学位論文の概要及び要旨

氏 名	Lei LIU	印

題 目 <u>Microstructure and mechanical properties of in-situ synthesized</u> Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites (In-situ 合成した Al₂O₃/Ba-β-Al₂O₃/ZrO₂ 複合材料の組織と機械的性質)

学位論文の概要及び要旨

Al₂O₃ is one of the most widely used ceramic materials because of its high strength and hardness, excellent heat and wear resistance. Nevertheless, the large-scale applications of monolithic Al₂O₃ ceramic are very limited due to its relatively low fracture toughness. Compared to direct additions of fibers and whiskers, the incorporation of elongated reinforcements with high aspect ratios through in-situ reactions has advantages of reducing processing costs, as well as obtaining denser and more homogeneous microstructure.

Chapter 1 described the background of the present research. In order to improve the fracture toughness of monolithic Al_2O_3 ceramic, a combination of crack deflection, crack bridging, and martensitic transformation of ZrO_2 from tetragonal to monoclinic phase was proposed to fabricate $Al_2O_3/Ba-\beta-Al_2O_3/ZrO_2$ composites.

In Chapter 2, Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites were fabricated by solid-state reaction sintering of Al₂O₃, BaZrO₃, and 3 mol% yttria-stabilized zirconia (3YSZ) powders. The effects of YSZ addition on microstructure and mechanical properties have been investigated. The incorporation of YSZ promoted the densification of the composites and formation of tetragonal ZrO₂ phase. The microstructure of the composites was characterized by elongated Ba-β-Al₂O₃ phase and equiaxed ZrO₂ particles including added YSZ and reaction-formed ZrO₂. The Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites with YSZ addition exhibited improved fracture toughness, as a result of multiple toughening effects including crack deflection, crack bridging, crack branching, and martensitic transformation of ZrO₂ formed by the reactions between Al₂O₃ and BaZrO₃. Moreover, owing to the grain refinement of Al₂O₃ matrix, dispersion strengthening of the added YSZ particles, and an increase in density of the composites, the Vickers hardness and flexural strength of Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites were dramatically enhanced in comparison with the composites without YSZ addition.

In Chapter 3, Al₂O₃ matrix composites containing in-situ formed monoclinic zirconia (*m*-ZrO₂) and Ba-β-Al₂O₃ were prepared via reactive sintering of Al₂O₃ and BaZrO₃ powders. To improve the fracture toughness of Al₂O₃/Ba-β-Al₂O₃/*m*-ZrO₂ composites, YSZ with different Y₂O₃ contents (1.5YSZ, 2YSZ, and 3YSZ) and Y₂O₃ particles were introduced into Al₂O₃ and BaZrO₃ powder mixtures, and the effect of YSZ or Y₂O₃ addition on densification behavior,

microstructure, and mechanical properties of $Al_2O_3/Ba-\beta-Al_2O_3/ZrO_2$ composites has been investigated. The reaction-formed m- ZrO_2 was transformed into tetragonal ZrO_2 (t- ZrO_2), resulting from the migration of Y^{3+} from YSZ or Y_2O_3 . The incorporation of YSZ particles contributed to the refinement of Al_2O_3 grains, whereas Y_2O_3 -added samples showed larger grain sizes of Al_2O_3 matrix. The $Al_2O_3/Ba-\beta-Al_2O_3/ZrO_2$ composites with YSZ or Y_2O_3 addition exhibited high fracture toughness, which is attributed to crack deflection/bridging and $t \rightarrow m$ transformation toughening. Although the phase transformation is mainly derived from ZrO_2 formed during sintering, 1.5YSZ particles added in the composites still showed much higher phase transformability compared to 2YSZ and 3YSZ particles.

In Chapter 4, Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites were prepared by solid-state reaction sintering of high-energy ball-milled Al₂O₃–BaZrO₃ powder mixtures and YSZ nanopowder. The powder characterization of Al₂O₃ and BaZrO₃ powders as well as sintering behavior and microstructure of Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites were investigated. After high-energy ball-milling (HEBM) for 48 h, the particle size of BaZrO₃ was significantly reduced. However, no evident particle refinement of Al₂O₃ occurred. The Ba-β-Al₂O₃ phase presented a more equiaxed morphology instead of platelet structure, which enhanced the densification of the composites. Al₂O₃/Ba-β-Al₂O₃/ZrO₂ composites sintered at 1500 °C, based on powders ball-milled for 72 h, presented the highest Vickers hardness of 17.3 GPa. Meanwhile, the composites sintered at 1600 °C, based on powders without HEBM, presented the highest fracture toughness of 4.3 MPa m^{1/2}.

In Chapter 5, to improve the mechanical properties and thermal shock resistance of zirconia toughened alumina (ZTA) composites, BaCO₃ was added to YSZ and Al₂O₃ powders to form ZTA/Ba- β -Al₂O₃ composites, which were prepared by a solid-state reactive sintering method. As BaCO₃ content increased, more Ba- β -Al₂O₃ was formed, resulting in the decreases in relative density and Vickers hardness. The fracture toughness was enhanced with increasing BaCO₃ content and reached a peak at 4 wt% BaCO₃. The improved fracture toughness is the result of synergistic toughening effects of martensitic transformation of ZrO₂ and crack deflection/bridging. After thermal shock tests, the residual strength of ZTA/Ba- β -Al₂O₃ composites was higher than that of ZTA. The improvement in thermal shock resistance is mainly ascribed to the formation of elongated Ba- β -Al₂O₃ with a hexagonal structure, which can dissipate the energy associated with crack propagation during thermal shock.

In Chapter 6, calcium hexaaluminate (CaAl₁₂O₁₉ or CA₆) ceramics were fabricated by reactive sintering of Al₂O₃ and CaCO₃ powder mixtures. The influence of Ti⁴⁺ doping on microstructural development of CA₆ ceramics was investigated. The doped Ti⁴⁺ led to formation of Al vacancies (V_{Al}) in mirror planes of CA₆ by replacing Al³⁺, resulting in promotion of crystal growth of CA₆ along c axis and thus the decrease in aspect ratios of CA₆ grains. Meanwhile, Al₂O₃ and CaTiO₃ were also formed in Ti⁴⁺-doped samples.

In Chapter 7, some general conclusions of this work were made. In addition, a few schedules to motivate the future research were also proposed.