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CHAPTER 1 

GENERAL INTRODUCTION 

 

     The fungi are a highly diverse kingdom of eukaryotic microbes. The large 

kingdom includes the numerous molds found on decaying vegetation and the unicellular 

yeasts abundant on the sugary surface of ripe fruit. There are also the water-molds often 

seen on dead, floating fish. Mildews, smuts, rusts and many other plant pathogens are 

fungi. Further, there are the larger fungi: toadstools, bracket polypores, and the 

puff-balls and stink-horns so common in the woods in autumn. The lichens are also 

fungi.
1)

 

   Fungal plant diseases are more prevalent among cultivated crop plants, and they're 

more dangerous. Since cultivated crop plants are usually grown in stands of a single 

cultivar or variety of a species and they are all genetically identical, when a crop plant is 

susceptible to a fungal plant disease, all of the plants in the stand will be susceptible. 

Thus plant diseases caused by plant pathogens are serious problems in agriculture all 

over the world. 

   Protecting crops from fungal and other diseases also plays a key role in the 

widespread efforts to meet the increasing food and feed demands of a rising human 

population. Synthetic fungicides can effectively control some of the plant pathogens, 

but such fungicides may be highly toxic to non-target organisms and may also remain 

too long in the environment. Today, the standards to be met by new agrochemicals are 

very high with regard to efficiency and ecological safety.
2)

      

   Fungal secondary metabolites are compounds that are generally produced in a phase 

subsequent to growth, and they are not essential intermediaries of the central 
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metabolism. They often have an unusual chemical structure and are found as mixtures 

of closely related chemicals.
3)

 In general, fungal secondary metabolites are nonessential 

to life, although they are important to the fungi that produce them. The filamentous 

fungi are proficient and copious producers of secondary metabolites. Phytopathogenic 

fungi also produce diverse secondary metabolites that show phytotoxic and/or 

antimicrobial activity and play important roles in their infection and colonization in 

plants. 

To fully elucidate the mechanisms of infection and colonization by plant pathogens, 

it is necessary to identify the molecules involved in the pathogenesis. The accumulation 

of knowledge of such molecular infection mechanisms by plant pathogens would 

certainly contribute to the development of effective new and eco-friendly methods for 

protecting plants from many plant diseases. At the same time, such molecules could 

provide lead structures for agrochemicals. 

   This dissertation consists of four chapters. Chapter 1, this chapter, is an introduction 

to the general concepts and the purpose of this research. Chapter 2 focuses on the 

biosynthesis of phytotoxins in a phytopathogenic fungus. The conversions of 

deoxyradicinin to radicinin and of radicinin to 3-epi-radicinin in the cell-free system of 

Bipolaris coicis and the enzymes involved in these conversions are described in this 

chapter. Chapter 3 deals with the isolation and structural elucidation of the antimicrobial 

metabolites produced by a soil-born phytopathogenic fungus. The structures of new 

3-O-alkyl-4a,10a-dihydrofusarubins produced by Fusarium sp. Mj-2 and their 

antimicrobial activities are described. Chapter 4 explains the conclusions drawn from 

this research and extends to speculation about future research topics. 
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CHAPTER 2 

BIOSYNTHESIS OF THE PHYTOTOXIN RADICININ  

IN PHYTOPATHOGENIC FUNGUS 

 

2.1 Introduction 

   Radicinin (3) (Fig. 2-1) is a phytotoxic and antibiotic metabolite produced by some 

phytopathogenic fungi. It was first isolated from Stemphylium radicinum in the 1950s,
1)

 

and since then has been reported to be produced by several fungal species, Cochliobolus 

lunatus,
2) 

Alternaria chrysanthemi,
3) 

Alternaria helianthi,
4)

 Phoma andina,
5) 

Curvularia 

sp.,
6)

 Alternaria radicina and Alternaria petroselini.
7)

 It shows phytotoxicity, for 

example, killing roots of Lepidium sativum,
8)

 browning and causing a loss of viability in 

Nicotiana tabacum,
9)

 as well as producing necrotic lesions in Coix lachryma-jobi
10)

 and 

inhibiting root growth in carrot seedlings.
11)

 The structure of radicinin (3) except for its 

stereochemistry, was determined by Grove
12)

 on the basis of chemical and spectroscopic 

evidence. Its absolute stereochemistry was inferred from the CD spectrum of the 

3,4-bis-O-p-chlorobenzoyl derivative of radicinol by Nukina and Marumo based on the 

dibenzoate exciton chirality rule,
2)

 and this was supported by an X-ray crystallographic 

experiment with its 4-O-p-bromobenzoyl ester by Robeson et al.
13)

 The -oxygenated 

a-pyrone moiety of radicinin (3) is not unusual among natural products. Its biosynthesis 

has been studied by some researchers. Radioactive tracer experiments by Grove
14)

 

demonstrated that it is synthesized from two different polyketide chains originating 

from acetate and malonate. Other research groups confirmed this using 
13

C labeled 

compounds.
15, 16)

 Although it has been assumed that the direct precursor of radicinin (3) 

is deoxyradicinin (1), there has been no experimental data to support this until now. 



 

5 
 

Formation of deoxyradicinin (1) through an uncommon condensation of two polyketide 

chains, cyclization and ring-cleavage was demonstrated by incorporation studies with 

13
C-labeled acetates and a 

2
H-labeled one.

17)
 

   The Bipolaris coicis H13-3 used in this study is a plant pathogen causing serious 

leaf blight on Job’s tears (Coix lachryma-jobi), and Nakajima et al.
10)

 reported that 

radicinin (3), 3-epi-radicinin (4), 3-epi-radicinol (5) and its epoxide (6) were produced 

by this fungus. Their structures suggested a biosynthetic relationship between these 

metabolites shown in Fig. 2-1. In this scheme, both radicinin (3) and 3-epi-radicinin (4) 

are synthesized from deoxyradicinin (1), which was isolated from the plant pathogen A. 

helianthi together with radicinin (3); 3-epi-radicinin (4) is then reduced to 

3-epi-radicinol (5), which is oxidized to 3-epi-radicinol epoxide (6). 

   In this work, the hypothesis shown in Fig. 2-1 was examined by a precursor 

administration experiment and a cell-free approach with deoxyradicinin (1) and 

 

 

 

Fig. 2-1. Proposed processes for formation of radicinin (3) and 3-epi-radicinin (4) from 

deoxyradicinin (1) and transformation of 3-epi-radicinin (4) to the metabolites 

(5 and 6) by Bipolaris coicis H-13-3. 
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radicinin (3). The former was not commercially available, and a sufficient amount of 

deoxyradicinin (1) could not be obtained from B. coicis H13-3. Thus deoxyradicinin (1) 

was synthesized according to the reported methods.
18, 19)

 

. 

2.2 Feeding experiment with deoxyradicinin and radicinin 

   To confirm the conversion of deoxyradicinin (1) to radicinin (3) and the latter to 

3-epi-radicinin (4), deoxyradicinin (1) and radicinin (3) were administered to the fungus 

separately. The deoxyradicinin (1) was synthesized from 4-methoxy-6-methyl-2H- 

pyran-2-one (7) according to the reported literature
10)

, and the synthetic scheme is 

shown in Fig. 2-2.  

   Since the final product was a mixture of deoxyradicinin (1) and its C-2 epimer (2), 

they were separated via chiral HPLC. The overall yield of compounds 1 and 2 from 

  

 

 

Fig. 2-2. Synthesis of deoxyradicinin (1 and 2). Reagents and conditions: (i) SeO2, 

dioxane, 160˚C; (ii) ethyl triphenyl phosphonium bromide, sodium 

bis(trimethylsilyl) amide, DMF; (iii) TiCl4, crotonoyl chloride, CH2Cl2; (iv) 

TiCl4, CH2Cl2. 
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compound 7 was 1.2% and 1.5%, respectively. To determine which compound has the 

same stereochemistry as the natural product, the optical rotation of each compound was 

measured as –82° for compound 1 and +90° for compound 2. To our knowledge, optical 

rotation of deoxyradicinin (1) isolated from the filamentous fungus has not been 

reported, and I therefore compared the optical rotation of the synthetic compounds with 

[]D –125° of radicinin (3), []D –105° of 3-epi-radicinin (4) and []D –19° of 

3-epi-radicinol (5). From its negative optical rotation, (–)-deoxyradicinin (1) has the 

same stereochemistry as radicinin (3) produced by this fungus. The optical purity of 

compounds 1 and 2 was determined to be 94.4% ee and 96.6% ee, respectively, using 

chiral HPLC. The radicinin (3) used in the precursor administration experiment was 

isolated from the culture filtrate of the fungus B. coicis H13-3 grown on malt extract 

medium. Its optical purity was confirmed by analysis of the NMR spectrum of its 

(–)-MTPA ester, in which no resonance due to the (–)-MTPA ester of the enantiomer 

was detected. Thus, it was concluded that radicinin (3) isolated from the fungus was 

optically pure. 

   Compounds 1 and 2 were administered to the fungus separately, and the conversion 

products were analyzed by HPLC. As shown in Fig. 2-3B, the amount of radicinin (3) 

(27.6 nmol/L) detected, when compound 1 was administered, was about eight times 

more than that of the control (3.4 nmol/L). Additionally, the amount of 3-epi-radicinin 

(4) also increased as compared to the control. There are two possible explanations for 

the increase in the amount of 3-epi-radicinin (4). One is that (–)-deoxyradicinin (1) was 

hydroxylated to be 3-epi-radicinin (4) directly and the other is that radicinin (3) 

produced from (–)-deoxyradicinin (1) was epimerized at C-3 to be 3-epi-radicinin (4). 

By contrast, administration of (+)-deoxyradicinin (2) caused no significant increase in  
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Fig. 2-3. HPLC profiles of the products converted from deoxyradicinin by Bipolaris 

coicis H13-3. (A) Control, (B) (–)-Deoxyradicinin, (C), (+)-Deoxyradicinin. 

 

either the amounts of radicinin (3) or of 3-epi-radicinin (4) compared with the control 

(Fig. 2-3C). This supports the fact that compound 1 has the same stereochemistry at C-2 

as radicinin (3) produced by B. coicis, but compound 2 does not. 

   To examine the biogenetical origin of 3-epi-radicinin (4), radicinin (3) was 

administered to the fungus, and the conversion products were analyzed by HPLC. As 

shown in Fig. 2-4, when radicinin (3) was administered, there was about a 4-fold 

increase in the amount of 3-epi-radicinin (4) (3.5 nmol/L) detected by HPLC compared 

with the control (0.9 nmol/L). These results indicated that (–)-deoxyradicinin (1), not 

(+)-deoxyradicinin (2), is a direct precursor of radicinin (3) and also that the fungus 

have an epimerizing enzyme which catalyzes the conversion of radicinin (3) to 

3-epi-radicinin (4). 
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Fig. 2-4. HPLC profiles of the products converted from radicinin by Bipolaris coicis 

H13-3. (A) Control, (B) Radicinin.  

 

   In our previous report
10)

, a biosynthetic relationship was proposed between radicinin 

(3) and its analogues based on their structural features. The present result obtained from 

the feeding experiments indicates that radicinin (3) is synthesized from an anticipated 

precursor, deoxyradicinin (1). Furthermore, a small amount of deoxyradicinin (1) was 

produced by B. coicis, suggesting that the deoxyradicinin (1) biosynthesized is rapidly 

converted to radicinin (3) or to the following biosynthetic product, and thus ostensible 

amount of deoxyradicinin (1) is extremely small in amount at any time. 
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2.3 Enzyme activity of deoxyradicinin monooxygenase and 

radicinin epimerase 

   To confirm the conversion of deoxyradicinin (1) to radicinin (3) as indicated by 

precursor administration, the experiment using a cell-free system prepared from B. 

coicis H13-3 was carried out as follows. Incubation of (–)-deoxyradicinin (1) with the 

crude cell free extract, in the presence of co-enzymes (NAD
+
, NADP

+
, NADH and 

NADPH 20 mM respectively), for 2 h gave rise to the enzymatic formation of radicinin 

(3) (Fig. 2-5). Next, the crude cell free extract was divided into cytosolic and 

microsomal fractions. When (–)-deoxyradicinin (1) was incubated with the cytosolic 

fraction in the presence of co-enzymes (NAD
+
, NADP

+
, NADH and NADPH), the 

amount of radicinin (3) after 2-h incubation increased remarkably, but when incubated 

with the microsomal fraction, no significant formation of radicinin (3) was detected.  

Fig. 2-5. Deoxyradicinin monooxygenase activity to convert (–)-deoxyradicinin (1) to 

radicinin (3) in the cell-free extract, cytosolic and microsomal fractions. Data 

presented is mean of three replicates and SD. 
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 (+)-Deoxyradicinin (2) was also incubated with the cytosolic fraction or the 

microsomal fraction in the presence of co-enzymes (NAD
+
, NADP

+
, NADH and 

NADPH), but, in both cases, no remarkable increases in the amount of radicinin (3) in 

the 2-h incubation extracts were observed.  

   Deoxyradicinin 3-monooxygenase activity was measured under various conditions 

with the cytosolic fractions. The optimum temperature for the enzyme activity was 

determined by comparing the reaction rates at 25–45 °C at pH 7.0. The optimum pH for 

the enzyme activity was determined by comparing the reaction rates at pH 4–9 at 35 °C. 

(Fig. 2-6) demonstrates that the reaction was catalyzed most effectively by the 

monooxygenase at 35 °C, pH 7.0. The monooxygenase prefers NAD
+
 to other 

co-enzymes (Fig. 2-7).  

 

 

 

Fig. 2-6. Effect of incubation temperature and pH on activity of the enzyme catalyzing 

the conversion of (–)-deoxyradicinin (1) to radicinin (3). Cytosol fraction was 

used to determine its optimal temperature and pH in the range of 20 to 50 °C at 

pH 7.0, and of 4.0 to 9.0 at 35 °C. The amount of radicinin formed was 

measured by HPLC. Data presented is the mean of three replicates and SD. 

 



 

12 
 

 

Fig. 2-7. Effect of addition of co-enzyme to the enzyme assay solution on formation of 

radicinin (3) from (–)-deoxyradicinin (1). The cytosolic fraction was used for 

the reaction with co-enzymes, and the reaction was carried out at 35 °C and at 

pH7.0. The amount of radicinin formed was measured by HPLC using the 

experimental procedure described above. All experimental analyses were 

carried out in a minimum of three independent complexes for each condition. 

 

The molecular weight of the monooxygenase was determined to be 130–184 kDa by 

gel filtration column chromatography. Although it was suggested in a previous paper 

that the enzyme catalyzing this reaction was cytochrome P450 monooxygenase
10)

, the 

enzyme activity for the conversion of deoxyradicinin (1) to radicinin (3) was distributed 

in the cytosolic fraction and not in the microsomal fraction. The monooxygenase is 

therefore, a soluble protein present in the cytoplasm. The enzyme that catalyzes the 

hydroxylation like this was classified as oxidoreductase, and is activated in the presence 

of NAD
+
. Thus deoxyradicinin 3-monooxygenase belongs to a monooxygenase group 

such as EC 1.14.13. 

   To investigate the metabolism of radicinin (3) and the origin of 3-epi-radicinin (4),  
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Fig. 2-8. Radicinin epimerase activity to epimerize radicinin (3) to 3-epi-radicinin (4) in 

the cytosolic and microsomal fractions. Data presented is the mean of three 

replicates and SD. 

 

radicinin (3) was incubated with the cytosolic or microsomal fraction in the presence of 

co-enzymes (NAD
+
, NADP

+
, NADH and NADPH) for 30 min (Fig. 2-8). Incubation of 

radicinin (3) with the cytosolic fraction caused an increase in 3-epi-radicinin (4), but no 

increase of 3-epi-radicinin (4) was observed when incubating with the microsomal 

fraction. No 3-epi-radicinin (4) was detected when incubating radicinin (3) with 

distilled water in place of the cytosolic or the microsomal fraction, indicating that 

radicinin (3) does not racemize at detectable rate without enzyme. 

   The radicinin epimerase that catalyzes the reaction of radicinin to 3-epi-radicinin (4) 

was purified with ammonium sulfate fractionation and several chromatographic 

processes by monitoring enzyme activity (Table 2-1). To characterize the epimerase, 

radicinin (3) was incubated with this purified enzyme under several conditions, 

demonstrating that the highest activity of the epimerase was found at 30–35 °C and pH 
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7.0–9.0 (Fig. 2-9), and that the epimerase did not require any co-enzyme for this 

conversion. The molecular weight of the epimerase was determined to be 52 kDa based 

on its gel filtration chromatographic behavior. The fractions from the 2nd Mono Q HR 

5/5 column chromatography were characterized by SDS–PAGE analysis and enzyme 

assay. A major band corresponding to 28-kDa on SDS–PAGE is in accordance with the 

enzyme activity, indicating that the epimerase is homodimeric in its native condition 

(Fig. 2-10).  

 

 

 

Table 2-1. Purification of radicinin epimerase from Bipolaris coicis H 13-3. Total 

protein was measured by Bradford protein assay. Total activity was calculated 

from the reaction product monitoring by HPLC. Total specific activity was 

assayed spectrophotometrically by measuring the absorbance of 3-epi-radicinin 

in the enzymatic assay at 280 nm. 

Purification step Total Total Specific Purification Recovery 

  protein activity activity   

   (mg) (nmol/min) (nmol/min/mg) Fold (%) 

Cytosol  262.0 1035.0 4.0 1.0 100.0 

DE-52  40.6 230.0 5.7 1.4 22.3 

Phenyl Sepharose 13.9 140.0 10.1 2.6 14.0 

Superdex 2.12 38.7 18.3 4.5 3.7 

1st MonoQ 0.22 13.7 62.3 15.8 1.3 

2nd MonoQ 0.04 9.1 228.0 57.7 0.9 
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Fig. 2-9. Effect of incubation temperature and pH on activity of the enzyme that 

catalyzes the conversion of radicinin (3) to 3-epi-radicinin (4). The purified 

enzyme was used to determine its optimal temperature and pH in the range of 

20 to 50°C at pH 8.0, and of 6.0 to 9.5 at 35°C. The amount of 3-epi-radicinin 

formed was measured by HPLC. Data presented is the mean of three replicates 

and SD. 

 

 

 

 

 

 

Fig. 2-10. SDS-PAGE analysis and the enzyme activity of 2nd Mono Q fractions. (A) 

SDS-PAGE of the fractions 34-46 from the 2nd Mono Q column 

chromatography and marker proteins (MP). Arrow indicates the enzyme band. 

(B) Amount of 3-epi-radicinin formed when radicinin was incubated with each 

2nd Mono Q fraction. 3-epi-Radicinin formed was extracted with EtOAc and 

analyzed by HPLC. 
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   To ascertain whether the epimerase catalyzes the inverse reaction, the isolated 

epimerase was incubated with 3-epi-radicinin (4). HPLC analysis of the products 

indicated formation of radicinin (3) from 3-epi-radicinin (4) (data not shown), 

demonstrating that this reaction was reversible. The enzyme activity was inhibited by 

copper sulfate and iodoacetic acid (data not shown), suggesting that radicinin epimerase 

is a SH enzyme. Most epimerization enzymes that have been discovered so far utilize 

carbohydrates, amino acids, hydroxyl acids and their derivatives as substrates
20-23)

. 

However, no epimerization enzymes involved in secondary metabolism have been 

found until now. The epimerase did not need any co-enzymes for the reaction, 

indicating that the reaction proceeds through keto-enol tautomerization. Thus, radicinin 

epimerase should belong to the tautomerase group such as the EC number of 5.3.2. The 

toxicity of radicinin (3) for Coix lachryma-jobi L. was ten times higher than 

3-epi-radicinin (4), and hence it was assumed that radicinin epimerase regulated the 

pathogenicity of the fungus to the plants. 

   Previously, Nakajima et al. proposed that the same enzyme catalyzes the 

conversions of deoxyradicinin (1) to radicinin (3) and also to 3-epi-radicinin (4).
10)

 

Actually, the precursor administration experiment with deoxyradicinin (1) showed 

formation of not only radicinin (3), but also 3-epi-radicinin (4). At the same time, 

however, I established that the enzyme in the cytosolic preparation from B. coicis H13-3 

catalyzes reaction of radicinin (3) to 3-epi-radicinin (4). This epimerization was 

reversible and a new metabolic fate of radicinin (3). From these results, a biosynthesis 

and metabolism scheme for radicinin (3) was deduced, as shown in Fig. 2-11. First, 

deoxyradicinin (1) is converted to radicinin (3) by stereospecific hydroxylation at C-3. 

Then, radicinin epimerase catalyzes epimerization of radicinin (3) at C-3 to 
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3-epi-radicinin (4) reversibly. The direct conversion of deoxyradicinin (1) to 

3-epi-radicinin (4) could not be confirmed in this study. Finally, 3-epi-radicinin is 

probably converted to 3-epi-radicinol (5) by stereospecific reduction at C-4, followed 

by epoxidation of the side chain in 3-epi-radicinol (5). In this study, the key enzyme that 

catalyzes the reaction of deoxyradicinin (1) to radicinin (3) could not be isolated, 

probably because of enzyme instability. 

 

 

Fig. 2-11. Biosynthesis of radicinin (3) from (–)-deoxyradicinin (1) and conversion of 

radicinin to 3-epi-radicinin (4). Solid arrows show the pathways established in 

this research, and dashed arrows show the unproven pathways. 

 

2.4 Experiments 

2.4.1 General experimental procedures 

   NMR spectra were recorded in CDCl3 on a JEOL JNM-ECP 500 spectrometer. 

NMR chemical shifts were referenced to CDCl3 (H 7.26, C 77.0). Mass spectra were 

obtained with a JEOL AX-505 spectrometer. Optical rotations were determined with a 

Horiba SEPA-200 high sensitive polarimeter. A Shimadzu LC-6A liquid 

chromatography system was used for HPLC analysis. In the precursor administration 
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experiment and the enzyme assay for the conversion of deoxyradicinin (1) to radicinin 

(3), HPLC was performed using a DAISOPAK SP-120-5-ODS-AP column (6 x 150 mm, 

DAISO Co., Ltd., Osaka Japan), MeOH–H2O–AcOH (100:99:1, v/v/v) as solvent at a 

flow rate of 0.5 mL/min, monitoring at 280 nm. In the enzyme assay for the conversion 

of radicinin (3) to 3-epi-radicinin (4), HPLC was carried out using a DAISOPAK 

SP-250-10-ODS-AP column (10 x 250 mm), MeOH–H2O–AcOH (100:99:1, v/v/v) as 

solvent at a flow rate of 0.5 mL/min, and monitoring at 280 nm. Silica gel flash column 

chromatography was carried out by use of Wakogel FC-40 (Wako Pure Chemical 

Industries, Ltd., Osaka, Japan). Protein concentrations were determined with Bradford 

reagent (Sigma–Aldrich) using BSA as a standard. 

 

2.4.2 Fungal strain 

The strain H13-3 of B. coicis was used in the experiments. B. coicis H13-3 was 

maintained on potato dextrose agar slants. 

 

2.4.3 Isolation of radicinin 

   The fungus was grown without shaking at 24˚C for 14 days in the dark in a 500 mL 

conical flask containing liquid medium (200 mL x 5) made up of glucose (30 g/L), 

peptone (3 g/L) and an extract from 50 g/L of malt and H2O. The culture filtrate was 

acidified to pH 2.0 with HCl, and the metabolites in the culture filtrate were extracted 

with EtOAc (500 mL x 3). The EtOAc extract was dried over Na2SO4 and evaporated. 

The residue (270 mg) was applied to a Si gel column (Daisogel IR-60, 18 x 180 mm, 

DAISO, Co., Ltd.), and the column was washed with 1500 mL of Me2CO–n-hexane 

(1:9,v/v), then developed successively with 750 mL each of Me2CO–n-hexane (2:8, 3:7 
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and 4:6, v/v). Fractions 3 and 4 eluted by Me2CO–n-hexane (3:7, v/v) were combined 

and evaporated. Recrystallization of the residue (34 mg) from MeOH afforded radicinin 

(3) as colorless needles (6 mg): H 6.93 (1H, dq, J = 15.5, 7.0 Hz, 20-H), 6.02 (1H, dq, J 

= 15.5, 1.7 Hz, 10-H), 5.83 (1H, s, 8-H), 4.36 (1H, dq, J = 12.4, 6.0 Hz, 2-H), 3.97 (1H, 

d, J = 12.4 Hz, 3-H), 1.96 (3H, dd, J = 7.0, 1.7 Hz, 3’-H), 1.64 (3H, d, J = 6.0 Hz, 

2-Me); C (CDCl3) 188.7, 176.0, 164.4, 156.8, 141.0, 122.6, 98.1, 97.2, 80.0, 72.0, 18.8, 

18.1, CI-MS (iso-butane, probe), 200 eV, m/z 237 ([M+H]
+
, 100%). 

 

2.4.4 Synthesis of deoxyradicinin 

 2.4.4.1 6-Formyl-4-methoxy-2H-pyran-2-one (8) 

   The mixture of 4-methoxy-6-methyl-2H-pyran-2-one (7; 500 mg, Sigma–Aldrich, 

Inc.), SeO2 (1.2 g, Kanto Chemical Co., Inc., Tokyo, Japan) and anhydrous dioxane (5 

mL) in a sealed tube was heated at 160˚C (outside) and stirred vigorously. After 3 h, the 

precipitate was removed by filtration and washed with dioxane. The latter was removed 

by evaporation in vacuo to afford a residue, which was poured into brine (100 mL). The 

resulting product was extracted with EtOAc (100 mL x 3) with the EtOAc solubles 

combined. After drying over Na2SO4, the extract was evaporated to dryness. The residue 

was purified by Si gel flash CC. The column (20 x 150 mm) was developed 

successively with 300 mL of Me2CO–n-hexane (3:7, 4:6 and 1:1 v/v), respectively. 

Compound 8 (362 mg) was eluted with Me2CO–n-hexane (4:6, v/v): H 9.48 (1H, s, 

7-H), 6.63 (1H, d, J = 2.3 Hz, 5-H), 5.70 (1H, d, J = 2.3 Hz, 3-H), 3.82 (3H, s, 8-H); 

EI-MS, 70 eV, m/z 154 (M
+
, 22%), 125 (100), 69 (20), and 59 (15). 

 

2.4.4.2 4-Methoxy-6-[(E)-1-propenyl]-2H-pyran-2-one (9) 
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   Ethyltriphenylphosphoniumbromide (1.2 g, Wako Pure Chemical Industries, Ltd., 

Osaka, Japan) was dissolved into DMF (11 mL), and then bis(trimethylsilyl) amide (3 

mL, Sigma–Aldrich, Inc.) was added. Compound 8 (120 mg) in DMF (4 mL) was added 

and the mixture was stirred vigorously at r.t. for 3 h under N2. The reaction mixture was 

poured into brine (70 mL) and extracted with EtOAc (70 mL x 3). The combined EtOAc 

solubles were dried (Na2SO4) and evaporated in vacuum to dryness. The residue was 

subjected to Si gel flash CC (20 x 150 mm), which was developed successively with 

200 mL each of Me2CO–n-hexane (5:95, 1:9, 2:8 and 3:7, v/v), respectively. Compound 

9 and its Z-isomer were eluted with Me2CO–n-hexane (1:9 and 1:4, v/v) fractions (61 

mg). Heating of the crystalline mixture at 130˚C in a sealed tube under N2 caused 

isomerization to give 57 mg of compound 9: H 6.68 (1H, dq, J = 15.5, 7.0 Hz, 8-H), 

5.97 (1H, dq, J = 15.5, 1.5 Hz, 7-H), 5.74 (1H, d, J = 2.2 Hz, 5-H), 5.43 (1H, d, J = 2.2 

Hz, 3-H), 3.80 (3H, s, 10-H), 1.88 (3H, dd, J = 7.0, 1.5 Hz, 9-H); EI-MS, 70 eV, m/z 

166 (M
+
, 63%), 138 (100), and 69 (38) 

 

2.4.4.3 3-3-[(E)-2-butenoyl]-4-methoxy-6-[(E)-1-propenyl]-2H-pyran-2- 

one (10) 

   To a mixture of compound 9 (80 mg) and TiCl4 (260 L, Wako Pure Chemical 

Industries, Ltd.) in CH2Cl2 (1 mL), crotonoyl chloride (70 L, Wako Pure Chemical 

Industries, Ltd.) was added slowly. The solution was stirred at r.t. for 20 min, and then 

at 45˚C for 6 h. It was then poured into brine (30 mL), and extracted with EtOAc (30 

mL x 3). The EtOAc solubles were combined, dried over Na2SO4, and evaporated to 

dryness. The resulting residue was purified by Si gel flash CC (20 x 150 mm) developed 

successively with 100 mL each of Me2CO in n-hexane (1:4, 1:3, 3:7 and 35:65 v/v). 
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Compound 10 (40 mg) was eluted with Me2CO–n-hexane (1:4, v/v) whereas 

compounds 1 and 2 were eluted using Me2CO–n-hexane (3:7, v/v). Separation of 

compounds 1 and 2 by chiral HPLC used a CHIRALPAK OD column (Daicel Chemical 

Industries, Ltd., 4.6 x 250 mm), eluted with EtOH-n-hexane (1:1, v/v) at a flow rate of 

0.5 mL/min, and monitoring at 280 nm to afford compounds 2 (2.5 mg) and 1 (3.0 mg). 

The retention times of compounds 2 and 1 were 26.2 and 30.8 min, respectively. 

Compound 10: H 1.85 (3H, dd, J = 7.0, 1.4 Hz, 9-H), 1.87 (3H, dd, J = 7.0, 1.4 Hz, 

14'-H), 3.82 (3H, s, 10-H), 5.94 (1H, s, 5-H), 5.97 (1H, dq, J = 15.5, 1.4 Hz, 7-H), 6.40 

(1H, dq, J = 15.5, 1.4 Hz, 12-H), 6.82 (2H, m, 8, 13-H); EI-MS, 70 eV, m/z 234 (M
+
, 

100%), 193 (80), 165 (48), and 138 (32). 

 

2.4.4.4 Deoxyradicinin (1) 

   A mixture of compound 10 (40 mg), TiCl4 (90 L) and CH2Cl2 (1 mL) was stirred at 

45˚C for 3 h. It was then poured into brine (30 mL), extracted with EtOAc (30 mL x 3). 

The organic layer was washed with brine (100 mL x 3). The combined EtOAc extracts 

were dried (Na2SO4) and evaporated to dryness, with the residue was subjected to Si gel 

flash CC (20 x 150 mm) developed successively with 100 mL each of Me2CO-n-hexane 

(1:4, 1:3, 3:7 and 35:65, v/v). Compounds 1 and 2 were eluted with Me2CO-n-hexane 

(3:7, v/v), and separated by chiral HPLC as above to afford compounds 2 (1.8 mg) and 

1 (2.5 mg). Compound 1, 2: H 6.86 (1H, m, 20-H), 5.95 (1H, dq, J = 15.5, 1.8 Hz, 

10-H), 5.76 (1H, s, 8-H), 4.67 (1H, m, 2-H), 2.59 (2H, m, 3–H), 1.88 (3H, dd, J = 7.3, 

1.4 Hz, 3'-H), 1.46 (3H, d, J = 5.6 Hz, 2-Me); C 186.2, 176.6, 163.8, 156.7, 138.9, 

124.0, 100.7, 99.1, 77.6, 44.3, 20.4, 18.6; EI-MS, 70 eV, m/z 220 (M
+
, 100%), 205 (50), 

and 177 (59). Compound 1: []D –82° (c 0.1, CHCl3) Compound 2:. []D +90˚ (c 0.1, 
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CHCl3). 

 

2.4.5 Precursor administration 

   The fungus was grown on medium (500 L) containing 15 g/L of malt extract broth 

(Difco Laboratories Inc.) in a test tube (8 x 75 mm) without shaking at 24 °C for 7 days 

in the dark. Then the medium was removed aseptically from the tube with fungal mats 

washed with 100 mM K-Pi buffer, pH 7.0. The fungus was incubated in 500 L of the 

same buffer at 24˚C for 3 days in the dark. After incubation, the buffer was removed 

from the tube aseptically and the fungal mats were washed with buffer. Then, new 

buffer (500 L) was introduced into the tube and DMSO (50 L) containing precursor 

(0.05 mg) was added to the buffer. After 5 days incubation, the fungal mat was removed 

and the remaining buffer was extracted with EtOAc (100 L x 3). The EtOAc extracts 

were combined, air-dried overnight, redissolved in MeOH and analyzed by HPLC as 

described in Section 2.4.1. Retention times of compounds 1, 3 and 4 were 15.8, 13.5 

and 11.8 min, respectively. 

 

2.4.6 Preparation of cell-free extract 

   The grown mycelia were homogenized with sea sand, a mortar and pestle in 50 mM 

K-Pi buffer, pH 7.0 at 4 °C. The homogenate was centrifuged at 2500g for 10 min at 

4 °C. The supernatant was centrifuged at 19,000g for 15 min at 4 °C to yield the 

cell-free extract. The extract thus obtained was then subjected to ultracentrifugation at 

30,000g for 180 min at 4 °C to afford cytosolic and microsomal fractions. The 

microsomal precipitates were suspended in 50 mM K-Pi buffer, pH 7.0, and used for the 

experiments. Glycerol was added to each fraction up to 15% (v/v), and fractions were 
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maintained at –80 °C until use. 

 

2.4.7 Enzyme activity 

   The following method was used to detect deoxyradicinin monooxygenase or 

radicinin epimerase activity in the cell extract, cytosolic and microsomal fractions. The 

crude enzyme preparation (10 L) was incubated at 35 °C for 2 h or 30 min with 2 L 

of 20 mM substrate in MeOH, 3 L of co-factor solution (containing 20 mM each of 

NAD
+
, NADP

+
, NADH and NADPH), 35 L of 70mM K-Pi buffer, pH 7.0. During 

purification of epimerase, 3 L of buffer was used in place of 3 L of co-factor solution 

in the enzyme assay. After incubation, the reaction mixture was extracted with EtOAc 

(100 L x 3). The combined EtOAc solution was air-dried overnight, dissolved in the 

MeOH, and analyzed by HPLC described in Section 2.4.1. In the HPLC analysis for the 

conversion of deoxyradicinin (1) to radicinin (3), their retention times were 15.8 and 

13.5 min and in the HPLC analysis for conversion of radicinin (3) to 3-epi-radicinin (4), 

those were 28.5 and 24.0 min. The crude enzyme solution usually contained radicinin 

(3) and 3-epi-radicinin (4). Thus EtOAc was added first to the enzyme cocktail prior to 

substrate and then substrate was added. The mixture was extracted with EtOAc without 

incubation. The EtOAc extract was analyzed by HPLC to afford the initial amount of 

the products in the enzyme solution. The true amount of the product formed by the 

enzyme preparation was obtained by subtracting initial amount from amount after 

enzyme reaction. To determine the effect of pH on enzyme activity and stability, 0.2 M 

NaOAc buffer was used for pH 4.0 to 5.0, 0.2 M K-Pi buffer for pH 6.0 to 8.0 and 0.2 

M Tris-HCl buffer for pH 7.0 to 9.5. One milli molar of phenylmethylsulfonyl fluoride 

in 50 mM K-Pi buffer (pH 7.0) was used for the optimum temperature determination of 
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the monooxygenase enzyme (Fig. 2-6), and 0.4 mM EDTA, 10 mM MgCl2, 10% 

glycerol in 20 mM Tris–HCl buffer (pH 8.0) was used for the optimum temperature 

determination of the epimerase enzyme (Fig. 2-9). 

 

2.4.8 Purification of radicinin epimerase 

   All procedures were conducted at 4˚C unless otherwise stated. The cytosolic 

fraction was loaded onto a DE52 (Whatman) column (38 x 100 mm) equilibrated with 

50 mM Tris–HCl buffer (pH 7.0). The column was washed with 80 mL of buffer, 

followed by a linear gradient elution of 0–0.5 M NaCl in the buffer, at a flow rate of 0.6 

mL/min, and each 3.0 mL was collected as one fraction. Active fractions eluted between 

0.19 and 0.31 M NaCl were combined, and an equivalent amount of buffer containing 

1.6 M (NH4)2SO4 was added. The solution was loaded onto a Phenyl Sepharose CL- 4B 

(Sigma–Aldrich) column (9 x 90 mm). The column was washed with 0.8 M (NH4)2SO4 

buffer (80 mL), followed by a linear gradient elution of 0.8–0 M (NH4)2SO4 in the 

buffer, at a flow rate of 0.6 mL/min, and each 2.0 mL fraction was collected. Active 

fractions eluting between 0.56 and 0.32 M were combined, loaded onto a Superdex 200 

10/300 GL (GE Healthcare) column, eluted with 20 mM Tris–HCl buffer (pH 8.0) at a 

flow rate of 0.6 mL/min, and each 0.5 mL was collected as one fraction. Active 

fractions were combined and loaded onto a Mono Q HR 5/5 (Amersham) column (3.8 x 

100 cm) equilibrated with 20 mM Tris–HCl buffer (pH 8.0). The column was washed 

with 80 ml of the same buffer, followed by a linear gradient elution of 0–0.4 M NaCl in 

the buffer, at a flow rate of 0.5 ml/min, and each 0.3 ml was collected as one fraction. 

The active fractions eluted between 0.18 and 0.23 M NaCl were combined, and the 

same purification with a Mono Q HR 5/5 (Amersham) column was repeated. Radicinin 
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epimerase was eluted at around 0.21 M NaCl (see Table 2-1 and Fig. 2-10B). 

 

2.4.9 Determination of molecular weights of deoxyradicinin 

monooxygenase and radicinin epimerase 

   To determine the molecular weights of monooxygenase and epimerase, Superdex 

200 10/300 GL CC was performed as described above with the standard proteins, 

thyroglobulin (670 kDa), gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin 

(17 kDa) and vitamin B-12 (1.35 kDa). 

 

2.4.10  SDS-PAGE 

   After reduction with 2-mercaptoethanol, the relative molecular mass of the purified 

enzyme was determined by sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

(SDS–PAGE) on 10% polyacrylamide gels at 75 mA per slab with Tris–glycine, pH 8.3, 

using 0.1% SDS as running buffer. Coomassie brilliant blue stain solution (CBB R-25 1 

g, MeOH 100 mL, AcOH 30 mL, in D.W. 400 mL) was used to stain the enzyme. After 

decolorization, the gel was stained with a silver staining kit (Silver Staining II kit, Wako 

Pure Chemical Industries, Ltd.). LMW Marker Kit (GE Healthcare) was used as 

molecular marker (Fig. 2-10A). 
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CHAPTER 3 

STRUCTURES AND ANTIMICROBIAL ACTIVITY OF 

METABOLITES FROM FUSARIUM SP. 

 

3.1 Introduction 

   Naphthoquinones and related metabolites are widely distributed in nature and have 

been found in higher plants, fungi and actinomycetes. This class of compounds has 

attracted interest due to their broad-range biological action: phytotoxic, insecticidal, 

antibacterial and fungicidal.
1, 2) 

 

   The fungus Fusarium is a well known soil-borne saprophytic and parasitic fungus 

that produces diverse bioactive secondary metabolites; for example, fumonisins, 

trichothecenes and zearalenone are mycotoxins,
3)

 fusaric acid and moniliformin are 

phytotoxins,
4)

 and gibberellins are phytohormones.
5)

 A number of Fusarium fungi also 

produce naphthoquinones and related metabolites as fungal pigments; they include 

javanicin, fusarubin, anhydrofusarubin, 4a,10a-dihydrofusarubin, marticin and others.
6)

 

Among them, 4a,10a-dihydrofusarubins A and B were isolated first in 1978 from F. 

solani as true metabolites before non-enzymatically oxidation to give fusarubin,
7)

 and 

later 3-O-ethyl ether of 4a,10a-dihydrofusarubins A was isolated from F. solani 
8,9) 

and 

3-O-methyl ether of 4a,10a-dihydrofusarubins A together with 3-O-ethyl ether was 

isolated from F. martii.
10)  

 

   The biosynthetic origin of 4a,10a-dihydrofusarubins was proposed to be a 

single-chain heptaketide based on incorporation experiments using 
13

C-labeled 

acetate.
11)

 Unique 10a-hydroxy-4a,10a-dihydrofusarubins were isolated as antibiotic 
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pigments from F. solani,
12,13)

 but their structures were revised to those of 

4a,10a-dihydrofusarubins.
8) 

 In 2011, 5-hydroxy-4a,10a-dihydrofusarubins were 

isolated from Fusarium sp. BCC14842, and some of them were shown to have 

antimycobacterial and cytotoxic activities.
14) 

 

   Here I describe the isolation and structure elucidation of anhydrofusarubin and five 

new 3-O-alkyl-4a,10a-dihydrofusarubins produced by Fusarium sp. Mj-2, and also their 

antimicrobial activity, together with the antimicrobial activity of 

3-O-methyl-4a,10a-dihydrofusarubin A synthesized. 

 

3.2 Isolation and structure determination of compounds 

11-16 

   The fungus, strain Mj-2, was isolated from a soil sample collected in Reisekizan of 

Tottori Prefecture, Japan and classified into the genus Fusarium according to the 

morphological features of its hyphae and conidia, and the sequence of the segment 

(accession number AB753840) in its 18S rRNA. The Mj-2 was cultured on a malt 

extract medium without shaking at 24˚C for 14 days in the dark. The metabolites in the 

culture filtrate were extracted with EtOAc. The extract was purified by chromatographic 

separations to give compounds 11–16 in respective yields of 1.2, 0.3, 0.2, 0.1, 0.7 and 

0.1 mg/L. 

   Compound 11 was obtained as a purple solid. The molecular formula of C15H12O6 

was determined by its HR-ESI-TOFMS and NMR data. The spectroscopic data (NMR, 

UV) agreed well with the reported data for anhydrofusarubin.
9, 11)

 The structure of 

compound 11 is shown in Fig 3-1.  
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Fig. 3-1. Structures of compounds 11-15 and 17. 

 

   Compound 12 was obtained as yellow oil. The molecular formula was established as 

C19H24O7 (eight unsaturations) on the basis of the HR-ESI-TOFMS and NMR data 

(Tables 3-1 and 3-2). The 
13

C NMR spectrum of compound 12 showed the presence of 

three methyls (one methoxyl), five methylenes (two oxygenated), three methines (two 

sp
3
 and one sp

2
), and eight quaternary (two carbonyl, three oxygenated sp

2
 and one 

ketal) carbons. The structural units (a) and (b) in compound 12 (Fig. 3-2) were 

established as follows.  

 

 

 

 

 

 

Fig. 3-2. Key HMBC and 
1
H-

1
H COSY correlations in compound 12. 
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Table 3-1. 
1
H (600 MHz) NMR data for compounds 12-17 in CDCl3. 

 

 12 13 14 15 16 17 

Position H (mult., J in Hz) H (mult., J in Hz) H (mult., J in Hz) H (mult., J in Hz) H (mult., J in Hz) H (mult., J in Hz)  

 

 1 4.20 (dd, 11.6, 4.7) 4.21 (dd, 11.4, 4.7) 4.20 (dd, 11.6, 4.8) 3.98 (dd, 11.6, 4.8) 4.31 (dd, 11.7, 1.2) 4.21 (dd, 11.6, 4.7) 

  3.83 (dd, 11.6, 10.8) 3.82 (dd, 11.4, 10.7) 3.84 (dd, 11.6, 10.8) 3.27 (dd, 11.6, 10.8) 3.09 (dd, 11.7, 3.3) 3.82 (dd, 11.6, 10.8) 

 4 2.42 (dd, 13.5, 3.7) 2.41 (dd, 13.5, 3.6) 2.43 (dd, 13.6, 3.7) 2.39 (dd, 13.5, 3.5) 1.99 (ddd, 13.0, 4.5, 0.9) 2.40 (dd, 13.8, 3.8) 

  1.66 (dd, 13.5, 11.6) 1.67 (dd, 13.5, 11.6) 1.66 (dd, 13.6, 11.6) 1.60 (dd, 13.5, 11.6) 1.54 (t, 13.0) 1.69 (dd, 13.8, 11.6) 

 4a 3.43 3.43 3.42 3.27 3.49 3.41  

  (ddd, 13.1, 11.6, 3.7) (ddd, 13.2, 11.6, 3.6) (ddd, 13.2, 11.6, 3.7) (ddd, 13.0, 11.6, 3.5) (ddd, 13.0, 5.4, 4.5) (ddd, 13.2, 11.6, 3.8) 

 6-OH 12.07 (s) 12.07 (s) 12.08 (s) 12.03 (s) 12.39 (s) 12.05 (s) 

 8 6.66 (s) 6.66 (s) 6.67 (s) 6.67 (s) 6.69 (s) 6.66 (s) 

 9-OH 12.21 (s) 12.22 (s) 12.22 (s) 12.23 (s) 12.66 (s) 12.20 (s) 

 10a 2.95 2.95 2.95 2.83 2.71 (m)  2.95  

 (ddd, 13.1, 10.8, 4.7) (ddd, 13.2, 10.7, 4.7) (ddd, 13.2, 10.8, 4.8) (ddd, 13.0, 10.8, 4.8)   (ddd, 13.2, 10.8, 4.7) 

 11 1.42 (s) 1.43 (s) 1.42 (s) 1.39 (s) 1.26 (s) 1.41 (s) 

 12 3.96 (s) 3.96 (s) 3.96 (s) 3.97 (s) 3.96 (s) 3.96 (s) 

 13 3.44 (t, 6.8) 3.46 (br.t, 7.2) 3.31 (dd, 9.0, 6.2) 3.67 (ddd, 9.2, 6.8, 5.8) 3.69 (ddd, 9.0, 6.4, 6.4) 3.23 (s) 

    3.21 (dd, 9.0, 6.8) 3.62 (ddd, 9.2, 8.0, 6.9) 3.62 (ddd, 9.0, 7.6, 6.9) 

 14 1.52 (tt, 7.4, 6.8) 1.42 (m) 1.59 (m) 2.84 (m) 2.90 (m) 

 15 1.36 (sex, 7.4) 1.66 (m) 1.43 (m)     

      1.13 (m)  

 16 0.91 (t, 7.4) 0.90 (d, 6.5) 0.88 (t, 7.5) 7.23-7.18 (m) 7.32-7.27 (m) 

 17   0.89 (d, 6.5) 0.89 (d, 6.9) 7.23-7.18 (m) 7.32-7.27 (m) 

 18      7.15 (m) 7.20 (m) 
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   The 
1
H and 

13
C NMR data revealed the presence of two chelated hydroxy protons 

(H 12.07 and 12.21) and penta-substituted benzene (H 6.66, C 106.4, 107.3, 114.1, 

146.1, 156.8 and 157.7). The aromatic proton (H 6.66, 8-H) was linked to the carbon 

(C 106.4, C-8) of the benzene moiety on the basis of HMQC data. The HMBC data 

 

Table 3-2. 
13

C (150 MHz,  in ppm) NMR data for compounds 12-17 in CDCl3. 

 

 Position 12 13 14 15 16 17 

 

 1 59.5 59.5 59.5 59.2 56.0 59.5 

 3 97.5 97.5 97.4 97.5 96.4 97.7 

 4 35.4 35.3 35.4 35.1 37.8 35.0 

 4a 43.4 43.3 43.4 43.1 43.1 43.2 

 5 198.8 198.8 198.8 198.5 198.7 198.7 

 5a 114.1 114.1 114.1 114.1 112.6 114.0 

 6 146.1 146.1 146.1 145.9 147.0 146.1 

 7 156.8 156.8 156.8 156.7 156.9 156.8 

 8 106.4 106.4 106.4 106.4 106.8 106.4 

 9 157.7 157.7 157.7 157.7 157.9 157.7 

 9a 107.3 107.3 107.3 107.2 107.0 107.3 

 10 203.0 203.0 203.0 203.0 204.7 202.8 

 10a 45.9 45.9 45.9 45.5 43.4 45.8 

 11 24.0 24.0 24.0 23.9 24.0 23.2 

 12 56.6 56.6 56.6 56.6 56.6 56.6 

 13 60.1 58.8 65.4 61.4 61.7 48.0 

 14 32.0 38.7 35.1 36.4 36.4 

 15 19.6 25.2 26.4 139.3 139.5 

 16 14.0 22.8 11.3 129.1
a
 129.2

b
 

 17  22.6 16.8 128.2
a
 128.3

b
 

 18    126.4 126.3 

 

a,b
 interchangeable within the same sign 
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revealed that the methoxyl group (H 3.96, C-12) and the two chelated hydroxyls (H 

12.07 and 12.21) were bound to C-7, C-6 and C-9 of the benzene moiety, respectively. 

The HMBC correlations of 8-H to C-7 and C-9a, of 6-OH to C-5a and C-7, and of 9-OH 

to C-8 established the substitution pattern of the benzene ring. Two ketonic carbonyl 

carbons chelated to the two phenolic hydroxyls were connected to the benzene ring to 

afford the structural unit (a) shown in Fig. 3-2. The structural unit (b) was also 

established by 1D and 2D NMR data. 
1
H-

1
H COSY and HMQC data indicated two 

coupling systems, a butoxy group (H 0.91, 1.36, 1.52 and 3.44, C 14.0, 19.6, 32.0 and 

60.1) and -O-C(1)H2-C(10a)H-C(4a)H-C(4)H2- (H 4.20, 3.83, 2.95, 3.43, 2.42 and 1.66, 

C 59.5, 45.9, 43.4 and 35.4). The HMBC correlations of methyl protons (H 1.42, 

11-H) to the ketal carbon (C 97.5, C-3) and C-4 (C 35.4) indicated the connection of 

the ketal carbon (C-3) to the methyl (C-11) and methylene (C-4) carbons, and the 

HMBC correlation of 13-H (H 3.44) of the butoxy group to the ketal carbon (C-3) 

indicated the connection of the butoxy group to C-3. Considering the number of oxygen 

atoms in the molecule, C-3 must be connected to C-1 through oxygen to give structural 

unit (b) containing tetrahydropyran moiety. There were two ways to connect structural 

unit (a) to structural unit (b). The HMBC correlations of 1-H to the ketone carbon 

(C-10), of 10a-H to the another ketone carbon (C-5) and of 4a-H to C-5a of the benzene 

ring determined the connection between the structural units (a) and (b) exclusively. As 

shown in Fig. 3-1, the structure of compound 12 thus established has never been 

reported, but it closely relates to 4a,10a-dihydrofusarubin A and its O-methyl and 

O-ethyl ethers reported by Kurobane et al.
7, 10)

 The ring portion of compound 12 is the 

same as that of 4a,10a-dihydrofusarubin A and its O-methyl and O-ethyl ethers, and 
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their NMR data of the ring portion were almost the same. 

   The relative stereochemistry of compound 12 was determined based on 
1
H-

1
H 

coupling constants and NOESY correlations. The large coupling constants (J1-H 10a-H = 

10.8 Hz, J10a-H, 4a-H = 13.1 Hz and J4a-H, 4-H = 11.6 Hz) indicated that the 

tetrahydropyran ring had a chair form and these protons occupied axial positions, being 

similar to those of 3-O-methyl and 3-O-ethyl-4a,10a-dihydrofusarubin A.
10)

 The 

NOESY spectrum of compound 12 showed the NOE correlations of 3-methyl protons to 

4-H, 4a-H and 1-H. This indicated that the methyl, 4a-H and 1-H were mutually in 

1,3-diaxial relations on a chair form of the tetrahydropyran ring as shown in Fig. 3-3. 

On the basis of these data, the stereochemistry of compound 12 was determined to be 

3R*, 4aR*, l0aS*. It was notable that the stereochemistry of 3-O-methyl and 

3-O-ethyl-4a,10a-dihydrofusarubin A was reported to be 3S*, 4aR*, l0aS* 
10)

 and 

different from that of compound 12. However, the previous authors
10) 

provided no 

spectroscopic evidence that indicates the stereochemistry at C-3 of these compounds. To 

verify the stereochemistry of 3-O-methyl-4a,10a-dihydrofusarubin A, compound 12 was 

reacted with MeOH in the presence of p-toluenesulfonic acid to afford compound 17. 

 

 

Fig. 3-3. Key NOESY correlations in compound 12. 
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The 
1
H and 

13
C NMR data, including the coupling constants between 1-H and 10a-H 

(10.8 Hz), between 10a-H and 4a-H (13.2 Hz), and between 4a-H and 4-H (11.6 Hz) 

and the optical rotation well agreed with those reported for 

3-O-methyl-4a,10a-dihydrofusarubin A.
10)

 The NOESY spectrum of our derivative 

showed the same NOE correlations as those of compound 12; NOE correlations of 

3-methyl protons to 4-H, 4a-H and 1-H, were detected and no NOE correlations of 

3-O-methyl protons to these protons were observed. These findings indicated that the 

stereochemistry of 3-O-methyl-4a,10a-methyldihydrofusarubin A was 3R*, 4aR*, l0aS*, 

which was the same as that of compound 12, and thus the stereochemistry reported for 

3-O-methyl and 3-O-ethyl-4a,10a-dihydrofusarubin A should be corrected. 

   Compound 13 was isolated as a light orange solid, and the molecular formula was 

established as C20H26O7 from the HR-ESI-TOFMS and NMR data. A detailed analysis 

of the NMR data (Tables 3-1 and 3-2), in particular the 
1
H-

1
H COSY, HMQC and 

HMBC spectra, revealed that the ring portion (C1 to C12) of compound 13 was the 

same as that of compound 12, but that O-alkyl at C-3 was different. On the bases of the 

1
H-

1
H COSY and HMBC correlations, the O-alkyl in compound 13 was found to be 

3-methylbutoxy in place of butoxy in compound 12. The key NOE correlations were 

identical to those of compound 12, indicating that compounds 12 and 13 possessed the 

same relative stereochemistry. The structure of compound 13 was confirmed by the 

conversion of compound 12 into compound 13 with 3-methyl-1-butanol under 

conditions similar to those used for the preparation of 3-O-methyl-4a,10a- 

dihydrofusarubin A. 

   Compound 14 was isolated as a light orange solid, and the molecular formula was 
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established as C20H26O7 from the HR-ESI-TOFMS and NMR data. A detailed analysis 

of the NMR data revealed the structure. The key NOE correlations indicated that 

compounds 12 and 14 possessed the same relative stereochemistry in the ring. The 

stereochemistry of O-alkyl in compound 14 was determined as follows. Treating 

compound 12 with (±)-2-methyl-1-butanol under conditions similar to those used for the 

preparation of 3-O-methyl-4a,10a-dihydrofusarubin A gave the mixture of compound 14 

and its diastereomer. They were separable on the chiral HPLC and showed the similar 

UV absorption pattern and MS profiles; compound 14 was eluted at 9.7 min and its 

diastereomer at 10.1 min. The product synthesized with compound 12 and 

S-(–)-2-methyl-1-butanol was eluted at 9.7 min, indicating that the absolute 

configuration of C-14 is S. 

   Compound 15 was isolated as a light orange solid, and the molecular formula was 

established as C23H24O7 from the HR-ESI-TOFMS and NMR data. Compound 15 has 

the same tricyclic unit of compounds 12–14 on the basis of its NMR data, but the 

3-O-alkyl portion of compound 15 was 2-phenylethoxy (Tables 3-1 and 3-2). The key 

NOE correlations indicated that compounds 12–14 and 15 possessed the same relative 

stereochemistry. The structure of compound 15 was also confirmed by the conversion of 

compound 12 into compound 15 with 2-phenylethanol under the conditions mentioned 

above.  

   Compound 16 was isolated as a light orange solid. The molecular formula was 

established as C23H24O7 from the HR-ESI-TOFMS and NMR data and the same as that 

of 15. The 2D NMR data revealed that compounds 15 and 16 have the same structure 

without considering the stereochemistry. Although the 
1
H NMR spectrum of compound 
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16 was very similar to that of compound 15, the resonances of some protons on the 

tetrahydropyran ring of compounds 16 and 15 were different in their chemical shifts [H 

4.31, 3.09 (1-H), 2.71 (10a-H), 3.49 (4a-H), and 1.99, 1.54 (4-H) for 16; H 3.98, 3.27 

(1-H), 2.83 (10a-H), 3.27 (4a-H), and 2.39, 1.60 (4-H) for 15] and shapes (J4a-H,10a-H = 

5.4 Hz for 16; J4a-H,10a-H = 13.0 Hz for 15) as shown in Table 3-1. Since these differences 

in 
1
H NMR data between compounds 15 and 16 were almost the same between 

4a,10a-dihydrofusarubin A and its diastereomer 4a,10a-dihydrofusarubin B,
7)

 the 

relative stereochemistry of compound 16 was suggested to be 3R*, 4aR*, 10aR*. 

However, the reported stereochemistry of 4a,10a-dihydrofusarubin B was not definitive 

because of the lack of its NOE data. In addition, I could not measure the NOESY of 

compound 16 because of a shortage of the sample. Therefore, further studies are needed 

to establish its stereochemistry definitively. 

 

3.3 Antimicrobial activities of compounds 11-17 

   The antifungal and antibacterial activity of compounds 11–17 against the fungi, 

Magnaporthe grisea, Aspergillus oryzae and Penicillium citrinum, and the 

Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus, and Gram-negative 

bacteria Escherichia coli and Pseudomonas aeruginosa, was evaluated (Table 3-3). 

Among the compounds, compound 11 exhibited the most potent, but moderate to weak 

activity against the fungi, P. citrinum (MIC 100 g/mL), M. grisea (MIC 300 g/mL) 

and A. oryzae (MIC 1000 g/mL), and the bacteria, B. subtilis, S. aureus and E. coli 

(MIC 100 g/mL) and P. aeruginosa (MIC 1000 g/mL). Compound 17 also exhibited 

moderate to weak antifungal activities against P. citrinum (MIC 100 g/mL), M. grisea 
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(MIC 300 g/mL) and A. oryzae (MIC 1000 g/mL), and weak antibacterial activity 

against S. aureus (MIC 300 g/mL) and P. aeruginosa (MIC 1000 g/mL). Compound 

12 exhibited weak antifungal activities against P. citrinum (MIC 300 g/mL) and M. 

grisea (MIC 1000 g/mL) and weak antibacterial activities against S. aureus (MIC 300 

g/mL) and P. aeruginosa (MIC 1000 g/mL). Below 1000 g/mL, compounds 13–16 

did not show any antifungal activity against three fungi tested and any antibacterial 

activity against B. subtilis, E. coli, and P. aeruginosa, while compounds 13 and 14 

showed weak antibacterial activity only against S. aureus (MIC 1000 g/mL). The 

results indicate that the size of the O-alkyl portion negatively affects the antimicrobial 

activity, and that 4a,10a-dihydrofusarubin A would exhibit stronger antimicrobial 

activity than any of 3-O-alkyl-4a,10a-dihydrofusarubins if it was tested. 
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Table 3-3. Antimicrobial activities of compounds 11-17. 

 

 

 Compound Antifungal, MIC (g/mL)   Antibacterial, MIC (g/mL) 

 M. grisea A. oryzae P. citrinum B. subtilis S. aureus E. coli P. aeruginosa 

 

 11  300   1000  100 100 100 100 1000 

 12  1000  >3000  300 >1000 300 >1000 1000 

 13  >3000  >3000  >3000 >1000 1000 >1000 >1000 

 14  >3000  >3000  >3000 >1000 1000 >1000 >1000 

 15  >3000  >3000  >3000 >1000 >1000 >1000 >1000 

 16  >3000  >3000  >3000 >1000 N.T.
a
 >1000 >1000 

 17  300   1000  100 >1000 300 >1000 1000 

  

   
a
 not tested 
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3.4 Experiments 

3.4.1 General experimental procedures 

   NMR spectra were measured with a Bruker Biospin Avance II 600 MHz 

spectrometer. Chemical shifts were referenced to CDCl3 (H 7.26, C 77.0). 

ESI-TOFMS and HR-ESI-TOFMS spectra were obtained with a Waters LCT Premier 

XE mass spectrometer. Optical rotations were measured with a Horiba SEPA-500 

polarimeter. UV and visible spectra were recorded with a Hitachi U-2001 

spectrophotometer. A Shimadzu LC-6A chromatograph system was used for analytical 

and preparative HPLC. 

 

3.4.2 Fungal materials  

   The fungal strain Mj-2 was first isolated from a soil sample at Reisekizan, Tottori 

Prefecture, Japan, and classified as Fusarium sp., based on its morphological features. 

PCR was carried out using ITS2 and ITS5 as primers and its genomic DNA as a 

template and the PCR product was sequenced using ITS2 as a primer. Its sequence (223 

bases, Accession number AB753840) was found to be very similar (99%) to that of 

Fusarium solani by blast search. The fungus was maintained on potato dextrose agar 

slants. 

 

3.4.3 Fermentation and isolation  

   The fungus was grown without shaking at 25°C for 14 days in the dark in 500-mL 

conical flasks (50) containing a liquid medium (200 mL/flask) composed of glucose (30 

g/L), peptone (3 g/L), the extract from 50 g/L of malt, and tap water. Metabolites were 

extracted from the culture filtrate with EtOAc (10 L x 3) after adjusting the pH to 2.0 
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with 6 M HCl. The EtOAc solution was dried over Na2SO4, and evaporated to dryness 

to give a residue (1.92 g). This residue was subjected to Si gel CC (4.8 x 150 mm, Daiso 

gel IR-60, Daiso, Co., Ltd., Osaka, Japan), with 2000 mL (400 mL x 5) each of 5%, 

10%, 20% and 30% (v/v) acetone in n-hexane as the eluent. The third fraction (19.2 mg) 

eluted with 5% (v/v) acetone in n-hexane, was purified by HPLC using a COSMOSIL 

5C18-AR-II column (10 x 250 mm, NACALAI TESQUE, INC., Kyoto, Japan) and, 

MeOH-H2O (9:1, v/v) as the mobile phase at a flow rate of 1.0 mL/min, with 

monitoring at 220, 250 and 280 nm to afford compounds 11 (11.7 mg) and 12 (2.7 mg). 

The retention times of compounds 11 and 12 were 43.0 and 55.6 min, respectively. The 

first fraction (12.0 mg) eluted with 10% (v/v) acetone in n-hexane, was purified by 

HPLC using a COSMOSIL 5C18-AR-II column (10 x 250 mm), eluted with MeCN-H2O 

(7:3, v/v) at a flow rate of 2.0 mL/min, with monitoring at 220, 280 and 340 nm to 

afford compounds 13 (2.1 mg) and 14 (1.2 mg). The retention times of compounds 13 

and 14 were 26.3 and 28.1 min, respectively. The second fraction (23.4 mg) eluted with 

10% (v/v) acetone in n-hexane, was purified by HPLC using a COSMOSIL 5C18-AR-II 

column (10 x 250 mm), eluted with MeOH-H2O (13:7, v/v) at a flow rate of 2.2 mL/min, 

with monitoring at 220, 280 and 340 nm to afford compounds 15 (6.9 mg) and 16 (0.9 

mg). The retention times of compounds 15 and 16 were 28.8 and 30.5 min, respectively. 

   Compound 11. Purple solid. []
24

D +235° (c 0.64, acetone). UV and visible max 

(MeOH) nm (): 202 (11,900), 231 (10,900), 287 (9300), 535 (4800). HR-ESI-TOFMS 

m/z ([M+H]
+
): Calcd. for C15H13O6: 289.0712, Found: 289.0711. NMR H 13.03 (1H, s, 

OH), 12.64 (1H, s, OH), 6.16 (1H, s, 8-H), 5.98 (1H, s, 4-H), 5.21 (2H, s, 1–H), 3.92 

(3H, s, 7-OMe), 2.01 (3H, s, 3-Me); C 182.9, 177.9, 161.5, 160.0, 157.9, 157.8, 133.1, 

122.7, 110.9, 110.0, 108.0, 94.7, 63.0, 56.7, 20.1. 
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   Compound 12. Yellow oil. []
24

D +146° (c 0.36, acetone). UV and visible max 

(MeOH) nm (): 224 (8500), 301 (2400), 392 (1000), 495 (1700). HR-ESI-TOFMS m/z 

([M+H]
+
): Calcd. for C19H25O7: 365.1600, Found: 365.1602. NMR data: see Tables 3-1 

and 3-2. 

   Compound 13. Light orange solid. []
24

D +154° (c 0.24, acetone). UV and visible 

max (MeOH) nm (): 224 (8400), 302 (2200), 495 (1900). HR-ESI-TOFMS m/z 

([M+H]
+
): Calcd. for C20H27O7: 379.1757, Found: 379.1762. NMR data: see Tables 3-1 

and 3-2. 

   Compound 14. Light orange solid. []
24

D +143° (c 0.12, acetone). UV and visible 

max (MeOH) nm (): 224 (9500), 303 (2500), 495 (1900). HR-ESI-TOFMS m/z 

([M+H]
+
): Calcd. for C20H27O7: 379.1757, Found: 379.1751. NMR data: see Tables 3-1 

and 3-2. 

   Compound 15. Light orange solid. []
24

D +146° (c 0.46, Acetone). UV and visible 

max (MeOH) nm (): 209 (8800), 241 (7800), 273 (2900), 300 (2300), 389 (3700), 496 

(400). HR-ESI-TOFMS m/z ([M+H]
+
): Calcd. for C23H25O7: 413.1600, Found: 

413.1598. NMR data: see Tables 3-1 and 3-2. 

   Compound 16. Light orange solid. []
24

D +12° (c 0.40, acetone). UV and visible 

max (MeOH) nm (): 208 (8900), 242 (7400), 274 (2700), 301 (2200), 391 (3300), 496 

(500). HR-ESI-TOFMS m/z ([M+H]
+
): Calcd. for C23H25O7: 413.1600, Found: 

413.1610. NMR data: see Tables 3-1 and 3-2. 

 

3.4.4 Conversion of compound 12 into compounds 13, 14, 15 and 17 

   Several mg of compound 12 were dissolved in acetone (500 L), to which the 

reagent (500 L, 3-methylbuthanol for compound 13, (S)-(−)-2-methyl-1-butanol for 
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compound 14, 2-phenylethanol for compound 15, MeOH for compound 17, Wako Pure 

Chemical Industries, Ltd., Osaka, Japan) and a small amount of p-toluenesulfonic acid 

monohydrate (Wako Pure Chemical Industries, Ltd.) were added. The mixture was 

stirred vigorously at 0°C for 30 min under N2. The reaction mixture was poured into 

brine (3 mL) and extracted with EtOAc (3 mL x 3), and the combined organic layer was 

washed with 1M NH4Cl (10 mL). The EtOAc solution was dried over Na2SO4 and 

evaporated under a vacuum to dryness to give each compound; the yield was 4.1 mg of 

compound 13, 3.4 mg of compound 14, 4.2 mg of compound 15, and 2.0 mg of 

compound 17 from 4.7, 4.2, 5.1 and 2.7 mg of compound 2, respectively. To determine 

the stereochemistry of O-alkyl of compound 14, 1.6 mg of compound 12 was treated 

with (±)-2-methyl-1-butanol according to the method described above. The product was 

purified by HPLC using a COSMOSIL 5C18-AR-II column (10 x 250 mm) and, 

MeOH-H2O (7:3, v/v) as the mobile phase at a flow rate of 2.5 mL/min to afford the 

mixture of compound 14 and its diastereomer. The retention time of the mixture was 

around 22 min. The mixture was then analyzed by chiral HPLC using a CHIRALCEL 

OD column (4.6 x 250 mm, DAICEL Corporation, Osaka, Japan) and, n-hexane-EtOH 

(7:3, v/v) as the mobile phase at a flow rate of 0.8 mL/min, with monitoring at 220, 254, 

280 and 320 nm. The retention times of compound 14 and its diastereomer were 9.7 and 

10.1 min, respectively. The eluates from the chiral HPLC column were collected and 

analyzed with a Waters LCT Premier XE mass spectrometer. 

   Compound 17. Purple solid. []
24

D +122° (c 0.46, acetone). ESI-TOFMS m/z 323.1 

([M+H]
+
). NMR data: see Tables 3-1 and 3-2. 

 

3.4.5 Antifungal assay 
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   Each compound was dissolved in MeOH (10 L), and placed into wells of a 

96-microwell plate. As a control, MeOH was also placed in the plate. After air-drying, 

100 L of GY medium composed of 2% glucose, 0.5% yeast extract, and 1.5% agar was 

added to the wells. The fungal spores (8 x 10
3
 spores/mL) were inoculated onto the 

medium. Magnaporthe grisea (Pyricularia oryzae IFO 30733), Aspergillus oryzae AEM 

42 and Penicillium citrinum ATCC 9849 were used. After incubation for 3 days at 28°C, 

the mycelium growth was observed and the minimum concentration to inhibit the 

growth of mycelia was determined. This assay was carried out four times. 

 

3.4.6 Antibacterial assay  

   The MeOH solutions of the compounds were placed into wells of a 96-microwell 

plate. As a control, MeOH was also placed in the plate. After air-drying, 100 L of LB 

medium composed of 0.5% yeast extract, 1% tryptone, 1% NaCl and 1% agar was 

added to the wells. Then, 10 L of the bacterium suspension in the same LB medium 

(10
4
-10

5 
cells/mL) was inoculated onto the medium. Bacillus subtilis AEM 162, 

Staphylococcus aureus NBRC 100910, Escherichia coli IFO 3301, and Pseudomonas 

aeruginosa NBRC 106052 were used. After incubation for one day at 28°C, the growth 

was observed and the minimum concentration to inhibit the growth of the bacteria was 

determined. This assay was carried out four times. 
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CHAPTER 4 

CONCLUSION 

 

   The biosynthetic pathway of phytotoxin radicinin (3) was previously proposed on 

the basis of structural features of radicinin and its analoghs. In the present research, 

precursor administration and cell-free experiments with deoxyradicinin and radicinin 

were carried out in Bipolaris coicis H13-3, and a new biosynthetic relationship was 

found. In the new biosynthetic relationship, first, deoxyradicinin (1) is converted to 

radicinin (3) catalyzed by deoxyradicinin monooxygenase. Then, radicinin epimerase 

catalyzes the epimerization of radicinin (3) at C-3 to 3-epi-radicinin (4) reversibly. 

Finally, 3-epi-radicinin (4) is probably converted to 3-epi-radicinol (5) by stereospecific 

reduction at C-4, followed by epoxidation of the side chain in 3-epi-radicinol (5). The 

toxicity of radicinin for tear glass, Coix lachryma-jobi L., was ten times higher than that 

of 3-epi-radicinin, and hence it was hypothesized that radicinin epimerase regulates the 

pathogenicity of the fungus to the plants. Deoxyradicinin monooxygenase and radicinin 

epimerase were also characterized in this study.  

   To clarify the function and the role of antimicrobial substances produced by 

phytopathogenic fungi, a screening of new antimicrobial metabolites from soil-borne 

saprophytic and parasitic fungi was performed. Fusarium sp. (Mj-2) was found to 

produce five new 3-O-alkyl-4a,10a-dihydrofusarubins in the culture filtrate together 

with a known metabolite, anhydrofusarubin (11). The structures of the new metabolites 

were shown by spectroscopic analyses to be 3-O-butyl (12), 3-O-3’-methylbutyl (13), 

3-O-2’-methylbutyl (14) and 3-O-2’-phenylethyl-4a,10a- dihydrofusarubin A (15), and 

an isomer of the 3-O-2’-phenylethyl-4a,10a-dihydrofusarubin A (16). Their antifungal 
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and antibacterial activities were evaluated together with those of 3-O-methyl derivative 

(17) prepared from 3-O-butyl-4a,10a-dihydrofusarubin A (12), indicating that the size of 

the O-substituent at C-3 in the 4a,10a-dihydrofusarubins negatively affects the 

metabolites' antimicrobial activity. 
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Summary 

 

   Plant diseases caused by plant pathogens are serious problems in agriculture all over 

the world. Phytopathogenic fungi produce diverse secondary metabolites that show 

phytotoxic and/or antimicrobial activity and that play important roles in infection and 

colonization in plants. To know the infection and colonization mechanism by plant 

pathogens, it is important and necessary to identify the molecules involved in the 

pathogenesis.  

Radicinin (3) is a phytotoxic and antibiotic metabolite produced by some 

phytopathogenic fungi. Precursor administration and cell-free experiments with 

deoxyradicinin (1) and radicinin (3) were carried out in Bipolaris coicis H13-3. When 

deoxyradicinin (1) was administered to the fungus, radicinin (3) and 3-epi-radicinin (4) 

formed. When radicinin (3) administered, 3-epi-radicinin (4) was formed. Their 

formation was confirmed by cell-free experiments. Deoxyradicinin 3-monooxygenase 

which catalyzes conversion of deoxyradicinin (1) to radicinin (3) showed the best 

activity at 35 °C and pH 7.0, and required NAD
+
 as co-enzyme. Its molecular weight 

was determined to be 130–184 kDa. Radicinin epimerase catalyzing the reaction of 

radicinin (3) to 3-epi-radicinin (4) was purified from a cell-free extract. Radicinin 

epimerase is a homodimer of a 28 kDa subunit, and its highest activity was achieved at 

30–35 °C and pH 7.0–9.0. From these results, biosynthesis and metabolism of radicinin 

was deduced as shown in Fig. 1. 

The fungus Fusarium is a well known soil-borne saprophytic and parasitic fungus that 

produces diverse bioactive secondary metabolites. Five new 

3-O-alkyl-4a,10a-dihydrofusarubins (12-16) were isolated from the culture filtrate of a 



 

 

strain of Fusarium sp. (Mj-2) together with a known metabolite, anhydrofusarubin (11). 

The structures of the new metabolites were elucidated by spectroscopic analyses to be 

3-O-butyl (12), 3-O-3’-methylbutyl (13), 3-O-2’-methylbutyl (14) and 

3-O-2’-phenylethyl-4a,10a-dihydrofusarubin A (15), and an isomer of the 

3-O-2’-phenylethyl-4a,10a-dihydrofusarubin A (16) (Fig. 2). Their antifungal and 

antibacterial activities were evaluated together with 3-O-methyl derivative (17) 

prepared from 3-O-butyl-4a,10a-dihydrofusarubin A (12), indicating that the size of the 

O-substituent at C-3 in the 4a,10a-dihydrofusarubins negatively affects the metabolites' 

antimicrobial activity. 

The present study provided insight into the function and role of the secondary 

metabolites produced by the phytopathogenic fungi in the pathogenesis. 

 

Fig. 1. Biosynthesis and metabolism of radicinin in Bipolaris coicis H13-3 

 

 

 

 

 

Fig. 2. Structures of compounds 11-15 and 17 from Fusarium sp. Mj-2 
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摘要 

 

植物病原菌による作物への被害は、世界中の農業において深刻な問題である。

植物病原性糸状菌は、植物毒素や抗生物質などの多様な二次代謝産物を生産し

ており、それらの化合物は、植物病の発生に大きな役割を果たすことが知られ

ている。 植物病原菌の感染やコロニー形成の分子メカニズムを知るため、病原

にかかわる化合物の同定を行うことは非常に重要かつ必要な事項である。 

Radicinin (3)は植物病原性糸状菌によって生産される植物毒素、抗生物質であ

る。予想される radicinin の生合成前駆体、deoxyradicinin (1)や radicinin (3)そのも

のの Bipolaris coicis H13-3 株への投与実験、および無細胞系実験を行った。

Deoxyradicinin (1)を菌体へ投与した際には、radicinin (3) と 3-epi-radicinin (4)が生

成され、また radicinin (3)を投与した時には、3-epi-radicinin (4)が生成されること

がわかった。これらの結果は無細胞系での実験によって確認された。

Deoxyradicinin (1) から radicinin (3) への変換を触媒する deoxyradicinin 

3-monooxygenase は 35 °C、pH 7.0 でもっとも高い活性を示し、その反応に NAD
+

が必要であった。またその分子量は 130–184 kDa と決定された。Radicinin (3)か

ら 3-epi-radicinin (4)への変換を触媒する radicinin epimerase を酵素抽出物から精

製した。Radicinin epimerase は 28 kDa のサブユニットからなるホモダイマーであ

り、温度 30–35 °C、pH 7.0–9.0 でもっとも高い活性を示すことが明らかとなった。

これらの結果から、Fig. 1 に示すような radicinin の生合成および代謝経路の存在

が明らかになった。 

Fusarium 属菌は有名な土壌病原菌で、多種多様な生理活性二次代謝産物を生

産する。Fusarium sp. Mj-2 株の培養ろ液抽出物より、既知化合物である

anhydrofusarubin (11) と、５つの新規な 3-O-alkyl-4a,10a-dihydrofusarubin 類 



 

 

(12-16)を単離した。各種機器分析データの解析から、新規化合物の構造を

3-O-butyl (12) 、  3-O-3’-methylbutyl (13) 、  3-O-2’-methylbutyl (14) 3-O-2’- 

phenylethyl-4a,10a-dihydrofusarubin A (15) 、および 3-O-2’-phenylethyl-4a,10a- 

dihydrofusarubin A の異性体 (16) であると決定した(Fig. 2)。これらの化合物およ

び化合物 12 から調製した 3-O-methyl 誘導体(17)について抗糸状菌、抗細菌活性

の評価を行った。その結果、4a,10a-dihydrofusarubin 類では、C-3 位における O-

置換基の大きさがその化合物の抗微生物活性に負の影響を与えていることが明

らかとなった。 

今回の研究により、植物病原糸状菌によって生産される二次代謝産物の発病

過程における機能や役割について新たな知見が得られた。 

 

 

Fig. 1. Bipolaris coicis H13-3 株における radicinin (3) の生合成，代謝経路 

 

 

 

 

 

 

Fig. 2. Fusarium sp. Mj-2 株から単離された化合物 11-15 と 17 の化学構造 

11 12 

13 

14 

15 

17 


