
A Study on
Change-Point Software Reliability Modeling

and Optimization
for Development Management

Dissertation submitted in partial fulfillment
for the degree of Doctor of Philosophy

(Engineering)

Yuka MINAMINO

Under the supervision of
Professor Shigeru Yamada

Doctoral Program of Graduate School of Engineering,
Tottori University, JAPAN

January 2017

i

ABSTRACT

Software development managers should conduct development management properly for achiev-
ing the quality required from the user. The major factors under the development planning are
the quality, cost, and delivery (QCD), and they are needed to be satisfied enough. However,
there are several problems for software development management. For example, when the soft-
ware development managers make a decision by using the existing development management
methods, the amount of information for the decision-making is not enough. That is, the ex-
isting development management methods are not realistic and applicable because they are not
reflected the actual development environment enough. From these backgrounds, this doctoral
thesis discusses the software development management methods based on software reliability
growth models (SRGMs). Especially, we develop them in terms of the software development op-
timization. Concretely, we treat these problems: a change-point problem, an optimal software
release problem and an optimal testing-resource allocation problem.

This thesis is composed of the following chapters: Chapter 2 discusses a change-point mod-
eling framework and a detection method. Chapter 3 discusses an analytical optimal software
release problem based on the change-point model. Chapter 4 and 5 discuss an optimal software
release problem and an optimal testing-resource allocation problem based on the multi-attribute
utility theory (MAUT).

In Chapter 2, the change-point modeling framework based on typical NHPP (nonhomo-
geneous Poisson process) models and the detection method are discussed. The testing-time
when the stochastic characteristics of software failure-occurrence time-intervals change due to
a change of testing-environment is called change-point. It is known that the occurrence of the
change-point influences the accuracy of the SRGM-based software reliability assessment. The
existing SRGMs are not introduced the concept although the change-point is known as a prob-
lem in the actual testing-environment. Furthermore, the change-point is caused by software
development management or technical aspects of software development. In the former case, the
change-point is determined sensuously by the software development managers. On the other
hand, in the latter case, the change-point occurs as the natural phenomenon. Nevertheless,
there is not the theoretical method for detecting the change-point. Therefore, we improve the
accuracy of existing SRGMs by reflecting the actual testing-environment as the aim of this
chapter. In this thesis, we develop specific NHPP models with the change-point, and confirm
that the proposed models have better performance than the existing models. Also, we ap-
ply the Laplace trend test for developing the detection method. The Laplace trend test is a
method for observing the time when the trend of software reliability growth process changes.
Concretely, we confirm the effectiveness as a change-point detection method by comparing the
goodness-of-fit for the existing models and our models applied the estimated change-points.
Our change-point detection method enables us to evaluate whether the software development
managers could determine the change-point properly or not.

In Chapter 3 and 4, the optimal software release problem is discussed. It is an optimiza-
tion problem on estimating optimal shipping time of the software product. Normally, SRGMs
are applied for discussing the optimal software release problem. However, the actual testing-
environment is not reflected to this problem because the change-point is not considered. There-
fore, we discuss the optimal software release problem based on the change-point model. We
can estimate the optimal release time and optimal testing-time duration from the change-point

ii

to the termination time of testing simultaneously by formulating a cost function based on a
change-point model. Furthermore, normally, when the optimal release time is determined, an
evaluation criterion tends to be focused. Since there is not the method for considering the
multiple evaluation criteria simultaneously. Therefore, we apply the multi-attribute utility the-
ory for solving them. MAUT is the utility theory on decision-making with considering multiple
constraints. Additionally, the decision-making for the development management is evaluated by
using the utility as an evaluation criterion. The optimal release time and optimal testing-time
duration from the change-point to the termination time of testing are derived as the optimal
solutions by solving the optimization problem.

In Chapter 5, we discuss an optimal testing-resource allocation problem based on MAUT.
This problem is an optimization problem for allocating the testing-resource in a module test-
ing. We need to develop the method for the optimal allocation with considering multiple
constraints because an evaluation criterion tends to be focused as with Chapter 4. Therefore,
we estimate the optimal testing-resource expenditures for each module and utility by using
MAUT. Additionally, the expected number of remaining faults is estimated by using the op-
timal testing-resource expenditures. Each chapter shows numerical examples by using actual
data sets. The final chapter summarizes the results obtained in this doctoral thesis, and remark
the conclusion.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Professor Shigeru Yamada at Tottori University,
the supervisor of my study and the chairman of this thesis reviewing committee, for his intro-
duction to research in software reliability engineering, many invaluable comments, continual
support, guidance, and warm encouragement.

I am indebted to Professor Akira Kitamura at Tottori University, Associate Professor Junji
Koyanagi at Tottori University, and Associate Professor Yoshinobu Tamura at Yamaguchi Uni-
versity, the members of this thesis reviewing committee, for their helpful comments and checking
the manuscript.

I would like to greatly acknowledge Assistant Professor Shinji Inoue at Tottori University,
for his many valuable comments, continual support, and warm encouragement.

I would like to thank many professors and researchers who provide me with invaluable
comments for my study and warm encouragement. I also acknowledge the encouragement of
the professors of Department of Social Systems Engineering of Tottori University.

Special thanks are due to Mr. Mitsuho Matsumoto, Mr. Ryosuke Kii, Ms. Saki Taniguchi,
Mr. Yasutaka Iwasaki, and the other past and present members of Information Systems Lab-
oratory of Department of Social Systems Engineering at Tottori University. This work could
not be achieved without their continual warm encouragement.

Finally and most importantly, I wish to thank my parents (Mr. Masato Minamino and
Ms. Kayoko Minamino), my sister (Ms. Yuki Minamino/Shimizu), for their understanding and
warm support. It is to them that this thesis is dedicated.

Yuka Minamino
January 2017

Contents

1 Introduction 1
1.1 Software Quality/Reliability . 1
1.2 Software Development . 3
1.3 Software Reliability Modeling . 5
1.4 Background and Purposes of This Thesis . 8
1.5 Organization of This Thesis . 9

2 Change-Point Modeling 13
2.1 Introduction . 13
2.2 Existing Software Reliability Growth Model . 14
2.3 Software Reliability Growth Model with Change-Point 15
2.4 Change-Point Model with Uncertainty of Testing-Environmental Factor 18
2.5 Parameter Estimation . 19
2.6 Assessment Criteria . 20
2.7 Reliability Assessment Measures . 20

2.7.1 Expected number of remaining faults . 20
2.7.2 Software reliability function . 20

2.8 Laplace Trend Test . 21
2.9 Numerical Examples . 21

2.9.1 Change-point models . 22
2.9.2 Change-point detection method . 22

2.10 Conclusion . 23

3 Optimal Software Release Problem Based on a Change-Point Model 39
3.1 Introduction . 39
3.2 Optimal Software Release Problem by an Analytical Approach 40

3.2.1 Optimal software release time and change-point 40
3.2.2 Optimal software release policy . 42

3.3 Numerical Examples . 42
3.4 Conclusion . 45

4 Optimal Software Release Problem Based on MAUT 53
4.1 Introduction . 53
4.2 Optimal Software Release Problem with Two Evaluation Criteria 54

4.2.1 Selection of attributes . 54

v

vi

4.2.2 Development of single-attribute utility function 54
4.2.3 Development of multi-attribute utility function 55

4.3 Numerical Examples . 56
4.4 Conclusion . 56

5 Optimal Testing-Resource Allocation Problem Based on MAUT 61
5.1 Introduction . 61
5.2 Existing Optimal Testing-Resource Allocation Problem 62
5.3 Optimal Testing-Resource Allocation Problem with Two Evaluation Criteria . . 64

5.3.1 Selection of attributes . 65
5.3.2 Development of single-attribute utility function 65
5.3.3 Development of multi-attribute utility function 66

5.4 Optimal Testing-Resource Allocation Problem with Three Evaluation Criteria . 67
5.4.1 Selection of attributes . 67
5.4.2 Development of single-attribute utility function 67
5.4.3 Development of multi-attribute utility function 68

5.5 Numerical Examples . 69
5.6 Conclusion . 70

6 Conclusion 75

References

Publication List of the Author

Received Awards List of the Author

Received Grants List of the Author

List of Figures

1.1 Software quality characteristics and sub-characteristics (ISO/IEC 9126) [36]. . . 2
1.2 Software Reliability Technologies [35]. 3
1.3 Aim of software quality/reliability measurement and assessment. 4
1.4 A general software development process (water-fall paradigm) [37]. 5
1.5 Hierarchical classification of software reliability models [35]. 6
1.6 The stochastic quantities related to the software fault-detection and software-

failure occurrence phenomenon [36]. 7
1.7 The construction of this thesis. 12

2.1 The stochastic quantities for the software failure-occurrence or fault-detection
phenomenon with change-point. 16

2.2 The estimated mean value function with change-point and its 95% confidence
limits. (EXP-CP, DS5) . 25

2.3 The estimated mean value function with change-point and its 95 % confidence
limits. (DSS-CP, DS3) . 25

2.4 The estimated mean value function with change-point and its 95% confidence
limits. (ISS-CP, DS1) . 26

2.5 The expected number of remaining faults, M̂(t). (EXP-CP, DS5) 26

2.6 The expected number of remaining faults, M̂(t). (DSS-CP, DS3) 27

2.7 The expected number of remaining faults, M̂(t). (ISS-CP, DS1) 27

2.8 The software reliability function, R̂(x | 28). (EXP-CP, DS5) 28

2.9 The software reliability function, R̂(x | 26). (DSS-CP, DS3) 28

2.10 The software reliability function, R̂(x | 26). (ISS-CP, DS1) 29
2.11 The temporal behavior of Laplace factor. (DS1) 29
2.12 The estimated mean value function with change-point. (τ = 4, EXP2-CP, DSS-

CP, DS1) . 30
2.13 The estimated mean value function with change-point. (τ = 7, EXP2-CP, DSS-

CP, DS1) . 30
2.14 The estimated mean value function with change-point. (τ = 9, EXP2-CP, DSS-

CP, DS1) . 31
2.15 The estimated mean value function with change-point. (τ = 16, EXP2-CP,

DSS-CP, DS1) . 31
2.16 The expected number of remaining faults. (τ = 4, EXP2-CP, DSS-CP, DS1) . . 32
2.17 The expected number of remaining faults. (τ = 7, EXP2-CP, DSS-CP, DS1) . . 32
2.18 The expected number of remaining faults. (τ = 9, EXP2-CP, DSS-CP, DS1) . . 33

vii

viii

2.19 The expected number of remaining faults. (τ = 16, EXP2-CP, DSS-CP, DS1) . . 33
2.20 The software reliability function. (τ = 4, EXP2-CP, DSS-CP, DS1) 34
2.21 The software reliability function. (τ = 7, EXP2-CP, DSS-CP, DS1) 34
2.22 The software reliability function. (τ = 9, EXP2-CP, DSS-CP, DS1) 35
2.23 The software reliability function. (τ = 16, EXP2-CP, DSS-CP, DS1) 35

3.1 The relative ratio of debugging cost for each development phase [35]. 40
3.2 The behavior of Z(s) based on the optimal software release policy. 43
3.3 The expected total software cost for DS3. 46
3.4 The expected total software cost for DS4. 47
3.5 The expected total software cost for DS5. 48
3.6 The optimal total testing period for DS3. 49
3.7 The optimal total testing period for DS4. 50
3.8 The optimal total testing period for DS5. 51

4.1 The single-attribute utility functions. 55
4.2 The expected total software cost. (EXP, DS3) 58
4.3 The multi-attribute utility function. (EXP, DS3) 58
4.4 The expected total software cost. (EXP, DS5) 59
4.5 The multi-attribute utility function. (EXP, DS5) 59
4.6 The expected total software cost. (DSS, DS5) 60
4.7 The multi-attribute utility function. (DSS, DS5) 60

5.1 The single-attribute utility functions. 68
5.2 The behavior of the optimal testing-resource expenditures. (module 1, 2 attributes) 71
5.3 The behavior of the optimal testing-resource expenditures. (module 10, 2 at-

tributes) . 72

List of Tables

2.1 The results of parameter estimation. (EXP, EXP-CP, DSS, DSS-CP, ISS, ISS-CP) 36
2.2 The comparison of goodness-of-fit based on MSE. (EXP, EXP-CP, DSS, DSS-CP,

ISS, ISS-CP) . 36
2.3 The result of parameter estimation. (EXP2-CP, DSS2-CP, DS1) 36
2.4 The expected number of remaining faults. (EXP2-CP, DSS2-CP, DS1) 37
2.5 The software reliability. (EXP2-CP, DSS2-CP, DS1) 37
2.6 The comparison of goodness-of-fit based on MSE. 37

4.1 The result of sensitive analysis. (EXP, DS3, 2 attributes) 57
4.2 The result of sensitive analysis. (EXP, DS5, 2 attributes) 57
4.3 The result of sensitive analysis. (DSS, DS5, 2 attributes) 57

5.1 The comparison of allocated testing-resource expenditures. (2 attributes) 73
5.2 The comparison of expected number of remaining faults. (2 attributes) 73
5.3 The comparison of allocated testing-resource expenditures. (3 attributes) 74
5.4 The comparison of expected number of remaining faults. (3 attributes) 74

ix

Chapter 1

Introduction

1.1 Software Quality/Reliability

Computer systems are necessary in our social life. For example, there are seat reservation

systems, online transaction systems, hospital patient monitoring systems, air traffic control

systems, and so forth. If a failure occurs in those systems, there is a potential to have negative

effects on human life and social life. The environment for software development becomes more

diversified, foreshorten delivery, large-scale, and complex. However, the users require high-

quality software products.

“Software quality” is defined as the attribute measuring how well the software product

meets stated user’s functions and requirements in Japanese Industrial Standards Committee

(JIS Z 8101). Quantitative measuring and evaluating of software quality systematically are

important for accurate management. ISO/IEC (International Organization for Standardiza-

tion/International Electrotechnical Commission) standardized the software quality (ISO/IEC

9126) gives us software quality characteristics and sub-characteristics. The quality character-

istics are also called “external characteristics”. The external characteristics are the quality

characteristics defined through the eyes of users to meet the users’ quality requirements. Fig.

1.1 shows the six quality characteristics and sub-characteristics [36, 37, 38, 41]. “Reliability”

in these quality characteristics is equivalent to the characteristic of “must-be quality”. That is,

the reliability must be satisfied enough because incomplete reliability gives a feeling of dissat-

isfaction to the users.

“Software reliability” is defined as the ability of software to maintain the performance re-

quired under a predetermined time-period and conditions [36]. It is also defined as the proba-

bility of failure-free software operation for a specified period of time in a specified environment

[19]. Therefore, it is important to detect and remove “software failures” and “software faults”

1

2 Chapter 1. Introduction

Fig. 1.1 Software quality characteristics and sub-characteristics (ISO/IEC 9126) [36].

in the testing-phase for ensuring the software quality/reliability as far as possible. The software

failures and software faults are defined as follows [37].

• Software failure : An unacceptable departure of program operation from the program

requirements.

• Software fault : A defect in the program which causes a software failure. The software

fault is usually called a software bug.

• Software error : Human action that results in the software system containing a software

fault.

1.2 Software Development 3

Fig. 1.2 Software Reliability Technologies [35].

Various technologies, such as measurement, assessment, and reliability technologies, are

needed for improving software reliability. They are called “Software reliability Technology”

[35]. Software reliability technology is divided as the production technology and management

technology. Fig. 1.2 shows these technologies and the classification. Furthermore, the soft-

ware reliability technology in terms of engineering is defined as “software reliability engineering

(SRE)”. The software reliability engineering is aimed at the measurement, prediction, and

management of software reliability for maximizing the user satisfaction.

1.2 Software Development

Generally, software products are developed through the phases of specification, design, coding,

and testing, as shown in Fig. 1.3. A general software development process of water-fall paradigm

is shown in Fig. 1.4 [33, 36, 37, 38, 41]. The testing-phase is the most important activity because

the final quality/reliability of software products is confirmed quantitatively by using software

reliability assessment technologies.

Furthermore, when the software development managers want to know the problems for the

software development management, as shown in Fig. 1.3, the software reliability assessment

technologies are used. Especially, they need to know the following things [13].

• The failure rate of software released now.

4 Chapter 1. Introduction

Fig. 1.3 Aim of software quality/reliability measurement and assessment.

• The number of remaining faults in the software, the location of faults, and the priority of

fault-removing activity.

• The testing-time to achieve software reliability targets.

• The schedule to spend testing-resources efficiently.

These above things should be answered with the help of software reliability models [8, 10, 13, 35,

36, 37, 38] as a technology of software reliability assessment. The software reliability model is a

tool which is used to evaluate the software reliability quantitatively, and monitor the change in

reliability performance [10]. The testing is advanced by the module testing, integration testing,

and system testing. These tests are dynamic analysis, and they are conducted as follows

[10, 36, 37, 38, 40, 41, 44]: First, the individual software modules are tested independently

1.3 Software Reliability Modeling 5

Fig. 1.4 A general software development process (water-fall paradigm) [37].

in the module testing. Next, the interfaces of software modules are tested in the integration

testing. Finally, the software system interconnected all software modules is evaluated in terms of

quality/reliability in the system test. When we use software reliability assessment technologies

to measure the software quality/reliability in these testing-phases, these results are utilized for

not only software reliability assessment but also software development management in some

cases. Notably, the software development management is important to be conducted from the

perspective of QCD (Q: quality, C: cost, D: delivery). However, there is a variety of problems

for software development management when we consider the QCD. For example, an “optimal

software release problem” [3, 27, 28, 30, 33, 37, 38] and an “optimal testing-resource allocation

problem” [10, 17, 33, 37, 38, 42, 43] are included as typical problems. Also, these problems are

treated as optimization problems because the optimal solutions, such as the optimal software

release time and the optimal testing-resource expenditures, are needed to obtain. Therefore,

we solve these optimization problems under some constraints in terms of QCD, and derive the

optimal solutions. We introduce these software development management problems concretely

in the later section.

1.3 Software Reliability Modeling

The software reliability models as a base technology for quantitative software reliability assess-

ment have been discussed well so far. Especially, software reliability growth models (SRGMs)

6 Chapter 1. Introduction

Fig. 1.5 Hierarchical classification of software reliability models [35].

[8, 15, 37, 38] are mathematical models, and they are categorized as dynamic models in the

software reliability models. Fig. 1.5 [37] shows the hierarchical classification of the software re-

liability models. The SRGMs describe the software failure-occurrence frequency or the software

failure-occurrence time-intervals as random variables. Also, they treat the time-dependent be-

havior of the software failure-occurrence phenomenon as the software reliability growth process.

The SRGMs are classified into the following three categories [36, 37, 39].

• Software failure-occurrence time model:

The model which is based on the software failure-occurrence time or the software fault-

detection time.

• Software fault-detection count model:

The model which is based on the number of software failure-occurrence or the number of

1.3 Software Reliability Modeling 7

Fig. 1.6 The stochastic quantities related to the software fault-detection and software-failure
occurrence phenomenon [36].

detected faults.

• Software availability model:

The model which describes the time-dependent behavior of software system alternating

up (operation) and down (fault correction) states.

As the concept of the software reliability growth modeling, the following stochastic quantities

related to the software fault-detection and the software failure-occurrence phenomenon are

defined,as shown in Fig. 1.6.

N(t): The cumulative number of faults detected up to time t

(or the cumulative number off software failures observed up to time t).

Sk: The k-th software failure-occurrence time (k = 1, 2, · · · ; S0 = 0).

Xk: The time-interval between (k − 1)-st and k-th software failures (k = 1, 2, · · · ;X0 = 0).

Fig. 1.6 shows the occurrence of event N(t) = k since i faults have been detected up to time

t. Also, we treat N(t), Sk, and Xk as the random variables. That is, we have the following

relationship:

Si =
i∑

k=1

Xi, Xk = Sk − Sk−1. (1.1)

We can derive several software reliability assessment measures by assuming the probability

distribution of N(t), Sk, and Xk. The examples of software reliability assessment measures

include the following:

8 Chapter 1. Introduction

• Expected number of remaining faults in the software.

• Software reliability function

• Mean time between software failures (MTBF)

• Hazard rate/failure rate

1.4 Background and Purposes of This Thesis

Generally, the SRGMs are constructed under assumptions that the stochastic characteristics

for these quantities are same throughout the testing-phase. However, we often observe that the

stochastic characteristics of software failure-occurrence time-intervals change due to a change

of testing-environment. Testing-time observed such phenomenon is called change-point [1, 2, 5,

6, 20, 29, 32, 46], and is considered one of the factors which influences accuracy of the software

reliability assessment.

Under the background, the software reliability growth modeling frameworks have discussed

in the literatures [1, 2, 4, 5, 6, 20, 29, 31, 32, 46]. However, they are considered only the

difference of software failure-occurrence rate before the change-point and those after change-

point. It might be natural to consider that there is relationship of the software failure-occurrence

time-interval before change-point and those after change-point, in the actual testing-phase.

Since the same software product is tested even if the testing-environment changes during the

testing-phase. Therefore, developing SRGMs with the effect of the change-point is expected

to conduct the software reliability assessment with high accuracy. Concretely, we develop

change-point models in cases that each mean value function with the change-point follows

exponential, delayed S-shaped and inflection S-shaped SRGMs [9, 18, 37, 38]. Additionally,

we introduce uncertainty of the testing-environment into the existing models in the cases that

each mean value function follows the exponential and delayed S-shaped SRGMs, and develop

more specific change-point models. Furthermore, change-point has not been determined by

theoretical methods. For example, when a change-point is caused by software development

management, it is determined by the software development managers based on their experience.

Therefore, we need to discuss a theoretical change-point detection method.

The SRGMs are often used to discuss problems for software development management.

Although ensuring the quality/reliability of software products is important, the evaluation of

other factors, such as the stability and degree of progress, is also important. For example, as a

1.5 Organization of This Thesis 9

problem for software development management, there is an optimal software release problem. It

is an optimization problem on estimating the optimal shipping time of software products. The

existing methods to determine the optimal software release time are based on the reliability,

cost, and delivery evaluation criteria. That is, the optimal software release time is determined by

minimizing the total software cost when we use the existing method based on the cost evaluation

criterion. However, the minimum cost is not necessarily important actually because it is more

realistic that we consider not only the cost evaluation criterion but also many evaluation criteria

simultaneously. From such backgrounds, the optimal software release problem with considering

multiple evaluation criteria is beneficial.

In this thesis, we also discuss an optimal testing-resource allocation problem. It is an

optimization problem for allocating testing-resources in a module testing. Most of existing

optimal testing-resource allocation problems have been focused on the reliability because the

improvement of quality increases the productivity by the following reasons: First, if the quality

is high, the overhead work decreases and total software cost decreases. Next, high quality

is ensured by the detection of software fault in the upstream process because the debugging

cost for the upstream process is lower than the debugging cost for the downstream process.

However, the testing-resources for the improvement of quality are not infinite, and there are

some constraints for the evaluation criteria. That is, we need to expend the testing-resources

for the module testing in consideration with the balance of many evaluation criteria.

In those optimization problems for software development management, it is noted that there

is trade-off relationship of those attributes. Also, the management strategy for management

aspects is not reflected the optimal solutions completely. The management strategy should

differ by developed software products because they are diversified. That is, we introduce the

multi-attribute utility theory (MAUT) [12, 21, 23, 24, 25, 26] into those problems, and estimate

the optimal solutions in terms of the utility theory.

1.5 Organization of This Thesis

This thesis is composed of the following chapters. Chapter 2 discusses software reliability growth

models with the change-point and a change-point detection method based on the Laplace trend

test. Chapter 3 and Chapter 4 treat an optimal software release problem. Chapter 5 treats an

optimal testing-resource allocation problem. Also, Chapter 3 and 5 are discussed based on the

multi-attribute utility theory. Each content of these chapters is as follows:

10 Chapter 1. Introduction

• Chapter 2: Change-Point Modeling and Detection Method

Chapter 2 discusses the software reliability growth modeling framework with a change

of the testing-environment for improving the accuracy of the reliability assessment and

development management based on SRGMs. Concretely, we develop specific NHPP (non-

homogeneous Poisson process) models which the mean value functions before the change-

point follow the exponential, the delayed S-shaped, and the inflection S-shaped models,

respectively. Furthermore, we introduce the uncertainty of the testing-environment into

the exponential and the delayed S-shaped change-point models by using the gamma dis-

tribution. We investigate the usefulness of our models by conducting goodness-of-fit

comparisons with the existing models. Also, we discuss a change-point detection method

based on the Laplace trend test [34, 23] as an application. The Laplace trend test enables

us to detect change-points by regarding changing the trend of the software reliability.

After that, we check the performances of the change-point models with the detected

change-points, and confirm the effectiveness of our approach by the goodness-of-fit com-

parison.

• Chapter 3: Optimal Software Release Problem Based on a Change-Point Model

Chapter 3 discusses an optimal software release problem for software development man-

agement. In this chapter, we apply our change-point model in Chapter 2, and define a

cost function by using it. Next, we derive the optimal software release time and optimal

testing-time duration from the change-point to the termination time of testing, analyt-

ically. Finally, we propose the cost-optimal and cost-reliability-optimal software release

policies.

• Chapter 4: Optimal Software Release Problem Based on MAUT

Chapter 4 discusses an optimal software release problem based on the multi-attribute

utility theory. Especially, cost and reliability attributes are developed as evaluation cri-

teria by using a change-point model. Also, we define a weighted multi-attribute utility

function, and maximize it. Then, we can estimate the optimal software release time, op-

timal testing-time duration from the change-point to the termination time of testing, and

utility, simultaneously. Additionally, the optimal occurrence-time of change-point and

expected total software cost are estimated by using them. Finally, we check the behavior

of the multi-attribute utility function and the cost function, and conduct the sensitive

analysis.

1.5 Organization of This Thesis 11

• Chapter 5: Optimal Testing-Resource Allocation Problem Based on MAUT

Chapter 5 discusses an optimal testing-resource allocation problem based on the multi-

attribute utility theory. Especially, cost, testing-resource, and reliability attributes are

developed as evaluation criteria by using the testing-effort dependent SRGM. As with

Chapter 4, we define a multi-attribute utility function with introducing those attributes,

and maximize it. We estimate the optimal testing-resource expenditures and utility for

the module testing, simultaneously. Then, the expected number of remaining faults is

estimated by using the optimal testing-resource expenditures for module testing. Finally,

we conduct the sensitive analysis.

Each chapter provides numerical examples by using actual data-sets. The final chapter sum-

marizes the results obtained in this thesis, and remark the conclusion.

The software reliability assessment in terms of SRGMs is discussed in Chapter 2. Also, the

software development management in terms of optimization problems is discussed in Chapter

3, 4, and 5. Fig. 1.7 shows the construction of this thesis.

12 Chapter 1. Introduction

Fig. 1.7 The construction of this thesis.

Chapter 2

Change-Point Modeling

2.1 Introduction

Generally, software reliability growth models (SRGMs) are developed by treating software

failure-occurrence time- or fault detection time-interval as random variables. Also, they are as-

sumed that the stochastic characteristics for these quantities are same throughout the testing-

phase. However, this assumption does not enable us to reflect an actual software failure-

occurrence phenomenon to software reliability growth modeling because we often observe a

phenomenon that the stochastic behavior of software failure-occurrence time-interval notably

changes due to a change of testing-environment. Testing-time when such phenomenon is ob-

served is called “change-point”. It is known that the occurrence of change-point influences the

accuracy of SRGM-based software reliability assessment. Therefore, in this chapter, we develop

new NHPP (nonhomogeneous Poisson process) models by introducing the concept of change-

point in typical NHPP models [11]. Then, we assume that the same change-points occur in the

testing-phase.

Change-point occurs by these aspects in the actual testing-phase as follows [29, 45]:

• A change-point is caused by the aspect of software development management.

- A case that the software development managers predict that delivery delay would be

occurred and reliability requirement would not be achieved.

• A change-point is caused by the technical aspect of software development.

- Due to difficulty of fault-detection, fault-independence, difference of fault-density of

each module.

- Due to a skill-up process of test-engineers.

13

14 Chapter 2. Change-Point Modeling

In the former case, change-point is determined by the software development managers’ decision.

On the other hand, in the latter case, the change-point occurs as natural phenomenon without

the software development managers’ decision. That is, the software development managers

don’t have methods for detecting or determining change-point logically. For example, J. Zhao

and J. Wang proposed a change-point detection method by using the hypothesis testing, and

confirmed the certain effectiveness [14]. However, it cannot detect 4 or more change-points.

Therefore, we discuss another change-point detection method which is constructed logically. In

this chapter, we propose the change-point detection method based on a Laplace trend test. The

Laplace trend test is a method for observing the time when the trend of change on the software

reliability growth process. We detect 4 change-points by deriving a Laplace factor from actual

data sets, and apply them into the EXP2-CP and DSS2-CP models which are proposed in

this chapter, respectively. Then, we compare those change-point models by using MSE (mean

squared errors), and check the effectiveness of our proposed method.

This chapter consists of the following sections. In Section 2.2, we introduce the existing soft-

ware reliability growth modeling framework. In Section 2.3 and 2.4, we develop the change-point

modeling frameworks. In Section 2.5-2.7, we explain the parameter estimation, the assessment

criteria, and reliability assessment measures. In Section 2.8, we explain a Laplace trend test.

In Section 2.9, we show numerical examples. In the final section, we conclude with summary.

2.2 Existing Software Reliability Growth Model

Basically, most of NHPP-based SRGMs, in which the total number of detectable faults is finite,

can be developed under the following basic assumptions [21]:

(A1) Whenever a software failure is observed, the fault which caused it will be detected im-

mediately and no new faults are introduced in the fault-removing activities.

(A2) Each software failure occurs at independently and identically distributed random times

with the probability distribution, F (t) ≡ Pr{T ≤ t} =
∫ t

0
f(x)dx, where Pr{A} represents

the probability of event A and f(t) the probability density function.

(A3) The initial number of faults in the software, N0(> 0), is finite, and is treated as a random

variable.

2.3 Software Reliability Growth Model with Change-Point 15

Now, let {N(t), t ≥ 0} denote a counting process representing the total number of faults

detected up to testing-time t. From the basic assumptions above, the probability mass function

that m faults are detected up to testing-time t is derived as

Pr{N(t) = m} =
∑
n

(
n
m

)
{F (t)}m{1− F (t)}n−mPr{N0 = n}

(m = 0, 1, 2, · · ·). (2.1)

If we assume that the initial fault content, N0, follows a Poisson distribution with mean ω. The

Poisson distribution [16, 35] is given as

Pr{N0 = n} =
ωn

n!
exp[−ω]. (2.2)

Therefore, we derive as follows:

Pr{N(t) = m} =
∞∑
n=0

(
n
m

)
{F (t)}m{1− F (t)}n−mωn

n!
exp[−ω]

= exp[−ω]
{ωF (t)}m

m!

∞∑
n=0

{ω(1− F (t))}n−m

(n−m)!

=
{ωF (t)}m

m!
exp[−ωF (t)] (m = 0, 1, 2, · · ·). (2.3)

Then, Eq. (2.3) is equivalent to an NHPP with mean value function E[N(t)] ≡ Λ(t) = ωF (t).

An NHPP model for software reliability assessment can be developed by assuming a suitable

software failure-occurrence time distribution.

2.3 Software Reliability Growth Model with Change-

Point

Now, we define the following stochastic quantities being related to our modeling approach:

Xi: the i-th software failure-occurrence time before change-point.

(X0 = 0, i = 0, 1, 2, · · ·)
Si: the i-th software failure-occurrence time-interval before change-point.

(Si = Xi −Xi−1, S0 = 0, i = 1, 2, · · ·)
Yi: the i-th software failure-occurrence time after change-point.

(Y0 = 0, i = 0, 1, 2, · · ·)
Ti: the i-th software failure-occurrence time-interval after change-point.

(Ti = Yi − Yi−1, T0 = 0, i = 1, 2, · · ·)

16 Chapter 2. Change-Point Modeling

Fig. 2.1 The stochastic quantities for the software failure-occurrence or fault-detection phe-
nomenon with change-point.

These stochastic quantities for the software failure-occurrence or fault-detection phenomenon

with change-point are shown in Fig. 2.1. We can assume that the stochastic quantities before

and those after change-point have the following relationships, respectively [7].⎧⎪⎨⎪⎩
Yi = α(Xi),

Ti = α(Si),

Ki(t) = Ji(α
−1(t)).

(2.4)

α(t) is a testing-environmental function representing their relationship between the stochastic

quantities of software failure-occurrence time or time-intervals before and those after change-

point. Ji(t) and Ki(t) are the probability distribution functions with respect to the random

variables Si and Ti, respectively. Also, we assume that the testing-environmental function is

given as

α(t) = αt (α > 0), (2.5)

where α is the proportional constant representing the relative magnitude of effect of change-

point on the software reliability growth process. Eq. (2.5) is an example for the testing-

environmental function. We can get to know the effect of change-point on the software reliability

growth process simply by assuming Eq. (2.5) as the testing-environmental function in our

modeling framework.

Suppose that n faults have been detected up to change-point, and the fault-detection time

from the test-beginning (t = 0) have been observed as 0 < x1 < x2 < · · · < xn ≤ τ , where τ

represents change-point. Then, the probability distribution function of T1, a random variable

representing the time-interval from change-point to the 1-st software failure-occurrence after

2.3 Software Reliability Growth Model with Change-Point 17

change-point, can be derived as

K̄1(t) ≡ Pr{T1 > t}
=

Pr{Sn+1 > τ − xn + t/α}
Pr{Sn+1 > τ − xn}

=
exp[−{MB(τ + t/α)−MB(xn)}]

exp[−{MB(τ)−MB(xn)}] , (2.6)

where K̄1(t) indicates the cofunction of the probability distribution function, K1(t) ≡ Pr{T1 ≤
t}, i.e., K̄1(t) ≡ 1 − K1(t) and MB(t)(≡ ωK1(t)), represents the expected number of faults

detected up to change-point, i.e., a mean value function for the NHPP before change-point.

From Eq. (2.6), the expected number of faults detected up to t ∈ (τ,∞] after change-point,

MA(t), can be formulated as

MA(t) = − log Pr{T1 > t− τ}
= − log K̄1(t− τ)

= MB

(
τ +

t− τ

α

)
−MB(τ). (2.7)

Then, the expected number of faults detected up to testing-time t (t ∈ [0,∞), 0 < τ < t) can

be derived as follows:

Λ(t) =

⎧⎪⎨⎪⎩
ΛB(t) = MB(t) (0 ≤ t ≤ τ),

ΛA(t) = MB(τ) +MA(t)

= MB

(
τ + t−τ

α

)
(τ < t).

(2.8)

From Eq. (2.8), we can see that an NHPP-based SRGM with change-point can be developed

by assuming a suitable probability distribution function for the software failure-occurrence time

before change-point. Therefore, when a mean value function before change-point follows an

exponential SRGM, we have the following change-point model (EXP-CP model).

Λ(t) =

{
Λ1(t) = ω{1− exp[−bt]} (0 ≤ t ≤ τ),
Λ2(t) = ω{1− exp[−b(τ + t−τ

α
)]} (t > τ).

(2.9)

Next, when a mean value function before change-point follows a delayed S-shaped SRGM, we

have the following change-point model (DSS-CP model).

Λ(t) =

{
Λ1(t) = ω{1− (1 + bt)exp[−bt]} (0 ≤ t ≤ τ),
Λ2(t) = ω{1− (1 + b(τ + t−τ

α
))exp[−b(τ + t−τ

α
)]} (t > τ).

(2.10)

18 Chapter 2. Change-Point Modeling

Finally, when a mean value function before change-point follows an inflection S-shaped SRGM,

we have the following change-point model (ISS-CP model).

Λ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Λ1(t) = ω

(
1− exp{−bt}

1 + c · exp{−bt}
)

(0 ≤ t ≤ τ),

Λ2(t) = ω

(
1− exp{−b(τ + t−τ

α
)}

1 + c · exp{−b(τ + t−τ
α
)}
)

(t > τ).

(2.11)

2.4 Change-Point Model with Uncertainty of Testing-

Environmental Factor

When we apply a gamma distribution as a probability distribution which can express the

difference of the software failure-occurrence phenomenon with uncertainty between before and

those after change-point. The gamma distribution [16] is given as

fk(α) =
θkαk−1e−θα

Γ(k)
(k > 0, α > 0, θ > 0), (2.12)

where Γ(k) is the gamma function. k and θ are the parameters of the gamma distribution.

Consequently, a testing-environmental function is derives as∫ ∞

0

α(t)fk(α)dα =
k

θ
t, (2.13)

by Eqs. (2.5) and (2.12).

Therefore, when we apply Eq. (2.13) as the testing-environmental factor, it can be formu-

lated as

MA(t) = − log Pr{T1 > t− τ}
= − log K̄1(t− τ)

= MB

(
τ +

θt

k

)
−MB(τ). (2.14)

Then, the expected number of faults detected up to testing-time t (t ∈ [0,∞), 0 < τ < t) can

be derived as follows:

Λ(t) =

⎧⎪⎪⎨⎪⎪⎩
ΛB(t) = MB(t) (0 ≤ t ≤ τ),

ΛA(t) = MB(τ) +MA(t)

= MB

(
τ + θ(t−τ)

k

)
(τ < t).

(2.15)

2.5 Parameter Estimation 19

Therefore, we have a change-point model (EXP2-CP model) in a case that a mean value function

before change-point follows an exponential SRGM.

Λ(t) =

{
Λ1(t) = ω{1− exp[−bt]} (0 ≤ t ≤ τ),

Λ2(t) = ω{1− exp[−b(τ + θ(t−τ)
k

)]} (t > τ).
(2.16)

Next, we have a change-point model (DSS2-CP model) in a case that a mean value function

before change-point follows a delayed S-shaped SRGM.

Λ(t) =

{
Λ1(t) = ω{1− (1 + bt)exp[−bt]} (0 ≤ t ≤ τ),

Λ2(t) = ω{1− (1 + b(τ + θ(t−τ)
k

)) · exp[−b(τ + θ(t−τ)
k

)]} (t > τ),
(2.17)

where b is the fault detection rate. l is the inflection coefficient, and c represents c = (1− l)/l

(0 < l ≤ 1).

2.5 Parameter Estimation

We estimate the parameters of our models based on a maximum-likelihood method [37, 38].

Suppose that we have observed K data pairs (tk, yk)(k = 0, 1, 2, · · · , K) with respect to the

cumulative number of faults, yk, detected during a constant time-interval (0, tk](0 < t1 < t2 <

· · · < tK). When the change-point τ and α are given, the log-likelihood function about the

probability process {N(t), t ≥ 0} is the following equation:

lnL(θ|τ, α)

=
K∑
k=1

(yk − yk−1)ln[H(tk;θ|τ, α)−H(tk−1,θ|τ, α)]

−Hi(tK ;θ, α)−
K∑
k=1

ln[(yk − yk−1)!], (2.18)

where L(θ| τ) is the joint probability function or the likelihood function with respect to the

probability process {N(t), t ≥ 0}, and θ is the set of the parameters in the models. We obtain

the parameter estimations by solving the log-likelihood equation:

∂ln(θ|τ, α)
∂θ

= 0, (2.19)

with respect to the parameters in the models, respectively.

20 Chapter 2. Change-Point Modeling

2.6 Assessment Criteria

We conduct goodness-of-fit comparison in terms of MSE (mean squared errors) [37] and a

Kolmogorov-Smirnov (abbreviated as K-S) goodness-of-fit test [38]. The value of MSE is cal-

culated by dividing the sum of the squared vertical distance between the observed and es-

timated cumulative number of faults, yk and ŷ(tk), detected during the time-interval (0, tk],

respectively, by the number of observed data pairs. That is, supposing that K data pairs

(tk, yk)(k = 1, 2, · · · , K) are observed, we can formulate the MSE as

MSE =
1

K

K∑
k=1

{yk − ŷ(tk)}2. (2.20)

The models having the smallest value of the MSE fit better to the observed data set. Also, the

K-S goodness-of-fit test is known as one of the nonparametric goodness-of-fit test techniques.

This test is valid for both small and large sample size. The K-S test statistic, D, can be written

as

D = max
1≤i≤n−1

{Di}
Di = max

{∣∣∣ H(ti)
H(tn)

− yi
yn

∣∣∣ , ∣∣∣ H(ti)
H(tn)

− yi−1

yn

∣∣∣}
⎫⎬⎭ . (2.21)

The K-S test statistic, D, is needed to be compared with a critical value, Dn;δ, where n rep-

resents the number of data pairs and δ represents the level of significance. That is, we judge

that the applied model fits to the observed data at a level of significance δ if D < Dn;δ.

2.7 Reliability Assessment Measures

2.7.1 Expected number of remaining faults

Software reliability assessment measures play an important role in quantitative software reli-

ability assessment based on SRGMs. The expected number of remaining faults by arbitrary

testing-time t is formulated as

M(t) ≡ E[N̄(t)] = E[N(∞)−N(t)]

= Λ(∞)− Λ(t). (2.22)

2.7.2 Software reliability function

A software reliability function is defined as the probability which a software failure does not

occur in the time-interval, (t, t + x](t ≥ 0, x ≥ 0) given that the testing or the user operation

2.8. Laplace Trend Test 21

has been going up to time t. Then, the software reliability function is derived as

R(x | t) = exp[−{Λ(t+ x)− Λ(t)}], (2.23)

if the counting process, {N(t), t ≥ 0}, follows an NHPP with mean value function, Λ(t). We

should note that Eq. (2.23) is derived under the condition which the software system is operated

in the same environment as the testing-phase after the change-point.

2.8 Laplace Trend Test

We assume that a change-point is detected by deriving the Laplace factor, l(k), as

l(k) =

k∑
i=0

(i− 1)n(i)− (k − 1)

2

k∑
i=0

n(i)

√
k2−1
12

k∑
i=0

n(i)

, (2.24)

where n(i) is the number of faults observed during unit time i. The Laplace factor can be

interpreted as follows [22, 34]:

1. Negative values indicate a decreasing failure intensity, and thus reliability growth.

2. Positive values indicate an increasing failure intensity, and thus a decrease in the reliabil-

ity.

3. Values between -2 and +2 indicate stable reliability.

2.9 Numerical Examples

We use the following actual data sets:

DS1: (tk, yk)(k = 1, 2, · · · , 26 ; t26 = 26, y26 = 40, τ = 18),

DS2: (tk, yk)(k = 1, 2, · · · , 29 ; t29 = 29, y29 = 73, τ = 24),

DS3: (tk, yk)(k = 1, 2, · · · , 26 ; t26 = 26, y26 = 34, τ = 17),

DS4: (tk, yk)(k = 1, 2, · · · , 29 ; t29 = 29, y29 = 25, τ = 18),

DS5: (tk, yk)(k = 1, 2, · · · , 28 ; t28 = 28, y28 = 43, τ = 18),

where tk is measured on the basis of days, and yk represents the total number of faults detected

22 Chapter 2. Change-Point Modeling

during [0, tk]. These actual data sets were collected from actual testing-phases of the web

systems. DS1 and DS2 are the S-shaped software reliability growth curved data. DS3, DS4,

and DS5 are the exponential software reliability growth curved data. Also, the change-point is

known by changing the tester and increasing the test personnel.

2.9.1 Change-point models

We show numerical examples of the EXP-CP, DSS-CP, and ISS-CP models. Figs. 2.2, 2.3, and

2.4 show the time-dependent behavior of the estimated mean value functions with the effect of

the change-point on the software reliability growth process, and its 95% confidence limits. From

these figures, the time-dependent behavior of the estimated software reliability growth curves

changes at the change-point along with the actual behavior. As an example, we estimated the

parameters of the EXP-CP model for DS5 as follows: ω̂ = 44.8226, b̂ = 0.0908, and α̂ = 0.5789.

The expected number of remaining faults and software reliability were estimated as follows:

M̂(28) ≈ 1.823 ≈ 2 and R̂(1.0|28.0) ≈ 0.7676. Next, we estimated the parameters of the DSS-

CP model for DS3 as follows: ω̂ = 35.343, b̂ = 0.1637, and α̂ = 0.6425. The expected number

of remaining faults and software reliability were estimated as follows: M̂(26) ≈ 1.343 ≈ 2

and R̂(1.0|26.0) ≈ 0.7724. Finally, we estimated the parameters of the ISS-CP model for DS1

as follows: ω̂ = 40.227, b̂ = 0.2917, l̂ = 0.0230, and α̂ = 0.6318. The expected number of

remaining faults and software reliability were estimated as follows: M̂(26) ≈ 0.227 ≈ 1 and

R̂(1.0|26.0) ≈ 0.9138. Table 2.1 shows the results of parameter estimation and Kolmogorov-

Smirnov statistics of change-point models, respectively. Furthermore, Table 2.2 shows the

results of the goodness-of-fit comparison of change-point models with the corresponding existing

models based on MSE. From these tables, we can say that the change-point models have

better performance on software reliability assessment than the existing models. That is, we

could confirm the effectiveness of consideration of the change-point for the EXP-CP model

and the DSS-CP model. On the other hand, we cannot say that the ISS-CP model has better

performance because the values of MSE for DS2 and DS3 are big. The estimated inflection

coefficient might affect the accuracy for the goodness-of-fit because it was not estimated with

the other parameters simultaneously.

2.9.2 Change-point detection method

We show numerical examples of our models (EXP2-CP, DSS2-CP models in Eqs. (2.16) and

(2.17)).

2.10 Conclusion 23

Fig. 2.11 shows the behavior of the Laplace factor for DS1 as an example. From Fig. 2.11,

we can see that the Laplace factor increases after this testing-time (τ = 4, 7, 9, 16). Next, we

estimated ω̂, b̂, θ̂, and k̂ which were the parameters of our EXP2-CP and DSS2-CP models,

based on the maximum likelihood method. Table 2.3 shows the result of parameter estimation

for the cases (τ = 4, 7, 9, 16), respectively.

Figs. 2.12-2.15 show the estimated mean value functions with the effect of the change-point

in Eqs. (2.16), (2.17), and its 95% confidence limits for DS1 in which (τ = 4, 7, 9, 16). From

these figures, we can see that the time-dependent behavior of estimated number of detected

faults changes at change-point, and fits well to the actual behavior.

Next, we show numerical examples for software reliability assessment measures based on our

EXP2-CP and DSS2-CP models. Table 2.4 shows the result of estimated expected number of

remaining faults for DS1 in which (τ = 4, 7, 9, 16). Figs. 2.16-2.19 show the estimated expected

number of remaining faults, respectively. Table 2.5 shows the estimated software reliability

for DS1 in which (τ = 4, 7, 9, 16). Figs. 2.20-2.23 show the software reliability functions,

respectively.

Furthermore, Table 2.6 shows the result of goodness-of-fit comparison of our models with

the corresponding existing models based on MSE. From Table 2.6, we can say that our models

with the detected change-points have better fitting performance than the existing models.

Especially, the delayed S-shaped SRGMs with the detected change-points fit well because the

time-dependent behavior for the actual data is S-shaped.

2.10 Conclusion

We discussed the change-point modeling frameworks for improving software reliability assess-

ment. Concretely, we proposed the new NHPP models with change-point by the assumptions

for the exponential, the delayed S-shaped, and the inflection S-shaped SRGMs. It has al-

ready been discussed that the exponential SRGM and the mean value function for NHPP are

equivalent when the software failure-occurrence time distribution, F (t), follows the exponential

distribution. However, we could expand the NHPP models by assuming the gamma distribution

and the logistic distribution.

Also, we considered the case which the testing-environmental factor follows the gamma

distribution. We checked the performance of the existing models and our proposed models,

and compared the goodness-of-fit by using MSE. From these results, our approach enables us

24 Chapter 2. Change-Point Modeling

to describe the effect of the change-points on the software reliability growth process.

Furthermore, we discussed a change-point detection method based on the Laplace trend

test, and checked the effectiveness by using MSE. From numerical examples, we can say that

our proposed method enables us to detect the optimal occurrence-time of the change-points

because our models with the detected change-points have better performance. Therefore, our

proposed method is useful for software development managers to determine a change-point

theoretically when they need to determine it by design.

2.10 Conclusion 25

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

C
u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

D
et

ec
te

d
 F

au
lt

s

Testing Time (number of days)

Fitted
Upper Limit
Lower Limit

Actual

Fig. 2.2 The estimated mean value function with change-point and its 95% confidence limits.
(EXP-CP, DS5)

Fig. 2.3 The estimated mean value function with change-point and its 95 % confidence limits.
(DSS-CP, DS3)

26 Chapter 2. Change-Point Modeling

Fig. 2.4 The estimated mean value function with change-point and its 95% confidence limits.
(ISS-CP, DS1)

0

10

20

30

40

50

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

N
u
m

b
er

 o
f

R
em

ai
n
in

g
 F

au
lt

s

Testing Time (number of days)

Fitted
Actual

Fig. 2.5 The expected number of remaining faults, M̂(t). (EXP-CP, DS5)

2.10 Conclusion 27

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

N
u

m
b

er
 o

f
R

em
ai

n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual
Fitted

Fig. 2.6 The expected number of remaining faults, M̂(t). (DSS-CP, DS3)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

N
u

m
b

er
 o

f
R

em
ai

n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual
Fitted

Fig. 2.7 The expected number of remaining faults, M̂(t). (ISS-CP, DS1)

28 Chapter 2. Change-Point Modeling

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
o

ft
w

ar
e

R
el

ia
b

il
it

y

Operation Time (number of days)

Fitted

Fig. 2.8 The software reliability function, R̂(x | 28). (EXP-CP, DS5)

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2

S
o

ft
w

ar
e

R
el

ia
b

il
it

y

Operation Time (number of days)

Fitted

Fig. 2.9 The software reliability function, R̂(x | 26). (DSS-CP, DS3)

2.10 Conclusion 29

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 0.5 1 1.5

S
o

ft
w

ar
e

R
el

ia
b

il
it

y

Operation Time (number of days)

Fitted

Fig. 2.10 The software reliability function, R̂(x | 26). (ISS-CP, DS1)

Testing Time (number of days)

L
ap

la
ce

 F
ac

to
r

Fig. 2.11 The temporal behavior of Laplace factor. (DS1)

30 Chapter 2. Change-Point Modeling

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

D
et

ec
te

d
 F

au
lt

s

Testing Time (number of days)

EXP

Actual

DSS

Fig. 2.12 The estimated mean value function with change-point. (τ = 4, EXP2-CP, DSS-CP,
DS1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

D
et

ec
te

d
 F

au
lt

s

Testing Time (number of days)

EXP

Actual

DSS

Fig. 2.13 The estimated mean value function with change-point. (τ = 7, EXP2-CP, DSS-CP,
DS1)

2.10 Conclusion 31

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

D
et

ec
te

d
 F

au
lt

s

Testing Time (number of days)

EXP

Actual

DSS

Fig. 2.14 The estimated mean value function with change-point. (τ = 9, EXP2-CP, DSS-CP,
DS1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

C
u
m

u
la

ti
v
e

N
u
m

b
er

 o
f

D
et

ec
te

d
 F

au
lt

s

Testing Time (number of days)

EXP

Actual

DSS

Fig. 2.15 The estimated mean value function with change-point. (τ = 16, EXP2-CP, DSS-
CP, DS1)

32 Chapter 2. Change-Point Modeling

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
u
m

b
er

 o
f

R
em

ai
n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual (DSS)

Actual (EXP)

Fitted (EXP)

Fitted (DSS)

Fig. 2.16 The expected number of remaining faults. (τ = 4, EXP2-CP, DSS-CP, DS1)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
u
m

b
er

 o
f

R
em

ai
n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual (DSS)

Actual (EXP)

Fitted (EXP)

Fitted (DSS)

Fig. 2.17 The expected number of remaining faults. (τ = 7, EXP2-CP, DSS-CP, DS1)

2.10 Conclusion 33

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
u
m

b
er

 o
f

R
em

ai
n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual (DSS)

Actual (EXP)

Fitted (EXP)

Fitted (DSS)

Fig. 2.18 The expected number of remaining faults. (τ = 9, EXP2-CP, DSS-CP, DS1)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

N
u
m

b
er

 o
f

R
em

ai
n
in

g
 F

au
lt

s

Testing Time (number of days)

Actual (DSS)

Actual (EXP)

Fitted (EXP)

Fitted (DSS)

Fig. 2.19 The expected number of remaining faults. (τ = 16, EXP2-CP, DSS-CP, DS1)

34 Chapter 2. Change-Point Modeling

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Operation Time (number of days)

EXP

DSS

Fig. 2.20 The software reliability function. (τ = 4, EXP2-CP, DSS-CP, DS1)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Operation Time (number of days)

EXP

DSS

Fig. 2.21 The software reliability function. (τ = 7, EXP2-CP, DSS-CP, DS1)

2.10 Conclusion 35

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Operation Time (number of days)

EXP

DSS

Fig. 2.22 The software reliability function. (τ = 9, EXP2-CP, DSS-CP, DS1)

 0.85

 0.9

 0.95

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Operation Time (number of days)

EXP

DSS

Fig. 2.23 The software reliability function. (τ = 16, EXP2-CP, DSS-CP, DS1)

36 Chapter 2. Change-Point Modeling

Table 2.1 The results of parameter estimation. (EXP, EXP-CP, DSS, DSS-CP, ISS, ISS-CP)

τ α̂ ω̂ b̂ l̂ Dmax

DS5
Exponential - - 47.8524 0.08174 - 0.117522∗

EXP-CP model 18 0.5789 44.8226 0.0908 - 0.124526∗

DS3
Delayed S-shaped - - 37.0906 0.1584 - 0.171058∗

DSS-CP model 17 0.6425 35.343 0.1637 - 0.14907∗

DS1
Inflection S-shaped - - 40.9138 0.2905 0.0230 0.334636∗

ISS-CP model 18 0.6318 40.2269 0.2917 0.0230 0.144249∗

Table 2.2 The comparison of goodness-of-fit based on MSE. (EXP, EXP-CP, DSS, DSS-CP,
ISS, ISS-CP)

EXP EXP-CP DSS DSS-CP ISS ISS-CP

DS1 16.0848 20.5671 7.2195 7.77583 2.0476 1.77933
DS2 32.0834 24.6323 19.3189 22.1304 24.3531 31.7051
DS3 2.40089 2.19263 6.87789 6.05874 2.39061 25.8046
DS4 0.348901 0.331126 1.70385 1.60806 0.365351 0.37564
DS5 2.47239 2.2943 7.63319 7.49945 2.44597 2.32179

EXP Exponential SRGM

EXP-CP Exponential SRGM with change-point our model

DSS Delayed S-shaped SRGM

DSS-CP Delayed S-shaped SRGM with change-point our model

ISS Inflection S-shaped SRGM

ISS-CP Inflection S-shaped SRGM with change-point our model

Table 2.3 The result of parameter estimation. (EXP2-CP, DSS2-CP, DS1)

Parameters τ = 4 τ = 7 τ = 9 τ = 16
EXP2-CP ω̂ 87.7045 59.9291 45.0518 40.2169

Model b̂ 0.0119068 0.0214477 0.023876 0.0516676

θ̂ 704301 3.0807× 106 323431 1.60138× 106

k̂ 328674 1.3203× 106 1.6881× 106 188209
DSS2-CP ω̂ 46.4727 42.9295 42.4234 40.1206

Model b̂ 0.0700283 0.0736624 0.0935004 0.124673

θ̂ −2.03186× 106 718800 1.7653× 106 5.92894× 106

k̂ −981860 261380 750143 1.22985× 106

2.10 Conclusion 37

Table 2.4 The expected number of remaining faults. (EXP2-CP, DSS2-CP, DS1)

τ = 4 τ = 7 τ = 9 τ = 16
EXP2-CP Model 47.7045 19.9291 5.05178 0.21685
DSS2-CP Model 6.47266 2.92955 2.42344 0.120586

Table 2.5 The software reliability. (EXP2-CP, DSS2-CP, DS1)

τ = 4 τ = 7 τ = 9 τ = 16
EXP2-CP Model 0.300664 0.378023 0.574871 0.925763
DSS2-CP Model 0.500777 0.639633 0.668987 0.95117

Table 2.6 The comparison of goodness-of-fit based on MSE.

DS1 DS2 DS3
τ EXP DSS2 τ EXP DSS τ EXP DSS
4 10.9472 4.52732 5 18.0426 19.3189 6 2.32528 4.56313
7 7.88326 2.91847 6 22.9249 19.3773 12 2.274 6.97557
9 3.80684 2.6736 9 29.2436 17.1374 15 1.66543 6.5006
16 11.7953 2.84482 18 28.8811 16.4519 19 2.3583 5.16962
τ Existing Model τ Existing Model τ Existing Model
18 14.7191 24 26.4935 17 2.19263

DS4 DS5
τ EXP DSS τ EXP DSS
4 0.430343 0.616764 4 2.47239 3.6921
16 0.63812 1.72474 6 2.74672 3.58157
18 0.351309 1.63757 12 5.75904 6.28737
20 0.258257 1.31583 17 2.47884 7.70729
τ Existing Model τ Existing Model
18 0.351309 18 4.80601

Chapter 3

Optimal Software Release Problem
Based on a Change-Point Model

3.1 Introduction

In a testing-phase, software faults which are introduced in the development process, are de-

tected and removed by devoting enormous testing-resources. After that, the software product

is released to the user. Normally, the more software is tested, many faults are detected. How-

ever, it is difficult to detect all faults because there are some problems in terms of economics.

Therefore, what software development managers need to know is whether the software can be

shipped without the further testing or not.

If any faults are not detected and removed in the testing-phase, the remaining faults are

detected in the operational phase. Then, the maintenance cost, which is the cost for the

modification and removal in the operational phase, is higher than the testing cost. It is said

that the relative ratio of debugging cost for each development phase of specification, testing,

and operation in software life cycle is 1:30:140, as shown in Fig. 3.1 [35]. Therefore, the

software development managers or company would reduce the maintenance cost. However, if

the testing-time is longer to cut the maintenance cost, the total software cost is expected to be

more increasing although the reliability is expected to be more increasing. On the other hand,

if the testing-time is too short, the reliability is expected to be more decreasing although the

total software cost is expected to be more decreasing. That is, there is a trade-off relationship

between the testing cost and maintenance cost [44].

From the background, it is important for software development managers to determine

when to stop the testing or release to the user. This problem is called an “optimal software

release problem”. Especially, we consider a cost-optimal software release problem based on our

39

40 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

Fig. 3.1 The relative ratio of debugging cost for each development phase [35].

change-point model by an analytical approach. First, we formulate a cost function based on our

proposed EXP-CP model of Eq. (2.9) in Chapter 2. Then, we consider the relationship of the

optimal software release time and the optimal occurrence-time of the change-point. Therefore,

we can obtain the optimal software release time and the optimal occurrence-time of change-

point simultaneously by minimizing the cost function. Finally, we derive the expected total

software cost and optimal software release policy. Also, we evaluate the optimal software release

time and expected total software cost in terms of the reliability evaluation criterion.

This chapter consists of the following sections. In Section 3.2, we discuss an optimal software

release problem based on a change-point model by the analytical approach. In Section 3.3, we

show numerical examples. In the final section, we conclude with summary.

3.2 Optimal Software Release Problem by an Analytical

Approach

3.2.1 Optimal software release time and change-point

We use the change-point model in which the mean value function before change-point follows

the exponential SRGM in Eq. (2.9).

First, we define the following cost parameters:

3.2 Optimal Software Release Problem by an Analytical Approach 41

c1 debugging cost for one fault before change-point in the testing phase (0 < c1),

c2 debugging cost for one fault after change-point in the testing phase (0 < c2),

c3 debugging cost for one fault after change-point in the operational phase (c1 < c3, c2 < c3),

c4 testing cost at arbitrary testing-time (0 < c4).

Let T be the termination time of testing, and s be the testing-time duration from the

change-point to the termination time of testing. Also, T ∗ is the optimal release time, and s∗

is the optimal testing-time duration from the change-point to the termination time of testing.

Then, we assume 0 < s∗ < T ∗. That is, the optimal occurrence-time of the change-point is

derived by T ∗ − s∗.

By using these parameters, we derive the following equation which represents the expected

total software cost during the testing and operational phases:

C(T, s) = c1Λ1(T − s) + c2{Λ2(T)− Λ1(T − s)}+ c3{ω − Λ2(T)}+ c4T, (3.1)

where Λ1(t) and Λ2(t) represent the mean value functions before the change-point and those

after change-point, respectively.

We can derive the optimal software release time and the optimal occurrence-time of the

change-point by solving the following equation:

∂C(T, s)

∂T
=

∂C(T, s)

∂s
= 0. (3.2)

From Eq. (3.2), we have the optimal release time, T ∗, as

T ∗ ≡ T (s) =
1

b
log

[
ωb(c3 − c2)

αc4exp[b(
s(1−α)

α
)]

]
. (3.3)

Then, the sufficient condition for T ∗ > 0 is given as

s <
log[ωb(c3−c2)

αc4
]

b(1
α
− 1)

(≡ A). (3.4)

It is noted that Eq. (3.4) is not a constraint condition for optimization problems. Next,

substituting Eq. (3.3) into Eq. (3.2), we can derive the following equation:

Z(s) ≡ −αc4

[
c2 − c1
c3 − c2

e
1
α
bs + 1− 1

α

]
. (3.5)

Finally, we can derive the optimal occurrence-time of the change-point as

s∗ =
α

b
log

[
(c3 − c2)(1− α)

α(c2 − c1)

]
. (3.6)

42 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

3.2.2 Optimal software release policy

We obtain the following cost-optimal software release policy.

Optimal Software Release Policy

< I >

When c1 < c2 and α < 1, Z(s) is a monotonically decreasing function with respect to s.

1. If Z(0) > 0 and Z(A) < 0, unique solutions exist as T ∗ and s∗. They are given by Eq.

(3.3) and Eq. (3.6), respectively.

2. If Z(0) ≤ 0 and Z(A) < 0, we continue the testing in the environment before change-point.

Also, T ∗ is given by Eq. (3.3).

< II >

When c2 < c1 and α > 1, Z(s) is a monotonically increasing function with respect to s.

1. If Z(0) < 0 and Z(A) > 0, unique solutions exist as T ∗ and s∗. They are given by Eq.

(3.3) and Eq. (3.6), respectively.

2. If Z(0) ≥ 0 and Z(A) > 0, we continue the testing in the environment before change-

point. And, T ∗ is given by Eq. (3.3).

Fig. 3.2 shows the behavior of Z(s) in Eq. (3.5). When c1 < c2 and α < 1, we can see that

Z(s) is a monotonically decreasing function with respect to s. When c2 < c1 and α > 1, we

can see that Z(s) is a monotonically increasing function with respect to s. Then, whether the

optimal occurrence-time of the change-point exists or not is determined by the relationship of

c1 and c2.

3.3 Numerical Examples

We show the application of the optimal software release policy by using the actual data sets

in Chapter 2. The cost parameters are assumed as follows: c1 = 1.0, c2 = 2.0, c3 = 150, and

c4 = 5.0.

3.3 Numerical Examples 43

Fig. 3.2 The behavior of Z(s) based on the optimal software release policy.

< DS1 >

From ω̂ = 4688.87, b̂ = 0.00039, α̂ = 1.81(> 1), and c1 < c2, the optimal software release policy

is not concerned.

< DS2 >

From ω̂ = 349.141, b̂ = 0.00962, α̂ = 13.29(> 1), and c1 < c2, the optimal software release

policy is not concerned.

< DS3 >

From ω̂ = 44.482, b̂ = 0.0507, α̂ = 0.781(< 1), and c1 < c2, we obtain

⎧⎨⎩
s∗ = 57.39208,
Z(A) = −17478907,
Z(0) = 1.068615.

(3.7)

44 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

When we apply the optimal software policy < I >, we have

T ∗ = 71.64259, (3.8)

C(T ∗, s∗) = 501.3143. (3.9)

We show the behavior of the estimated expected total software cost in Fig. 3.3.

< DS4 >

From ω̂ = 81.0232, b̂ = 0.0114, α̂ = 0.766(< 1), and c1 < c2, we obtain⎧⎨⎩
s∗ = 256.0961,
Z(A) = −111654.9,
Z(0) = 1.144122.

(3.10)

When we apply the optimal software policy < I >, we have

T ∗ = 235.3583. (3.11)

It is noted that we can not say that the optimal solutions are derived properly because s∗ is

bigger than T ∗. We show the behavior of the estimated expected total software cost in Fig.

3.4.

< DS5 >

From ω̂ = 44.8226, b̂ = 0.0908, α̂ = 0.5789(< 1), and c1 < c2, we obtain⎧⎨⎩
s∗ = 29.83497,
Z(A) = −6253.591,
Z(0) = 2.086009.

(3.12)

When we apply the optimal software policy< I >, we have

T ∗ = 37.09248, (3.13)

C(T ∗, s∗) = 285.3592. (3.14)

We show the behavior of the estimated expected total software cost in Fig. 3.5.

Additionally, we consider the reliability evaluation criterion. Concretely, we assume that

the reliability objective is 0.8, and we set x = 1.0 in Eq. (2.23). From Figs. 3.6-3.8, the

estimated cost-optimal software release time achieves the reliability objective 0.8. We can see

that the optimal software release time, the optimal occurrence-time of the change-point, and

the expected total software cost are satisfied the cost and reliability evaluation criteria.

3.4 Conclusion 45

3.4 Conclusion

We discussed an optimal software release problem based on a change-point model, and provided

the optimal software release policy. The optimal software release time, optimal occurrence-time

of the change-point, and expected total software cost were derived analytically. After that, we

evaluated the optimal software release time with considering the reliability evaluation criterion.

We could expand the existing optimal software release problem by our approach, and propose

the new method for determining the optimal occurrence-time of the change-point.

46 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

50
60

70
80

90
100 40

50

60

70
80550

600

650

Testing Time(number of days)T*=71.64259 T
es

tin
g

T
im

e
D

ur
at

io
n

af
te

r C
ha

ng
e-

Po
in

t

s*=57.39208

C(T*,s*)=501.3143

E
x

p
ec

te
d

 T
o

ta
l

S
o

ft
w

ar
e

C
o

st

Fig. 3.3 The expected total software cost for DS3.

3.4 Conclusion 47

Testing Time(number of days)

210
220

230
240

250
260 220

230

240
250

260
270

1700

1710

1720

1730

E
x

p
ec

te
d

 T
o

ta
l

S
o

ft
w

ar
e

C
o

st

T
es

tin
g

T
im

e
D

ur
at

io
n

af
te

r C
ha

ng
e-

Po
in

t s*=256.0961

T*=235.3583

C(T*,s*)=1696.411

Fig. 3.4 The expected total software cost for DS4.

48 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

Testing Time(number of days)

20
30

40
50

60
70

80 0

10

20
30

40
50

400

600

800

1000

1200

E
x
p
ec

te
d
 T

o
ta

l
S

o
ft

w
ar

e
C

o
st

T
es

tin
g

T
im

e
D

ur
at

io
n

af
te

r C
ha

ng
e-

Po
in

t
s*=29.83497

C(T*,s*)=285.3592

T*=37.09248

Fig. 3.5 The expected total software cost for DS5.

3.4 Conclusion 49

0 50 100 150

5
0

0
1

0
0

0
1

5
0

0
2

0
0

0
2

5
0

0
3

0
0

0
3

5
0

0

0 50 100 150

0
.2

0
.4

0
.6

0
.8

1
.0

T=53

T*=71.64

T=53

T*=71.64

R(1.0|53)=0.8

R(1.0|71.64)=0.9195

C(T*, s*)=501.3143

C(T, s)=563.2567

T
o
ta

l
S

o
ft

w
ar

e
C

o
st

Testing Time (number of days)

Testing Time (number of days)

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Fig. 3.6 The optimal total testing period for DS3.

50 Chapter 3. Optimal Software Release Problem Based on a Change-Point Model

0 100 200 300 400 500

0
.4

0
.6

0
.8

1
.0

0 50 100 150 200 250 300 350 400 450 500

0 100 200 300 400 500

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0 50 100 150 200 250 300 350 400 450 500

Testing Time (number of days)

Testing Time (number of days)

T
o
ta

l
S

o
ft

w
ar

e
C

o
st

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

T*=235.36T=155

T=155 T*=235.36

C(T*, s*)=1696.411

C(T, s)=1952.289

R(1.0|155)=0.801

R(1.0|235.36)=0.9

Fig. 3.7 The optimal total testing period for DS4.

3.4 Conclusion 51

0 20 40 60 80 100

4
0
0

6
0
0

8
0
0

1
0
0
0

1
2
0
0

1
4
0
0

1
6
0
0

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

T*=37.09

T*=37.09

T=33

T=33

C(T*, s*)=285.3592

C(T, s)=289.6785

Testing Time (number of days)

Testing Time (number of days)

R(1.0|33)=0.80

R(1.0|37.09)=0.8583

T
o
ta

l
S

o
ft

w
ar

e
C

o
st

S
o
ft

w
ar

e
R

el
ia

b
il

it
y

Fig. 3.8 The optimal total testing period for DS5.

Chapter 4

Optimal Software Release Problem
Based on MAUT

4.1 Introduction

In this chapter, we discuss an optimal software release problem based on the multi-attribute

utility theory (MAUT). The optimal software release time is determined in consideration of the

cost, reliability, and delivery. For example, we have determined the optimal solutions as the

time minimizing the expected total software cost. However, the minimum cost is not important

necessarily in actuality. From the perspective of management aspects, it is important that

considering the various attributes comprehensively. Furthermore, the software development

managers want to know the evaluation for their decision-making, quantitatively. Therefore, we

apply the multi-attribute utility theory which is a method for the decision-making considering

with the utility. It enables us to derive and evaluate the optimal solutions in terms of a utility

theory.

The steps of our approach are as follows: First, we define a cost function by using the

proposed EXP-CP and DSS-CP models of Eqs. (2.9) and (2.10) in Chapter 2. Next, we

set cost and reliability attributes. After that, we develop single-attribute utility functions for

each attribute. Finally, we develop a weighted multi-attribute utility function based on the

single-attribute utility functions, and maximize it. Then, we can derive the optimal solutions,

i.e., the optimal software release time and testing-time duration from the change-point to

the termination time of testing, simultaneously. From these optimal solutions, the optimal

occurrence-time of the change-point can be obtained. Also, we evaluate the optimal solutions,

and check the behavior of the multi-attribute utility function and the expected total software

cost.

53

54 Chapter 4. Optimal Software Release Problem Based on MAUT

This chapter consists of the following sections. In Section 4.2, we discuss an optimal software

release problem for the case of two attributes. In Section 4.3, we show numerical examples. In

the final section, we conclude with summary.

4.2 Optimal Software Release Problem with Two Eval-

uation Criteria

4.2.1 Selection of attributes

Since the software development managers want to spend less than its budget, the cost attribute

is considered as

min: C = C(T,s)
CB

, (4.1)

where CB is the budget, and C(T, s) is given by Eq. (3.1). Next, the reliability attribute is

considered as

max: R = Λ(T)
initial fault content

, (4.2)

where Λ(T) is the EXP-CP model and the DSS-CP model in Chapter 2. That is, the parameters,

such as T and s, are assumed as with Chapter 2. It is noted that the reliability attribute is

needed to be maximized because the software development managers want high reliability.

Furthermore, we can say that these attributes have a competitiveness because they are

defined by using the same change-point models. In other words, these attributes depend on

each other because the total software cost changes by the number of detected faults.

4.2.2 Development of single-attribute utility function

The single-attribute utility functions for each attribute are based on the following management

strategy.

1. For the cost attribute, at least 50% of the budget must be consumed.

2. For the reliability attribute, at least 50% of software faults should be detected and the

more better.

3. The management team takes the risk neutral position for each attribute.

4.2 Optimal Software Release Problem with Two Evaluation Criteria 55

Fig. 4.1 The single-attribute utility functions.

Then, the lowest and highest requirements for the reliability attribute are RL = 0.5 and RH =

1.0. The lowest and highest consumptions for the cost attribute are CL = 0.5 and CH = 1.0.

We use the additive linear form because the third management strategy is assumed. There-

fore, we have the following equations.

u(R) = 2R− 1. (4.3)

u(C) = 2C − 1. (4.4)

4.2.3 Development of multi-attribute utility function

We apply the additive form of the multi-attribute utility function. The multi-attribute utility

function with some constraints as an optimization problem is given as

max : u(C,R) = wR × u(R)− wC × u(C)

= wR × (2R− 1)− wC × (2C − 1)

subject to wR + wC = 1, (4.5)

where wR and wC are the weight parameters for the attributes, R and C, respectively. u(R) and

u(C) are the single-attribute utility functions for each attribute. We can obtain the optimal

testing-time, T ∗, and optimal testing-time duration from the change-point to the termination

56 Chapter 4. Optimal Software Release Problem Based on MAUT

time of testing, s∗, by solving the optimization problem of Eq. (4.5). Also, the optimal

occurrence-time of the change-point is given as τ ∗ = T ∗ − s∗. We calculated it by R which is a

tool for the statistical analysis.

4.3 Numerical Examples

We use DS3 and DS5 of the actual data sets in Chapter 2. We use the actual data sets, DS3

and DS5 in Chapter 2. Also, we assume that the cost parameters in the cost function and the

budget are c1 = 1.0, c2 = 2.0, c3 = 150.0, c4 = 5.0, CB = 1000 for DS3, and CB = 450 for DS5.

The behavior of single-attribute utility functions is shown in Fig. 4.1.

Figs. 4.2, 4.4, and 4.6 show the relationship of expected total software cost and optimal

software release time for each change-point model. Figs. 4.3, 4.5, and 4.7 show the relationship

of utility and optimal software release time. From these figures, we can see that we could

determine the optimal software release time maximizing the utility.

Tables 4.1, 4.2, and 4.3 show the results of sensitive analysis. Additionally, we show the

results of optimal occurrence-time of the change-point and expected total software cost. In

Tables 4.1 and 4.2, we can see that when the optimal software release time and optimal testing-

time duration from the change-point to the termination time of testing increase, the expected

total software cost and utility increase. In Table 4.3, we can see that the utility changes by the

weight parameters mainly although the sensitivity is small. It is noted that these values are

evaluated by comparative assessment.

4.4 Conclusion

We discussed an optimal software release problem based on the multi-attribute utility theory.

Especially, we defined that the cost and reliability attributes based on the change-point mod-

els. Also, the weighted multi-attribute utility function with the constraints was formulated as

an optimization problem by using those attributes. By solving the optimization problem, we

estimated the optimal software release time, the testing-time duration from the change-point

to the termination time of testing, optimal occurrence-time of the change-point, expected total

software cost, and utility. Furthermore, we showed the results of sensitive analysis, and con-

firmed the behavior of the total software cost and utility. From the results of sensitive analysis,

we could evaluate the balance of the attributes in terms of utility theory.

4.4 Conclusion 57

Table 4.1 The result of sensitive analysis. (EXP, DS3, 2 attributes)

wR wC T ∗ s∗ τ ∗ Total Cost Utility

0.1 0.9 71.89944 57.65013 14.24931 501.325 0.095314
0.3 0.7 72.61439 58.36695 14.24744 501.4646 0.291359
0.5 0.5 73.81941 59.57549 14.24392 502.0493 0.487794
0.7 0.3 76.31965 62.07379 14.24586 504.5321 0.685191
0.9 0.1 84.85926 70.6586 14.20066 523.0659 0.886464

Table 4.2 The result of sensitive analysis. (EXP, DS5, 2 attributes)

wR wC T ∗ s∗ τ ∗ Total Cost Utility

0.1 0.9 37.14034 29.87466 7.26568 285.3361 -0.142298
0.3 0.7 37.27178 30.01017 7.26161 285.348 0.1094483
0.5 0.5 37.50686 30.25121 7.25565 285.4025 0.3612723
0.7 0.3 38.02501 30.76971 7.2553 285.6632 0.6133076
0.9 0.1 40.1202 32.8696 7.2506 288.4347 0.8664326

Table 4.3 The result of sensitive analysis. (DSS, DS5, 2 attributes)

wR wC T ∗ s∗ τ ∗ Total Cost Utility

0.1 0.9 32.72308 17.33735 15.38573 235.2164 -0.898841
0.3 0.7 32.72308 17.33735 15.38573 235.2164 -0.60571
0.5 0.5 32.72308 17.33735 15.38573 235.2164 -0.312579
0.7 0.3 32.72308 17.33735 15.38573 235.2164 -0.019448
0.9 0.1 32.72308 17.33735 15.38573 235.2164 0.273683

58 Chapter 4. Optimal Software Release Problem Based on MAUT

Fig. 4.2 The expected total software cost. (EXP, DS3)

Fig. 4.3 The multi-attribute utility function. (EXP, DS3)

4.4 Conclusion 59

Fig. 4.4 The expected total software cost. (EXP, DS5)

Testing-Time

Fig. 4.5 The multi-attribute utility function. (EXP, DS5)

60 Chapter 4. Optimal Software Release Problem Based on MAUT

Fig. 4.6 The expected total software cost. (DSS, DS5)

Fig. 4.7 The multi-attribute utility function. (DSS, DS5)

Chapter 5

Optimal Testing-Resource Allocation
Problem Based on MAUT

5.1 Introduction

Normally, software in a testing-phase is tested in the following stages: module, integration, and

system testing. Especially, individual software modules are tested independently, and evaluated

in terms of the reliability in the module testing. Also, enormous testing-resources are devoted

for ensuring enough reliability in the testing-process. The testing-resources mean CPU time,

man-power, executed test cases, and so forth. However, they are constrained and the company

would like to avoid wasting them by the reason of management aspects. Furthermore, the

module testing is said to consume 25% of the total development resources [10]. Therefore, it

is very important for the company or software development managers to allocate the testing-

resource property in the module testing. This problem is called an “optimal testing-resource

allocation problem”.

Most of the existing optimal testing-resource allocation problems have been discussed well

so far [17, 37, 38, 42, 43]. However, the management aspects of companies for the optimal

allocation have not been considered. Also, the existing method can not allocate the testing-

resource with considering multiple evaluation criteria. Therefore, we need to discuss an optimal

testing-resource allocation problem based on the multi-attribute utility theory. We set relia-

bility, testing-resource, and cost attributes based on the testing-effort dependent SRGM as the

evaluation criteria. By applying the multi-attribute utility theory, we can expand the method

for the optimal testing-resource allocation as follows: First, We can evaluate an optimal allo-

cation based on the estimated utility by the sensitive analysis. Next, we can consider multiple

constraints as the evaluation criteria, such as the cost and reliability, simultaneously. Finally,

61

62 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

the management strategy for the company or software development managers can be reflected to

the allocation. From these backgrounds, we estimate the optimal testing-resource expenditures

for individual software modules, utility, total amount of optimal testing-resource expenditures,

and expected number of remaining faults by optimizing a multi-attribute utility function with

the multiple constraints.

This chapter consists of the following sections. In Section 5.2, we introduce an existing

optimal testing-resource allocation problem. In Section 5.3, we discuss an optimal testing-

resource allocation problem for the case of two attributes. In Section 5.4, we discuss the

optimal testing-resource allocation problem for the case of three attributes. In Section 5.5,

we show numerical examples for them, respectively. In the final section, we conclude with

summary.

5.2 Existing Optimal Testing-Resource Allocation Prob-

lem

First, we apply the testing-effort dependent SRGM as a mean value function, m(t). The

testing-effort dependent SRGM is defined as

m(t) = a(1− exp[−rW (t)]), (5.1)

where a represents the initial fault content, and r represents the fault detection rate per the

testing-resource expenditures, (0 < r < 1). Then, W (t) is given as

W (t) =

∫ t

0

w(x)dx, (5.2)

where w(x) represents the testing-resource expenditures at the testing-time t, and W (t) is the

cumulative testing-effort function. Also, the expected number of remaining faults is given as

z(t) = a−m(t)

= a · exp[−rW (t)]. (5.3)

We consider the following existing optimal testing-resource allocation problem.

(1) A software system is composed of M independent software modules.

(2) The number of remaining faults in individual software modules can be estimated by the

testing-effort dependent SRGM.

5.2 Existing Optimal Testing-Resource Allocation Problem 63

(3) The software development managers have to allocate the testing-resource expenditures to

individual software modules so that the total number of remaining faults in the software

may be minimized.

We assume that the amounts of testing-resource expenditures, qi, are spent to the test of

software module, i (i = 1, 2, · · · ,M), in the module testing-process. From Eq. (5.3), the

expected number of remaining faults in the software module i, zi, is given as

zi = ai · exp[−riqi], (5.4)

where ai represents the initial fault content for software module, i, and ri represents the fault

detection rate per unit testing-resource, 0 < ri < 1. Therefore, from Eq. (5.4), the expected

number of remaining faults in the software is given as

Z =
M∑
i=1

zi. (5.5)

Therefore, the software testing-resource allocation problem is formulated as

min :
M∑
i=1

wiai · exp[−riqi]

subject to
M∑
i=1

qi ≤ QS, qi ≥ 0, (5.6)

where wi represents the weights for individual software modules, QS represents the prepared

total amount of testing-resource expenditures. To solve the above problem, we consider the

following Lagrangian:

L =
M∑
i=1

wiai · exp[−riqi] + λ(
M∑
i=1

qi −QS). (5.7)

The necessary and sufficient conditions for the minimization are

∂L

∂qi
= −wiairi · exp[−riqi] + λ = 0,

∂L

∂λ
=

M∑
i=1

qi −QS ≥ 0, λ ≥ 0,

λ(
M∑
i=1

qi −QS) = 0. (5.8)

64 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

Also, we can assume that the following condition is satisfied for the software modules.

A1 ≥ A2 ≥ · · ·Ak−1 ≥ λ ≥ Ak ≥ · · · ≥ AM , (5.9)

where Ai = wiairi (i=1,2, · · · , M). Therefore, the optimal testing-resource expenditures, q∗i ,

are derived as

q∗i = − 1

ri
(lnAi − lnλ) (i = 1, 2, · · · , k − 1), (5.10)

q∗i = 0 (i = k, k + 1, · · · ,M). (5.11)

Then, ln λ is given by

lnλ =

M∑
i=1

1

ri
lnAi −QS

M∑
i=1

1

ri

. (5.12)

That is, the optimal testing-resource expenditures, q∗i , are given as

q∗i = max{0,− 1

ri
(lnAi − lnλ)} (i = 1, 2, · · · ,M). (5.13)

5.3 Optimal Testing-Resource Allocation Problem with

Two Evaluation Criteria

We consider the following optimal testing-resource allocation problem. Especially, we change

the (3) of these assumptions.

(1) A software system is composed of M independent software modules.

(2) The number of remaining faults in individual software modules can be estimated by the

testing-effort dependent SRGM.

(3) The software development managers have to allocate the testing-resource expenditures to

individual software modules so that the utility may be maximized.

5.3 Optimal Testing-Resource Allocation Problem with Two Evaluation Criteria 65

5.3.1 Selection of attributes

We define the digestive rate of the total amount of testing-resource expenditures as the testing-

resource attribute. Since the software development managers want to spend less than the

prepared total amount of testing-resources, the testing-resource attribute is

min : E =

M∑
i=1

qi

QP

=
Q

QP

, (5.14)

where Q (> 0) represents the total amount of testing-resource expenditures. QP is the prepared

total amount of testing-resources.

Next, we define the rate of the expected number of detected faults in the software as the

reliability attribute. From Eq. (5.4), the reliability attribute is given as

max : R = 1−

M∑
i=1

ai · exp[−riqi]

M∑
i=1

ai

= 1− Z
M∑
i=1

ai

. (5.15)

As with Chapter 4, we can also say that these attributes have a competitiveness because they

are defined by using the same testing-effort dependent SRGM.

5.3.2 Development of single-attribute utility function

The single-attribute utility functions for each attribute are developed based on the following

management strategy.

1. For the testing-resource attribute, at least 60% of the prepared total amount of testing-

resources must be consumed.

2. For the reliability attribute, at least 80% of software faults should be detected and the

more are better.

3. The management team takes the risk neutral position for each attribute.

Then, the lowest and highest consumptions for the testing-resource attribute are EL = 0.6 and

EH = 1.0. The lowest and highest requirements for the reliability attribute are RL = 0.8 and

RH = 1.0.

66 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

We also use the additive linear form. Therefore, we have the following single-attribute utility

functions for each attribute:

u(E) = 2.5E − 1.5. (5.16)

u(R) = 5R− 4. (5.17)

5.3.3 Development of multi-attribute utility function

From the previous steps, the additive multi-attribute utility function with some constraints as

an optimization problem is given as

max : u(E,R) = wR × u(R)− wE × u(E)

= wR × (5R− 4)− wE × (2.5E − 1.5)

subject to wR + wE = 1, qi ≥ 0. (5.18)

where wR and wE are weight parameters for the attributes R and E, respectively. Finally, we

can obtain the optimal testing-resource expenditures, q∗i (i = 1, 2, · · · ,M), by maximizing the

multi-attribute utility function.

From Eq. (5.18), the optimal testing-resource expenditures, q∗i , are given by

q∗i = − 1

ri
ln

2.5wE

M∑
i=1

ai

5wRairiQP

(i = 1, 2, · · · , k − 1), (5.19)

q∗i = 0 (i = k, k + 1, · · · ,M). (5.20)

That is, we can rewrite the optimal testing-resource expenditures, q∗i , as

q∗i = max{0,− 1

ri
ln

2.5wE

M∑
i=1

ai

5wRairiQP

} (i = 1, 2, · · · ,M).

Also, we can assume that the following condition is satisfied for the software modules

B1 ≥ B2 ≥ · · ·Bk−1 ≥
2.5wE

M∑
i=1

ai

5wRQP

≥ Bk ≥ · · · ≥ BM , (5.21)

where Bi = airi (i=1,2, · · · , M).

5.4 Optimal Testing-Resource Allocation Problem with Three Evaluation Criteria 67

5.4 Optimal Testing-Resource Allocation Problem with

Three Evaluation Criteria

5.4.1 Selection of attributes

We assume the cost attribute in addition to the testing-resource attribute and reliability at-

tribute. First, we assume the following cost parameters.

c1 the debugging cost for one fault in the module testing (c1 > 0),

c2 the debugging cost for one undetected fault in the module testing (c2 > c1 > 0),

c3 the cost per unit of testing-resource for the module testing (c3 > 0).

The cost function based on the testing-effort dependent SRGM is formulated as

V = c1

M∑
i=1

ai(1− exp[−riqi]) + c2

M∑
i=1

ai · exp[−riqi] + c3

M∑
i=1

qi. (5.22)

From Eq. (5.22), the cost attribute is given as

min : C =
V

CP

. (5.23)

Then, CP represents the budget.

5.4.2 Development of single-attribute utility function

The single-attribute utility functions for each attribute are developed based on the following

management strategy.

1. For the testing-resource attribute, at least 60% of the prepared total amount of testing-

resources must be consumed.

2. For the reliability attribute, at least 80% of software faults should be detected and the

more better.

3. For the cost attribute, at least 50 % of the budget must be consumed.

4. The management team takes the risk neutral position for each attribute.

From the management strategy, we can rewrite that the lowest and highest consumptions for

the cost attribute are CL = 0.5 and CH = 1.0.

68 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

0 0 0.50.8 1 1

1 1

R

u(R) u(C)

C

● ●

0 0.6 1

1

E

u(E)

●

Fig. 5.1 The single-attribute utility functions.

From the management strategy, we have the following single-attribute utility functions for

each attribute:

u(E) = 2.5E − 1.5. (5.24)

u(R) = 5R− 4. (5.25)

u(C) = 2C − 1. (5.26)

5.4.3 Development of multi-attribute utility function

The additive multi-attribute utility function with some constraints as an optimization problem

is given by

max : u(E,R,C) = wR × u(R)− wE × u(E)− wC × u(C)

= wR × (5R− 4)− wE × (2.5E − 1.5)− wC × (2C − 1)

subject to wR + wE + wC = 1, qi ≥ 0. (5.27)

5.5 Numerical Examples 69

where wR, wE, and wC are the weight parameters for the attributes, R, E, and C, respectively.

From Eq. (5.27), the optimal testing-resource expenditures, q∗i , are given by

q∗i = − 1

ri
ln

2.5wE

QP
+ 2wCc3

CP

airi

{
5wR∑M
i=1 ai

+ (c2−c1)·2wC

CP

} (i = 1, 2, · · · , k − 1),

q∗i = 0 (i = k, k + 1, · · · ,M). (5.28)

That is, we can rewrite the optimal testing-resource expenditures, q∗i , as

q∗i = max

⎧⎨⎩0,− 1

ri
ln

2.5wE

QP
+ 2wCc3

CP

airi

{
5wR∑M
i=1 ai

+ (c2−c1)·2wC

CP

}
⎫⎬⎭ (i = 1, 2, · · · ,M). (5.29)

Also, when we assume Ci = airi(i = 1, 2, · · · ,M), we can assume that the following condition

is satisfied for the software modules.

C1 ≥ C2 ≥ · · · ≥ Ck−1 ≥
2.5wE

QP
+ 2wCc3

CP

5wR∑M
i=1 ai

+ (c2−c1)·2wC

CP

≥ Ck ≥ · · · ≥ CM . (5.30)

5.5 Numerical Examples

we use module-testing data which consists of 10 modules including the initial fault contents for

individual software modules, ai, and fault detection rate per the testing-resource expenditures

for individual software modules, ri, in Table 5.2 [38]. These parameters are estimated by the

testing-effort dependent SRGM.

We set the cost parameters as c1 = 1.0, c2 = 2.0, and c3 = 5.0. Also, we set the prepared

total amount of testing-resource expenditures, and the budget for the module testing as QP =

1.0× 106 and CP = 1.0× 106. Furthermore, the behavior of single-attribute utility functions is

shown in Fig. 5.1.

Tables 5.1 and 5.3 show the comparisons of the allocated testing-resource expenditures for

individual software modules, total amount of optimal testing-resource expenditures, and utility.

”M” means the software module. In Table 5.1, when the weight parameter, wR, increases,

the weight parameter, wC , decreases. Then, the total amount of optimal testing-resource

expenditures, Q∗, increases. Also, we can arrange from P1 to P5 in the order of high utility

as P1 > P5 > P2 > P4 > P3. Therefore, we can see that when we weight either the testing-

resource attribute or reliability attribute intensively, the utility becomes high. In Table 5.3,

when the weight parameters, wR, increases, wE and wC decrease, the total amount of optimal

testing-resource expenditures, Q∗, increases. Similarly, we can arrange from P1 to P6 in the

70 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

order of high utility as P6 > P1 > P5 > P2 > P3 > P4. Therefore, we can see that when the

difference between the maximized weight and minimized weight are large, the utility becomes

high.

Tables 5.2 and 5.4 show the expected number of remaining faults based on the optimal

testing-resource expenditures, q∗i . When we focus on P3 in Table 5.2, the expected number of

remaining faults is expected to decrease from 251 to 14 by devoting the total amount of optimal

testing-resource expenditures. That is, 94.4% of the remaining faults is reduced. Similarly,

when we focus on P1 in Table 5.4, the expected number of remaining faults is expected to

decrease from 251 to 9 by devoting the total amount of optimal testing-resource expenditures.

That is, 96.4% of the remaining faults is reduced.

The optimal testing-resource expenditures for some software modules are q∗ = 0 because

the negative values are derived as the optimal solutions. It does not mean that the module

testing is not needed. That is, we can know the software module which is needed the test

preferentially.

Finally, Figs. 5.2 and 5.3 show the behavior of the optimal testing-resource expenditures for

the modules 1 and 10 in Table 5.2. We can see that if we weight either testing-resource attribute

or reliability attribute preferentially, the behavior of the optimal testing-resource expenditures

changes the increments or decrements from the midpoint.

5.6 Conclusion

We discussed an optimal testing-resource allocation problem based on the multi-attribute util-

ity theory. Concretely, we developed the cost, reliability, and testing-resource attributes based

on the testing-effort dependent SRGM as three evaluation criteria. Then, we optimized the

weighted multi-attribute utility function, and derived the optimal testing-resource expendi-

tures, utility, total amount of testing-resource expenditures, and expected number of remaining

faults. Furthermore, we checked the sensitivity with changing the combination of the weight

parameters, and showed the behavior of the optimal testing-resource expenditures.

5.6 Conclusion 71

Fig. 5.2 The behavior of the optimal testing-resource expenditures. (module 1, 2 attributes)

72 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

Fig. 5.3 The behavior of the optimal testing-resource expenditures. (module 10, 2 attributes)

5.6 Conclusion 73

Table 5.1 The comparison of allocated testing-resource expenditures. (2 attributes)

Weight q∗i
wR wE M1 M2 M3 M4 M5 M6

P1 0.1 0.9 20441 4225.26 1953.46 16397 4794.54 11901.3
P2 0.3 0.7 45758.5 9575.76 4518.88 42512.8 12702.7 35489
P3 0.5 0.5 61649.3 12934.1 6129.11 58904.7 17666.4 50294.1
P4 0.7 0.3 77540.1 16292.4 7739.33 75296.6 22630.1 65099.3
P5 0.9 0.1 102858 21642.8 10304.8 101412 30538.2 88687

Weight q∗i Q∗ Utility
wR wE M7 M8 M9 M10

P1 0.1 0.9 6177.73 1884.52 579.838 0 68354.67 1.0428
P2 0.3 0.7 19761.2 9629.37 27274.1 13591.2 220813.5 0.763626
P3 0.5 0.5 28287.1 14490.5 44029 23239.3 317623.6 0.70149
P4 0.7 0.3 36812.9 19351.7 60784 32887.5 414433.9 0.753482
P5 0.9 0.1 50396.4 27096.5 87478.2 48259 568672.9 0.879267

Table 5.2 The comparison of expected number of remaining faults. (2 attributes)

zi
M ai ri P1 P2 P3 P4 P5
1 63 5.332× 10−5 21.18346 5.491995 2.353713 1.008735 0.261518
2 13 2.523× 10−4 4.476812 1.160656 0.497418 0.213179 0.05527
3 6 5.262× 10−4 2.146522 0.556507 0.238502 0.102215 0.0265
4 51 5.169× 10−5 21.85139 5.665182 2.427936 1.040545 0.269777
5 15 1.707× 10−4 6.616869 1.715491 0.735206 0.315087 0.08169
6 39 5.723× 10−5 19.73612 5.116784 2.192912 0.939816 0.243657
7 21 9.938× 10−5 11.36547 2.946607 1.262824 0.541212 0.140314
8 9 1.743× 10−4 6.480209 1.680053 0.720025 0.308579 0.080003
9 23 5.057× 10−5 22.33538 5.790641 2.48171 1.063587 0.275745
10 11 8.782× 10−5 11.0 3.334478 1.429064 0.612452 0.158784

Z∗ 127.1922 33.45839 14.33931 6.145406 1.593256

74 Chapter 5. Optimal Testing-Resource Allocation Problem Based on MAUT

Table 5.3 The comparison of allocated testing-resource expenditures. (3 attributes)

Weight q∗i
wR wE wC M1 M2 M3 M4 M5 M6

P1 0.8 0.1 0.1 70464.3 14797 7022.33 67997.7 20419.8 58506.9
P2 0.6 0.2 0.2 52069.5 10909.5 5158.39 49022.9 14674 41368.9
P3 0.5 0.25 0.25 44465.5 9302.5 4387.86 41179 12298.8 34284.4
P4 0.4 0.3 0.3 36861.6 7695.53 3617.36 33335.3 9923.68 27200
P5 0.2 0.4 0.4 18468.8 3808.47 1753.61 14362.5 4178.49 10063.8
P6 0.1 0.45 0.45 3264.76 595.318 212.983 0 0 0

Weight q∗i Q∗ Utility
wR wE wC M7 M8 M9 M10

P1 0.8 0.1 0.1 33016.5 17187.1 53323.4 28591.4 371326.43 0.44297
P2 0.6 0.2 0.2 23147.3 11560 33928.3 17423 259261.79 0.166101
P3 0.5 0.25 0.25 19067.5 9233.83 25910.7 12806.2 212936.29 0.102394
P4 0.4 0.3 0.3 14987.8 6907.72 17893.3 8189.46 166611.75 0.0965898
P5 0.2 0.4 0.4 5119.57 1281.2 0 0 59036.44 0.353652
P6 0.1 0.45 0.45 0 0 0 0 4073.061 0.726578

Table 5.4 The comparison of expected number of remaining faults. (3 attributes)

zi
M P1 P2 P3 P4 P5 P6
1 1.47105 3.92273 5.88399 8.82579 23.5324 52.9346
2 0.310885 0.829015 1.2435 1.8652 4.97324 11.187
3 0.149062 0.39749 0.596228 0.894317 2.38455 5.36388
4 1.51744 4.04642 6.06954 9.10409 24.2745 51
5 0.459503 1.22532 1.83794 2.75682 7.3506 15
6 1.37055 3.65472 5.48197 8.22276 21.9246 39
7 0.789262 2.10464 3.15691 4.73525 12.6258 21
8 0.450009 1.19999 1.79997 2.69988 7.19878 9
9 1.55105 4.13605 6.20397 9.30573 23 23
10 0.893149 2.38168 3.57246 5.35857 11 11

Z∗ 8.96196 23.89806 35.84648 53.76838 138.2645 238.48548

Chapter 6

Conclusion

This thesis discussed several problems, such as he change-point, the optimal software release

and optimal testing-resource allocation problems. The obtained main contributions and future

studies for the respective chapters are summarized as follows:

• Chapter 2:

Chapter 2 provided the change-point models based on the exponential, the delayed S-

shaped, and the inflection S-shaped SRGMs. Also, the change-point models with con-

sidering the uncertainty of the testing-environment are provided. They have the better

performance than the existing models in terms of MSE. Therefore, we can say that our

modeling approach could describe the actual testing-environment. However, the estima-

tion of the inflection coefficient for the ISS-CP SRGM could not have the consistency

completely. Therefore, we need to figure out the problem of the estimation, and solve

it. Additionally, our proposed models need to be compared the goodness-of-fit by using

many actual data sets. As future study, we have to develop more testing-environmental

functions, and check the performance of our models which are applied them. Also, we

proposed a change-point detection method based on the Laplace trend test. Concretely,

we estimated the change-points by analyzing the behavior of the Laplace factor, and

checked the performance of our proposed change-point models with the detected change-

points. We confirmed that those change-point models have the better performance from

the numerical examples. However, the detection method does not have the consistency

completely because the relationship between the change-point and Laplace factor is not

described theoretically. Therefore, we should make a correlation of them mathematically.

As future study, we need to improve the accuracy of our detection method. Further-

more, we have to try the differentiation of change-points as an evaluation criterion for

75

76 Chapter 6. Conclusion

determining a change-point.

• Chapter 3:

Chapter 3 discussed an optimal software release problem based on the change-point model

analytically. We derived the optimal software release time and optimal testing-time du-

ration from the change-point to the termination time of testing when the total software

cost is minimized in terms of the cost-evaluation criterion. After that, we considered the

reliability-evaluation criterion additionally, and determined the conclusive optimal soft-

ware release time. However, we could not estimate the optimal software release time for

the partial data-set properly. Therefore, we need to figure out the problem, and improve

the theoretical consistency.

• Chapter 4:

Chapter 4 discussed an optimal software release problem based on the multi-attribute

utility theory. The cost and reliability attributes based on the change-point models were

considered as the evaluation criteria. The optimal software release time and optimal

testing-time duration from the change-point to the termination time of testing were esti-

mated simultaneously. Also, we derived the optimal occurrence-time of the change-point,

expected total software cost, and utility. As future study, we need to consider the eval-

uation method of utility because our approach does not have the concrete evaluation

criterion. In other words, it is difficult to evaluate the results by the absolute evaluation

because the utility does not have units. Therefore, as another perspective, we try to

develop new evaluation functions with unit.

• Chapter 5:

Chapter 5 discussed an optimal testing-resource allocation problem based on the multi-

attribute utility theory. The cost, testing-resource, and reliability attributes based on

the testing-effort dependent SRGM were considered as the evaluation criteria. Also, we

estimated the optimal testing-resource expenditures for the module testing in terms of

utility. After that, the expected number of remaining faults was estimated by using

them. In the numerical examples, we showed the behavior of the optimal testing-resource

expenditures, and conducted the sensitive analysis. As future study, as with Chapter 4,

we need to discuss concrete evaluation method by using derived utility.

We discussed these several problems for software development management in this thesis.

77

Our change-point models and its application are expected to be a countermeasures for change-

points because it is easy for software development managers to apply in the actual testing-

environment. Also, our approach by using the multi-attribute utility theory is expected to be

a new methodology in terms of the economics.

As future study, we need to discuss the above problems, and improve the accuracy of

our proposed software development management methods. We could not derive the optimal

solutions properly in the partial problems although we used the optimization methodologies for

solving the optimization problems in this thesis. Therefore, we try to apply various optimization

methodologies in the mathematical programming to our approach.

References

[1] C.T. Lin and C.Y. Huang, “Enhancing and measuring the predictive capabilities of testing-

effort dependent software reliability models,” Journal of Systems and Software, Vol. 81,

No. 6, pp. 1025–1038, 2008.

[2] C.Y. Huang, “Performance analysis of software reliability growth models with testing-effort

and change-point,” Journal of Systems and Software, Vol. 76, No. 2, pp. 181–194, 2005.

[3] C.Y. Huang, “Cost-reliability-optimal release policy for software reliability models incor-

porating improvements in test efficiency,” Journal of Systems and Software, Vol. 77, No.

2, pp. 139–155, 2005.

[4] C.Y. Huang and T.Y. Hung, “Software reliability analysis and assessment using queueing

models with multiple change-points,” Computers & Mathematics with Applications, Vol.

60, No. 7, pp. 2015–2030, 2010.

[5] C.Y. Huang and C.T. Lin, “Analysis of software reliability modeling considering testing

compression factor and failure-to-fault relationship,” IEEE Transactions on Computers,

Vol. 59, No. 2, pp. 283–288, 2010.

[6] H.J. Shyur, “A stochastic software reliability model with imperfect-debugging and change-

point,” Journal of Systems and Software, Vol. 66, No. 2, pp. 135–141, 2003.

[7] H. Okamura, T. Dohi, and S. Osaki, “A reliability assessment method for software products

in operational phase—proposal of an accelerated life testing model,” (in Japanese), The

Transactions of IEICE, Vol. J83-A, No. 3, pp. 294–301, 2000.

[8] H. Pham, Software Reliability, Springer-Verlag, Singapore, 2000.

[9] H. Pham, Handbook of Reliability Engineering, pp. 285–302, Springer-Verlag, London,

2003.

79

80 References

[10] H. Pham, Handbook of Engineering Statistics, Springer-Verlag, London, 2006.

[11] H. Pham (Ed.), Recent Advances in Reliability and Quality in Design, Springer-Verlag,

London, 2008.

[12] H. Tamura, Y. Nakamura, and S. Fujita, Mathematical Science of Utility Analysis and Its

Applications (in Japanese), Corona publishing, Tokyo, 1997.

[13] H. Wang and H. Pham, Reliability and Optimal Maintenance, Springer-Verlag, London,

2006.

[14] J. Zhao and J. Wang, “Testing the existence of change-point in NHPP software reliability

models,” Communications in Statistics—Simulation and Computation, Vol. 36, pp. 607–

619, 2007. (DOI: 10.1080/03610910701236099)

[15] K.B. Misra (Ed.), Handbook of Performability Engineering, Springer-Verlag, London, 2008.

[16] K. Narita, A Friendly Guide to Probability Models with Examples and Solutions to Problems

(in Japanese), Kyoritsu-Shuppan, Tokyo, 2010.

[17] M. Nishiwaki, S. Yamada, and T. Ichimori “Testing-resource allocation policies based on an

optimal software release problem,” Journal of Japan Industrial Management Association,

Vol. 46, No. 3, pp. 182–186, 1995.

[18] M. Ohba, “Inflection S-shaped software reliability growth model,” in Stochastic Models

in Reliability Theory, S. Osaki, and Y. Hatayama (eds.), pp. 144–165, Springer-Verlag,

Berlin, 1984.

[19] M.R. Lyu, Handbook of software reliability engineering, M.R. Lyu (ed.), pp. 3–25, IEEE

Computer Society Press and McGraw-Hill, New York, 1996.

[20] M. Zhao, “Change-point problems in software and hardware reliability,” Communication

in Statistics—Theory and Methods, Vol. 22, No. 3, pp. 757–768, 1993.

[21] N. Langberg and N.D. Singpurwalla, “A unification of some software reliability models,”

SIAM Journal on Scientific Computing, Vol. 6, No. 3, pp. 781–790, 1985.

[22] O. Gauodin, “Optimal properties of the Laplace trend test for software-reliability model

reliability,” IEEE Transactions on Reliability Model, Vol. 41, No. 5, pp. 376–381, 1979.

References 81

[23] O. Singh, P.K. Kapur, and A. Anand, “A multi-attribute approach for release time and

reliability trend analysis of a software,” International Journal of System Assurance Engi-

neering and Management, Springer-Verlag, Vol. 3, No. 3, pp. 246–254, 2012.

[24] O. Singh, P.K. Kapur, and A.K. Shrivastava, “Release time problem with multiple

constraints,” International Journal System Assurance Engineering and Management,

Springer-Verlag, Vol. 6, No. 1, pp. 83–91, 2015.

[25] P.K. Kapur, V.B. Singh, O. Singh, and J.N.P. Singh, “Software release time based on

different multi-attribute utility functions,” International Journal of Reliability, Quality

and Safety Engineering, Vol. 20, No. 4, 1350012, 2013.

[26] P.K. Kapur, K.K. Sunil, T. Anshul, and S. Omar, “Release time determination depending

on number of test runs using multi attribute utility theory,” International Journal of

System Assurance Engineering and Management, Springer-Verlag, Vol. 5, No. 2, pp. 186–

194, 2014.

[27] S. Inoue and S. Yamada, “Optimal software release problems based on discrete NHPP

models,” (in Japanese), IEICE Technical Report [Reliability], Vol. 102, No. 58, pp. 7–12,

2002.

[28] S. Inoue and S. Yamada, “Discretized software reliability growth models and its applica-

tions,” (in Japanese), IEICE Technical Report [Reliability], Vol. 104, No. 220, pp. 25–30,

2004.

[29] S. Inoue and S. Yamada, “Software reliability measurement with change-point,” Proceed-

ings of the Fifth International Conference on Quality and Reliability, Chiang-Mai, Thai-

land, 2007, pp. 170–175.

[30] S. Inoue and S. Yamada, “Optimal software release policy with change-point,” Pro-

ceedings of the 2008 IEEE International Conference on Industrial Engineering Manage-

ment (IEEM2008), Singapore, December 8-11, 2008, CD-ROM (IEEE Catalog Number:

CFP08IEI-CDR), pp. 531–535.

[31] S. Inoue and S. Yamada, “Environmental-function-based change-point modeling for soft-

ware reliability measurement,” Proceedings of the Tenth International Conference on In-

dustrial Management, Beijing, China, September 16–18, 2010, pp. 403–407

82 References

[32] S. Inoue and S. Yamada, “Software reliability growth modeling frameworks with change of

testing-environment,” International Journal of Reliability, Quality and Safety Engineering,

Vol. 18, No. 4, pp. 365–376, 2011.

[33] S. Osaki (Ed.), “Stochastic Models in Reliability and Maintenance,” Springer-Verlag,

Tokyo/Heidelberg, 2002.

[34] S.S. Gokhale and K.S. Trivedi, “Log-logistic software reliability growth model,” Proceedings

of the High-Assurance System Engineering Symposium 1998, Washington D.C., U.S.A.,

November 13-14, 1998, pp. 34–41.

[35] S. Yamada, Software Reliability Models: Fundamentals and Applications (in Japanese),

JUSE Press, Tokyo, 1994.

[36] S. Yamada, Elements of Software Reliability: Modeling Approach (in Japanese), Kyoritsu-

Shuppan, Tokyo, 2011.

[37] S. Yamada, Software Reliability Modeling —Fundamentals and Applications—, Springer

Japan, Tokyo/Heidelberg, 2014.

[38] S. Yamada and H. Ohtera, Software Reliability —Theory and Practical Application— (in

Japanese), Soft Research Center, Tokyo, 1990.

[39] S. Yamada and M. Takahashi, Introduction to Software Management Model —A Method of

Evaluation and Visualization of Software Quality (in Japanese), Kyoritsu-Shuppan, Tokyo,

1993.

[40] S. Yamada and S. Osaki, “Software Reliability Growth Modeling: Models and Applica-

tions,” IEEE Transaction on Software Engineering, Vol. SE-11, No. 12, pp. 1431–1437,

1985.

[41] S. Yamada and T. Fukushima, Quality-oriented software management (in Japanese),

Morikita-Shuppan, Tokyo, 2007.

[42] S. Yamada, T. Ichimori, and M. Nishiwaki “Optimal allocation policies for testing-resource

based on a software reliability growth model,” International Journal of Mathematical and

Computing Modeling, Vol. 22, No. 10–12, pp. 295–301, 1995.

References 83

[43] T. Ichimori, M. Tanaka, and S. Yamada, “An optimal effort allocation problem for both

module and integration testing in software development,” Journal of Japan Industrial

Management Association, Vol. 53, No. 3, pp. 201–207, 2002.

[44] W.S. Humphrey, Managing the Software Process (in Japanese), JUSE Press, Tokyo, 1991.

[45] X. Teng and H. Pham, “A new methodologies for predicting software reliability in the

random field environments,” IEEE Transaction on Reliability, Vol. 55, No. 3, pp. 458–468,

2006.

[46] Y.P. Chang, “Estimation of parameters for nonhomogeneous Poisson process software re-

liability with change-point model,” Communications in Statistics — Simulation and Com-

putation, Vol. 30, No. 3, pp. 623–635, 2001.

Publication List of the Author

(Refereed Papers)

1. Y. Minamino, S. Inoue, and S. Yamada, “NHPP models for software reliability measure-

ment with change-point,” Proceedings of the 17th ISSAT International Conference on

Reliability and Quality in Design, Vancouver, Canada, August 4-6, 2011, pp. 132–136.

2. Y. Fukuta (Minamino), S. Inoue, and S. Yamada, “NHPP models with change-point for

software reliability assessment and its application to an optimal software release problem,”

Proceedings of the 19th ISSAT International Conference on Reliability and Quality in

Design, Honolulu, Hawaii, U.S.A., August 5-7, 2013, pp. 93–97.

3. Y. Minamino, S. Inoue, and S. Yamada, “On application methodologies of software

reliability model with change-point,” Asia Pacific Journal of Industrial Management

(APJIM), Vol. V, Issue 1, pp. 63–70 , 2014.

4. Y. Minamino, S. Inoue, and S. Yamada, “Change-point modeling and detection method

for software reliability assessment,” Proceedings of the 12th International Conference on

Industrial Management (ICIM), Chendu, China, September 3–5, 2014, pp. 266-270.

5. Y. Minamino, S. Inoue, and S. Yamada, “multi-attribute utility theory for estimation of

optimal release time,” International Journal of Reliability, Quality and Safety Engineer-

ing(IJRQSE), Vol. 22, No. 4, 1550019-1 1550019–14, 2015.

6. Y. Minamino, S. Inoue, and S. Yamada, “Estimating optimal software release time based

on a change-point model by multi-attribute utility theory,” Proceedings of the 21st ISSAT

International Conference on Reliability and Quality in Design, Philadelphia, Pennsylva-

nia, U.S.A., August 6-8, 2015, pp. 89–93.

7. Y. Minamino, S. Inoue, and S. Yamada, “NHPP-based change-point modeling for software

reliability assessment and its application to software development management,” Annals

85

86 Publication List of the Author

of Operations Research, Vol. 238, 2016. (DOI: 10. 1007/s10479-016-2148-x)

8. Y. Minamino, S. Inoue, and S. Yamada, “A testing-resource allocation problem with

multiple constraints for software development,” Proceedings of the 7th Asia-Pacific In-

ternational Symposium on Advanced Reliability and Maintenance Modeling (APARM),

Seoul, Korea, August 24-26, 2016, pp. 132–136.

9. Y. Minamino, S. Inoue, and S. Yamada, “A software testing-resource allocation problem

with multi-attributes for module testing,” Proceedings of the 13th International Confer-

ence on Industrial Management (ICIM), Hiroshima, Japan, September 21-23, 2016, pp.

340–345.

(Technical Reports)

1. Y. Minamino, S. Inoue, and S. Yamada, “A study on an optimal software release problem

based on a change-point model by using multi-attribute utility theory,” (in Japanese)

The Institute of Statistical Mathematics Cooperative Research Report 369—Optimization

: Modeling and Algorithms 28, pp. 79–84, March 2015.

2. Y. Minamino, S. Inoue, and S. Yamada, “A study on an estimation of optimal software

release time and change-point based on multi-attribute utility theory,” (in Japanese) The

Research Institute for Mathematical Sciences of Kyoto University Research Report 1990

—Mathematical Programming Concerning Decision Makings and Uncertainties—, pp.

191–197, April 2016.

(National Conference and Symposium Presentations)

1. Y. Minamino, S. Inoue, and S. Yamada, “Change-point modeling for software reliability

assessment based on NHPP,” (in Japanese) Proceedings of the 13th IEEE Hiroshima

Section Student Symposium, Hiroshima, Japan, November 2011, pp. 162–163.

2. Y. Minamino, S. Inoue, and S. Yamada, “On applications of change-point modeling tech-

nology into NHPP software reliability growth models,” Proceedings of the 4th Japan Korea

Software Management Symposium, Jeollabuk, Korea, November 18, 2011, pp. 95–104.

3. Y. Fukuta (Minamino), S. Inoue, and S. Yamada, “A study on NHPP modeling with

a testing-environmental factor and its application to an optimal software release prob-

lem,” Proceedings of the 39th Japan Industrial Management Association Chugoku-Shikoku

Branch Student Conference, Tottori, Japan, March 2, 2013, pp. 3–4.

87

4. Y. Minamino, S. Inoue, and S. Yamada, “An optimal software release problem with multi-

attribute based on a change-point model,” Proceedings of the 8th Japan KoreaSoftware

Management Symposium, Asan, Korea, November 27, 2015, pp. 58–73.

5. Y. Minamino, S. Inoue, and S. Yamada, “A study on an estimation of optimal software

release time and change-point with multiple evaluation criteria,” (in Japanese) Proceedings

of the 2016 Spring National Conference of ORSJ, Yokohama, Japan, March 17–18, 2016,

pp. 81–82.

Received Awards List of the Author

1. Distinguished Service Award (January 23, 2012)

The 13th IEEE Hiroshima Section Student Symposium (HISS 2011), Hiroshima, Japan,

November 12–13, 2011.

2. Best Research Award (November 13, 2011)

The 13th IEEE Hiroshima Section Student Symposium (HISS 2011), Hiroshima, Japan,

November 12–13, 2011

–Title–

Y. Minamino, S. Inoue, and S. Yamada, “Change-point modeling for software reliability

assessment based on NHPP,” (in Japanese) Proceedings of the 13th IEEE Hiroshima

Section Student Symposium (HISS 2011), Hiroshima, Japan, November 12–13, 2011, pp.

162–163.

3. Outstanding Research Presentation Award (March 2, 2013)

The 39th Japan Industrial Management Association Chugoku-Shikoku Branch Student

Conference, Tottori, Japan, March 2, 2013.

–Title–

Y. Fukuta (Minamino), S. Inoue, and S. Yamada, “A study on NHPP modeling with

a testing-environmental factor and its application to an optimal software release prob-

lem,” Proceedings of the 39th Japan Industrial Management Association Chugoku-Shikoku

Branch Student Conference, Tottori, Japan, March 2, 2013, pp. 3–4.

4. Excellent Paper Award (September 6, 2014)

The 12th International Conference on Industrial Management (ICIM), Chendu, China,

September 3–5, 2014.

—Title—

Y. Minamino, S. Inoue, and S. Yamada, “Change-point modeling and detection method

89

90 Received Awards List of the Author

for software reliability assessment,” Proceedings of The 12th International Conference on

Industrial Management, Chendu, China, September 3-5, 2014, pp. 266–270.

Received Grants List of the Author

1. The International Conference Travel Grant from the Telecommunications Advancement

Foundation (TAF). (2015)

—Conference Name—

The 21st ISSAT International Conference on Reliability and Quality in Design,

Philadelphia, Pennsylvania, U.S.A., August 6–8, 2015.

2. The Encourage Fund from Tottori University. (February 2015)

—Subject—

“A Study on Next-Generation Mathematical Model Which Reflects the Actual Environ-

ment for the High Accuracy of Software Reliability Assessment Technology” (in Japanese)

3. The Encourage Fund from Tottori University. (February 2016)

—Subject—

“A Study on Software Development Management Method Based on Decision-Making

Mechanism” (in Japanese)

91

