor scenario, we focus 

on the research that estimates the gaze by common cameras, including the remote 

camera and the head-mounted camera. 

For the remote camera, since an eyeball is a part of the head, gaze direction 

can be represented in the coordinate system of the head if the head pose is known. To 

estimate the gaze estimation, we must first detect the face in the image. This requires 

a platform that can detect the face and determine the head pose quickly and accurately 

when constructing a gaze estimation system. Refer to the platform, there are many 

mature commercial products existing until now. One of them, Kinect sensors, which 

can acquire both color and depth cues, have become widely used in human–machine 

interaction tasks. Based on the Kinect SDK (Software Development Kit), head pose 

and face tracking can be acquired at the rate of 30 fps. Figure 1.1 shows the platform 

and the head pose and a face tracking result.  

For the head-mounted camera, since the camera can have a direct view of the 

eye, we do not need any information about the head pose or the eye position in images. 

To achieve such an eye image, we put a common RGB camera on a glasses frame. 

The platform and the image acquired by the camera are shown in Fig. 1.2. Since the 

eye camera is mounted on the head, the position of eyeball center at the coordinate 

system of head-mounted eye camera does not change unless the position of eye 

camera is changed. Once the position of eye center is known, what we need to do is 

only to determine the direction vector of gaze. 
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Fig. 1.1: The Kinect sensor and the head pose detection. 

 

Fig. 1.2: Head-mounted camera and captured eye image. 



 

9 

 

1.3 Contributions 

In this thesis, we focus on gaze estimation from color cues based on an eye 

model.  

For the remote camera, we assume the head pose is known from depth cues 

from a RGB-D camera. In comparison to other eye-model-based methods of gaze 

estimation, the contributions are as follows: 

 An eyeball center calibration protocol is introduced. In contrast to the 

conventional target-gazed calibration methods, the protocol requires the 

user to fixate on the camera from different directions, effectively 

generating samples of the eyeball oriented in different directions and 

reducing occlusions by a target located in front of the user.  

 We present an innovative method for iris fitting, the problem of 

determining the eyeball orientation that aligns best with the edges found 

in the color image. Instead of the conventional five parameters for 

fitting an ellipse, our fitting process requires determining only two 

unknown parameters. 

For the head-mounted camera, we propose a new method for the estimation of 

the eyeball center position and the iris contour separately for gaze tracking. By 

decoupling these two factors, we propose to make two contributions to the process of 

gaze estimation using a head-mounted eye camera as follows: 

 We represent the ellipse of an iris contour projected onto the image 

using only two parameters. To the best of knowledge, in all estimation 

approaches using a head-mounted eye camera, the fitting of an ellipse to 
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the iris contour is performed using five unknowns during the entire 

process of gaze tracking. 

 The other contribution is related to the calibration of the center of the 

eyeball. In contrast to existing methods that estimate the eyeball center 

position by fitting an ellipse to the iris contour using five parameters 

[24] and other offline calibration methods [3, 4], automatic online 

eyeball center calibration is realized by using our iris fitting method 

with two parameters iteratively and employing a multiple frame strategy. 

1.4 Organization 

The rest of this thesis is organized as follows: Related research is introduced 

in the next chapter. Chapter 3 introduces the basic and related knowledge that can 

help the readers to understand our method easier. In Chapter 4, the method that gaze 

estimation from a remote camera is introduced. And the method that gaze estimation 

from a head-mounted camera is introduced in Chapter 5. Finally, conclusions are 

given in Chapter 6. 
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 CHAPTER 2

Fundamentals 

As the subject of this thesis is gaze estimation on the remote camera and the 

head-mounted camera, first some fundamentals need to be introduced to help 

understanding this thesis. In this chapter, we start with the explanation of a physical 

model of human’s eye. Then the camera model and projection are introduced. To 

understand this thesis better, the knowledge of ellipse fitting are recommended, we 

would introduce this part at the end of the chapter. 

2.1 Eye 

The eyes are wonderful sensory organs. They help people learn about the 

world in which people live. Eyes see all sorts of things - big or small, near or far, 

smooth or textured, colors and dimensions. The eyes have many parts - all of which 

must function in order to see properly.  

2.1.1 Inside the eye 

In addition to the many sections of the eyeball itself, muscles are attached to 

the outer walls of the eyeball. The eye muscles are attached to eyes in order to move 

the eyes. Figure 2.1 shows these main parts. If anything goes wrong, such as from 

diabetic eye disease, an individual might not be able to see as well. Visual information 

from the retina in the eye travels to the brain via the optic nerve. When eyes see an 

object, two images from them are slightly different since there is a distance between 

them. Therefore, the brain must mix the two images to get a complete picture. 

What we think of as seeing is the result of a series of events that occur among 

the eye, the brain, and the outside world. Light reflected from an object passes 
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through the cornea of the eye, moves through the lens which focuses it, and then 

reaches the retina at the very back where it meets with a thin layer of color-sensitive 

cells called the rods and cones. Because the light crisscrosses while going through the 

cornea, the retina "sees" the image upside down. The brain then "reads" the image 

right-side up [41]. 

Glossary 

 Aqueous Humor: a clear, watery fluid that fills the front part of the eye 

between the cornea, lens and iris. 

 Cornea: the transparent outer portion of the eyeball that transmits light 

to the retina. 

 Fovea: A tiny spot located in the macula that is the area of clearest 

vision on the retina. 

 Iris: the colored, circular part of the eye in front of the lens. It controls 

the size of the pupil. 

 Lens: the transparent disc in the middle of the eye behind the pupil that 

brings rays of light into focus on the retina. 

 Optic Nerve: the important nerve that carries messages from the retina 

to the brain. 

 Retina: the inner layer of the eye containing light-sensitive cells that 

connects with the brain through the optic nerve. It also contains retinal 

blood vessels which feed the retina and which can be affected by 

diabetes. 

 Sclera: the white part of the eye that is a tough coating which, along 

with the cornea, forms the external protective coat of the eye. 
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 Vitreous Humor: a colorless mass of soft, gelatin-like material that fills 

the eyeball behind the lens. 

 Macula: is a small area of the retina located near the optic nerve at the 

back of the eye. It is responsible for our central, most acute vision. 

 Pupil: the circular opening at the center of the iris that controls the 

amount of light into the eye. 

 

  

 

Fig. 2.1: Eye structure 
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2.1.2 Working principle of eye 

This section refers to Ref. [40], which can help readers to understand the 

working principle of eye. The eye is made up of three layers: the outer layer called the 

fibrous tunic, which consists of the sclera and the cornea; the middle layer responsible 

for nourishment, called the vascular tunic, which consists of the iris, the choroid, and 

the ciliary body; and the inner layer of photoreceptors and neurons called the nervous 

tunic, which consists of the retina. 

The eye also contains three fluid-filled chambers. The volume between the 

cornea and the iris is known as the anterior chamber, while the volume between the 

iris and the lens is known as the posterior chamber, both chambers contain a fluid 

called aqueous humor. Aqueous humor is watery fluid produced by the ciliary body. It 

maintains pressure and provides nutrients to the lens and cornea. Aqueous humor is 

continually drained from the eye through the Canal of Schlemm. The greatest volume, 

forming about four-fifths of the eye, is found between the retina and the lens called 

the vitreous chamber. The vitreous chamber is filled with a thicker gel-like substance 

called vitreous humor which maintains the shape of the eye. 

Light enters the eye through the transparent, dome shaped cornea. The cornea 

consists of five distinct layers (Fig. 2.2). The outermost layer is called the epithelium 

which rests on Bowman's Membrane. The epithelium has the ability to quickly 

regenerate while Bowman's Membrane provides a tough, difficult to penetrate barrier. 

Together the epithelium and Bowman’s Membrane serve to protect the cornea from 

injury. The innermost layer of the cornea is called the endothelium which rests on 

Descemet's Membrane. The endothelium removes water from cornea, helping to keep 
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the cornea clear. The middle layer of the cornea, between the two membranes is called 

the stroma and makes up 90% of the thickness of the cornea. 

From the cornea, light passes through the pupil. The amount of light allowed 

through the pupil is controlled by the iris, the colored part of the eye. The iris has two 

muscles: the dilator muscle and the sphincter muscle. The dilator muscle opens the 

pupil allowing more light into the eye and the sphincter muscle closes the pupil, 

restricting light into the eye. The iris has the ability to change the pupil size from 2 

millimeters to 8 millimeters. 

Just behind the pupil is the crystalline lens. The purpose of the lens is to focus 

light on the retina. The process of focusing on objects based on their distance is called 

accommodation. The closer an object is to the eye, the more power is required of the 

crystalline lens to focus the image on the retina. The lens achieves accommodation 

with the help of the ciliary body which surrounds the lens. The ciliary body is 

attached to lens via fibrous strands called zonules. When the ciliary body contracts, 

the zonules relax allowing the lens to thicken, adding power, allowing the eye to focus 

up close. When ciliary body relaxes, the zonules contract, drawing the lens outward, 

making the lens thinner, and allowing the eye to focus at distance. 

Light reaches its final destination at the retina. The retina consists of 

photoreceptor cells called rods and cones. Rods are highly sensitive to light and are 

more numerous than cones. There are approximately 120 million rods contained 

within the retina, mostly at the periphery. Not adept at color distinction, rods are 

suited to night vision and peripheral vision. Cones, on the other hand, have the 

primary function of detail and color detection. There are only about 6 million cones 

contained within the retina, largely concentrated in the center of the retina called the 
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fovea. There are three types of cones. Each type receives only a narrow band of light 

corresponding largely to a single color: red, green, or blue. The signals received by 

the cones are sent via the optic nerve to the brain where they are interpreted as color. 

People who are color blind are either missing or deficient in one of these types of 

cones. 

  

 

Fig. 2.2: Cornea structure 
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2.2 Camera model 

A camera model is a function which maps our 3-dimensional world onto a 2-

dimensional plane, called the image plane. Generally, this function is designed to 

closely model a real-world, physical camera. There are many camera models of 

varying complexity, and a natural dividing line which helps categorize them is 

whether or not they are able to capture perspective.  

2.2.1 Pinhole camera model 

The Pinhole camera is the simplest camera in various camera models.  When 

using a pinhole camera, this geometric mapping from 3D to 2D is called a perspective 

projection. The line perpendicular to the image plane passing through the camera 

center as the optical axis (Fig. 2.3). Moreover, the intersection point of the image 

plane with the optical axis is called the principal point. We assume that the image 

plane is positioned parallel to the xy-plane, at position z=f, so the coordinate of the 

principal point is (0, 0, f)T.  

Considering a 3D scene point (X, Y, Z)T and its corresponding image point (u, 

v)T. By looking at similar triangles, the correspondence of these two points can be 

written as below, 

,                                                     (2.1) 

Then, to avoid such a non-linear division operation, the relation below can be 

reformulated using the projective geometry framework, as 

,                                    (2.2) 

This relation can be expressed in matrix notation by 
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,                                         (2.3) 

Where  is the homogenous scaling factor.  

  

 

Fig. 2.3: Pinhole camera model 
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2.2.2 Camera calibration with OpenCV 

This section refers to Ref. [42], which can help readers to understand the 

camera calibration with OpenCV. Cameras have been around for a long-long time. 

However, with the introduction of the cheap pinhole cameras in the late 20th century, 

they became a common occurrence in our everyday life. Unfortunately, this cheapness 

comes with its price: significant distortion. Luckily, these are constants and with a 

calibration and some remapping we can correct this. Furthermore, with calibration we 

may also determine the relation between the camera’s natural units (pixels) and the 

real world units (for example millimeters). 

For the distortion OpenCV takes into account the radial and tangential factors. 

For the radial factor one uses the following formula: 

                                (2.4) 

So for an old pixel point at (x, y) coordinates in the input image, its position on 

the corrected output image will be (xcorrected, ycorrected). The presence of the radial 

distortion manifests in form of the “barrel” or “fish-eye” effect. 

Tangential distortion occurs because the image taking lenses are not perfectly 

parallel to the imaging plane. It can be corrected via the formulas: 

                                 (2.5) 

So we have five distortion parameters which in OpenCV are presented as one 

row matrix with 5 columns: 

                          (2.6) 

Now for the unit conversion we use the following formula: 
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                                       (2.7) 

where the presence of  is explained by the use of homography coordinate system 

(and ). The unknown parameters are f (camera focal lengths) and (cx, cy) which 

are the optical centers expressed in pixel’s coordinate. The matrix containing these 

three parameters is referred to as the camera matrix. While the distortion coefficients 

are the same regardless of the camera resolutions used, these should be scaled along 

with the current resolution from the calibrated resolution. 

The process of determining these two matrices is the calibration. Calculation 

of these parameters is done through basic geometrical equations. The equations used 

depend on the chosen calibrating objects. Currently OpenCV supports three types of 

objects for calibration: 

 Classical black-white chessboard. 

 Symmetrical circle pattern. 

 Asymmetrical circle pattern. 

Basically, we take snapshots of these patterns with the camera and let 

OpenCV find them. Each found pattern results in a new equation. To solve the 

equation we need at least a predetermined number of pattern snapshots to form a well-

posed equation system. This number is higher for the chessboard pattern and less for 

the circle ones. For example, the chessboard pattern requires at least two snapshots. 

However, in practice we have a good amount of noise present in our input images, so 

for good results we will need at least 10 good snapshots of the input pattern in 

different positions. 
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2.2.3 The RGB camera 

The RGB color model is an additive color model in which red, green and blue 

light are added together in various ways to reproduce a broad array of colors. The 

name of the model comes from the initials of the three additive primary colors, red, 

green and blue. An RGB camera delivers the three basic color components on three 

different wires. This type of camera often uses three independent CCD sensors to 

acquire the three color signals. RGB cameras are used for very accurate color image 

acquisitions. 

2.2.4 The RGB-D camera 

The RGB-D camera is based on the RGB camera, and the major difference is 

that an IR camera is used to take the depth data, that means by the RGB-D camera we 

can know the distance between the object and the camera. Sometimes the depth 

information is very useful in doing some research, RGB-D camera can supply us with 

more information (depth information) than the RGB camera and more convenient. Up 

to now, some commercial RGB-D cameras are widely used in many fields, like 

Microsoft Kinect, Inter RealSense, Asus Xtion Pro. 
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2.3 Ellipse fitting 

Traditional iris fitting methods always take the iris contour as an ellipse. And 

based on detected iris edge points on an image, a set of the general equations of an 

ellipse can be formulated. Then by solving the nonlinear function set, the five 

parameters of the ellipse can be obtained, so the iris contour is obtained. We call these 

methods five parameters iris fitting methods (FIFM). The general equation of an 

ellipse is introduced below, which refers to Ref. [43]. 

The standard equation for an ellipse, x2 / a2 + y2 / b2 = 1, represents an ellipse 

centered at the origin and with axes lying along the coordinate axes.  In general, an 

ellipse may be centered at any point, or have axes not parallel to the coordinate 

axes.  But such an ellipse can always be obtained by starting with one in the standard 

position, and applying a rotation and/or a translation.  For the most general 

formulation, we can include rotations through an angle of 0 (that is, no rotation at all) 

and translations by the zero vector (no translation at all).  Then every ellipse can be 

obtained by rotating and translating an ellipse in the standard position.  Accordingly, 

we can find the equation for any ellipse by applying rotations and translations to the 

standard equation of an ellipse. 

It is a matter of choice whether we rotate and then translate, or the 

opposite.  To see this, let R represent a rotation, and consider what happens to a point 

x = (x, y) if we first translate by vector v, and then apply R.  The result will be R(x + 

v) = Rx + Rv, because R is linear.  But this is the same as first rotating x, and then 

translating by Rv.  This shows that every ellipse can be obtained from one in the 

standard position by either a rotation followed by a translation, or a translation 
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followed by a rotation.  In developing a general equation for ellipses, we will use 

rotation and then translation. 

Rotation counterclockwise about the origin through an angle α carries (x, y) to 

(x cos α − ysin α, ycos α+x sin α) (derived here). The inverse operation can be 

obtained by rotating through 2π − α, and hence carries (x, y) to (x cos α + y sin α, y 

cos α − x sin α). Applying the methods of equation of a transformed ellipse now leads 

to the following equation for a standard ellipse which has been rotated through an 

angle α.  

                      (2.8) 

Expanding the binomial squares and collecting like terms gives 

             (2.9) 

which is in the form Ax2 + Bxy + Cy2 = 1, with A and C positive.  In this way 

we see that the equation for a rotated ellipse, centered at the origin is a quadratic with 

a nonzero xy term. 

We have seen that a rotated ellipse, centered at the origin, is always given by 

an equation of the form Ax2 + Bxy + Cy2 = 1, where A and C are positive, and B2 − 

4AC < 0.  To complete the analysis of the general equation of an ellipse, note that 

translating a curve by a fixed vector (h, k) simply has the effect of replacing x by x − 

h and y by y − k in the equation for that curve.  Accordingly, the general equation for 

a rotated ellipse centered at (h, k) has the form A(x − h)2 + B(x − h)(y − k) + C(y − 

k)2 = 1, again where A and C are positive, and B2 − 4AC < 0. Note also that 
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expanding the general form of the translated ellipse will introduce, for the first time, x 

and y terms.  In fact the expanded version is  

Ax2 + Bxy + Cy2 − (2Ah + kB)x − (2Ck + Bh)y + (Ah2 + Bhk + Ck2 − 1) = 0.   (2.10) 

So the five parameters of an ellipse are axes (a, b), ellipse center (h, k), rotated 

angle α.  
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 CHAPTER 3

Related Research 

In this section, we first give an explanation of eye-model in brief. Then, we 

introduce the related works focused on gaze estimation. Last, the related works about 

eyeball center calibration and iris fitting related to the remote camera approach and 

the head-mounted approach are introduced. 

3.1 Eye model 

Figure 3.1 shows a simple eye-model of humans [5]. The eyeball consists of 

two spheres of different sizes. The anterior smaller sphere is the cornea, which 

contains the iris. As a result of human biological structure, the real gaze direction is 

not the same as the direction that passes through the eyeball center C and the iris 

center P. Generally, we take the real gaze direction to be the visual axis from corneal 

center C0 to gaze point G. The theoretical direction is called the optical axis, and these 

two axes form a constant angle . K is the distance between the eyeball and iris 

centers, and K0 is the distance between the eyeball and corneal centers. Moreover, in 

three-dimensional (3D) space, because the cornea resembles a ball, there should be 

another internal iris center P0 beside the iris center P, as shown in Fig. 3.1. The iris 

plane is the cross section of the cornea perpendicular to the optical axis and through 

P0. In this thesis, we call P0 the internal iris center to distinguish it from the iris center 

P. L is the distance between the eyeball and internal iris centers. 
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Note that the optical axis is the normal vector of the iris plane. If we know the 

optical axis, the visual axis corresponding to gaze direction can be determined using 

human’s biometric parameters.  

  

 

Fig. 3.1: 3D eye model. The optical and visual axes maintain a constant 
geometric relationship. The optical axis can be determined from eyeball 
center C and iris center P. The visual axis can be calculated from the known 
optical axis, as the eye parameters are known. 
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3.2 Gaze estimation 

Gaze estimation methods can be divided into feature-based and appearance-

based ones. Appearance-based methods do not extract features explicitly, but learn a 

direct mapping from high-dimensional eye images to the low-dimensional space of 

gaze coordinates [6, 7, 8]. Lu et al. [8] introduced an accurate adaptive linear 

regression method for mapping from sparsely collected training samples, but the 

method requires a fixed head pose. To solve the appearance-based gaze estimation 

problem under free head motion, Lu et al. [7] decompose the problem into sub-

problems, including initial estimation under fixed head pose and subsequent 

compensations for estimation biases. Each sub-problem is solved using either a 

learning-based method or geometric calculation. However, appearance-based methods 

require large sets of training data to deal with eye image variations when learning a 

general mapping, owing to differences in appearance, illumination, head pose, scale, 

and eyelid movement. Noris et al. [9] used specialized head-mounted hardware to 

track the gaze in unconstrained environments. Zhu et al. [10] constructed a highly 

nonlinear generalized gaze mapping function that accounts for head movement by 

using support vector regression. These methods require an additional device.  

Unlike appearance-based methods, feature-based methods extract features 

such as corneal infrared reflections, pupil center, and iris contour [11, 12, 13]. These 

features are used to set up a 3D eye model and then estimate the gaze direction. 

Feature-based methods can be highly accurate under free head movement. However, 

this kind of method has the disadvantage that special cameras or lights are required to 

extract eye features [14, 15]. One or more infrared lights are used to illuminate the 
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eye region and to build the corneal refection on the corneal surface, while one or more 

cameras are used to capture the image of the eye [5]. Instead of using infrared lights 

and their corneal reflections, Ishikawa et al. [16] used a global head model to track 

the entire head and eye contour, but they used template matching to find the iris and 

refined the iris location by using an ellipse fitting algorithm. Chen et al. [4] proposed 

a 3D eye gaze estimation and tracking algorithm based on facial feature tracking 

using a single camera, but they labeled the iris center manually. 

With respect to RGB-D camera-based gaze estimation, Refs. [17, 18] combine 

a Kinect camera with another high-resolution camera, and Refs. [19, 20] use a single 

Kinect camera. Ref. [19] uses an appearance-based method to learn a direct mapping 

from the eye image to gaze parameters, with the error of gaze direction reported to be 

more than 20° for a moving target under extreme head movements. Ref. [20] is 

regarded as a hybrid approach in the sense that an eye model is incorporated into the 

learning process, with the average gaze direction error reported to be 3.4° in an 

experiment with people looking at screen targets. 

Since gaze estimation aims to measure the 3D direction of the visual axis of 

the eyeball, which is determined from eyeball and iris centers, as shown in Fig. 3.1, 

we believe that the eye-model-based method is a good choice, if we can calibrate the 

related eye model parameters accurately. With the appearance-based method, the 

mapping between the eye region image and the gaze direction is learned by training 

from samples. Gaze extrapolation must be conducted, and over-fitting can occur 

during the training phase. 
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3.3 Remote camera approach 

When a remote camera is used, users’ head moves freely at the camera 

coordinate system. To estimate the optical axis of eyeball, we need to estimate the 

center position of eyeball continuously. Conventional methods calibrate the eyeball 

center in head coordinate system, and then estimate the head pose continuously. Iris 

fitting is also challenging because of the image’s low quality. 

Xiong et al. [3] use a simple onetime calibration procedure to obtain the 

eyeball center. Nine points are predefined on the monitor screen to be looked at, the 

calibration is achieved by minimizing the sum of angles between predicted gaze 

direction and the ground truth. Although nine points pattern method is a very common 

way for eyeball calibration, there are various principles in different researches. Chen 

et al. [4] compute the 3D position of the eyeball center based on the middle point of 

two eye corners. While Li et al. [31] use the principle that the optical axis and visual 

axis have a fixed angle. Besides nine points pattern method, there is a more 

convenient method that does not need any offline step. Wang et al. [24] make use of 

the observation that the iris contour while being a circle in 3D is an ellipse in the 

image, the eyeball center can be estimated from the ellipse/circle correspondence, but 

this method requires an accurate iris contour detection. About iris fitting in less 

unconstrained environments, there are various methods are proposed. Mahadeo et al. 

[21] propose a region based segmentation method for accurate eyelid detection in 

images with variable illumination and significant blur. Eyelashes are divided into two 

categories and eliminated. Du et al. [22] employ a coarse-to-fine segmentation 

scheme to improve the overall efficiency, uses a direct least squares fitting of ellipse 
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method to model the deformed pupil and limbic boundaries, and develops a window 

gradient-based method to remove noise in the iris region. 
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3.4 Head-mounted camera approach 

Different from a remote camera, a head-mounted eye camera has a direct view 

of eye and no head pose is needed. Given a set of iris contour candidate feature points, 

we need to find the best fitting ellipse from the eye image.  

To date, extensive research has been performed on this topic. The least squares 

fitting of an ellipse is a common choice [23], but gross errors made in the feature 

detection stage can strongly influence the accuracy of the results. Therefore, a more 

efficient fitting algorithm is proposed. Li et al. [2] fit an ellipse to a subset of the 

detected edge points using the random sample consensus (RANSAC) paradigm [25]. 

The best fitting parameters are then used to initialize a local model-based search for 

the ellipse parameters that maximize the fit to the image data. So far, the ellipse fitting 

method [2] is considered to be one of the most efficient methods and is applied in 

many studies. Zhang et al. [26] explore a new networking mechanism using smart 

glasses, through which users can express their interest and connect to a target simply 

by a gaze. Moreover, Takemura et al. [27] present more appropriate information 

about a persons’ gaze when moving over a wide area and include visualization of the 

scan paths when the user with a head-mounted device makes natural head movements. 
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 CHAPTER 4

Gaze estimation from remote camera 

In this chapter, we describe the proposed method of gaze estimation from a 

remote camera, using a RGB-D camera, Kinect.  

Our method’s basic principle is similar to that of [31] and [28]. These studies 

track the iris center and calibrate the personalized eyeball center. Our method has 

these characteristics: 

 The method is simple, based only on the eye model and known head 

pose.   

 We introduce a method of eyeball center calibration by gazing at the 

camera center from different directions (Fig. 4.1b). Traditionally, a 

common point is used as a target for data training or parameter 

calibration (Fig. 4.1a). With our approach, the problem of the face being 

Target 

(a)                       (b) 

Fig. 4.1: a) Gazing at a target for data training or parameter calibration. b) 
Gazing at the center of the RGB camera for data training or parameter 
calibration. 
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occluded by the target during eyeball center calibration can be 

eliminated. 

 We estimate the iris center by fitting an ellipse on the RGB image using 

the eye model and coordinate transformation.  

With Kinect, we can build a head coordinate system (Fig. 4.2a), using an iris-

center tracking algorithm [29] to obtain the 2D position of the iris center (Fig. 4.2b) 

and fit the iris edge on images to obtain a more accurate iris center (Fig. 4.2c). A 

calibration method is used to determine the eyeball center position (Fig. 4.2d). As the 

iris and eyeball centers are both known, the gaze direction can be estimated (Fig. 

4.2e). The following sections describe the details of each step. 
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Fig. 4.2: Main steps of method. a) Achieving head pose and facial feature 
points by Kinect, the eye zone can also be located. b) The initial position of iris 
center using the method in [29], and the 2D iris center would be transformed 
to 3D space by a model. c) From the eye-zone image, edge points of iris would 
be detected, and iris center position can be obtained by the proposed fitting 
algorithm. d) Calibrating the eyeball center in head coordinate system based 
on 3D eye model, we take the RGB camera of Kinect as a target for gazing at 
from different directions, as the fixed angle relationship, eyeball center can be 
calibrated. e) Gaze estimation can be calculated in real-time. 
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4.1 The RGB-D camera--Kinect 

Kinect is an input device for motion sensing, which is produced by Microsoft 

for the Xbox 360 video game console and Windows PCs (Fig. 4.3). Based around a 

webcam-style add-on peripheral for the Xbox 360 console, it enables users to control 

and interact with the Xbox 360 without the need to touch a game controller, through a 

natural user interface using gestures and spoken commands.  

Microsoft released Kinect software development kit (SDK) for Windows. This 

SDK will allow developers to write Kinect enabled apps in C++/CLI, C#, or Visual 

Basic .NET.  

  

 

Fig. 4.3: Kinect sensor. 
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4.1.1 The sensor 

The Kinect sensor is connected to a small base with a motorized pivot and is 

designed to be positioned lengthwise above or below the video display. The device 

has two versions i.e. Kinect for Xbox 360 and Kinect for Windows (for commercial 

purpose). 

The device features (Fig. 4.4) 

 RGB camera.  

 Depth sensor (IR).  

 Multi-array microphone.  

 Motor to adjust camera angle.  

In addition to the above features, Kinect for Windows offer few extra features 

i.e. 

 Facial recognition 

enables to track multiple points in your face like Skeleton Tracking.   

 Near Mode 

enables the camera to see objects as close as 40 centimeters in front of 

the device without losing accuracy or precision, with graceful 

degradation out to 3 meters. 

 Seated or 10 Joints Mode 

skeletal tracking which provides the capability to track the head, neck 

and arms of either a seated or standing user.  
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4.1.2 RGB camera 

The default RGB video stream uses 8-bit VGA resolution (640 × 480 pixels) 

with a Bayer color filter, but the hardware is capable of resolutions up to 1280×960 

(at a lower frame rate) and other formats such as UYVY. 

4.1.3 Depth sensor (IR) 

The depth sensor consists of an infrared laser projector combined with a 

monochrome CMOS sensor, which captures video data in 3D under any ambient light 

conditions. The sensing range of the depth sensor is adjustable, and the Kinect 

software is capable of automatically calibrating the sensor based on gameplay and the 

player’s physical environment, accommodating for the presence of furniture or other 

obstacles. 

The monochrome depth sensing video stream is in VGA resolution (640 × 480 

pixels) with 11-bit depth, which provides 2,048 levels of sensitivity. The Kinect 

sensor has a practical ranging limit of 3.9 – 11 ft. distance when used with the Xbox 

software.  

 

Fig. 4.4: Kinect structure. 
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4.1.4 Field view 

The area required to play Kinect is roughly 6 m2, although the sensor can 

maintain tracking through an extended range of approximately 2.3 – 20 ft.  

The horizontal field of the Kinect sensor at the minimum viewing distance of 

~0.8 m (2.6 ft.) is therefore ~87 cm (34 in), and the vertical field is ~63 cm (25 in), 

resulting in a resolution of just over 1.3 mm (0.051 in) per pixel.  

4.1.5 Microphone array 

The microphone array features four microphone capsules and operates with 

each channel processing 16-bit audio at a sampling rate of 16 kHz. 

4.1.6 Face tracking and 3D head pose 

The X,Y, and Z position of the user’s head are reported based on a right-

handed coordinate system (with the origin at the sensor, Z pointed towards the user 

and Y pointed up – this is the same as the Kinect’s skeleton coordinate frame). 

Translations are in meters. The user’s head pose is captured by three angles: pitch, roll, 

and yaw (Fig. 4.5). 

The Face Tracking SDK tracks the eighty-seven 2D points indicated in the 

following image (Fig. 4.6) 
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Fig. 4.6: Face tracking. 

 

Fig. 4.5: Head pose. 
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4.2 Coordinate systems 

There are four coordinate systems in our method, which correspond to Kinect, 

head, eyeball and iris, as shown in Fig. 4.7. The coordinate system of the Kinect RGB 

camera is selected as the Kinect coordinate system, and the Kinect RGB camera is 

calibrated in advance.  

Kinect coordinates are supplied by the Microsoft Face Tracking SDK for 

Kinect, which enables applications that track human faces in real time. The face-

tracking engine of the Face Tracking SDK analyzes input from a Kinect camera, 

deduces head pose and facial expressions, and provides that information to an 

application in real time. Our method uses the Kinect face-tracking algorithm because 

of its reliability and convenience. 

The Kinect coordinate system is based on a right-handed coordinate system 

whose origin is at the RGB camera sensor, with CZ  pointing toward the user and CY  

pointing upward. The Kinect SDK can supply the head pose, which is captured by 

three angles: pitch, roll, and yaw. We can calculate the rotation matrix from these 

angles. As we know the translation and rotation matrices T and R, respectively, we 

can build a head coordinate system that is also based on a right-handed principle. HZ

points to the back of the head, while HY  points upward. The origin of the system is 

inside the head, as defined by the SDK. The other two coordinates are in the eyeball 

coordinate and iris coordinate systems. 
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Fig 4.7: Four coordinate systems: Kinect coordinate, head coordinate, eyeball 
coordinate, and iris coordinate systems. 
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4.3 Initial iris center detection 

Before fitting the iris, we use the algorithm of [29] to achieve the initial iris 

center position on the image. As the face-tracking algorithm offered by Kinect can 

detect eye contours, we can obtain an initial eye region. Based on that region, the iris 

center-detecting algorithm is used, and an initial center is achieved. The accuracy of 

the algorithm in [29] decreases when the iris is partially occluded by eyelids. As the 

small white circle in Fig. 4.8(a) shows, the algorithm failed in locating the iris center 

accurately. 

As the initial iris center is  on the image, its 3D position 

 can be estimated using a geometric principle, assuming that the distance 

between iris center P and eyeball center C is a constant K because we can 

approximately take the eyeball to be a standard ball, with eyeball center C as its center 

and iris center P on its surface. On the other hand, if we know the internal parameters 

of the camera, a ray in 3D space passing through the 2D iris center point of the image 

also passes through the 3D iris center P, and the ray intersects the 3D eyeball (Fig. 

4.8(b)). Related equations are as follows: 

  (4.1) 

where is the center of the image and f is the focal length. Eyeball 

center  can be estimated using calibration. 
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(a) 

 

(b) 

Fig 4.8: a) The small white circle inside the iris is the iris center detecting 
result of [29], with the detecting region determined by Kinect. It is the initial 
value, when fitting the iris. The white cross is the fitting result obtained using 
our method. b) According to the imaging principle, the ray passing through 
the 2D iris center on the image from the camera center also passes through 
the 3D iris center in space, and the 3D iris center is located on the surface of 
the eyeball. If the eyeball center is known, the intersection can be calculated. 
The lower right corner is the image on the Kinect camera screen. 
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4.4 Fitting the iris 

We calculate the iris center by fitting the iris because it is more accurate and 

stable. After projection, the iris, whose shape is nearly a circle in 3D space, can 

present as different ellipses on images. Here, we show that by using cues provided by 

Kinect, the ellipse corresponding to the iris contour in a Kinect RGB image can be 

described using two parameters. 

Let the iris and eyeball coordinate systems  and , 

respectively, be constructed as in Fig. 4.7. Note that these coordinate systems have the 

same origin. 

In the iris coordinate system, the PZ  axis passes through the iris center 

perpendicular to the iris plane. According to prior knowledge, the iris in 3D space is 

nearly a circle. For 3D iris edge points , where a is the 

transverse radius, b is the longitudinal radius, L is the distance between eyeball center 

and  is the internal iris center. In Fig. 3.1, L is not the same as K, and t is a 

parameter. Transforming  to iris edge points in the eyeball coordinate system : 

                                                         (4.2) 

When the iris is rotating on the eyeball surface, the roll angle will not change 

relative to the eyeball; hence we can express  with roll, pitch, and yaw, while the 

roll is zero. 

Then, we transform them to the head coordinate system. The axis of the 

eyeball coordinate system is set to the same directions as the head coordinate system, 

meaning that relative to the head coordinate system, the eyeball coordinate system 

will have translation but no rotation. 
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                                                       (4.3) 

where  is actually the eyeball position, which can be calibrated to the head 

coordinate system. 

Next, we transform points to the Kinect coordinate system. 

                                                  (4.4) 

After obtaining the 3D points , we project them back to the 2D 

image. With Equations (4.2-4.4), the image points   can be expressed as: 

                                                       (4.5) 

where M is the internal camera parameters determined by chessboard calibration. 

Taking all of these equations and parameters, we can express Equation (4.5) as: 

            (4.6) 

And from Equation (4.6), we can obtain: 

                  (4.7) 

Since , the final objective function is 

                        (4.8) 

Note that among the parameters of Equation (4.8), only pitch and yaw are 

unknowns, thanks to the head pose detection function of Kinect. This is a much 

simpler representation than the conventional ellipse representation with five 

parameters (The mathematic description can be found in the Appendix of this chapter). 

Since Kinect SDK can offer the position of eye corners, we can obtain an eye 

mask image without eyelids. Then, a set of edge points can be detected from the 

image by the Canny edge detector. Moreover, the initial 3D iris center P introduced in 
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Section 4.3 can be obtained; hence, a credible initial pitch and yaw are available for 

iterations. This function can be solved using the Levenberg–Marquardt algorithm 

(LMA).  

For the known edge points, there are outliers existed. To eliminate these 

outliers and increase calibration accuracy, random sample consensus (RANSAC) is 

used prior to LMA. After pitch and yaw are determined, the iris center P in the Kinect 

coordinate system can be obtained gradually from (0, 0, K) in the iris coordinate 

system using Equations (4.2-4.4). In this way, the accuracy of the iris center, the 

white cross shown in Fig. 4.8(a), can be improved.   
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4.5 Eyeball center calibration  

The eyeball center can be regarded as fixed in the biological structure of the 

human head. In the proposed method, we calibrate the eyeball center position in the 

head coordinate system first and need to do that only once. Then, we transform it to 

the Kinect coordinate in real time.  

To conduct the calibration, we use the 3D eye model. As Fig. 3.1 shows, when 

people are gazing at the target, there is a fixed angle  between visual and optical 

axes [5]. The visual and optical axes are expressed as the vectors  and , 

respectively. The two vectors are related to the position  which can be expressed 

by the eyeball center C. By using the iris fitting method which is introduced in section 

4.4, the 2D iris center can be obtained. Next we obtain an accurate G point. Figure 

4.1b illustrates how to calibrate the eyeball center. During the calibration, the 

observer keeps gazing at the Kinect RGB camera from different directions. In this 

case, the coordinate of the target point G must be the origin in the Kinect coordinate 

system. 

For the equation, first assume that the eyeball center in the head coordinate 

system is . As a result of the calculation performed in the Kinect coordinate 

system,  must also be transformed to Kinect coordinates using Equation (4.9): 

                                                      (4.9) 

As Equation (4.1) describes, the 3D iris center P can be deduced from the 2D 

iris center from unknown C: 

                                                       (4.10) 

Since K and  are constants [5],  can be estimated as follows: 
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                        (4.11) 

Then, according to a relationship between the two vectors, we obtain the 

following equation: 

                                     (4.12) 

Finally, the only unknown parameter is . To solve the nonlinear equation, 

we use LMA and RANSAC. 
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4.6 Gaze estimation 

After calibration, the gaze direction can be estimated automatically in real 

time. First, we transform the calculated eyeball center to the Kinect coordinate system 

using the calculated rotation and translation matrices. The 3D eyeball position can be 

obtained in the Kinect coordinate system at this time and frame. The 3D position of 

the iris center P is obtained by fitting. Then, the eyeball center  is calibrated. Thus, 

we can calculate the optical axis frame by frame. The direction of the gaze  can be 

estimated and expressed as horizontal and vertical angles . Finally, the visual 

axis can be obtained by adding the constant angle values ( ) (Fig. 4.9). 

  

 

Fig. 4.9: Orientation of the optic axis of the eye (defined in Fig. 2 as in [5]). 
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4.7 Error analysis  

To determine the gaze estimation errors corresponding to iris center errors, we 

first need to know the real distance that one pixel indicates. Assuming that the eyeball 

center is accurately estimated, the distance between Kinect and the person is d, and 

the focal length is f, one pixel indicates a distance of  in the real situation 

resulting from the proportional relation. If the detecting result has an n-pixel error, 

then the real distance error is . As the eyeball radius is K, the gaze estimation 

angle errors can be expressed provably as follows: 

                                   (4.13) 

The gaze estimation errors with pixel errors at different distances are shown in 

Fig. 4.10: f = 1033, K = 1.31 cm. Since Kinect cannot detect the human structure if 

the distance between the human and Kinect is less than 50 cm, the analysis range is 

from 60 cm to 100 cm. Taking 60 cm as an example, when the iris detecting error is 

one pixel, the final gaze estimation has a 2.5-degree error. If the final gaze estimation 

error increases rapidly with increasing pixel error, then it would have a 12-degree 

error, when there was a five-pixel error in iris detection.  

The error analysis yields three conclusions about the gaze estimation error: 

In terms of (4.13), it is proportional to the iris center detecting error, as n 

increases, 

In terms of (4.13), it is proportional to the distance between the Kinect and 

human, as d increases,  

In terms of (4.13), it is inversely proportional to the image resolution, as f 

decreases.  
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With respect to how gaze estimation depends upon head pose estimation error, 

Reference [30] reported a position accuracy of 3-6 mm at a distance of 1-2.5 m when 

tracking the face by Kinect SDK. Thus, the additional error due to head estimation 

accuracy when the user is at 60cm would be 0.57 degrees or less.  

  

 

Fig. 4.10: Gaze estimation errors when the distance changed or iris detecting 
errors occurred. 
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4.8 Evaluation  

A series of experiments was conducted to verify the effects of the proposed 

method. The known eye parameters used in these experiments are the average human 

eye values [5] shown in Table 4.1. 

The experiments are conducted on a 1,280 × 960 RGB image from Kinect. 

The distance from camera to the subjects is approximately 60 cm. We realized this 

method using Visual C++ on a 2.5GHz Inter(R) Core(TM) i5-2400S processor and a 

8GB RAM. 
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TABLE 4.1 
VALUES OF THE EYE PARAMETERS 

Parameter 
Description Value 

K Distance between the center of the eyeball 

and the center of iris. 

13.1 mm 

L Distance between the center of the eyeball 

and the internal center of iris. 

10.5 mm 

 Distance between the center of the eyeball 

and the center of corneal. 

5.3 mm 

a Transverse radius 6 mm 

b Longitudinal radius 5.5 mm 

 Horizontal angle between visual and optical 

axis of the eye 

−5° for the 

right eye, 

5° for the left 

eye 

 Vertical angle between visual and optical 

axis of the eye 

1.5° 
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4.8.1 Iris fitting result  

Following the fitting procedure introduced in Section 4.4, to have a direct 

sense after determining the yaw and pitch, we project the iris edges in the iris 

coordinate system to the 2D space of the image. The results show that our algorithm 

performs well in different conditions (Fig. 4.11). The white circle inside the iris is the 

initial iris center point as determined by the detecting algorithm [29], while the white 

cross is the final iris center point as determined by fitting. The white cross represents 

iris center P, not the internal iris center point; hence the point is not on the iris plane 

but outside in 3D space. After projection of 3D iris center to the 2D image, it might 

not be in the very center of the iris fitting, when the person is not looking directly into 

the camera as Fig. 4.11 shows. The big white circle is the iris fitted using our method. 

If an entire iris is shown on images, then it is easy to fit (Fig. 4.11a). However, our 

method can fit successfully even if an iris that is not complete (Fig. 4.11b) and also 

irises looking upward, downward, leftward, and rightward (Fig. 4.11c). This shows 

that fitting performs well, if the iris edge points are detected well, and that it is more 

accurate and reliable than the method proposed by [29]. 
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(a) 

 

 

(b) 

 

 

(c) 

Fig. 4.11: Iris fitting result in different conditions 
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4.8.2 Eyeball center calibration  

The eyeball center is fixed in the head coordinate system regardless of 

rotation; hence the center position must be calibrated first. We ask the subject to gaze 

at the RGB camera while the head is in different positions. Thus the gaze point G 

coincides with the RGB camera. This has the advantage that because the calibration is 

calculated in the Kinect coordinate system, the coordinate of G is zero. 

Ten sets of data were collected. To ensure accurate calibration, the subject was 

provided with an iris image which is as complete as possible. Then, the data were 

collected with gazing directed at the camera center from different directions at 

different depths. After calibration, the eyeball center  in head coordinate system can 

be obtained. 
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4.8.3 Gaze test  

To test the accuracy of the proposed method, the subject continued to gaze at 

the RGB camera, while moving the head. Then, we determined two vectors, one is 

connecting the eyeball center and gaze point (the origin of the Kinect coordinate 

system) directly. The other vector is determined by the eyeball and iris center. 

Because the position error of eyeball center calibration is very small relative to the 

distance between Kinect and the subject, we take this vector as ground truth. A 

comparison of estimated gaze and ground truth is shown in Fig. 4.12. Gaze estimation 

is expressed in terms of horizontal and vertical angles . 116 frames are recorded 

in total, with horizontal and vertical estimations ranging from −20° to 20° and from 

−10° to 15° respectively (Fig. 4.12). The final average results are 3.0° and 4.5° for 

horizontal and vertical estimation, respectively, and most of the frames are close to 

ground truth. 

We collected ten samples from ten people to test our algorithm. The subjects 

were asked to keep gazing at the camera while moving their head. The average gaze 

direction estimation errors are shown in Table 4.2. Sample No. 8 is for testing how the 

error depends on the yaw angle (looking rightward and leftward); Sample No. 9 is for 

testing how the error depends on the pitch angle (looking downward and upward); 

sample No. 10 is for testing free head movement. Large head poses are included in 

last three samples. As shown in Fig. 4.13a, the horizontal gaze direction error 

increases with yaw angle. In Fig. 4.13b, the vertical gaze direction error increases 

with pitch angle. With respect to head tracking accuracy with Microsoft Face 

Tracking SDK: “Face Tracking tracks when the user’s head yaw is less than 45 
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degrees, but works best when less than 30 degrees. Face Tracking tracks when the 

user’s head pitch is less than 20 degrees, but works best when less than 10 degrees.” 

Our experiments are roughly consistent with the above statement. 

To ensure accurate calibration, the subject had no head rotation and was 

provided with as a complete iris image as possible. Then, the data were collected with 

gazing directed at the camera center from different directions at different depths. 

After calibration, the eyeball center  in head coordinate system can be obtained. 

The experimental environment is almost the same as that of  [31], with the 

only difference that subjects gazed at a moving target without their head moving, 

whereas our test involved gazing at a stable target (camera center) with head moving. 

The movement difference is relative, hence comparable in our view. The average 

comparison results of the first seven samples are shown in Table 4.3. Because our iris 

center detection is more robust to eyelid occlusion than that of [31], our method 

achieves 27 percent improvement in the vertical direction. The average running time 

for one frame during our experiment is 330 ms. 
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(a) 

 

(b) 

Fig. 4.12: Comparison of estimated gaze and ground truth. a) Horizontal gaze 
estimation. b) Vertical gaze estimation. 
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TABLE II 
GAZE ESTIMATION ERRORS 

Index 
Frames 

Vertical 
angles 

(degrees) 

Horizontal 
angles 

(degrees) 

Average 

(degrees) 

Sample 1 1000 5.5 4.3 4.9 

Sample 2 1000 5.2 3.1 4.2 

Sample 3 1000 9.1 3.9 6.5 

Sample 4 1000 4.8 4.3 4.4 

Sample 5 1000 6.9 4.1 5.5 

Sample 6 1000 5.0 4.9 5.0 

Sample 7 1000 5.1 6.1 5.6 

*Sample 8 1000 7.4 11.4 9.4 

*Sample 9 1000 8.1 3.0 5.6 

*Sample 10 1000 14.1 9.5 11.8 

*: These samples are testing for large head poses 

 

TABLE III 
GAZE ESTIMATION COMPARING RESULT 

Vertical 
(degrees) 

Horizontal 
(degrees) 

Vertical [20] 
(degrees) 

Horizontal [20] 
 (degrees) 

5.9 4.4 7.5 4.4 

 

 

(a) 

 

(b) 

Fig. 4.13: The error depends on the angle. a) Yaw angle b) Pitch angle. 
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TABLE 4.2 
GAZE ESTIMATION ERRORS 

Index 
Frames 

Vertical 
angles 

(degrees) 

Horizontal 
angles 

(degrees) 

Average 

(degrees) 

Sample 1 1000 5.5 4.3 4.9 

Sample 2 1000 5.2 3.1 4.2 

Sample 3 1000 9.1 3.9 6.5 

Sample 4 1000 4.8 4.3 4.4 

Sample 5 1000 6.9 4.1 5.5 

Sample 6 1000 5.0 4.9 5.0 

Sample 7 1000 5.1 6.1 5.6 

*Sample 8 1000 7.4 11.4 9.4 

*Sample 9 1000 8.1 3.0 5.6 

*Sample 10 1000 14.1 9.5 11.8 

*: These samples are testing for large head poses 

 
 

TABLE 4.3 
GAZE ESTIMATION COMPARING RESULT 

Vertical 
(degrees) 

Horizontal 
(degrees) 

Vertical [31] 
(degrees) 

Horizontal [31] 
 (degrees) 

5.9 4.4 7.5 4.4 
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4.8.4 Database test  

We tested our method on the public database EYEDIAP [32]. One EYEDIAP 

session involves continuous screen target testing, with fourteen participants from 

different areas. A small circle was drawn on the computer screen and programmed to 

move along a trajectory parameterized by a quadratic Bezier curve. The control points 

of the curve were drawn from a uniform distribution defined within a smaller window 

of the screen of which position was drawn randomly. A new trajectory was redefined 

every 2 s, with a resolution of 640 × 480 from Kinect. The database also offers 3D 

eyeball center and screen target coordinates. Since the experimental subject gazes 

continuously at the screen target, we can take the line through the 3D eyeball center 

and the target as the ground truth of gaze estimation. During iris detection validation, 

we use the eyeball center and head pose provided by the database. 

 However, there are some problems we need to illustrate. These participants 

are completely free of head movement; hence the eye is sometimes occluded by the 

nose or the head pose is missing. Moreover, our iris fitting result relies on the result of 

iris edge detection. Due to the low illumination and resolution of the data, the iris 

fitting result was poor for some frames. The results for the left eye of fourteen 

participants are shown in Table 4.4. The second column shows video frames. The 

third column shows detected frames. As sometimes the head pose data are missing, 

the eye is occluded by the nose, no edge points are found, or eye zone location failed, 

our method could not perform iris edge detection on these kinds of frames. Next, the 

vertical and horizontal angles (all) are the average gaze estimation angle errors of 

detected frames. The sixth column shows filtered frames. Because we did not 
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eliminate eyelid interference in this database and both illumination and resolution are 

low, iris edge detection is challenging. As Equation (13) describes, if the iris center 

has a two-pixel error when the distance is 70 cm and the resolution is 640 × 480, the 

final gaze estimation will have an error of nearly 12-degree. Therefore, if the 

horizontal or vertical gaze estimation is greater than 15 degrees, we consider it an iris 

fitting failure and discount the frame. The vertical and horizontal angles (F) are the 

average angle errors of filtered frames. Iris fitting fails for most of the frames because 

our iris fitting method strongly relies on iris edge detection. Considering the low 

resolution, inaccurate iris edges, and comprehensive test cases, we believe that the 

average vertical and horizontal gaze errors, 7.6 and 6.7 degrees, are acceptable. Even 

after calculating all the detected frames, the average gaze estimation is 12.5 and 13.5 

degrees for the vertical and horizontal directions, respectively. The performance of 

the proposed method is inferior to the state-of-the-art appearance-based method of 

[33], which reported average gaze error of 8.1 degrees for the same database. 

Considering the low resolution and illumination, this result supports the fact that an 

eye-model-based method is suitable for the situation where iris contours are available 

in contrast with the appearance-based method, which can cope with low resolution 

images by learning 2D eye patterns.  

To validate the eyeball calibration method, we take the initial values from the 

eyeball center provided by the database. We choose fifteen frames that fit the iris well 

to calibrate the eyeball center using our method. Although the participants are not 

gazing at the camera center, screen target positions are provided; hence the calibration 

principle is nearly the same. The fourteen participant calibration results are shown in 
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Table 4.5. The first row of each participant shows the ground truth from the database, 

while the second row shows the calibration results using our method. The average 

errors from the ground truth are 0.54, 1.65, and 16.25 mm for the X, Y, and Z 

coordinates, respectively. In our opinion, the reason for inaccurate Z coordinate 

calibration is that during the calibration, the distance between the screen and 

participants is 70 cm, the free movement of the head in these videos shows no obvious 

depth variation, and the position of the iris center point on the image was not sensitive 

to the depth change of the eyeball. In other words, the estimation error of the depth of 

the eyeball has little influence on gaze estimation in such an experimental setup. An 

alternative method is to use depth cues and head pose in terms of the statistical 

physiological data, as the dataset did, only X and Y coordinates are obtained by 

calibration. 

Note that the proposed method is a feature-based gaze estimation method, and 

theoretically, the accuracy of iris contour estimation depends on the image quality for 

feature-based gaze estimation methods. The results show that the proposed method 

works even with a small number of iris edge points. 
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TABLE 4.4 
GAZE ESTIMATION ERRORS FOR EYEDIAP DATABASE 

Participant Frames Detected 
frames 

Vertical 
angles 
(all) 

(degrees) 

Horizontal 
angles (all) 
(degrees) 

Filtered 
frames 

Vertical 
angles (F) 
(degrees) 

Horizontal 
angles  

(F) (degrees) 

1 4464 4151 10.9 14.4 1854 7.5 8.2 
2 4456 2388 9.9 18.7 1356 5.2 7.6 
3 4457 4172 10.7 12.1 2356 7.0 7.0 
4 4493 2207 13.6 12.8 897 7.2 6.3 
5 4457 4287 19.1 14.6 837 9.8 6.1 
6 4457 4346 8.3 9.5 3189 6.0 6.5 
7 4457 2782 15.4 26.8 551 7.3 7.3 
8 4457 4030 9.5 11.7 2461 5.5 6.9 
9 4456 3884 18.8 17.0 918 8.8 6.7 
10 4491 4381 10.7 11.7 2513 7.2 6.2 
11 4457 4388 15.2 9.6 1693 10.1 5.9 
12 4457 4446 11.0 14.9 2009 8.4 7.9 
13 4457 4449 8.9 8.0 3409 7.0 6.3 
14 4457 4400 12.7 6.7 2830 9.7 5.4 

Average 4462 3879 12.5 13.5 1919 7.6 6.7 
 



 

 66 

 

 
 

 

  

TABLE 4.5 
EYEBALL CENTER ERRORS FOR EYEDIAP DATABASE  

(1ST ROW SHOWS GROUND TRUTH; 2ND ROW SHOWS CALIBRATION RESULTS) 
 

PARTICIPANT X(mm) Y(mm) Z(mm) 

1 31.98 34.58 85.39 
31.04 41.12 93.96 

 2 32.02 37.19 91.37 
31.17 37.36 106.42 

 3 31.62 35.07 89.30 
31.21 36.30 103.49 

 4 30.52 34.10 84.33 
31.61 32.43 102.45 

 5 32.24 33.53 87.28 
31.66 31.67 105.16 

 6 32.36 33.10 84.76 
32.82 31.49 101.36 

 7 32.22 34.00 86.65 
33.01 30.64 112.01 

 8 30.83 32.81 82.27 
31.17 31.31 100.09 

 9 33.43 38.51 96.57 
32.41 38.01 110.28 

 10 30.31 35.05 86.61 
30.00 34.77 104.04 

 11 32.15 34.19 85.94 
32.20 35.52 101.63 

 12 31.17 33.65 85.94 
31.73 33.78 99.11 

 13 34.19 34.94 93.25 
34.15 35.38 107.99 

 14 32.17 34.73 89.02 
32.12 32.29 108.24 

Average errors 0.54 1.65 16.25 
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4.9 Conclusions  

This chapter proposed a novel method of estimating gaze direction using color 

information based on an eye model-given head pose. We introduced a simple 

calibration method for the eyeball center by gazing at the camera center and estimated 

the iris center by projecting the 3D contour of the iris to the RGB image using the eye 

model and RGB cues. In theory, we simplified the elliptic contour estimation of the 

iris as a representation of two unknowns. This simplified representation results in 

faster and more accurate gaze estimation. Moreover, our method is simple and reliable, 

requiring no training stage, and it can also run automatically in real time with a high-

resolution image.  

Finally, we summarize our work relative to the state of the art gaze estimation 

methods. In contrast to the eye-model-based gaze estimation method [31], which also 

uses a RGB-D camera as an input, the proposed two parameter iris boundary 

estimation method achieves much more accurate results, as shown in our subjects 

experiment and the public database EYEDIAP experiment. In contrast to the 

appearance-based gaze estimation method [33], the performance of the proposed 

method is inferior for lower resolution and poor illumination images, as tested on the 

public database EYEDIAP. This is because the eye-model-based method necessitates 

a certain number of correctly detected edge points of iris contour. In practice, eye-

model-based or appearance-based approaches, should be used depending upon the 

setting. 
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4.10 Appendix 

This part is a supplement to the functions in this chapter. 

4.10.1 Eyeball center calibration problem 

Assuming , , and . 

 Equation (4.12) can be expressed as follows: 

            (4.14) 

According to the first formula of Equation (4.1), 

                                              (4.15) 

Substituting Equation (4.15) into the second formula of Equation (4.2), we 

take k as the unknown. 

                       (4.16) 

From Equation (4.15) and Equation (4.16), we can express P as C. 

According to Equation (4.11), 

                                     (4.17) 

From Equation (4.17), we can express  as C. 

According to Equation (4.9), 
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                                            (4.18) 

From Equation (4.18), we can express C as . 

Next by substituting Equations (4.16-4.18) into Equation (4.14), the unknown 

parameter in Equation (4.14) is only . Since  is constant in the head coordinate 

system independent of head pose, we can solve it by solving a set of equations 

obtained from the observation of different head poses.  
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4.10.2 Iris fitting problem 

Assuming , , , ,

, and . 

According to Equation (4.2) and Equation (4.3),  can be expressed as 

follows: 

              (4.19) 

According to Equation (4.4),  can be expressed as follows: 

                     (4.20) 

According to Equation (4.5),  can be expressed as follows: 

                                            (4.21) 

Substituting Equation (4.19) and Equation (4.20) into Equation (4.21), we see 

that they are linear equations. Then,  and  can be obtained from Equation 

(4.21). Using , we can achieve a final objective Equation (4.8). 

In this function, only  is unknown, and the rotation matrix can be expressed in 

terms of roll, pitch, and yaw, while roll is zero, as we mentioned previously. Thus, 

there are only two unknowns in this problem. 
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 CHAPTER 5

Gaze Estimation from Head-mounted Camera 

The use of an eye model results in more accurate gaze estimation. Based on an 

eye model, the gaze detection from a head-mounted camera can be formulated as the 

problem of estimating the pose of the optical axis of eyeballs, including position and 

direction [12]. 

In this chapter we argue that the above processing contains with much of 

futility for gaze estimation system of a head-mounted eye camera. Since the eye 

camera is mounted on the head, as shown in Fig. 1.2, the position of eye center at the 

coordinate system of head-mounted eye camera does not change unless the position of 

eye camera is changed. Once the position of eye center is known, what we need to do 

is only to determine the direction vector of optical axis with two unknown parameters. 

In this case, the ellipse of iris contour can be represented by these two parameters, 

that is, we do not need to fit the ellipse of iris contour with five unknown parameters. 

In this chapter, we first present a schematic block diagram of the proposed 

method. We then describe the algorithm used for fitting the iris contour in an image to 

an ellipse using two unknown parameters. Finally, we provide the algorithm 

employed for calibrating eyeball center position in relation to the coordinate system of 

the head-mounted camera. 
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5.1 Block diagram of the proposed method 

The block diagram of the proposed method is shown in Fig. 5.1. For an image 

captured using a head-mounted camera, a change in the camera position was first 

detected. In case of a change in the camera position, the calibration of the eyeball 

center position is performed. Otherwise, the iris contour fitting is conducted. 

The change in the camera position can be detected by finding the eye corners 

[34]. In this chapter, we focus on the iris contour fitting and the calibration of eyeball 

center position. 

 

  

 
 

Fig 5.1:  Block diagram of the proposed method. 
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5.2 Fitting of iris contour 

Figure 5.2 shows the sketch of our computation model for gaze estimation 

from a head-mounted camera based on an eye-model. The big circle indicates an 

eyeball and the small circle on eye image indicates the iris contour. The optical axis 

starts from the eyeball center Oc, and passes through the internal iris center P0. Since 

the position of eyeball center has three unknown parameters and the direction vector 

of optical axis have two unknown parameters, the problem of gaze estimation from 

head-mounted camera is to determine these five parameters from an eye image at the 

coordinate system of head-mounted camera, CCCC ZYXO . 

Our algorithm for fitting the iris contour is very different from the existing 

fitting algorithms. In 3D space, the iris is nearly a circle. Based on the 3D iris contour, 

the iris coordinate system is built. In the iris coordinate system, the origin is at the 3D 

eyeball center, the Z axis passes through the iris center perpendicular to the iris plane 

(Fig. 5.2). Given the 3D iris edge points , L)t, rt (rPp )(sin)(cos , r is the real iris 

radius, L is the distance between eyeball center and internal iris center P0, and t is a 

parameter. The iris edge points (Pp) are then transformed to the camera coordinate 

system (Pc).  

Assuming, ),,( 321 TTTT , ),,( pcpcpcc zyxP ,
987

654

321

RRR
RRR
RRR

R . 

3987

2654

1321

*)sin(**)cos(**
*)sin(**)cos(**
*)sin(**)cos(**
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pc

pc

,                                  (5.1) 
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where T is the 3D eyeball center position and it can be calibrated in advance. The 

calibration procedure is presented in Section 5.3. As the iris rotates on the eyeball 

surface, the roll angle does not change relative to the eye camera pose. Hence, R can 

be expressed using roll, pitch, and yaw, when the roll is zero. 

The iris edge points in the camera coordinate system (Pc) are then projected 

back to a 2D image. The image points ),( vuPi  can be expressed as 

0

0

*

*

v
z

fyv

u
z

fxu

pc
pc

pc
pc

,                                                           (5.2) 

where ),,( 00 fvuM is the internal camera parameter determined using a chessboard 

calibration. Substituting Equation (5.1) into Equation (5.2), we can express Equation 

(5.2) as 

  ),,,,),cos(),(sin(
),,,,),cos(),(sin(

MLrTRttgv
MLrTRttfu

,                                  (5.3) 

Obviously, they are linear equations. The values for sin(t) and cos(t) can be 

easily obtained from Equation (5.3) 

),,,,,,()cos(
),,,,,,()sin(

MLrTRvukt
MLrTRvuht

,                                              (5.4) 

Using the relation, 1)(cos)(sin 22 tt , from Equation (5.4) we can have 

the following equation. 

0),,,,,,( MLrTRvu ,                                                       (5.5) 
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where only the rotation matrix R is unknown, and can be expressed in terms of roll, 

pitch, and yaw, when the roll is zero as mentioned previously. Thus, there are only 

two unknowns in Equation (5.5). Because a set of 2D iris edge points can be detected 

on the image, a set of over-constraint equations can be obtained from one image. The 

Levenberg–Marquardt algorithm can be used to solve the equation. Furthermore, 

RANSAC is used to cope with outliers caused by noises and edge point detection 

errors. Hereafter, this approach is named as the two parameters iris fitting method 

(TIFM). 

  

 

 

Fig. 5.2: Sketch of our computation model for iris fitting from a head-
mounted camera based on an eye-model. 
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5.3 Calibration of eyeball center position 

Because our iris-fitting algorithm is based on a 3D eye model, the estimation 

of the 3D eyeball center position is necessary. A head-mounted eye camera is adopted 

in our system, where the eyeball center position is fixed with respect to the camera 

coordinate system. Thus, the position of the eyeball center is constant with respect to 

the coordinate system of eye camera once it is calibrated. 

Theoretically, the 3D iris center and the normal direction vector of iris plane 

can be computed as two solutions from a single eye image using the conventional five 

parameters iris fitting method (FIFM) [2]. For calibrating the eyeball center position, 

it is sufficient to identify the true one from the two solutions [12, 35]. Practically, 

because these parameters are computed from iris contour, fitting iris contour 

accurately is a crucial problem. 

In this chapter, we employ the relaxation method to solve this problem. For an 

eye image, the iris contour is first fitted using edge points by FIFM [2] to compute the 

3D iris center and the direction vector. The eyeball center can then be inferred. Next, 

the proposed TIFM is used to compute the projection of 3D iris contour on the eye 

image. Then, the 3D iris contour projection is used as cues to cluster edges points. 

This process is iterated until a stable solution was obtained. Empirically, a satisfactory 

result can be obtained over 50 iterations. 

An example of the iterative solution is shown in Fig. 5.3. The final iris contour 

is obviously fitted better than the initial estimate. Because the 3D eyeball center 

position is estimated from the detected iris contour, it results in much better 

estimation. 
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The next step is to identify the true one from the two solutions computed using 

FIFM. Because eyeball center is constant in the eye camera coordinate systems unless 

we change the eye camera position, a consecutive image sequence is used to 

determine the truth of eyeball center.  

Assume there are a set of solutions  , for each , we count the 

numbers that satisfy the distance from  to   is smaller than the threshold of  

2mm as follows. 

      )( ji                        (5.6) 

 is the point, which has the maximum number of points. We then take  

and the points around together as a cluster, and compute the average value of this 

cluster as the final solution of 3D eyeball center position. 

  

 

Fig. 5.3: Iris fitting by iterations. a) Initial fitting. b) 1st iteration. c) 10th 
iteration. d) 20th iteration. e) 30th iteration. f) Final fitting. 
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5.4 Evaluation 

To verify the effects of the proposed method, a series of experiments were 

conducted. In these experiments, the images of 640 480 pixels were captured using 

a calibrated head-mounted camera. The eye parameters used in these experiments are 

derived from known average human eye values [5], iris radius r = 6mm, distance 

between the center of the eyeball and the internal center of iris L = 10.5mm. 

5.4.1 Simulation 

This section provides a simulation of the effects of edge point errors and 

outliers on the accuracy of fitting using FIFM [2] and the proposed TIFM. In the 

camera coordinate system, assuming that the eyeball center position and the iris pose 

are known, the iris contour, which is projected onto the image, can also be determined. 

The contour on the image represents the iris location. Thus, these iris edge points can 

be considered the ground truth. 

Simulation 1: To validate the robustness against edge point errors, 0–10 

random pixel errors were added to the ground truth of edge points. Based on the 

ground truth, the iris fitting was performed using our method and FIFM, and the 

results were compared. Considering that different iris poses will have different 

projections on the image, the simulations were repeated for different situations (Fig. 

5.4a). As a result, the average fitted iris center error obtained using our method is one 

pixel in comparison to the value of three pixels obtained using FIFM (Table 5.1). This 

implies that our method is more robust to noise. 

Simulation 2: To validate the robustness against outliers, 0–40 random pixel 

errors were added to a quarter of the edge points, such that these points are quite far 
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from the iris. To the other edge points, 0–10 random pixel errors were added. After 

repeat simulations (Fig. 5.4b), the average fitted iris center error obtained using FIFM 

simulation is 4.7 pixels while the error obtained using our method is 1.8 pixels (Table 

5.2). This shows that FIFM is more sensitive to outliers in comparison to our method. 

Simulation 3: In the first two simulations, no errors were introduced on the 

eyeball center. However, our method is based on the eye model and the center of the 

eyeball is a key factor. In fact, the estimation of the center of the eyeball may not be 

very accurate. To validate the robustness against eyeball center error, a 1 mm error 

was added to the on x, y, and 2 mm to the z coordinate of the center of the eyeball, 

while using the same edge points as simulation 2. The average fitted iris center error 

for the x and y coordinates are three pixels and two pixels, respectively. The errors 

observed in our method are still lower than the errors tested by FIFM. 

All the above simulations show that our method is more robust than the 

traditional five parameters fitting method. The efficiency of our method is enhanced 

when the estimation of the center of the eyeball is accurate enough. 
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Figure 6: Iris fitting error.  
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(b) 

Fig. 5.4: Iris fitting error.  
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TABLE 5.1 
THE AVERAGE FITTED IRIS CENTER ERROR  

Method in [2](x) Method in [2](y) Our method(x) Our method(y) 

2.8 pixels 3.3 pixels 0.9 pixels 1.0 pixels 

 
 
 

TABLE 5.2 
FITTED IRIS CENTER ERROR WITH OUTLIERS  

 

Method in [2](x) Method in [2](y) Our method(x) Our method(y) 

5.2 pixels 4.3 pixels 1.9 pixels 1.7 pixels 
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5.4.2 Method validation 

To validate our method and to demonstrate that it is more robust and accurate, 

we also performed experiments employing conditions not favorable to our method. 

Sometimes due to poor lighting, eyelid occlusion, and variable illumination, the 

distinction between the iris region and background is often ambiguous. Figure. 5.5a 

shows examples that include blurring, iris reflection, and occlusion. First, to increase 

the contrast, we compute mean intensity in region S1 and S2 (Fig. 5.6). In general, 

pixels in these two regions can represent iris and eyelid color respectively, and these 

parts are usually not occluded. Then refer to these two values, the input intensity 

values, which are lower than S1, would be changed to 0. The input intensity values, 

which are higher than S2, would be changed to 255. The input intensity values 

between S1 and S2 would be stretched. The image after stretch is shown as Fig. 5.5b. 

It can do a large help for segmentation, but at the same time, it also increased the iris 

reflection. Then Canny algorithm is adopted to obtain the rough edge points. From 

Fig. 5.5c, you can see that the edge detecting result is really a messy, especially 

disturbed by iris reflection, eyelids, and eyelashes. We use the vector product strategy 

to eliminate the noises. An initial 2D iris center is known by Ref. [29], we take it as a 

possible center, like point C in Fig. 5.6. The normalized displacement to an iris edge 

point E is d, while the gradient vector at point E is g. Generally, even the point C is 

not accurate, at least the iris edge points should satisfy the principle that the vector 

product is positive. To guarantee not eliminate the iris edge point, we only eliminate 

one third of the rough edge points by vector product intensity. The result is shown as 

Fig. 5.5d. Although up to now the iris edge is not complete, the edge points are still 



 

 83 

 

there. Because the eye image is captured by head-mounted camera, the eye would not 

have a rotation movement relative to camera. In other words, the iris edge points 

would always have a strong horizontal gradient. Therefore, last step; we filter the 

edge points by a given horizontal gradient threshold. Considering the illumination 

influence, in our experiments; we only set the threshold as 30. One more reason why 

we take this tactics is that the left and the right regions of iris are usually not occluded. 

As you can see from Fig. 5.5e, after these steps, most of the remaining edge points 

belong to iris. Based on these points, as shown in Fig. 5.5f, our method can fit the iris 

contour much more accurately (the circle with dotted line) than FIFM (the circle with 

solid line). This implies that our method is much more robust with outliers caused by 

eyelids or other disturbances than FIFM. 
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(a)              (b)               (c)              (d)                 (e)               (f) 

Fig. 5.5: The iris detection on the occlusion, iris reflection, and blurred 
situation. 

 

Fig. 5.6: Vector product principle. 
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5.4.3 Eyeball calibration  

To validate our eyeball calibration method, four different samples were 

acquired for testing. First, in order to have a reference value, the subject was allowed 

to gaze at the camera center. Then, a scale was manually defined. Thus, the 3D iris 

position was measured, and subsequently, the 3D center of the eyeball was 

determined on the basis of the eye model. 

Next, the approach used in the FIFM method [2] was used to fit the iris, and 

the center of the eyeball was calculated using the approach employed in Ref. [12] for 

five frames. The selected final eyeball center locations using our proposed method 

with and without relaxation are listed in Table 5.3. As aforementioned, because of the 

eyelid, the FIFM ellipse fitting method performs poorly in the vertical direction (Fig. 

5.3a). As a result, the error without relaxation method on the y axis is 5 mm, which is 

beyond the range allowed for the eye model. With the relaxation method, the y axis 

error decreases to 1 mm, while the z axis error is approximately 2 mm. As shown in 

simulation 3, in this case, our method performs well for eyeball center estimation. 
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5.4.4 Iris fitting  

The calibrated eyeball center positions (Table 5.3) were used to test our fitting 

method on four subjects. No limitations were imposed during this test, and the 

subjects were allowed to freely move their eyeballs or blink. A 500 frame video was 

recorded for each subject and the number of iris fitting failed frames is listed in Table 

5.4. The results show that our method is successful in fitting the iris, and failed in 

very few frames, while the traditional method has a much lower performance (Fig. 

5.5f). 

TABLE 5.3 
EYEBALL CALIBRATION VALIDATION  

Samples Ground truth (cm) 
Without iterations 

(cm) 
With iterations (cm) 

1 (0.15, 1.24, 7.14) (0.19, 1.68, 6.96) (0.04, 1.21, 7.17) 

2 (0.15, 1.12, 6.84) (0.18, 1.60, 6.84) (0.12, 1.19, 7.05) 

3 (0.32,1.30, 7.01) (0.41, 1.78, 6.89) (0.33, 1.40, 7.20) 

4 (0.33, 0.62, 6.10) (0.35, 1.00, 5.97) (0.22, 0.64, 6.10) 

 
TABLE 5.4 

IRIS FITTING TEST ON SAMPLES  
Sample Frames Failed frames 

1 500 7 

2 500 4 

3 500 2 

4 500 17 
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5.4.5 Screen test 

The accuracy of our gaze estimation method and other existed methods [5, 27, 

36, 37] using targets on a screen was evaluated. The resolution of the screen is 1920 × 

1080 pixels, and fifteen points are displayed on the screen. These points are separated 

from each other at a fixed distance of 6.5 cm. During this validation, the user was 

asked to gaze at each of these points for a while, and this validation was conducted in 

a continuous mode without interruption. The distance between the user and the screen 

was 50 cm. The computed gaze points on the screen are shown in Fig. 5.7a. The 

vertical and horizontal angle error for each observation is shown in Fig. 5.7b. The 

average error is 1.49° in the vertical direction and 0.89° in the horizontal direction. 

Table 5.5 shows the average angle error of each marker. The comparison with some 

recent research are summarized in Table 5.6. 

All the above experiments were performed using OPENCV in Visual Studio 

using a 2.5-GHz Inter(R) Core™ computer with an i5-2400S processor and an 8 GB 

RAM. The average processing time per frame are 160 ms. 
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TABLE 5.5 
AVERAGE ANGLE ERROR OF EACH MARKER 

Marker Vertical(degrees) Horizontal(degrees) 

1 1.46 0.52 

2 1.98 1.54 

3 1.28 1.05 

4 1.20 0.80 

5 1.49 0.86 

6 1.58 0.81 

7 1.16 1.00 

8 1.30 1.08 

9 1.33 0.70 

10 0.72 0.76 

11 1.92 1.68 

12 2.63 0.67 

13 2.19 0.97 

14 1.06 0.43 

15 0.98 0.47 

Average 1.49 0.89 
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(a) 

 

(b) 

Fig. 5.7: Screen gaze point error. 

TABLE 5.6 
COMPARISON WITH OTHER WORKS 

Item Error(degrees) 

Sugano et al. [36] 2-4 

Guestrin et al. [5] 1-3 

Chen et al. [37] 1.8-2 

Takemura et al. [27] 3 

Proposed 0.5-2 
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5.5 Conclusion 

In this chapter, we propose a novel method for gaze tracking of head-mounted 

eye camera. In the proposed method, we exploit the characteristics of the head-

mounted eye camera system, and decouple the estimation of the eyeball center and iris 

contour. We demonstrate that the iris can be extracted in a more efficient and accurate 

manner by projecting the 3D iris contour onto a 2D space. Moreover, an automatic 

eyeball center calibration procedure was introduced. As shown in the comparative 

experiments, the proposed method achieves higher accuracy than conventional 

methods 
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 CHAPTER 6

Conclusions 

6.1 Summary 

In this thesis, we focus on the problem of estimating gaze from a remote 

camera and a head-mounted camera. And novel methods of gaze estimation based on 

an eye model respectively for a remote camera and a head-mounted camera are 

proposed.  

For a remote RGB-D camera--Kinect, based on the given head pose, a novel 

method of estimating gaze direction is proposed. This method is not like the 

traditional gaze estimation method, by using the 3D eye-model and the knowledge of 

projection, we first introduced a simple calibration method for the eyeball center. As a 

result of biological structure, there are two axes in our eye model, one is the visual 

axis, which passes through the eyeball center to iris center. The other one is the 

optical axis, which passes through the corneal center to gaze point. In theory, the 

visual axis is our gaze direction, but the real gaze direction is actually optical axis. 

Because the visual axis and the optical axis can form a constant angle, we use this 

principle to calibrate the eyeball center position. And about obtaining the 3D gaze 

point, we did not use the traditional way that put a target in front of the camera but 

take the camera center as target to gaze, so the problem of face occlusion can be 

eliminated, and it can also simplify our objective function. Next we estimate the iris 

center by projecting the 3D contour of the iris to the RGB image using the eye model 

and RGB cues. In this procedure, four coordinate systems are involved, and 

coordinate transformation is widely used. Finally the iris contour estimation would 



 

 92 

 

only rely on only two unknowns, which is better than the common five parameters 

fitting method. This simplified representation results in simpler and more accurate 

gaze estimation. Moreover, our method needs no extra training stages and devices, 

and it can also run automatically in real time with a high-resolution image.  

For the head mounted camera, we also proposed a novel method for gaze 

tracking of head-mounted eye camera. Based on the acquired eye image, we detect 

whether the position is changed, if the camera has been moved, we proposed an 

eyeball center calibration method to calibrate the eyeball center position. First of all, 

from one frame, we use the conventional ellipse fitting method to obtain an iris 

contour, then based on the principle of circle/ellipse correspondence, we infer an 

eyeball center position. Next by our proposed iris fitting method, we obtain a more 

accurate iris contour, which can infer a more accurate eyeball center. This procedure 

is iterated for a few times, then we can have a rather accurate eyeball center position 

for this frame. Notice that the eyeball center is fixed in the camera coordinate system 

whatever the frame passes, so we take a few frames to calculate a set of eyeball center 

positions and find a credible solution. By our proposed method, we can calibrate the 

eyeball center automatically. After calibrating the eyeball center, we fit the iris at 

every frame in real-time. Referring to the 3D iris position and its 2D projection on 

images, a method that detecting the iris contour with only two parameters is proposed. 

Even in some situations that the iris is not complete, our proposed iris fitting method 

can fit the contour as well, while the traditional way could not perform well. Last, we 

also design a screen experiment to validate our proposed gaze estimation method. As 
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shown in the comparative experiments, the proposed method achieves higher 

accuracy than conventional methods. 

6.2 Future work 

For future work of our proposed gaze estimation methods, we plan to use them 

in driver support system. In this system, there are two cameras are involved. One 

camera is set inside the car and let it capture the driver’s gaze, the other camera is set 

in front of the car to capture the view. We calibrate the pose of two cameras, then we 

can combine the estimated gaze from the first camera and the view from the second 

camera together, so we can easily understand where the driver is gazing at. Based on 

this system, we can analysis the driver’s behavior during driving. For example, 

according to the view from the front camera, we can know where the traffic signal is 

and what the color it is, and also we can know whether the driver is noticing the 

traffic signal by gaze estimation from the inside camera. 

A number of obvious improvements could be made to our current 

implementation. For example, eyeball center calibration procedure for the head-

mounted camera is quite time consuming, we are looking for a better and more 

efficient way to improve it. There is also room for additional improvement if we can 

eliminate more outliers of iris feature points as soon as possible. Our research is 

aimed at developing reliable gaze estimation method that can run on general-purpose 

hardware and that can be widely employed in every day human-computer interfaces.  
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