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SUMMARY 

Droughts are the world’s costliest weather-related natural hazards, causing an 

average 6–8 billion USD in global losses annually, and collectively affecting more 

people than any other type of natural disaster (Wilhite, 2000). Agricultural drought is 

important because it directly influences food security and therefore poses a grave 

threat to regional economies and society. In this thesis, agricultural drought is defined 

as “Crop yield damage phenomenon due to water shortage”. Three provinces in 

northeastern China (Heilongjiang, Jilin, and Liaoning) and the Inner Mongolia 

Autonomous Region were chosen as the study area. Most regions in the continental 

climate zone have effective accumulated temperature ≥10 °C 1600–3400 °C and crops 

can be only harvested once per year. These important regions rely on rainfed 

cultivation. Based on a 0.5-degree precipitation dataset from 1961 to 2010, I tested 

seasonal and yearly precipitation using a coefficient of variation (CV) and linear trend 

method. I also analyzed the impact of precipitation on province-level crop yield. The 

results show that: (1) Meteorological drought became serious after the 2000s. Summer 

drought is a serious threat to farmland water supplies. Precipitation is the dominant 

control of crop yield fluctuation in Northeast China and Inner Mongolia; (2) there was 

a decreasing but not significant trend of annual precipitation for most of the latter two 

regions over 1961–2010; (3) annual precipitation varied greatly in the eastern and 

western parts of Inner Mongolia, western part of both Jilin Province and Liaoning 

Province. Owing to a lack of irrigation systems, there is greater drought or flood risk 

in the rainfed region of the study area.  

Agricultural drought is heavily influenced by local factors (e.g., irrigation) and 

occurs under a certain climate background. Selection of the county is appropriate 

because it is the basic statistical area for agricultural production in China, and it 

affects regional food security. Combined with remote sensing and crop model new 

technologies, this thesis develops multiple methods to understand the relationships of 

various components with the drought system. I studied agricultural drought 
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management following the logic of drought occurrence monitoring, drought severity 

assessment, and drought mitigation practice assessment.  

The first question regards the determination of agricultural drought occurrence 

(Chapter 3). A combination of various drought indices may provide a more 

comprehensive assessment of drought conditions than a single-index approach. 

However, this has been challenging because there has been a lack of systematic 

methods for their combination, use, and evaluation. I assumed that this issue is 

attributable to complex relationships between short-term rainfall, soil moisture, and 

crop growth. Therefore, I developed a new decadal time scale (~10 days) conceptual 

model and evaluated the drought process in a typical rainfed agricultural region, 

Hailar County in Inner Mongolia. To quantify drought, I used the precipitation-based 

Standardized Precipitation Index (SPI) and soil moisture-based Crop Moisture Index 

(CMI), as well as the Normalized Difference Vegetation Index (NDVI). Correlation 

analysis was done to examine relationships between drought indices during the 

growing season (May–September) and final yield, using data collected from 2000 to 

2010. The results show that:   

(1) Yield had positive relationships with the CMI from mid-June to mid-July and with 

the NDVI anomaly throughout July, but no relationship with the SPI  

(2) The relationship between the two drought indices shows that the NDVI anomaly 

responded to CMI with a lag of one decade, particularly in July.  

(3) To examine the feasibility of using these indices for monitoring the drought 

process at decadal time scale, a detailed drought assessment was carried out for 

selected drought years. The results confirm that the soil moisture-based and 

vegetation indices in the late vegetative through early reproductive growth stages can 

be used to detect agricultural drought in the study area. Therefore, the framework of 

my conceptual model can be used to support drought monitoring in the rainfed 

agricultural regions. 

The second question regards agricultural drought severity assessment by a crop 

model (Chapter 4). Conventional assessment methods make it difficult to clarify 

drought effects on crop yield, because other factors such as technology development 
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also influenced yield, and there was a shortage of long-term yield data. Crop models 

are a good choice for investigating yield, because they can simulate underlying 

physiological processes of crop growth and their change in response to environmental 

stress. Drought affects nearly all climatic regions. One must select a suitable crop 

model that can be widely used across different climate zones and crop types. To 

accurately evaluate regional drought intensity, I constructed an assessment framework 

with three components, namely, crop model calibration and validation, drought index 

calculation, and index assessment (standard period setting, mean value and agreement 

assessments with agricultural drought records). I built the assessment based on the 

Environmental Policy Integrated Climate (EPIC) crop model and tested comparison 

results by trend analysis. The results show that:  

(1) The EPIC model simulated time series of county-level yields well in four spring 

wheat counties (RMSE = 0.556) and five maize counties (RMSE = 1.6) in Northeast 

China and Inner Mongolia.  

(2) I calculated a major crop-specific index, i.e. yield reduction caused by water stress 

(WSYR) within the EPIC crop model, by relating potential and rainfed yields. Using 

26 county-level agricultural drought cases, I compared WSYR with two 

meteorological drought indices, precipitation (P) and aridity index (AI). The results 

showed that WSYR had better agreement (85%) than either P (65%) or AI (68%). 

(3) The temporal trend of the indices over the period 1962–2010 was tested using 

three approaches. The result from WSYR revealed a significant increase in 

agricultural drought in drought-prone counties, which was not indicated by P or AI. 

The increase of average decadal frequency from WSYR of drought years from the 

1990s to 2000s was greater than those from P and AI. This study revealed the 

usefulness of the framework for drought index assessment and possible drought cases 

for drought classification. The validation and simulation suggest that crop models are 

useful for drought environment simulation over large regions.  

The third question regards the comparison of agricultural drought practices with 

recovery yield under various drought severities (Chapter 5). Comparing the effects of 

various agricultural practices on crop yield provides important information related to 
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strategies for mitigating drought. However, quantitative assessment of agricultural 

practices using common experimental methods requires considerable time and money. 

I simulated the effects of three practices (supplementary irrigation [SI], sowing date, 

and crop variety) on wheat and maize yield for dry, normal and wet years in the 

northeast and Inner Mongolia, based on the EPIC crop model. The results show that: 

(1) A single 50-mm SI event was more effective in dry years than wet years for 

increasing crop yield  

(2) A change in sowing date was less effective for increasing yield in dry years than in 

normal and wet years  

(3) For traditional wheat-growing counties, planting the long growing season variety 

“Yongliang 4” can increase yield more than planting the short growing season variety. 

For traditional maize-growing counties, the short growing season variety “Dadi” gave 

better yields than “Zhedan37”. However, none of the tested varieties showed 

significant yield differences based on variety in dry years. Changes in sowing date 

and variety altered yield less than a single 50-mm SI event, especially in dry years. 

This suggests that precipitation expressed as dry/wet years should be considered when 

growing crops. This work shows that the EPIC model can be a useful decision-making 

tool, in particular for drought mitigation in regions with an annual harvest period.     

In summary, agricultural drought refers to water balance within the complex 

weather-soil-crop-society system in a given region. The agricultural drought 

management framework considers agricultural drought demands of these system 

components at different levels. The new drought monitoring framework in Chapter 3 

can integrate timely information for agricultural drought early warning for 

meteorological, agricultural and water resource government departments. The drought 

severity assessment method in Chapter 4 can be used to identify regional drought 

years for long-term drought planning of civil departments. The comparison of 

practices in Chapter 5 can be used to select effective drought mitigation measures 

from governmental to farmer levels. This suggests consideration of the 

aforementioned three questions as a whole for drought management. In Northeast 

China and Inner Mongolia, the crop production system is typically rainfed and has 
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one harvest annually. This may be the most basic regional agriculture-water system, 

and the investigations in this thesis are expected to provide suggestions for other 

locations worldwide. Future study should consider the calibration of fixed parameters 

for the CMI and validation of the crop model, using more cases with crop rotation, 

technology level, and human activity. Northeast China and Inner Mongolia have 

widespread water resource shortages, and meteorological drought became serious 

after 2000. Future agricultural drought studies should consider the regional water 

supply capacity and its relationship with socioeconomic sustainability.  
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摘 要 

  干ばつは、世界的に最も大きな損害をもたらす気象的自然災害である。年平

均損失は 6千万ドルから 8千万ドルであり、他の自然災害よりも多くの人々に

影響を与えている。農業干ばつは、食料安全保障に直接影響を及ぼし、地域経

済や社会への重大な脅威をもたらすので、深刻な自然災害である。本論文では、

農業干ばつを「水不足による作物収穫量の减少現象」と定義した。中国の東北

部 3省（黒龍江省、吉林省、遼寧省）と内モンゴル自治区を本研究の対象地と

した。大陸性気候の多くの地域では、有効積算温度が 1600～3400℃である。

それらの地域では、1年に1回収穫が得られる天水栽培に依存する地域であり、

春小麦とトウモロコシがその主要作物として栽培されている。中国東北部と内

モンゴル自治区の農地における降水量変動の空間的・時間的パターンを 1961

～2010 年における 0.5 度降水量データセットを用いて線形傾向法と変動係数

（CV）により分析し、以下の結果が得られた。（1）気象干ばつは 2000 年代以

降深刻になった。夏季の干ばつは、農地における水供給に深刻な脅威となって

いる。降水量は、内モンゴルと中国東北部における作物収量変動を規定してい

る。（2）1961～2010 年の期間、中国北部のほとんどでは年間降水量の減少傾

向が見られた。（3）年降水量は、内モンゴル西端、内モンゴルと吉林省と遼寧

省の境界領域で大きく変化した。灌漑施設が不足していることから、中国東北

部と内モンゴル自治区の天水地域では干ばつ危険性があることから、干ばつ管

理戦略が必要である。 

 農業干ばつは、地域的な因子（例えば灌漑施設の有無）によって影響され、

気候的な要因によって発生する。中国の行政単位「県」は、農業統計の基本的

な統計地域であり、地域の食料安全保障に影響を及ぼす。本研究では、典型的

な県において、リモートセンシングと作物モデルを用いて、農業干ばつの新し

い管理方法について検討した。農業干ばつの発生モニタリングおよび農業干ば

つ強度評価と農業干ばつの被害緩和のための農法の比較を行った。 

 第一に、干ばつ指標を用いて、農業干ばつのモニタリングを行った。干ばつ

は、正確に定量化することが複雑な現象であり、短期的な降雨、土壌水分、お

よび作物の成長の間には複雑な関係がある。単一の指標を用いるよりも、様々

な干ばつ指標を組み合わせる方が、より統合的な評価を提供する。しかしなが

ら、複数指標を用いた評価は、指標の組み合わせ、使用、および評価のための

体系的な方法について十分に検討されていない。そこで本研究では、典型的な

天水農業地域である内モンゴルの海拉爾市を対象に干ばつ枠組みの構築を試

みた。干ばつを定量化するために、短期間(旬)単位で、標準化降水指数(SPI)、

作物水分指標(CMI)、リモートセンシング正規化植生指数(NDVI)偏差、および

エネルギー収量(作物収量の平均カロリー)を計算した。2000～2010 年のデー

タを用いて干ばつモニタリングを検討したところ以下の結果が得られた。 

（1）CMI は 6 月中旬から 7月中旬、NDVI は 7 月全体に収量との相関が見られ

た。 

（2）CMI は NDVI より 1 旬（10 日間）早く相関係数の最大値が見られた。CMI

により約 10 日前に作物生育被害の予測が可能である。 
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（3）農業干ばつ評価の枠組みを短期間単位で構築できることが明らかになっ

た。この結果から、初期の栄養成長段階の後期における土壌水分指数と植生指

数を用いて農業干ばつを検出することができる。 

 以上のことから、本研究で提案された干ばつ評価の枠組みに基づいて干ばつ

災害の早期警戒が可能となることが示唆された。 

 第二の課題は、作物モデルを活用した天水農業干ばつの強度の評価である。

作物モデルは、生理学的プロセスをシミュレーションすることができる。そこ

で作物生長モデルの校正•検証、干ばつ指数の計算、および指数比較（標準期

間設定、平均値チェックと近代における農業干ばつ記録を用いた検証）を行っ

た。地域の干ばつ強度を評価するために、EPIC (The Environmental Policy 

Integrated Climate) 作物生長モデルに基づいて評価を行った。 

（1）春小麦が栽培されている４県とトウモロコシが栽培されている５県を対

象に EPIC モデルを用いた結果、推定された作物収量は、県統計の実際の収量

とほとんど一致した。 

（2）EPIC 作物モデルにおける 当該作物の灌漑条件下での推定収量と天水条

件下での推定収量の差を灌漑条件下での推定収量で除した値（0～1）（WSYR: 

Water Stress Yield Reduction）を計算した。各県の近代に発生した 26 回の

農業干ばつ記録を使用して、三つの干ばつ指数：降水量（P）と乾燥度指数（AI）

とWSYRとを比較した。その結果、WSYRは降水量（65％）または乾燥度指数（68％）

のいずれかよりも高い適合百分率（85％）を示すことがわかった。 

（3）1962～2010 年の期間、指標の年次変化を三つの指数を用いて分析した。

WSYR を用いることで、降水量および乾燥度指数により示すことができなかっ

た農業干ばつの傾向の増加を明らかにすることができた。1990 年代から干ば

つの十年平均の頻度については WSYR が P と AI より高かった。 

 以上のように、本研究で提案した干ばつ評価の枠組みの有用性を明らかにし

た。本研究で提案された WSYR 指数は、過去の農業干ばつ記録とよく一致する

ことが示された。作物モデルは、広域的な農業干ばつの評価のために有用なツ

ールであることが示された。 

 第三の課題は、干ばつ被害の緩和のための農法の比較である。さまざまな農

法の違いが作物収量に及ぼす影響を比較することは、干ばつ被害を緩和するた

めの戦略において重要な情報を提供する。しかし通常の実験的手法を用いた農

法の定量的評価は、多大の時間と費用を必要とする。本研究では、EPIC モデ

ルを用いて、中国東北部と内モンゴル自治区の典型的な県を対象とし、乾燥年、

通常年、および多雨年におけるコムギとトウモロコシの収量に対する三つの農

法（補助灌漑、播種日および作付け品種の変更）の効果を明らかにし、以下の

結果が得られた。 

（1）補助灌漑（50mm×１回）は、作物収量の増加について通常年より乾燥年

でより効果が高かった。 

（2）播種日の変更は、通常年と多雨年に比べて乾燥年では収量増加の効果が

低かった。 

（3）コムギ生産県では、生育期間の短い品種「竜麦 26」に比べて生育期間の

長い品種「永良 4」で、より高い収量が得られた。トウモロコシ生産県では、

生育期間の長い品種「哲单 37」よりも、生育期間の 短い品種「大地」で、よ

り高い収量が得られた。しかし乾燥年では、検定されたどのコムギ・トウモロ
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コシ品種も収量に関して有意な差が見られなかった。補助灌漑（50mm×１回）

は、播種日および作付け品種の変更の効果が大きく、特に乾燥年ではその傾向

が顕著だった。 

 作物の栽培においては、乾燥年・多雨年といった降水量の違いが十分に考慮

されるべきであることが示唆される。本研究の結果から、とりわけ一毛作地域

における干ばつ緩和において、EPIC モデルが有効な意思定ツールとして役立

ち得ることが示された。 

 以上を要するに、農業干ばつは、特定の地域の気象-土壌-作物-社会の複雑

なシステム内の水分バランスに影響される。本研究で提案された新しい干ばつ

モニタリングフレームワークでは、気象、農業や水資源と関連する政府部門に

対してタイムリーな情報を提供することができる。干ばつ強度評価法は、長期

的な干ばつ計画のための地域の干ばつ年特定に用いることができる。農法の比

較は、政府や農民が効果的な干ばつの緩和策を選択する際に使用することがで

きる。このフレームワークは、農業干ばつに関連するさまざまなレベルの要求

を考慮している。調査地域における天水作物生産システムは、年 1回収穫とし

て特徴づけられる。今後、CMI のパラメータと技術レベル、輪作などを考慮し

た作物モデルの検証を行う必要がある。21 世紀の最初の十年で農業干ばつの

強度が深刻になった中国東北部と内モンゴルでは、農業干ばつに備えて地域給

水能力の向上や適応戦略を検討する必要がある。 
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Chapter 1 
General introduction 

 

1.1 The terminology related with agricultural drought 

1.1.1 Drought concepts 

    Drought is recognized as an environmental disaster and has attracted the 

attention of environmentalists, ecologists, hydrologists, meteorologists, geologists and 

agricultural scientists. There are variations of definitions of drought. Linseley 

(Linseley et al., 1959) defined‘drought as a sustained period of time without 

significant rainfall’.  World Meteorological Organization (WMO, 1986) defines 

‘drought means a sustained, extended deficiency in precipitation.’ Gumbel (Gumbel, 

1963) defined a ‘drought as the smallest annual value of daily streamflow’. The Food 

and Agriculture Organization (FAO, 1983) of the United Nations defines drought 

hazard as ‘the percentage of years when crops fail from the lack of moisture.’ More 

complete definition is that by the United Nations Convention to Combat 

Desertification, drought is “naturally occurring phenomenon that exists when 

precipitation has been significantly below normal recorded levels, causing serious 

hydrological imbalances that adversely affect land resource production systems.” 

(UNCCD, 1994)  

 

1.1.2 Drought types 

    According to Wilhite and Glantz, drought can be divided into 4 types: 

Meteorological drought, Hydrological drought, Agricultural drought and 

Socio-economic drought (Wilhite and Glantz, 1985; American Meteorological Society, 

2004). 

    Meteorological drought is defined as a lack of precipitation over a region for a 

period of time (Mishra and Singh, 2010). It is usually on the basis of the degree of 

dryness (in comparison to some “normal” or average amount) and the duration of the 

dry period.  
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    Hydrological drought related to a period with inadequate surface and subsurface 

water resources for established water uses of a given water resources management 

system. It is associated with the effects of periods of precipitation (including snowfall) 

shortfalls on surface or subsurface water supply (i.e., streamflow, reservoir and lake 

levels, groundwater) (Wilhite and Glantz, 1985).  

    Socio-economic drought is associated with failure of water resources systems to 

meet water demands and thus associating droughts with supply of and demand for an 

economic good (water) (American Meteorological Society, 2004). Socio-economic 

drought occurs when the demand for an economic good exceeds supply as a result of 

a weather-related shortfall in water supply. 

    Agricultural drought links various characteristics of meteorological (or 

hydrological) drought to agricultural impacts, focusing on precipitation shortages, 

differences between actual and potential evapotranspiration, soil water deficits, 

reduced groundwater or reservoir levels, and so forth (Wilhite and Glantz, 1985). 

Agricultural drought was said to be ‘a period of dry weather of sufficient length and 

severity to cause at least partial crop failure’ or ‘when soil moisture is depleted so that 

the yield of plants is reduced considerably’ (Agnew and Anderson 1992). In this thesis, 

I briefly defined agricultural drought as “crop yield damage phenomenon due to water 

shortage”. 

 

1.1.3 Aridity, water shortage and drought   

   There are several similar concepts used when water is insufficient: aridity, water 

shortage and drought. Aridity is a nature produced permanent imbalance in the water 

availability characterizing the climatic conditions of a region (WMO, 1975). Water 

shortage is mainly caused by human induced causes. It means the deficit of water 

supply to meet the demands and is mainly caused by inappropriate use of water 

resources or man-made changes (Tsakiris et al., 2013). By comparison, drought is a 

nature produced but temporary imbalance of water availability caused mainly by low 

precipitation and thus resulting in lower availability of water resources. When the 

concept ‘drought’ is used, it refers the relative dry period of water availability 
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compared with normal and wet period.  

 

1.2 Drought in the world 

    Drought causes an average 6–8 billion ($US) in global losses annually (Wilhite, 

2000). Key regions facing droughts are, for instance, Sub-Saharan Africa, the 

Middle-East and North Africa, South-Eastern Europe, Central Asia, Australia, Brazil, 

India, USA and China (United Nations International Strategy for Disaster Reduction, 

2011). Following the recent IPCC Fifth report (Intergovernmental Panel on Climate 

Change, 2014), each of the last three decades has been successively warmer at the 

Earth’s surface than any preceding decade since 1850. In the Northern Hemisphere, 

1983–2012 was likely the warmest 30-year period of the last 1400 years (medium 

confidence).The warming intensifies the global hydrological cycle (e.g., Milly et al., 

2002). Drought frequency will likely to be increased in dry regions by the end of the 

21st century under RCP8.5. The frequency and intensity have likely increased in the 

Mediterranean and West Africa and likely decreased in central North America and 

north-west Australia. There is medium confidence that water scarcity in northern 

China has been exacerbated by decreasing precipitation, doubling population, and 

expanding water withdrawal from 1951 to 2000.  

 

1.3 Reviews of drought researches 

Droughts have significant environmental, agricultural, health, economic and 

social consequences. There are different researches on drought.  

 

1.3.1 Climate background and drought 

Climatic events such as El Niño-Southern Oscillation (ENSO) is a naturally 

occurring phenomenon that involves fluctuating ocean temperatures in the equatorial 

La Niña, sometimes informally called "anti-El Niño", is the opposite of El Niño, 

where the latter corresponds instead to a higher sea surface temperature by a deviation 

of at least 0.5 °C, and its effects are often the reverse of those of El Niño. They are 

well associated with significant climate anomalies such as drought at many places 

around the globe. Drought was depicted by annual precipitation anomaly, some 
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researches (Waple et al., 2002; Hoerling and Kumar, 2003) show that the 1998-2002 

droughts spanned much of the Northern Hemisphere Midlatitudes, with great severity 

in the regions of the western US, southern Europe, Southwest Asia, eastern Asia and 

Siberia. Cold sea surface temperatures (SSTs) in the eastern tropical Pacific and warm 

SSTs in the western tropical Pacific and Indian oceans were remarkably persistent 

during this period. From aspect of regions, El Niño events caused precipitation 

shortage across Mexico (Magaña et al., 2003; Cavazos and Hastenrath, 1990), 

Kalahari Desert of central southern Africa (Nash and Endfield 2008). Variability in 

thunderstorm and rainfall activity were related with El Niño and La Niña over India 

(Kulkarni et al., 2013). El Niño can also influence the precipitation in China 

significantly during its mature phase (Zhang et al., 1999). Climatic event not only 

may cause shortage of precipitation but also soil moisture and stream flow. Wu found 

that the roles of remote SST forcing and local soil moisture differ significantly for 

long-term and short-term droughts in the U.S. Great Plains and Southwest. Dai, et al. 

(1998) show that the revealed a qualitative agreement between Palmer Drought 

Severity Index (PDSI) and stream flow, and changes of global drought by using PDSI 

were closely related to the shift in El Ni˜no-Southern Oscillation (ENSO) towards 

more warm events since the late 1970s .In Austria, there were a strong relationship 

exists between stream flow and the El Niño–Southern Oscillation (ENSO) 

phenomenon (Simpson et al., 1993) and El Niño conditions were often associated 

with decreased annual flows and La Niña with increased flows in Sri Lanka (Zubair, 

2003). Kiem and Franks (2004) investigated multi-decadal variability of drought risk 

by analyzing the performance of a water storage reservoir in New South Wales, 

Australia. Abtew and Trimble (2010) evaluated relationships between El 

Niño–Southern Oscillation (ENSO) indices and South Florida hydrology . Climatic 

events even can influence global grain yield. Khandekar (1996) found that ENSO 

event is generally associated with a drought in the Indian monsoon followed by a low 

grain yield over South Asia and Australia and high grain yield over the north 

American prairies. In sum, climatic events mainly influence long term drought. The 

study hotspots concentrate on regions with oceanic climate and are sensitive to these 
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climate events.  

 

1.3.2 Basic characteristics of drought and drought indices 

Long term historical drought series can be reconstructed by using proxy data such 

as literatures (CNMA, 1981; Shen et al., 2007) and tree-ring (Hughes and Brown, 

1992; Cook et al., 2007; Fang et al., 2010). The more accurate one is based on 

scientific instrument data which was started from 100-200 years ago. In the review of 

drought researches, I focus on the drought based on scientific instrument records.  

Drought severity is always defined by different drought indices like below. 

(1) Precipitation Anomaly (PA)  

, ave, 

, 

ave, 

= 100
i j j

i j

j

P P
PA

P


                     (1-1) 

where i is year, j is specific decade or month, and Pave,j is the average value for the 

same decade or month j during multiple years. 

 

(2) Standardized Precipitation Index (SPI) 

SPI is based on the assumption that precipitation over a period is a random 

variable distributed according to a gamma probability density function (McKee et al., 

1993, 1995). Therefore, it requires a long-term precipitation record to fit the gamma 

probability density function. The SPI is a typical meteorological drought index that 

considers only precipitation. SPI takes into account the stochastic nature of the 

drought and is therefore a good measure of short- and long-term meteorological 

drought. It has been accepted by the World Meteorological Organization (WMO) as 

the reference index to characterize droughts.  

 

(3) Effective Drought Index (EDI) 

   Byun and Wilhite (1999) developed the EDI to detect beginning, end, and 

accumulation stress of drought. The following equations were used for daily EDI 

calculations:  
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Where EPD represent the valid accumulations of precipitation from a particular 

date; D is duration of summation begins from 365; Pm is precipitation of m days 

before. DEP shows the deficiency or surplus of water resources for a particular date 

and place; MEP is 30-yr mean of EP for each calendar day. In order to reflect the 

drying effect on the soil from a drought that occurred several years ago, when DEP is 

negative for two consecutive days, “D” becomes 366(=365+2-1) and the calculation 

begins once again; PRN is one day’s precipitation needed for a return to normal 

condition; σPRN is the standard deviation of the relevant PRN.  

 

 (4) Palmer Drought Severity Index (PDSI) 

Palmer (1965) introduced the concept of the “climatically appropriate for 

existing conditions” (CAFEC) value that quantities evapotranspiration, recharge, 

runoff, loess and precipitation. It considers four surface water fluxes: Evaporation (E), 

recharge to soils (R), runoff (RO), and water loss to the soil layers (L), and their 

potential values PE, PR, PRO, and PL, respectively.  

The PDSI is calculated using monthly data. For calculation of ET, it assumes that 

soil moisture storage is handled by dividing the soil into two layers and for one dekad 

when PET<P, ET= PET where ET is actual evapotranspiration, PET is potential 

evapotranspiration, P is precipitation; if PET >P, ET is the sum of precipitation and 

water loss from soil layers. The water losses from two layers are as following 

 1=min ,( )i i oi iPs ETLs S P 

                   

(1-6) 

                 oi -1= ( ) / ,i i i iLu P Ls SuP T CE AW  1i iLu Su 

               

(1-7) 

where Lsi and Lui is the water loss from surface and underlying soil layers for 
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monthly i; Ssi-1 and Sui-1 are the surface and underlying soil moisture for i-1; AWC is 

available water content.  

The CAFEC precipitation (P) represents the amount of precipitation needed to 

maintain normal soil moisture level for a given time, αi, βi, γi, δi are water-balance 

coefficients between surface water fluxes and their potential values for month i. it is 

defined as 

 -i i i iP PE PR PRO PL                 

 

(1-8) 

The difference between the actual precipitation in a given month and the 

computed P for the same month is the moisture departure (D=P- P ).  

Palmer multiplied D by a climatic characteristic coefficient K to Palmer 

Moisture Anomaly Index or the Z index (Z = DK). x The Z index is used to compute 

the PDSI value for time t (Xt): 

-1 -10.897 / 3t t i t tX pX qZ X Z               

 

(1-9) 

Xt-1 is the PDSI for the previous month t-1. 

PDSI can be slow to respond to developing and diminishing droughts (Hayes et 

al., 1999). Dai (Dai et al., 1998) revealed a qualitative agreement between PDSI and 

streamflow. 

 

(5) Crop Moisture Index (CMI) 

The CMI (Palmer, 1968) is based on a subset of the calculations required for the 

PDSI (Palmer, 1965). The origin CMI begins with a water balance using historic 

records of precipitation and temperature. Considering the short-term moisture supply 

and the moisture demand of the crop, CMI is the sum of evapotranspiration deficit and 

excessive moisture. The equations for these two aspects and CMI are as follows:  

              
-1

-( )
=0.67 +1.8 i oi

i i

ET PET
Y Y





                (1-10) 

              -1= - +( )+i i i i i iG G H M R RO                       (1-11) 

               
i i iC M I Y G                               (1-12) 

Where Yi is an index of evapotranspiration deficit for dekad i; ET is actual 

evapotranspiration; PET is potential evapotranspiration; α is a water balance 
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coefficient; Gi is an index of excessive moisture for dekad i; H is a “return-to-normal” 

factor; Mi is the average percent of field capacity; Ri is recharge; and ROi is runoff. 

 

(6) Surface water supply index (SWSI) 

The surface water supply index (SWSI) was primarily developed as a 

hydrological drought index and it is calculated based on monthly non-exceedance 

probability from available historical records of reservoir storage, streamflow, snow 

pack, and precipitation (Shafer and Dezman, 1982). Four inputs are required within 

SWSI: snowpack, streamflow, precipitation, and reservoir storage. Because it is 

dependent on the season, SWSI is computed with only snowpack, precipitation, and 

reservoir storage in winter. During summer months, streamflow replaces snowpack as 

a component within the SWSI equation. 

 

(7) Normalized Difference Vegetation Index (NDVI)  

NDVI (Rouse et al., 1974) is calculated based on remote-sensing measurements of 

visible (Red) and near-infrared (NIR) radiation:  

   NIR RED NIR REDNDVI                (1-13)  

where ρ is spectral reflectance. It is a measure of the greenness or vigor of 

vegetation. Among the vegetation indices, NDVI is the one most often used and it is 

an operational, global-based vegetation index, partly due to its ratio properties, which 

enable the NDVI to cancel out a large proportion of noise in remote-sensing data 

caused by changing sun angles, topography, clouds or shadow, and atmospheric 

conditions (Huete and Justice,1999). Stressed vegetation or vegetation with small leaf 

area has positive but low values of NDVI (Kogan, 1994). Therefore, NDVI is often 

used in research on vegetation dynamics (Zhou, et al., 2009; Duan et al., 2011) and 

drought spatial monitoring (Kogan and Sullivan, 1993; Kogan, 1994; Kogan, 1997).  

 

(8) Ratio Vegetation Index (RVI) 

RVI (Birth and McVey, 1968) is calculated by simply dividing the reflectance 
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values of the near infrared band by those of the red band:  

NIR REDRVI                     (1-14)  

. The result clearly captures the contrast between the red and infrared bands for 

vegetated pixels, with high index values being produced by combinations of low red 

(because of absorption by chlorophyll) and high infrared (as a result of leaf structure) 

reflectance. 

 

(9)Enhanced Vegetation Index (EVI)     

Enhanced Vegetation Index (Huete et al., 1999) is a modified NDVI with a soil 

adjustment factor SL and two coefficients C1 and C2, which describe the use of the 

blue band in correction of the red band for atmospheric aerosol scattering:                 

   NIR RED NIR RED B1 2EVI GF C C SL               (1-15)  

The coefficients adopted in the MODIS-EVI algorithm are: L=1, C1 = 6, C2 = 7.5 

and GF (gain factor) = 2.5. This EVI has improved sensitivity to high biomass regions 

and reduced atmospheric influence.  

Not only severity, drought has lots of other basic characteristics: frequency, 

duration and spatio-temporal pattern. There are inter-relationship among these 

characteristics. Typically, there are drought severity–area–frequency (SAF) curves 

(Mishra and Desai, 2005; Mishra and Singh, 2008), and severity–duration–frequency 

(SDF) curves (Saghafian et al., 2003) and severity–area–duration (SAD) curves 

(Grebner and Roesch, 1997). Drought frequency is defined as the number of drought 

events occurred, drought duration as the number of months in drought conditions, and 

drought severity as the sum of the integral area below zero of each event. Based on 12 

month SPI, Spinoni et al. (2014) found a small global increase in each drought 

component from 1951 and 2010, but drought frequency decreased in the Northern 

Hemisphere. The increase in drought frequency, duration, and severity is found to be 

significant in Africa, Eastern Asia, Mediterranean region, and Southern Australia, 

while the Americas and Russia show a decrease in each drought component. Sheffield 

et al. (2009) identified 296 large-scale drought events (greater than 500 000 km2 and 
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longer than 3 months) globally for 1950–2000  based on simulated soil moisture by 

using severity–area–duration curve. In these curves, drought index is a key point. It is 

commonly depicted by precipitation or soil moisture. 

The overall impact of a drought depends on several factors, severity, frequency, 

area, and duration which are essential for spatio-temporal analysis or in other words 

regional drought analysis (Mishra and Singh, 2009). Taking researches in China for 

example, based on SPI at different time scales as severity index, Zhang et al. (2012) 

investigated drought spatial and temporal pattern in Xinjiang, and Zhai and Feng 

(2009) investigated drought pattern in Gansu province. Based on statistics of 

newspaper reports, Wang et al. (2002) investigated drought spatial and temporal 

pattern in China. Based on historic drought disaster observation, Hao et al. (2012) 

assessed drought risk in China. 

From above, it can be seen that the definition of drought by different drought 

indices seriously influences characteristics identification. When considering 

occurrence of drought, it needs to use suitable drought indices for assessment.  

 

1.3.3 The prediction of drought impact on vegetation 

There are some researches which predict yield by using drought indices. Quiring 

and Papakyriakou (Quiring and Papakyriakou, 2003) compared the performance of 

four drought monitoring indices and found that indicated that Palmer’s Z index is the 

most appropriate index for measuring agricultural drought in the Canadian prairies to 

predict spring wheat yields. Mishra and Cherkauer (2010) found crop yields during 

the period of 1980–2007 were strongly correlated with the occurrence of 

meteorological drought and maximum daily temperature during the grain filling and 

reproductive growth period. Potop et al. (2012) found relatively significant negative 

correlations between the SPEI from April to September and the detrended yields of 

root vegetables (r = −0.68), and a linear regression model based on the SPEI series 

explained 59.1% of the variability of the annual detrended yield. Remote sensing 

technology starting from 1990s provides new ways for yield damage prediction. 

Kogan et al. (2005) modeled corn yields using a drought index based on 
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remote-sensing data. Mkhabela et al. (2011) and found NDVI from the third dekad of 

June through the third dekad of July could predict grain yield (i.e., barley, canola, 

field peas, and spring wheat) well in the sub-humid zone. The spatial accumulation of 

NDVI at the county level in Shandong province of China can predict yield of winter 

wheat 40 days ahead of harvest time, i.e. at the booting-heading stage of winter wheat 

(Ren et al., 2008). Liu (Liu et al., 2012) combined the strengths of 1-month, 3-month 

and 6-month SPI, PDSI and Z index for agricultural drought assessment as related to 

spring wheat yield. For these researches, the statistics method is usually introduced to 

judge the precise of yield prediction. 

 

1.3.4 Drought monitoring framework  

Svoboda (2000) used the drought monitoring categories method to convert 

multiple indices into a common standardized form and then incorporated them into an 

objective single index to evaluate drought intensity. Other assessments have evaluated 

the impact of drought by assessment of a map of drought conditions at a bi-weekly 

time scale using the Vegetation Drought Response Index which integrated NDVI, 

PDSI, SPI, soils, land cover, land use, and the ecological setting (Brown et al., 2008). 

A multi-index drought model was developed to predict spring wheat yield residuals at 

six stages based on the monthly SPI, PDSI and Z index (Sun, 2012). The 

disadvantages are that they did not provide systematic and mechanistic structure. Just 

like comments from Steinemann and Cavalcanti (2006): A combination of various 

drought indices may provide a more comprehensive assessment of drought conditions 

than a single-index approach, but this has been challenging because there has been a 

lack of systematic methods for their combination, use, and evaluation. It needs to 

build new logic of drought assessment framework. 

 

1.3.5 Modeling of water stress 

Models are generally defined as simplification or abstraction of a real system. 

The traditional agronomic research methods are not sufficient to meet these increasing 

needs for agricultural decision making. Models were developed to integrate 



 

12 
 

knowledge about soil, climate, crops, and management for making better decisions. 

Two types of models are closely related with drought: one is hydrological model, the 

other is crop model.  

The SWAT (Soil&Water Assessment Tool ) model (Arnold et al., 1998) is a 

physically based, semi-distributed and time-continuous hydrological model that 

operates on a daily time step. It can take into account the processes associated with 

climate, hydrology, crop growth, agricultural management, nutrients, pesticides, etc. 

in a large complex watershed. SWAT model is useful tool for water management and 

drought researches (e.g. Tessema, 2007; Sun and Ren, 2014); The VIC (Variable 

Infiltration Capacity) model (Liang et al., 1994, 1996) is such a land surface 

macroscale hydrology model that has been wide used in drought research. It uses a 

spatial probability distribution function to represent subgrid variability in soil 

moisture storage capacity. VIC model was widely used to simulate soil moisture 

drought (e.g. Wu et al., 2009; Wang, et al., 2011a). 

A crop model can be described as a quantitative scheme for predicting the 

growth, development, and yield of a crop, given a set of genetic features and relevant 

environmental variables (Monteith, 1996). Crop model was born in 1960s and it can 

simulate crop growth from infancy to maturity (Sinclair and Seligman, 1996). The 

crop model can even simulate growth details such as pattern of flowering and 

pollination (Dirk Raes et al., 2012) and when drought causes plant to die (Schultz, 

2014). There are some crop models are widely used such as CROPWAT (Doorenbos 

and Kassam, 1979), EPIC (Williams et al., 1989), CERES (Jones and Kiniry, 1986), 

WOFOST (de Wit, 1965), APSIM (McCown et al., 1996) and AquaCrop model 

(Steduto et al., 2009). They have their respective ways to depict water stress and their 

influences on production. The common point is water use ratio to reduce the 

photosynthesis. 

 

(1) CROPWAT model 

CROPWAT is a decision support tool developed by the Land and Water 

Development Division of FAO. All calculation procedures used in newest software 
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version CROPWAT 8.0 are based on the two FAO publications of the Irrigation and 

Drainage Series, namely, No. 56 "Crop Evapotranspiration - Guidelines for 

computing crop water requirements” (Allen, 1998) and No. 33 titled "Yield response 

to water"(Doorenbos and Kassam, 1979).  

FAO addressed the relationship between crop yield and water use in the late 

seventies proposing a simple equation where relative yield reduction is related to the 

corresponding relative reduction in the evapotranspiration (ET).  

        a1 1 a
y

x x

Y ET
K

Y ET

   
     

   
                                (1-16) 

Where Yx and Ya are the maximum and actual yields, ETx and ETa are the maximum 

and actual evapotranspiration, and Ky is a yield response factor representing the effect 

of a reduction in evapotranspiration on yield losses.  

 

 (2) EPIC model 

The EPIC (Environmental Policy Integrated Climate) model was developed in 

the USA to investigate the relationship between erosion and soil productivity (Figure 

1-1a) and was subsequently enhanced by the further addition of modules to improve 

the simulation of plant growth (Williams et al., 1989). EPIC model used unified 

approach for 114 crop types. Moreover, the model was extended to include 

environmental assessment of pesticides and water quality. WinEPIC6.0 is a 

user-friendly interface for the EPIC crop simulation model (Figure 1-1b). The 

Windows interface allows the researcher to provide minimal input data to run EPIC 

model and customize specific input variables. After preparing the input data into 

Access database of WinEPIC  
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 (a)                                             (b) 

Figure 1-1 The schematic diagram of EPIC model (a) and profile of WinEPIC model(b) 

 

model, the input data for specific site were well written into the input files and 

simulation result can be read from output files. 

In EPIC model, crop yield is estimated by using the harvest index concept: 

  =j AG jYLD B HI                                 (1-17) 

Where YLD is the amount of the crop removed from the field (t/ha), HI is the harvest 

index, and BAG is the above-ground biomass (t/ha) for crop j.  

   ,1 ,2

=
exp

i
i

i j j i

HUI
HUF

HUI ah ah HUI 
                  (1-18) 

HUI is the heat unit index which is calculated by minimum and maximum 

temperature and ahj,1 and ahj,2 are parameters of crop j. 

    11 exp 5.0mx i mx iLAI HUF LAI LAI LAI REG
          (1-19) 

where LAI is leaf area index, HUF is the heat unit factor, and REG is the value of the 

minimum crop stress factor. 

    =0.5 1 exp 0.65i i i
PAR RA LAI                    (1-20) 

PAR is photosynthetic active radiation (MJ/m
2
), RA is solar radiation (MJ/m

2
), 

LAI is the leaf area index, and subscript i is the day of the year. 

   =0.001p j i
B BE PAR                             (1-21) 

△Bp is the daily potential increase in biomass (t/ha), BE is the crop parameter for 

converting energy to biomass (kg/MJ) 
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E




                              (1-22) 

Where WS is the water stress factor, u is the water use in layer l and Ep is the potential 

plant water evaporation rate on day i. 

 When precipitation occurs, the bare soil surface temperature (TG) usually 

decreases. The appropriate air temperature for estimating soil surface temperature is 

near the daily minimum.  

 , , ,=i mn i s mx i mn iTGBW T T T                      (1-23) 

where TGBW is the bare soil surface temperature on wet day i, and Ωs is a scaling 

factor to adjust for wet days.  

   A 5-day moving average is applied to obtain the final estimate of bare soil surface 

temperature. If the soil surface is not bare, the soil surface temperature (TG) can be 

affected considerably by the amount of cover which causes lagging the prediction of 

bare surface temperature.  

   The plant temperature stress factor is estimated with the equation 

,
sin

2

b j

i

oj bj

TG T
TS

T T

  
       

                         (1-24) 

   Where TS is the plant temperature stress factor, TG is the soil surface temperature 

and Tb is the base temperature for crop j, and To is the optimal temperature for crop j. 

The potential biomass predicted with the equation is adjusted daily with the 

following equation if any one of five plant stress factors is less than 1.0:   

  = pB B REG                                (1-25) 

Where REG is the crop growth regulating factor (the lowest value among the 

estimation for water, temperature, N, P, and aeration stress factors)   

          
   

1

i

1
= 1

1 0.9
i i jHIA HIA HI

WSYF FHU WS


 
     

     (1-26) 

Where HIA is the adjusted harvest index, WSYF is a crop parameter expressing 

drought sensitivity, FHU is a function of crop stage, and WS is the water stress factor 
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for day i. FHU is function of crop stage which is estimated by using the following 

equations:  

0.3
=sin

2 0.3

=0

i
i

i

HUI
FHU

FHU

   
  

  
    

0 . 3 0 . 9

< 0 . 3  o r   > 0 . 9

i

i i

HUI

HUI HUI

 
       (1-27) 

    Water stress affects harvest index only between 0.3 and 0.9 of maturity, with the 

greatest effect occurring at 0.6. 

 

 (3) CERES model 

The CERES models are comprehensive crop–soil system simulation models 

which can simulate more than 18 different crops, including maize, wheat, rice, barley, 

sorghum, millet, soybean, peanut, dry bean, chickpea, cowpea, faba bean, velvet bean, 

potato, tomato, bell, pepper, cabbage, bahia and brachiaria and bare fallow. The 

CERES models are currently included in the Decision Support System for 

Agrotechnology Transfer, Version 4.5 (Hoogenboom, 2010). 

The ratio of actual ET to potential ET, if less than 1.0, indicates that stomatal 

conductance would have had to be decreased sometimes during the day to prevent 

plant desiccation. This ratio is typically used in the Plant modules to reduce 

photosynthesis in proportion to relative decreases in transpiration (Jones et al., 2003). 

 

 (4) WOFOST model 

The WOFOST (WOrld FOod STudies) permits dynamic simulation of the 

phenological development from emergence till maturity on the basis of crop genetic 

properties and environmental conditions (Boogaard, 2011). To be able to deal with the 

ecological diversity of agriculture, three hierarchical levels of crop growth can be 

distinguished: potential growth limited growth and reduced growth. Each of these 

growth levels corresponds to a level of crop production: potential, limited and reduced 

production. 

The effect of water stress to crop is quantified assuming a constant ratio of 

transpiration to gross assimilation. The assimilation rate A is the product of the 
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potential assimilation rate Ap (kg/ha/d) and the ratio of the actual (water-limited) 

transpiration rate Ta and the potential transpiration rate Tp (both mm/d)  

a
p

p

T
A A

T
                               (1-28) 

   The water-limited production level takes into account the effect of periods of soil 

moisture deficit on crop growth, and the water-limited yield represents the 

maximum yield that can be obtained under rain-fed conditions. The yield limiting 

effect of drought depends on the soil moisture availability as determined by the 

amounts of rainfall and evapotranspiration, and their distribution over the growing 

season, by soil type, soil depth and groundwater influence. The difference 

between potential and water-limited production indicates the production increase 

that could be achieved by irrigation. 

 

(5) APSIM model 

  The APSIM (Agricultural Production Systems Simulator) is a modular modelling 

framework that has been developed by the Agricultural Production Systems Research 

Unit in Australia (Keating et al. 2003). APSIM was designed at the outset as a 

farming systems simulator that sought to combine accurate yield estimation in 

response to management with prediction of the long-term consequences of farming 

practice on the soil resource (e.g. soil organic matter dynamics, erosion, acidification 

etc.). 

The biomass production (∆Q) limit by water uptake (fw, photo < 1, i.e. when Wu < 

Wd), or not (when fw, photo = 1, i.e. when Wu = Wd) 

r ,= u
w w photo r

d

W
Q Q f Q

W
                          (1-29) 

Where Wu is the total daily water uptake from root system, Wd is the water demand of 

leaf and head parts. 

 

(6) AquaCrop model 

   AquaCrop model simulates attainable yields of major herbaceous crops as a 
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function of water consumption under rainfed, supplemental, deficit, and full irrigation 

conditions. The growth engine of AquaCrop is water-driven, in that transpiration is 

calculated first and translated into biomass using a conservative, crop-specific 

parameter: the biomass water productivity, normalized for atmospheric evaporative 

demand and air CO2 concentration (Steduto et al., 2009). 

The AquaCrop model evolved from the equation by separating non-productive 

soil evaporation (E) from productive crop transpiration (Ta) and estimating biomass 

production directly from actual crop transpiration through a water productivity 

parameter. The changes lead to the following equation, which is at the core of the 

AquaCrop growth engine:  

= aB WP T                              (1-30) 

Where B is the biomass produced cumulatively (kg per m
2
), Ta is the crop 

transpiration (either mm or m
3
 per m

2
), with the summation over the time period in 

which the biomass is produced, and WP is the water productivity parameter (either kg 

of biomass per m
2
 and per mm, or kg of biomass per m

3
 of water transpired) 

   For most crops, only part of the biomass produced is partitioned to the harvested 

organs to give yield (Y), and the ratio of yield to biomass is known as harvest index 

(HI), hence:  

             =Y H I B                                 (1-31) 

The underlying processes culminating in B and in HI are largely distinct from 

each other. Therefore, separation of Y into B and HI makes it possible to consider 

effects of environmental conditions and stresses on B and HI separately. 

 

1.3.6 The impact of agricultural drought and drought mitigation assessment 

Drought has both a natural and social component (Wilhite, 2000). Drought risk 

depends on a combination of the physical nature of drought and the degree to which a 

population or activity is vulnerable to the effects of drought (Shahid and Behrawan, 

2008; Kim et al., 2013). With the purpose of synthesis both factors together, there are 

some assessment work on drought regional properties like drought hazard assessment 

(Pandey et al., 2012), drought vulnerability assessment (Wang et al., 2013) and 
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drought risk assessment (Wu and Wilhite, 2004; Zhang, 2004; Jia et al., 2012; Zhang, 

2014).  

There are some other researches on drought response to the drought, such as 

farmers’ response to agricultural drought in paddy field of southern China (Sun et al., 

2012), and drought assessment to the 2008-2009 drought in Kenya (Lammert, 2010). 

Knutson and Hayes (2001) used interviews and qualitative analysis to determine the 

impacts of and responses to the 1998 to 2000 droughts in South Carolina, United 

States. The purposes of these researches are for insurance rate making, resource 

distribution and construction of response system from cases of drought in the past.  

Generally, from aspect of drought impact prediction, drought monitoring and 

management, combinations of different factors currently become trend for drought 

researches. The framework built and factor identification is important for scientific 

decision making. 

 

1.4 The impact of drought on crop physiology 

    Lack of water is the major factor limiting plant productivity. It is a 

multidimensional stress affecting plants at various levels of their organization 

(Yordanov et al., 2000). The most obvious effect of even mild stress is to reduce 

growth. Stomata are sensitive to leaf water status, tending to close with decreases in 

leaf water potential. Changes in stomata conductance are the main cause of the widely 

observed decrease of photosynthesis with declining water potential (Boyer, 1976). 

Water deficits can greatly modify plant development and morphology. Such as the 

differential sensitivity of roots and shoots leads to large increases in the root to shoot 

ratio in water stress. Water deficits also increase the abscission of leaves and fruits, 

particularly after relief of the stress (Jones, 1983). Annuals are not as deeply rooted as 

perennial grasses and woody forbs or shrubs and trees and therefore cannot tolerate 

the same degree of moisture deficit. Water deficits also affect the reproductive 

development. Stress often advances flowering in annuals and delays it in perennials. 

In wheat, mild deficits can advance flowering by a week but they decrease the number 

of spikelets and decrease pollen fertility and grain set (Angus and Moncur, 1977). 
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Crop plants have developed many mechanisms to survive water deficit, including 

escape, tolerance, and avoidance of and cell dehydration (Turner, 1986). Avoidance of 

stress includes rapid phenological development, increased stomatal and cuticular 

resistance, changes in leaf area, orientation and anatomy, among others (Morgan,1984; 

Jones and Corlett, 1992). These microcosmic researches lay solid basis on 

understanding the agricultural drought.    

 

1.5 The objectives of the thesis 

Drought is considered by many to be the most complex but least understood of 

all natural hazards, affecting more people than any other hazard (Hagman, 1984; 

Wilhite, 1992). Agricultural drought refers a complex water–agricultural production 

system that comprises interactions among meteorology, hydrology, agriculture, and 

society. The traditional methods such as experiments need to take lots of money and 

time to get to know the complete information of the whole system. The development 

of the new technology such as remote sensing and crop model in the recent years is 

possible to be able to fill the gap of the system knowledge and helpful for the 

management. Compared with irrigated agriculture, rainfed agriculture system is more 

sensitive to water shortage. It is significant start point to study the drought in rainfed 

agricultural system. Wilhite (2000) divided the drought pre-arranged plan into 

monitoring and early warning, risk and impact assessment, and mitigation and 

response three primary components. From aspect of drought management, in this 

thesis, I would like to build more operational framework and validate it with the help 

of the new technologies. The objectives of the thesis include: (1) the precipitation 

fluctuation background in the whole northeast China and Inner Mongolia; (2) Before 

yield damage, indices based agricultural drought monitoring, taking typical rainfed 

county Hailar County for instance; (3) After yield damage, EPIC model based 

agricultural drought severity assessment, taking 9 typical counties for instance; (4) 

Comparison of three agricultural practices under different drought severity, taking 9 

typical counties for instance. 

My framework for agricultural drought management is following which includes 
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agricultural drought occurrence monitoring, agricultural drought severity assessment 

and drought mitigation assessment (Figure 1-2). Around the framework, the thesis 

tried to validate the framework and answer the following questions with three aspects: 

a. What is the internal logic among multiple indices in rainfed region with the help 

of remote sensing technology?  

b. How to quantitatively assess agricultural drought intensity by using the crop 

model?  

c. What is the difference in effect of agricultural practices on yield increase under 

agricultural drought intensities by using the crop model? 

 
Figure 1-2 The framework of agricultural drought management  

 

After selecting the typical study range, in first questions, I would like to select 

typical rainfed county to indicate the relationship between precipitation, soil moisture, 

crop vegetative growth and yield for drought monitoring. For second questions, I 

would like to model drought impact on yield and assess agricultural drought severity 

in counties with different climate background. For third questions, I would like to 

model different drought mitigation measures under different drought severities and 

assess their effectiveness. These three objectives consists agricultural drought 
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management framework.  

1.6 The structure of the thesis 

    The thesis is composed of five chapters (Figure 1-3) which includes following: 

    Chapter One, overview of the background of drought in China, basic 

terminology related with drought, previous drought researches, the equations of 

drought indices and model methods were shown. And the objective and structure of 

the thesis were also specific in the chapter.  

Chapter Two is temporal-spatial pattern of precipitation variation to check 

whether the Northeast and Inner Mongolia is the suitable range for my study area. The 

results include: Temporal pattern of precipitation in farmland from 1961-2010; Spatial 

pattern of annual precipitation trend and spatial pattern of seasonal precipitation 

variation. The influence of precipitation functions on agricultural production. 

Chapter Three is index-based monitor of agricultural drought in typical rainfed 

region. I focus on SPI, CMI, NDVI and yield different indices to find the internal logic 

among these indices in Hailar County, Inner Mongolia. The statistics method was 

used to link these indices. The results include drought indices in growth period, index 

and yield relationship and drought indices relationship.  

Chapter Four is to accurately evaluate regional drought intensity from aspect of 

impact on crop yield in 9 typical counties. EPIC model was used in 9 counties of the 

Northeast China and Inner Mongolia to fill the gap of crop census yield simulation 

and drought cases were used to validate the drought intensity. The results include 

model validation, agricultural drought intensity assessment and drought trends. 

Chapter Five is to evaluate the effect of three agricultural practices under 

different drought intensities on crop yield in 9 typical counties of the Northeast China 

and Inner Mongolia. By using validated EPIC model, I compared the effect of one 

time irrigation, sowing date change and variety change on yield. The results include 

the effects of three practices and the comparison among them. 

Chapter Six is to summarize previous chapters. It includes organization of the 

research, significance of the study, main findings and discussions and limitation of the 

work and highlight for further directions for future research will also be given.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 The components of this thesis

Chapter 1  

General introduction 

 Terminology related with agricultural drought 

 Drought in the world 

 Reviews of drought researches 

 The impact of drought on crop growth 

 The objectives of the thesis 

 The structure of the thesis 

Chapter 4  

Agricultural drought intensity assessment based on a crop model  

 Objectives: Assessment of drought intensity by a crop model 

 Case study area: four counties grew wheat and five counties grew maize 

 Method: EPIC crop model, trend test 

 Results: Validation of model; drought intensity assessment; trends of agricultural 

drought. 

 

Chapter 3  

Index-based monitoring of agricultural drought  

 Objectives: Construction of agricultural drought monitoring system and 

assessment  

 Case study area: Hailar county 

 Method: dekad(~10 day) SPI, CMI, remote sensing NDVI and yield; Coefficient of 

determination (R
2
) 

 Results: Seasonal trends; the relationship between drought factors; drought 

assessment 

Chapter 2  

Identification of temporal-spatial precipitation 

variation from 1961-2010 

 Objectives: identification of precipitation 

supply background for study areas in 

Chapter 3, 4 and 5. 

 Study area: Northeast China and Inner 

Mongolia 

 Method: Coefficient of variation and linear 

trend method based on 0.5 grid dataset 

 Results: Pattern of annual and seasonal 

precipitation; meteorological drought 

Chapter 5  

The assessment of different agricultural practices to mitigate drought by using a 

crop model 

 Objectives: Assessment the effectiveness of supplementary irrigation, sowing 

date change and variety change. 

 Case study area: four counties grew wheat and five counties grew maize 

 Method: EPIC crop model; t and one–way ANOVA test 

 Results: The yield effects of irrigation, sowing date and variety and comparisons 

Chapter 7 

Discussions and general conclusions 

 Organization of the research 
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Chapter 2 
Temporal-spatial precipitation variation in Northeast China and Inner 

Mongolia 

 

2.1 Background 

There are meteorological drought, hydrological drought, agricultural drought and 

so on different types of drought, drought is essentially a meteorological phenomenon 

(Agnew, 2000). Drought is a temporary period based on climate background (WMO, 

1975). The the Northeast and Inner Mongolia is across from arid to humid different 

climate zones. For rainfed agricultural region, precipitation is only source of water 

supply. The fluctuation of precipitation may seriously influence the production. Feng 

and Zheng (1986) examined annual spatial pattern of precipitation variation in China 

from 1951 to 1980. Ma and Fu (2006) show there is drying trend over Northeast and 

Inner Mongolia from 1951-2004. Serious drought occurs in Northeast and Inner 

Mongolia after 2004 such as drought in 2007. In order to consider the precipitation in 

recent years, as background for agricultural drought, I would like to make the detailed 

assessment of temporal-spatial variation of precipitation for different season and long 

term trend.   

 

2.2 Study area 

I chose three provinces in the northeast China (Heilongjiang, Jilin, and Liaoning 

provinces) and the Inner Mongolia Autonomous Region for our research, because 

these are important regions that rely on rainfed cultivation to produce one harvest per 

year. The planting area for maize is highest among five crop types. Although the 

proportion of wheat decreased after 2000, but as a staple food, wheat is still important 

crop type in the Northeast and Inner Mongolia. From aspect of 60 years planting area, 

maize and spring wheat can be regarded as two major crop types. The area equipped 

with irrigation system for normal year (Effective irrigation area) occupies 32% of this 
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farmland (NBSC, 2010). The precipitation increases from less than 100 mm in the 

west to more than 600 mm in the east, spanning several aridity zones (Figure 2-1). 

 

Figure 2-1 Multi-year average precipitation in Northeast China and Inner Mongolia 

(Green color is the 1:1 million farmland map in 2000) 

 

 

Figure 2-2 The planting area for five major crop types in the study area 

2.3 Data and Method 

2.3.1 Data 

(1) Meteorological data  

I downloaded 0.5 degree grid precipitation dataset for China from 1961 to 2010 

from the China Meteorological Data Sharing Service System (http://cdc.cma.gov.cn/). 

http://cdc.cma.gov.cn/
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The dataset was created by National Meteorological Information Center based on 

precipitation measurements in 2472 national weather stations in China. Therefore, the 

density has better coverage for spatial pattern analysis. 

 

 (2) Farmland and land use 

Farmland was extracted from a 1-km-scale land-use map of China in 2000. Both of 

the two subtypes: dryland and paddy include in the map. The map was downloaded 

from the Environmental and Ecological Science Data Center for West China, National 

Natural Science Foundation of China, and Data-sharing Network of Earth System 

Science Web site (http://westdc.westgis.ac.cn). The original dataset was a 

county-level land-use and cover type dataset (vector format, 1:100,000 scale) created 

by the Chinese Academy of Sciences. Using the maximum-area method, the datasets 

were combined and transferred to the final 1-km raster product by Liu et al. (2001).  

 

(3) Crop planting area and production data  

  Crop planting area and production data for rice, maize, wheat, tuber and soybean 

from 1961-2010 were downloaded from National Bureau of Statistics of the P.R.C. 

http://data.stats.gov.cn/. I calculated the average yield for 5 crop types in the whole 

study area.  

 

(4) Drought areas dataset 

   The statistical drought area is assessment of drought condition by local 

government with the purpose of on time drought management. The ‘Drought area’ is 

assessed by using respective indices in rainfed region and paddy region. In rainfed 

region, it means the region area where seeding rate is lower than 80% when soil 

moisture cannot satisfy the crop water requirement or wilting in crop leaves or soil 

moisture in 20cm arable layer is lower than 60%. In paddy region, the ‘Drought area’ 

means after transplanted period, it cannot provide enough water to rice and cause the 

wilting of plant. The ‘Area suffered by drought’ means the drought area with more 

than 10% damage of crop yield. The ‘Area with drought damage’ means drought area 

http://data.stats.gov.cn/
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with more than 30% damage of crop yield. The ‘Area with no harvest’ means drought 

area with more than 80% damage of crop yield. The ‘Area suffered by drought’ 

includes ‘Area with drought damage’ and the ‘Area with no harvest’ (SFCDRH, 

2011). The data of areas suffered drought, with drought damage and no harvest three 

indices from 1961-2010 in Heilongjiang, Jilin, Liaoning and Inner Mongolia were 

downloaded from http://zzys.agri.gov.cn/zaiqing.aspx.  

 

2.3.2 Method 

   Continental monsoon climate is main climate type in the Northeast and Inner 

Mongolia. I defined March to May as spring, June to August as summer, September to 

November as autumn. The grid data was firstly calculated for each season and each 

year from 1961-2010. Based on the farmland, the 1961-2010 time series of average 

annual, spring, summer, autumn precipitation in farmland can be calculated.   

In order to show the spatial difference in precipitation variation tendency, I used 

the linear trend fitness technology to estimate precipitation tendency based on least 

squares method. The equation of linear trend fitness is following:                 

y mx b                          (2-1) 

   x is year, m is slope and b is intercept for the fitness. If m is greater than 0, there is 

increase tendency; if m is smaller than 0, there is decrease tendency.  

I use coefficient of variation (CV) to depict variation of seasonal and annual 

precipitation. The equation of CV is following:   

           
21 1

-1
iCV x x

x x n


                  (2-2)   

   Here, σ is standard deviation; n is number of years considered. xi is precipitation in 

year i , x is multiple year average precipitation. 

   I made IDL (Interactive Data Language) program and calculated spatial pattern of 

CV and slope in Northeast China and Inner Mongolia. I also test the significance of 

slope for each grid using the program. 

 

2.4 Results 

http://zzys.agri.gov.cn/zaiqing.aspx
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2.4.1 Temporal pattern of precipitation and drought from 1961-2010 

   The precipitation in summer occupied approximately 2/3 of annual precipitation 

(Figure 2-3a). After 2000 years, there is small increase trend of annual and summer  

 

 

 

Figure 2-3 The comparison of yearly variations  

(a) grid average annual and seasonal precipitation in the farmland and (b) yields of main crop 

types and (c) drought area in the study area from 1961-2010 
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precipitation after 2000 years. The decrease trend of summer precipitation is 

similar to annual precipitation. It shows that summer drought is main 

meteorological drought in this region. The grid average annual precipitation in the 

whole farmland shows that amplitude of precipitation fluctuation became larger 

after 1980s and there is explicit low precipitation stage after 2000. Regional 

meteorological drought extended in this region in 1982, 1989, 1999-2001, 2007. 

The yield of crop types even for rice, show explicit decrease due to drought  

 

  

  

  

Figure 2-4 Seasonal precipitation variation by coefficient of variation (CV) from 1961-2010 (a-e) and 

DEM and rivers (f) in the study area 
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(Figure 2-3b). Comparative high yield seems to be kept even in drought years. 

There is also increase trend of drought area and agricultural drought became 

serious after 2000 in our study area (Figure 2-3c). It shows that decrease of 

precipitation is main factor that cause the damage of the crop yields. 

 

2.4.2 Spatial pattern of seasonal precipitation variation 

There is higher variation for spring precipitation than other precipitation types 

(Figure 2-4). Compared with farmland pattern (Figure 2-1), spring precipitation varied 

seriously in farmland in west part of Heilongjiang, Jilin and west end of Inner 

Mongolia (Figure 2-4b). Summer precipitation varied seriously in east part, west end 

of Inner Mongolia, west part of Jilin and Liaoning province (Figure 2-4c). 

Autumn precipitation varied seriously in west end of Liaoning and west end of Inner 

Mongolia (Figure 2-4d). Because summer precipitation occupied majority of annual 

precipitation, the pattern of summer precipitation variation is similar to that for annual 

precipitation (Figure 2-4c). After I made the comparison between precipitation 

variation and DEM (Figure 2-4f), there is very good fitness, the region with serious 

variation is just on the brink of Mongolia Plateau. The occurrence of precipitation 

variation is dominated by topography. 

 

2.4.3 Spatial pattern of annual precipitation trend 

              
Figure 2-5 Annual precipitation trend by linear trend method (mm per year) 

From aspect of 50 years precipitation trend (Figure 2-5), the precipitation 

decrease in most of the farmland. The more serious trend locates in the west part of 

Jilin, east part of Inner Mongolia, northern part in Heilongjiang province and southern 
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part in Liaoning province. The increase slope locates in the west part of Heilongjiang 

province and west part of Inner Mongolia. However, by statistics test, both the 

decrease and increase trends are not significant.  

 

2.5 Discussion  

 The precipitation influenced crop yield seriously in the whole region (Figure 2-4). 

There are some years like 1985 with high precipitation but low yield. It was recorded 

that Great flood occurred in Liao river in 1985(Zhang et al., 2006) and Liaoning and 

Jilin provinces suffered most serious flood disasters after 1949 (Li and Men, 2005; 

Qin, 2008). Totally, drought is main factor that influenced food security in Inner 

Mongolia and the Northeast China.  

 Annual precipitation varied seriously in southeast part of Inner Mongolia west part 

of Jilin and Liaoning province. The result is similar to precipitation variation 

regionalization by empirical orthogonal function method (Gong et al., 2007) which 

revealed that drought was frequent in Liaoxi plain and hilly region of southeast part of 

Inner Mongolia due to typography. Both multi-year 400mm and 600mm precipitation 

line are closely across this narrow region (Figure 2-1). Large precipitation gradient is 

possibly one reason for both the serious variation of precipitation and increase trend 

of the precipitation in this region. Annual precipitation varied seriously in west end of 

Inner Mongolia. There is less precipitation in the west end of Inner Mongolia (Figure 

2-1), the variation of precipitation is possibly due to unstable water supply.   

 

2.6 Conclusion 

The research reveals that the meteorological droughts became serious after 2000s 

in the Northeast China and Inner Mongolia. I made accurate identification of the 

temporal-spatial pattern of precipitation variation and its impact in Northeast China 

and Inner Mongolia. It shows that (1) Precipitation in summer occupied 

approximately 2/3 of the annual precipitation. Summer drought seriously influences 

whole year variation in farmland. The meteorological drought heavily influenced 

yield damage in the whole region. (2) Annual precipitation varied seriously in east 
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part, west end of Inner Mongolia, west part of Jilin and Liaoning province. (3) There 

is decrease but not significant trend of precipitation for whole Northeast China and 

Inner Mongolia from 1961-2010. Due to lack of irrigation system, there is higher 

drought risk in the rainfed region in the Northeast China and Inner Mongolia. It 

requires different strategies for drought preparation.   
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Chapter 3 
Index-based agricultural drought monitoring in Hailar County, Inner 

Mongolia 

 

3.1 Background 

Drought assessment is related with evaluation of the status of the entire water 

cycle. A combination of various drought indices may provide a more comprehensive 

assessment of drought conditions than a single-index approach, but this has been 

challenging because there has been a lack of systematic methods for their combination, 

use, and evaluation (Steinemann and Cavalcanti, 2006). With regard to drought 

occurrence, the onset of an agricultural drought may lag that of a meteorological 

drought, depending on the prior moisture status of the surface soil layers (Heim, 2002). 

Agricultural drought is a slow-onset “creeping phenomenon” (Tannehill, 1947), and 

there appears to be an inherent temporal relationship between shortage of rainfall and 

yield damage. In addition, according to the agricultural drought definition, agricultural 

drought occurs when vegetation suffers from a water deficit. The definition is likely to 

describe drought occurrence process. Therefore, to accurately identify the features of 

agricultural drought in a specific region, it is necessary to examine the underlying 

drought process. 

Numerous drought indices have been developed to simplify the identification of 

agricultural drought, and these indices can be divided into three groups. The first 

group is precipitation-based indices, such as precipitation anomaly and the 

Standardized Precipitation Index (SPI) (McKee et al., 1993, 1995). The second group 

is soil moisture–based indices, such as the Palmer Drought Severity Index (PDSI) 

(Palmer, 1965) and Crop Moisture Index (CMI) (Palmer, 1968). The third group is 

vegetation-based indices, including the Ratio Vegetation Index (RVI) (Jordan, 1969), 

Normalized Difference Vegetation Index (NDVI) (Rouse et al., 1974), and Enhanced 

Vegetation Index (EVI) (Huete et al., 1999).    
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The relationship between moisture shortage and crop growth is the key link in the 

agricultural drought process. Previous studies have revealed that remotely sensed 

NDVI has a time-lag relationship with rainfall (Nicholson and Farrar, 1994; Wang et 

al., 2001; Ji and Peters, 2003). From this viewpoint, drought is a temporary feature in 

the context of climatic variability (WMO, 1975). Therefore, the NDVI anomaly 

(NDVIA) is a more accurate index of drought than the NDVI. In addition to rainfall, 

however, meteorological factors such as temperature and wind speed also influence 

the water shortage of crops. Thus, it is more reasonable to assume that the NDVIA and 

water deficit reflect agricultural drought. Previous drought studies showed great 

variation in the relationship between moisture shortage and satellite-derived drought 

indices. For example, Bayarjargal et al. (2006) found no agreement between the 

spatial extent of satellite-derived drought indices and monthly PDSI. Quiring and 

Ganesh (2010) reported that monthly relative NDVI change index (vegetation 

condition index) is most strongly correlated with prolonged moisture stress, including 

6-month SPI, 9-month SPI, and PDSI, and less sensitive to short-term precipitation 

deficiencies than to long-term ones. Can NDVI change and in situ drought indices at 

shorter time scales provide detailed information indicating the vegetation response to 

water deficit? The temporal scale of a dekad (~10day) is often used in agricultural 

studies. In this study, short-term 10-day vegetation variation was used to assess the 

ability of several indices to describe the agricultural drought process. 

   The overall goal of this study is to assess the agricultural drought process based on 

a conceptual model that synthesizes meteorological information, remote-sensing 

dynamic monitoring, and observational data. We then examined the relationships 

among indices and the temporal interaction of factors on a short time scale during the 

drought process. The specific objectives are to: (1) clarify trends of 10-day scale SPI, 

CMI, and NDVI during the crop growing period; (2) examine the relationships 

between drought indices and crop yield; (3) evaluate the temporal relationships among 

the drought indices, mainly focusing on water shortage accumulation and time lag; 

and (4) assess agricultural drought over a long-term period. 
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3.2 Study area 

The study area is Hailar County (total area 1440 km
2
), which lies in the 

transitional zone between low mountains and the hilly region along the western slope 

of the Greater Khingan Mountains and Hulunbuir high plain in Inner Mongolia, China 

(Figure 3-1). The elevation ranges from 603 to 777 m a.s.l.. Flat terrain is the county’

s main geomorphic unit. Chestnut soil is the main soil type, and the soil texture is 

loamy sand and loam (USDA classification, FAO soil map). Hailar County is in the 

semi-arid region (aridity index = 0.46) of China. As an agriculture–pasture 

transitional zone, this region is strongly influenced by the East Asian summer 

monsoon and frequently suffers from extreme climatic conditions, such as limited 

precipitation and low temperature. Based on measurements recorded at the Hailar 

weather station (49°13′ N, 119°45′ E) of the Chinese Meteorological 

Administration (1971–2010), average annual precipitation is 348 mm. About 

two-thirds of the annual precipitation occurs from June to August, and there is a 

significant increase in rainfall (i.e., the rainy season) from late June to late August. In 

cold winters, the monthly temperature in January falls to –25.8°C. The whole county 

lies within the permafrost region, with 4–5 months of continuous snow cover each 

year (Jin et al., 2000, Li and Mi, 1983), and there is a short growing period (May to 

September).  

Hailar County is located in the northeastern part of the farming-pastoral ecotone 

of Northeast China and Inner Mongolia, and grassland and farmland are the two main 

land use types (Figure 3-2). In 2009, 97% of the farmland was un-irrigated. Large 

areas of homogeneous cultivated plots exist in Hailar County (Figure 3-2), which is 

favorable for monitoring crop growth based on moderate-resolution remote-sensing 

technology. Spring wheat (Triticum aestivum L.) was the main crop type, occupying 

74% of the farmland, in 1998. In 2010, the proportion of spring wheat fell to 36%, 

whereas barley (Hordeum vulgare L.) and potato (Solanum tuberosum L.) increased 

to18% and 30%, respectively; oil rape accounted for 10%, vegetables accounted for 

5%, and soybeans, watermelon, and maize occupied the remaining 1%. Thus, grain 

crops play an important role in the agricultural production of Hailar County. 
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Figure 3-1 The location of Hailar County in China and distribution of land-use types  

(Land-use information from 1-km grid land-use map of China in 2000) 

  

a. Spring wheat                                     b. Barley 

Figure 3-2 Spring wheat (a) and barley (b) plots in Hailar county (August, 2012) 
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3.3 Conceptual model of the agricultural drought process 

The agricultural drought process refers to the water balance within the 

weather–soil–crop agricultural production system. Crop growth can be divided into 

vegetative growth and reproductive growth stages. For a few crop types, yield is 

closely related to vegetative growth, such as crude fiber crops and leaf vegetables. For 

most crops, however, such as wheat, maize, and beans, the yield is closely related to 

reproductive growth. When drought occurs, leaves wither; thus, drought conditions 

affect these two categories of crops differently. For the former crop types, the yield 

will be closely correlated with vegetation damage. For the latter types, the damage of 

vegetation will influence yield via a reduction in the nutrition supply. 

 
Figure 3-3 Schematic diagram of the drought process during the crop growing period in a rainfed 

agricultural region 

 

 The key link during the drought process can be simplified as a temporal sequence 

of precipitation, soil moisture, vegetative growth, and yield. In rainfed agricultural 

regions, precipitation is the main water source, and yield is the final outcome of the 

drought process. During the generation of water stress, there is a time lag in the effect 

of soil moisture on vegetation vigor (Figure 3-3). Following this framework, I use 

10-day scale SPI, CMI, NDVIA, and yield as input for an assessment of the 

agricultural drought process.  

 

3.4 Data and Method 

3.4.1 Data 

(1) Daily meteorological data, including precipitation, temperature, relative humidity, 
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wind speed, and hours of sunshine, from the Hailar weather station (1951–2010) were 

downloaded from the China Meteorological Data Sharing Service System 

(http://cdc.cma.gov.cn/).  

(2) MODIS daily 500-m products (MOD09GA h25v4) from May to September for the 

years 2000 to 2010 (for a total of 1641 products) were downloaded from the U.S. 

Geological Survey’s website (https://lpdaac.usgs.gov/). One product provides bands 

1–2 in a daily gridded L2G product that includes 500-m reflectance values in the 

absence of atmospheric scattering or absorption.  

(3) A land-use map of China in 2000 (1:1,000,000, 1-km grid, WESTDC) was 

downloaded from the Environmental and Ecological Science Data Center for West 

China, National Natural Science Foundation of China and Data-sharing Network of 

Earth System Science (http://westdc.westgis.ac.cn). The original dataset is a 

county-level land-cover dataset (vector format, scale: 1:100,000) from the Chinese 

Academy of Sciences. Using the maximum area method, the datasets were combined 

and transferred to the final 1-km raster product (Liu et al., 2001).  

(4) The water content in Hailar County available for farmland was calculated using an 

area-weighted method using the available water content records noted on a 

1:1,000,000 scale soil map of China provided by the Chinese Academy of Sciences 

(downloaded from FAO Harmonized World Soil Database v 1.2, 

http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/).  

(5) Crop planting area and yield data from 2000 to 2010 were collected from the 

Hailar Statistics Bureau. Although the meaning of crop yield varies across species, the 

most important aspect is the food energy. Yield energy analysis can measure total 

agricultural output of the farmland as well as the environmental contribution to crop 

production. The coefficients of the food energy obtained from the main crops in 

Hailar were taken from Shu (2008). The values are 16.3 × 10
6
 J/kg for wheat and 

barley grain, 20.9 × 10
6
 J/kg for soybeans, 16.3 × 10

6
 J/kg for maize, 4 × 10

6
 J/kg for 

fresh potato, 26.3 × 10
6
 J/kg for oil rape, 2.5 × 10

6
 J/kg for vegetables, and 1.1 × 10

6
 

J/kg for melon. Then, using the sowing area and production data for these eight types 

of crops during 2000–2010, the yield energy per unit area was estimated for Hailar 
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County.  

3.4.2 Method 

1) SPI 

Using the 10-day data from 1951 to 2010, I calculated the 10-day SPI by using the 

method of McKee (McKee et al., 1993, 1995) for monthly data. To account for the 

antecedent rainfall of SPI in the effect on other factors, SPI was calculated with the 

simple averaging method using the following equation: 

= -

, =

j

j

k j i

i j

SPI

SPI
i


 (3-1) 

where i is the total number of the 10 days considered, and j is ascending time serial 

number of 10-day SPI.  

 

2) CMI 

The C++ package for computing CMI (scPDSI, version 2.0) was downloaded from 

http://greenleaf.unl.edu/downloads/scPDSI.zip. The original method for computing 

potential evapotranspiration (PET) is based on the weekly Thornthwaite method 

(Thornthwaite 1948). To obtain the 10-day estimation of PET, the Penman–Monteith 

FAO 56 (PMF-56) model was introduced to modify the program (Allen et al., 1998). 

The PMF-56 model is recommended as the sole method for determining PET and it 

has been widely accepted as superior to other methods in China (Cai et al., 2007). To 

estimate 10-day PET, the daily temperature, humidity, wind speed, and hours of 

sunshine data were used to calculate daily PET and summed for 10-day period CMI 

values from 1951 to 2010. 

 

3) NDVI anomaly 

In this study, MOD09GA bands 1 and 2, a band quality map, and a 1-km 

reflectance state map from each daily MODIS product (h25v4) were used. Bands 1–3 

were first used for computing daily NDVI images according to Rouse (Rouse et al., 

1974). In the band quality map and resized 500-m reflectance state map, pixels with 
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ideal quality and clear pixels were labeled and merged together. Then, the 10-day 

synthesized NDVI as well as corresponding synthesis quality maps were produced 

based on daily images following the maximum-value composite procedure (Holben, 

1986). Finally, for each index, with the help of the quality map, the noise was 

removed from the images. Due to a lack of images for vegetation indices from 15 

June to 1 July 2001, there is no value for the third dekad of June 2001.  

    The farmland map of Hailar County was extracted from the land-use map of 

China. The farmland NDVI series was built using the MODIS dataset and a farmland 

mask. Because the area of Hailar County is small, the spatial differences of drought 

across the county were not considered here. Considering the farmland of the county as 

a whole, the NDVIA was calculated with the following equation:  

, , 

,

, 

= 100
i j ave j

i j

ave j

NDVI NDVI
NDVIA

NDVI




               

(3-2) 

where i is year, j is dekad, and NDVIave,j is the average value for the same dekad j 

during 2000–2010. Because the county was considered to be one harvest region, the 

average value was computed using all the records in the same dekad. 

 

3.5 Results 

3.5.1 Seasonal trends of drought indices 

The average NDVI began to increase in early May and exceeded 0.3 in late May, 

when the average dekad temperature was higher than 0°C; at this point, crop growth 

accelerated until the curve reached a peak in mid-July (Figure 3-4a). After that, the 

NDVI decreased sharply until late September, when the average dekad temperature 

again decreased to 0°C. With regard to local crop phenology, the sowing stage for 

spring wheat and barley in Hailer County is late April and harvest occurs in late 

August. The growing period of oil rape is from early May to late August, and that for 

potato is from early May to mid-September. Due to the short growing period in Hailar 

County, when the temperature reaches its peak in July, most of the crops are just 

reaching the flowering stage. From 2000 to 2010, the low values of SPI were in late 

May, late June, and from late July to early August, showing the periods when 
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precipitation was lower than the 60-year average one (Figure 3-4b). The shortage of 

rainfall frequently reduced the ability of the CMI value to return to normal, such that 

the CMI value showed a decreasing tendency during the growing period. These 

low-value periods in late June and late July span the elongation–heading and milky 

periods of spring wheat and barley, thus producing a high risk of yield reduction. 

 

 

Figure 3-4 The average decadal NDVI (a) and SPI and CMI (b) from 2000 to 2010 during the growing 

period  

Panel (a) also shows the median temperature and average precipitation during 1951–2010 and crop 

phenology. Phenology information (Sowing, harvest and reproductive growth (RG) period) was 

obtained from Zhang (Zhang et al., 1987) and local monograph by Wang and Zhao (Wang and Zhao, 

2006) and interviews with staff of the Hailar Agricultural and Animal Husbandry Bureau. 

 

3.5.2 Relationships of drought indices with crop yield  

The key period for 10-day CMI was from the second dekad in June to the second 

dekad in July (Table 3-1). The key period for NDVIA is from the first to the third 

dekad in July. There was clear seasonality in the relationship between yield and 

these indices. In addition, there were time lags between the sensitive period identified 

by CMI and those based on NDVIA. My analyses revealed no clear sensitive dekad for 

SPI during June–July. However, with regard to cumulative average SPI values, there 

was a significant correlation with yield energy in May–June, May–July, May–August, 

and May–September, as was the case for CMI (Table 3-2). Thus, a longer period of 

precipitation accumulation has a greater effect on the energy yield than does a short 

period. For the SPI, the R
2
 values were highest for May–June and then decreased. For 

the multi-dekad average of CMI and NDVIA, the R
2
 values were highest for May–July 

and then decreased.  
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Table 3-1 The coefficient of determination (R
2
) between dekad-scale indices and crop energy yield 

anomaly in Hailar County during 2000–2010 (n = 11) 

Index May June July August September 

1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

SPI 0.006 0.039 0.069 0.028 0.217 0.327 0.136 0.019 0.014 0.455

* 

0.051 0.023 0.008 0.022 0.007 

CMI 0.002 0.003 0.035 0.139 0.814

** 

0.630

** 

0.526

* 

0.638

** 

0.160 0.012 0.027 0.081 0.602

** 

0.002 0.003 

NDVIA 0.204 0.24 0.000 0.097 0.087 0.249 0.723

** 

0.665

** 

0.647

** 

0.176 0.042 0.157 0.244 0.072 0.029 

Note: 1st, 2nd, and 3rd refer to the three dekads within each month. For NDVIA, n=10 in the 3rd dekad of June. 

* Statistically significant at the 0.05 level.  

** Statistically significant at the 0.01 level.  

 

Table 3-2 The coefficient of determination (R
2
) between multi-dekad average values of indices and crop 

energy yield anomaly in Hailar County during 2000–2010 (n = 11)  

Index May May–June May–July May–August May–September 

SPI 0.023 0.587** 0.388* 0.588** 0.538* 

CMI 0.006 0.523* 0.638* 0.623* 0.602** 

NDVIA 0.073 0.136 0.403* 0.356 0.205 

* Statistically significant at the 0.05 level. 

** Statistically significant at the 0.01 level. 

3.5.3 Temporal relationships between drought indices  

The R
2
 between CMI and average SPI was higher than that between average SPI 

and NDVIA. The strongest correlation for CMI was with the average SPI of four 

dekads (Figure 3-5a). The strongest correlation for the NDVIA was with average SPI 

of six dekads (Figure 3-5b). Thus, a precipitation shortage within a particular dekad 

does not directly influence the CMI and vegetation; rather, this occurs through a 

cumulative process. 

When considering the correlation between CMI and the performance of the 

NDVIA from May to September over the 2000–2010 study periods, the strongest 
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correlation existed with a 1-dekad time lag (Figure 3-6a). By considering the 

relationship between these indices for each month separately, the maximum R
2
 ranged 

from 0.319 (May) to 0.619 (July). The highest correlations between these indices 

occurred in July and showed a 1-dekad time lag (Figure 3-6b).  

                        

Figure 3-5 The coefficient of determination (R
2
) between multi-dekad accumulated SPI and CMI 

(n=165) (a) and SPI and NDVIA (n=164) (b) during May to September from 2000 to 2010 in Hailar 

County.  

The x-axes denote the number of dekads for SPI, with, for example, 2 indicating 2 dekads (1 antecedent 

dekad)  

* Statistically significant at the 0.05 level; ** statistically significant at the 0.01 level. 

      

Figure 3-6 The coefficient of determination (R
2
) between CMI and NDVIA over the entire growing 

period (a) and in individual months (May to September) from 2000 to 2010 in Hailar County (b).  

The x-axes denote the time lag of NDVIA compared with CMI. In panel (a), n=164 and In panel (b), n = 

33 for most of the month and n = 32 for June.  

* Statistically significant at the 0.05 level; ** statistically significant at the 0.01 level. 

3.5.4 Drought assessment 

During 2000–2010, yield was heavily reduced in 2001, 2003, 2004 and 2007. For 

each of these drought years, as assessed by SPI, CMI, and NDVIA, there was a time 

lag between CMI and NDVIA (Figure 3-7). The year 2003 had the most serious yield 

reduction, with the yields of spring wheat, oil rape, and potato all fallen to nearly  
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                 2000 (5.64)               2001 (2.07) 

    

                2002 (4.15)              2003 (1.28) 

    

               2004 (2.56)              2005 (5.25) 

 

               2006 (4.12)                     2007 (3.12) 

 

               2008 (6.08)               2009 (6.43) 

 

                   2010 (4.15)  
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Figure 3-7 Drought process as depicted by precipitation, SPI, CMI, and NDVIA from 2000 to 2010 in 

Hailar County.  

On the x-axes, values in parentheses represent the total crop yield energy (×10
7
 kJ/ha). 

 

lowest values during these 11 years (Figure 3-8). The CMI value in the first dekad of 

May was less than –2, indicating that there was a lack of soil moisture before the 

growing season. After sowing, from early May to early July, the SPI values were 

continuously less than 0. This long-term precipitation shortage caused a gradual 

decrease in CMI until mid-July, when the soil moisture began to recover. Although the 

SPI value seemed to return to normal in early June, this short-term precipitation did 

not change the decreasing trend in CMI and mitigate the drought conditions. The 

shortage of water ultimately caused a continuous decrease in the NDVIA. Because 

there was a 1-dekad time lag between CMI and NDVIA, the vegetation recovery began 

in late July. SPI was close to or higher than 0 from mid-July to early August, so the 

CMI value increased and returned to normal. The recovery of soil moisture also 

prompted the recovery of NDVI. The vegetation condition returned to normal in 

mid-August. However, this recovery period occurred too late in the growing season. 

Therefore, the yield was heavily reduced due to this spring and summer drought.  

 

Figure 3-8 Yields of spring wheat, potato and oil rape from 1996 to 2010 in Hailar County 

 

In contrast, the serious period of drought in 2007 was in summer and autumn. 

The precipitation in mid and late May provided good moisture conditions during the 

crop seeding period. The NDVIA showed that the growth condition was even better 
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than normal. However, there was a series of dekads after mid-June when precipitation 

was lower than normal, particularly the dekad in late July, with only 0.4 mm 

precipitation. CMI showed that water stress rose to the most serious point in late July. 

Due to this water stress, NDVIA decreased sharply and fell to the lowest point in 

mid-August. Although the precipitation in August returned to normal, the NDVIA 

recovered to normal levels in mid-September. By that point the crops had already 

passed through the flowering stage, and the yield suffered great damage. 

    For the other two years, the year 2001, although there is better precipitation in 

early May, the continuing low precipitation made the CMI decrease from middle May 

to late June. NDVIA start to decrease due to water stress from early June. In July, the 

precipitation returned to normal, CMI slowly returned in late July. NDVIA recovered 

to 0 in early August. Precipitation began to continue decrease from late August, 

NDVIA undertook early senescence in middle September due to water shortage.   

    For the year 2004, the precipitation continually decreased beginning from middle 

June, NDVIA fell starting from late June. Because the precipitation in early July is 

higher than normal and there was quick recover of CMI. NDVIA recovered to higher 

point in middle July. After that, CMI started to decrease in middle July, NDVIA 

deceased in late July. The precipitation in early August brought sharp increase of CMI 

and after that NDVIA increased in middle August. CMI decreased in early September 

and NDVIA decreased in middle September after several dry spell, there was an 

85.5mm precipitation event on Aug. 1
st
, 2004. The growth period was nearly the milk 

ripe stage for wheat and barley, the stem was fragile. It is possible that heavy rainfall 

also caused the early falling of the fringe and making the low yield.  

 

3.6 Discussion 

3.6.1 Recent trends of climate and agricultural drought in Hailar County 

In Chapter 2, it can be seen that, since 2000, there is a low precipitation stage 

(Figure 2-5). In addition, the decrease in precipitation influenced the moisture balance 

and further caused water stress to crops. Because the water deficit occurs during the 

key reproductive growth period (flowering time) of crops, the energy yield has 
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suffered greatly from the water deficit. These findings suggest that in semi-arid 

regions such as Hailar County, the dry and warm climate trends that have occurred 

during the growing season over the past dekads mean that meteorological drought has 

easily transformed into agricultural drought. 

 

3.6.2 Critical growth stages related with yield reduction 

The majority of the crops in Hailar County are grains, such as spring wheat and 

barley, whose yield is closely related with reproductive growth. My results showed 

that vegetation vigor as measured by NDVI best reflects yield energy in July (Table 

3-1). Deng et al. (2011) studied spring wheat in northern Hailar County and Chen 

Barag Banner (adjacent to Hailar County) by comparing the actual yield and NDVI in 

2009/7/29 30-m image from the Chinese HJJZ satellite; they found an extremely 

significant correlation between this index and yield. Likewise, a study conducted in 

the Canadian prairies showed that MODIS NDVI from the third dekad of June through 

the third dekad of July could predict grain yield (i.e., barley, canola, field peas, and 

spring wheat) well in the sub-humid zone (Mkhabela et al., 2011). The Canadian 

prairies and Hailar County share a similar crop planting structure and growing season 

(May–August).  

    Research on crop physiology has shown that for cereal crops, the uppermost 

leaves (i.e., the flag leaves) are an important source of carbohydrate production. The 

flag leaves, which emerge during the tillering stage, make up approximately 75% of 

the effective leaf area that contributes to grain filling (Miller, 1999). The 

characteristics of flag leaves reflect photosynthetic activity and are considered to be 

some of the greatest components in determining grain yield potential (Hirota et al., 

1990). In Hailar County, the grain-filling stage for spring wheat is in mid-July. Thus, 

it is possible that vegetation indices in July detect the growth condition of flag leaves 

and therefore perform well in monitoring yield damage.  

    The key water stress period identified by dekad-scale CMI can be validated by 

research on crop water requirements. According to experiments on spring wheat in 

northern China, based on actual measurements and the soil water balance equation, 
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water consumption of spring wheat reached a peak during the jointing to milky period, 

which accounted for 47.5% of the total water consumption (Li et al., 2003). The 

jointing to milky period for spring wheat in Hailar County is from late June to late 

July. Perhaps the unbalanced state between the water supply and water consumption 

by spring wheat during this period is what allowed CMI in mid to late June to provide 

the best forecast of yield. The key period identified by CMI is a little earlier than that 

identified by NDVIA (Table 3-1). The significant time lag between CMI and NDVIA in 

July (Figure 3-6) suggests that the influence of dekad-level water stress on the ability 

of flag leaves to produce carbohydrates around the grain-filling period (mid-July) is a 

significant agricultural drought process that causes yield damage of spring wheat in 

Hailar County. 

 

3.6.3 Time lags between water deficit and NDVI 

SPI was originally calculated at the monthly scale (McKee et al., 1993). Because 

1-month SPI reflects relatively short-term conditions, its application relates closely 

with short-term soil moisture and crop stress, especially during the growing season. In 

this study, the cumulative period from SPI to CMI was about 4 dekads seems to show 

more accurate relationship result (Figure 3-4a). My findings show that dekad-scale 

CMI can bridge the gap between short-term vegetation change and water deficit as 

depicted by an in situ meteorological dataset. In May, June, and September, the time 

lag between CMI and NDVI was longer than that in July and August, during the 

growing period (Figure 3-6). The measurement of soil moisture at Ewenki, Eerguna, 

and Zhalantun experiment stations (near Hailar County) showed that in spring, after 

snow melt, there is a period of significant soil moisture loss from early April to early 

June due to strong wind (Wang and Zhao, 2006). Thus, CMI may perform poorly in 

depicting the soil moisture balance influenced by snow melt and strong wind in 

spring.  

    The average time lag between CMI and NDVI was 1 dekad during the growing 

period, and my findings suggest that CMI could be used to track the change of 

dekad-scale crop NDVI in similar rainfed agricultural regions. In a previous study, 



 

48 
 

Zipporah (2011) investigated the temporal aspects of drought in Africa based on NDVI 

and Owe’s AMSR-E soil moisture dataset, using correlation analysis and a distributed 

lag model(Dominic et al., 2002). The results showed that a 10-day lag between soil 

moisture and NDVI was the dominant pattern in grassland, cropland, and shrubland. 

Gu et al. (2008) evaluated the temporal relationship between soil moisture data and 

NDVI at 10 homogeneous grassland sites; at 7 of the sites there was a 1- to 2-week 

time lag in the NDVI response to soil moisture variation in the 5- and 25-cm layers. 

Thus, my finding that the response time of crop vegetation to soil moisture is 1 dekad 

is comparable with the results of previous studies.  

 

3.6.4 Feasibility of SPI, CMI, and NDVI for monitoring agricultural drought 

The detailed assessment of the agricultural droughts in 2003 and 2007 showed 

that SPI, CMI, and NDVI can depict the processes underlying a serious drought at the 

dekad time scale during the growing season. Based on these three indices, it is 

possible to judge the likelihood of drought developing and to assess the possible yield 

damage. Dekad-scale SPI can be regarded as the earliest indicator of the drought’s 

impact on crops. The relationship between CMI and NDVIA displays a significant 

time lag. In this study, the 10-day synthesized NDVI values were produced using the 

maximum-value composite method (Holben, 1986) to reduce noise. Therefore, 

although dekad-scale NDVI is not a direct measure of crop growth, the results of this 

study suggest that NDVI provides sufficient information to reflect the response of 

crops to drought at the dekad time scale.  

 

3.7 Conclusion 

The findings indicate that the agricultural drought assessment model is suitable 

for regions where crop yield is closely related to conditions during the reproductive 

growth stage. In the assessment of 2001, 2003, 2004 and 2007 drought years based on 

the conceptual model, we were able to track the drought process in Hailar County. I 

found that meteorological drought during 2000–2010 was easily transformed into 

agricultural drought in the county. In this region where grain crops, including spring 
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wheat and barley, are the main crop types, soil moisture–based and vegetation indices 

during the late vegetative to early reproductive growth stages (CMI in June and 

NDVIA in July, respectively) could be used to detect agricultural drought. The most 

frequent average time lag between CMI and NDVI was 1 dekad, especially in July. 

The results of this 11-year assessment at the dekad time scale in Hailar County fit the 

conceptual model of the agricultural drought process well. My findings suggest that 

when synthesizing multiple indices to identify drought features at a short time scale, 

the underlying drought process needs to be considered. Future research of the drought 

process should consider the calibration of fixed parameters for CMI using cases of 

drought lasting for longer time periods, the effects of snow melt and strong wind on 

soil moisture in spring, and the role of human activity in the drought process. In 

regions with a dry and warm climate, such as that of Hailar County, longer term or 

more sustainable measures, such as adjusting the cultivation calendar or crop planting 

structure, may be necessary to prevent damage from agricultural drought in the future. 
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Chapter 4 
Agricultural drought severity assessment based on a crop model  

 

4.1 Introduction 

Drought poses a great threat to agriculture, food security and regional economies 

in semiarid marginal areas such as Inner Mongolia and the Northeastern China. The 

1980s drought in Ethiopia and Sudan was one of the most devastating natural disasters 

in human history. In recent history, one of the worst droughts in China was during 

2010–2011. Based on evidence from yearly and 5-year average drought indices such 

as the Palmer Drought Severity Index, Ma and Fu (2006) showed that the frequency 

of extreme drought has been increasing in the eastern part of northwestern China, 

central part of the Northeast and Inner Mongolia, and Northeastern China since the 

1980s.  

Drought impacts on societies are assessed with reference to four drought 

processes, meteorological, agricultural, hydrological, and socioeconomic. Agricultural 

drought directly affects household and national food security, because it is a period in 

which insufficient rain falls or when soil moisture decreases sufficiently to cause 

water stress in crops. This leads to yield reduction, possibly even crop failure (Agnew 

and Anderson, 1992). In this chapter, I therefore defined agricultural drought 

(hereafter referred to as drought) as an event in which soil moisture is insufficient to 

support normal crop production, owing to lack of precipitation. Drought indexing may 

be useful to depict drought impact on regional agricultural production. For example, 

Quiring and Papakyriakou (2003) compared the performance of four drought 

monitoring indices to predict spring wheat yields in the Canadian prairies. Kogan et al. 

(2005) modeled maize yields in China using a drought index based on remote-sensing 

data. However, these indices do not directly measure yield loss. Compared with actual 

yield, the reduction of potential yield by drought is more meaningful, because of its 

close relationship with reduced water consumption by crops (Doorenbos and Kassam, 

1979; Sastri et al., 1982).  
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To classify agricultural drought, long-term reductions of crop yield are widely 

used as thresholds, e.g., decreases of more than 10% over mean yields (McQuigg et 

al., 1973; Wilhite and Neild, 1982). This has recently been improved using reductions 

of potential yield not less than the difference between the mean and standard deviation 

(Zhao et al., 2011). However, the threshold of agricultural drought may be influenced 

by the probability distribution of long-term crop yield data. Previous studies showed 

great variation in yield distribution. For example, Day (1965) studied experimental 

cotton, corn, and oat yields, finding right skewness in cotton and corn yields and left 

skewness in oat yields in the Mississippi Delta. Chen and Miranda (2008) also 

showed right skewness in county-scale cotton yields in Texas. However, Atwood et al. 

(2002) indicated left skewness for farm and regional yields of barley (Montana and 

North Dakota), corn and soybean (Illinois and Indiana), cotton (Georgia and Texas), 

sorghum (Texas), and wheat (Montana and Kansas). Conventional measurement 

methods have certain disadvantages. For a specific location, the use of different 

period lengths for depicting the distribution may influence the identification of typical 

or reduced yields caused by drought. Data of short-term yield observations often lead 

to incorrect descriptions of the distribution, and longer periods of yield data are also 

problematic because of technology innovation, such as crop improvement. A suitable 

reference period length used for the threshold determination must be selected. The 

identification of drought depends on the interested groups (Palmer, 1965). Drought 

cases according to the government more or less reflect a consensus of regional 

agricultural drought, and may be used to provide a basis for agreement assessment. 

Therefore, in this chapter, I build a systematic framework to assess agricultural 

drought. 

Crop models are useful for investigating potential yield and yield reduction by 

constraints such as water and nutrient stresses, because they simulate underlying 

physiological processes of crop growth and development. Models able to simulate 

yields of different types of crops, e.g., the EPIC (Environmental Policy Integrated 

Climate) (Williams et al., 1989), DSSAT (Decision Support System for 

Agrotechnology Transfer) (IBSNAT, 1989), WOFOST (WOrld FOod STudies) (de 



 

52 
 

Wit, 1965), and APSIM (Agricultural Production Systems sIMulator) (McCown et al., 

1996), are used to evaluate crop performance at regional scale (e.g., Liu et al., 2007; 

Jia et al., 2011). Among a number of crop models, EPIC has been widely adopted in 

China. For example, Wang et al. (2013) successfully used the model to estimate wheat 

yield observations from agrometeorological stations across China. Li et al. (2004) and 

Wang et al. (2011b) successfully used the model to estimate winter wheat, spring 

maize, alfalfa, and potato yields and soil moisture at a field scale on the Loess Plateau. 

Liu et al. (2007) and Jia et al. (2011) demonstrated that at regional scale, the model fit 

well the spatial pattern of winter wheat and summer maize yields in 2001 on the North 

China Plain. Loess Plateau and North China Plain adhere to Inner Mongolia. They 

suggest that the suitability of EPIC for exploring long-term agricultural drought 

intensity in Northeast China and Inner Mongolia. 

The principal aim of the present study was to propose a new framework to assess 

long-term agricultural drought and to demonstrate its validity, based on a case study in 

Northeast China and Inner Mongolia. The specific objectives of the study were to: (1) 

verify the validity of the EPIC model by county-level census yield data; (2) verify the 

advantage of an index of yield reduction caused by water stress (WSYR) over 

meteorological drought indices in agricultural drought assessment; and (3) show the 

validity of the framework in a long-term agricultural drought assessment, based on a 

case study for the period 1962 to 2010. 

 

4.2 Materials and methods 

4.2.1 Description of study area 

The Northeast China and Inner Mongolia spans several climatic conditions, and 

hence dominant crop types vary between these conditions. Three provinces in 

northeastern China (Heilongjiang, Jilin and Liaoning) and Inner Mongolia 

Autonomous Region are typical rainfed regions for maize and spring wheat 

production. We selected four wheat-growing counties (Hailar, Eerguna, Duolun and 

Siziwang) and five maize-growing counties (Hailun, Nong’an, Changtu, Zhalute and 

Dongsheng) as samples to evaluate agricultural drought (Figure 4-1). In general, 
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flowering stages, i.e., spring wheat heading and maize tasseling, start from late June 

to early July and mid to late July, respectively (Zhang et al., 1987). Spring wheat and 

maize are harvested in August and September, respectively. Total non-irrigated areas 

of Hailar, Eerguna, Duolun and Siziwang are large, all greater than 90% in 1996. The 

total non-irrigated, maize-growing areas are large, e.g. all greater than 75% in 1996. 

Hailun, Nong’an, Changtu, and Zhalute counties are on the plain between the Great 

Khingan Mountains and Changbai Mountains (China’s golden maize belt).Dongsheng 

is a representative maize planting region on the Ordos Plateau south of the Yinshan 

Mountains, where water resources are limited.  

Figure 4-1 Locations of nine representative counties dominated by rainfed agriculture 

County names: CHT, Changtu; DL, Duolun; DSH, Dongsheng; ERGN, Eerguna; HLR, Hailar; HL, 

Hailun; NA, Nong’an; SZW, Siziwang; ZHLT, Zhalute. P/PET: ratio of precipitation during the 

growing season to potential evapotranspiration. Annual precipitation isohyet extrapolated from a 

multiyear average precipitation dataset from Institute of Agricultural Resources and Regional Planning 

(IARRP 1999). Aridity zones were extracted from FAO global map of aridity (1961 to 1990; 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=37040). 

 

    Average growing-season temperatures (1971–2000) in the four wheat-growing 

counties were from 15– 16°C, colder than the range 17–21°C in the five 
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maize-growing counties. Annual precipitation of the study area increases from less 

than 100 mm in the west to more than 600 mm in the east, spanning several aridity 

zones (Figure 4-1). To the west of Siziwang and Dongsheng, there is an arid zone 

(ratio of multi-year precipitation to potential evapotranspiration [aridity index] < 0.2) 

where no farming is possible without irrigation (FAO, 1989). In contrast, the eastern 

part of northeastern China is rich in irrigation resources (Gan and Liu, 2005). 

Therefore, the selected counties cover the main range of rainfed regions in Northeast 

China and Inner Mongolia.  

 

Table 4-1 General information on crops and soils in the typical nine counties 

County Main crop type Cropping calendara Main soil textureb 

Siziwang (SZW) Spring wheat 15 April to 5 August Sandy loam 

Hailar (HLR) Spring wheat 1 May to 20 August Sandy loam 

Eerguna (ERGN) Spring wheat 1 May to 20 August Sandy loam 

Duolun (DL) Spring wheat 1 May to 1 August Loamy sand 

Zhalute (ZHLT) Maize 15 May to 30 September Loam 

Dongsheng (DSH) Maize 1 May to 25 September Clay loam 

Nong’an (NA) Maize 28 April to 25 September Loam 

Changtu (CHT) Maize 10 April to 25 September Loam 

Hailun (HL) Maize 1 May to 30 September Loamy sand 

a Sowing and harvest dates were obtained from the Chinese agricultural phenology atlas (Zhang et al. 1987) and the Chinese 

National Agriculture Web site (http://www.xn121.com/). 

bMain soil texture was determined from FAO soil map (http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/). 

 

4.2.2 Agricultural drought assessment framework 

    To quantitatively assess the agricultural drought an index, a new assessment 

framework including three main parts is proposed (Figure 4-2). We calculated and 

compared a yield-based drought index simulated by a validated crop model and 

typical meteorological drought indices. Drought is a temporary feature in the context 

of climate (WMO, 1975). The threshold and drought indices were assessed together, 

via selection of suitable period length, mean assessment, and agreement validation. 

Standard period setting must consider standard climate-normal and crop growth years 

used in model validation. The mean value as a threshold were assessed by comparing 

their percentiles. The drought indices and thresholds were validated using agricultural 
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drought cases from the literatures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Methodological framework for agricultural drought assessment in this study. 

 

4.2.3 Model calibration and validation 

WinEPIC6.0 model (http://epicapex.tamu.edu/downloads/model-executables/ 

winepic-6-0/) was used to simulate yield. The EPIC model can be used to simulate 

114 crops based on the use of unique parameter values for each crop, and therefore 

represents a useful tool to simulate the impacts of drought in regions with 

heterogeneous growth and cultivation conditions. This is important because when 

drought impacts are spread over a large geographic area (Wilhite, 1993), multiple crop 

types must typically be assessed. 

WinEPIC6.0 is a user-friendly interface for the EPIC crop simulation model. 

Model input includes weather and soil data and parameters for field operations, crops, 
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pesticides, and fertilizers. Model output includes daily, monthly and yearly soil 

organic C and N, crop stress, soil water, and crop yield (Williams et al., 1989). After 

preparing input data as a Microsoft Access database file, the model was run for the 

study areas.  

Dry yields were simulated for six years (1996–2001) for the eight counties and 15 

years for Hailar county (1996–2010). We used default crop parameters for the wheat 

crop. For maize, the biomass energy ratio (i.e., WA parameter) was changed from 43 

to 40 based on model calibration in northern China by Wang et al. (2011b). To analyze 

long-term (1996–2010) dry yield, Hailar County was selected for its relatively 

satisfactory continuous data. The Penman–Monteith equation (Monteith, 1977) was 

selected to estimate potential evapotranspiration. Assuming that fertilizer is rationally 

used, N, P and K fertilizer data were entered as maximum amounts, and the model’s 

“automatic” fertilizer option was used. When fertilizer supply cannot satisfy the 

demand, the fertilizer is triggered and applied. We assumed that if the model was able 

to precisely simulate the time series of county-level yield for all nine counties, it 

would also adequately reflect the impact of drought. 

 

4.2.4 Drought index assessment and framework validation 

The EPIC model was run for the period 1960–2010 based on four assumptions: (1) 

taking a “no drought” irrigation regime as every 2-day irrigation, to increase soil 

moisture to field capacity; (2) no soil nutrient deficiencies; (3) the same background 

soil moisture levels before comparison of rainfed and normally irrigated treatments; 

and (4) 2 years (1960 and 1961) to spin up the model for balancing the water 

environment. We found that the difference between simulated yields for a specific 

year can be ignored when using the 2-year spin up. Starting in 1962, based on 49 

years of data on crop growth under rainfed conditions, we applied the full irrigation 

schedule for individual years from 1962 to 2010 to test the effects of drought in those 

years. We wrote a program in IDL version 7.0 (Interactive Data Language; 

http://www.exelisvis.com/) to continually update the input files and drive the EPIC 

model.  
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Yield loss from drought was estimated as the yield difference between the full 

irrigation and rainfed scenarios. To quantify the yield loss in percentage, WSYR was 

calculated as 

 100
YI YR

WSYR
YI


  ,             (4-1) 

where YI is the yield under fully irrigated conditions and YR the yield under rainfed 

conditions.  

    We selected precipitation (P) and aridity index (AI) as two typical meteorological 

drought indices. Precipitation during the growth period for each county was calculated 

based on the daily data. The AI was used to quantify the degree of water stress during 

the growth period (FAO, 1989; UNEP, 1992): 

                    
P

AI
PET

 ,                  (4-2) 

where P is precipitation (mm) and PET is potential evapotranspiration (mm). 

The standard World Meteorological Organization climate normal refers to mean 

values for a period of 30 consecutive years, and is updated once per dekad (Arguez 

and Vose, 2011). Meteorological data ranges from 1971 to 2000 from individual 

stations in the world are more complete and relatively stable (WMO, 2011). Given 

that the range of actual yield data used for validation of the EPIC model was from 

1996 to 2001, 1971–2000 was chosen as the standard period.  

We compared quantiles and mean values of WSYR in the nine counties and 

determined the standard threshold for drought intensity. In the Yearly Charts of 

Dryness/Wetness in China for the Last 500-year Period (CIMS, 1981), the frequency 

of normal years is 30–40%, two grades of dryness years and of wetness years make up 

30–40% each. For the quantile classes, we assumed that for a given county, the 

probabilities of recurrence of a WSYR value for wet, normal, and dry years would all 

be 1/3 for the 30 reference years. Linear interpolation between closest points was used 

to determine percentiles of means and drought cases of WSYR. To compare two 

meteorological indices (P and AI) with WSYR, percent agreement of total numbers of 

drought cases from two sources was calculated, and the best index was selected with a 
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suitable threshold. The influence of water balance background on the identified 

threshold was analyzed using the multi-year AI. For validation of the agricultural 

drought framework, we compared trends of WSYR, P and AI and their frequencies of 

decadal dry years.   

 

4.2.5 Soil moisture simulation 

    Surface soil moisture is sensitive to environments change. CMI in chapter 3 was 

regarded as soil moisture index. In this chapter, the 20cm depth soil moisture was 

used to be representative as 0-30cm tillage layer to validate the previous assumption. 

The daily 20cm soil moisture from 1962 and 2010 in 9 counties was simulated by 

using EPIC model. We calculated 10-day soil moisture anomaly (SMA) based on soil 

moisture following equation below:  

, , 

,

, 

= 100
i j ave j

i j

ave j

SM SM
SMA

SM


                     (4-3) 

where i is year, j is dekad, SM is soil moisture and SMave,j is the average soil moisture 

value for the same dekad j during 2000–2010. The average value was computed using 

all the records in the same dekad. 

 

4.2.6 Data sources and collection 

Daily meteorological data from 1960 to 2010 for the nine counties, including 

precipitation, maximum and minimum temperatures, relative humidity, wind speed 

and sunshine hours, were obtained from the China Meteorological Data Sharing 

Service System (http://cdc.cma.gov.cn/). Solar radiation was estimated from sunshine 

hours (Angström, 1956).  

Soil properties: Soil depth, sand content, silt content, bulk density, pH, organic 

carbon (C) content, and calcium carbonate fraction satisfies the minimum soil input 

data requirements of EPIC (Liu et al., 2007). These seven soil parameters were 

calculated using an area-weighted method, based on a 1:1,000,000 scale soil map of 

China from the Harmonized World Soil Database (FAO/IIASA/ISRIC/ISS-CAS/JRC, 

2009).  
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Farmland and land use: Farmland locations were acquired from a 1 km-scale 

land-use map of China in 2000 (Liu et al., 2001). The map was downloaded from the 

Environmental and Ecological Science Data Center for West China, National Natural 

Science Foundation of China, and Data-sharing Network of Earth System Science 

website (http://westdc.westgis.ac.cn). 

Agricultural data: Time-series datasets of county-level yield and sowing area 

from 1996 to 2001 were collected for all counties. Exceptions were Hailun county, for 

which data were only available for 1996, 2000 and 2001, and Hailar, for which data 

were available for 1996–2010. Data were from the Thematic Database for 

Human-Earth System (http://www.data.ac.cn/), China Black Soil Ecology Database 

(http://www.blackland.csdb.cn/page/lssc.vpage), the County Level Crop Database 

(http://202.127.42.157/moazzys/nongqing_xm.aspx), Inner Mongolia Autonomous 

Region Rural Socio-economic Yearbooks (IMRPSST, 1998; Zhen, 1999; Zhen, 2000; 

Zhen, 2001; Zhen, 2002), and Local Chronicles of Hailar County (Bai, 2008). 

Assuming that yields of maize and spring wheat have water contents of 15% and 12%, 

respectively (default values in the EPIC model), the dry yield of these grains were 

estimated. Average county-level nitrogen (N), phosphorus (P) and potassium (K) 

fertilizer and compound fertilizer data in 1996 were procured from the Thematic 

Database for Human-Earth System.  

Historical records of agricultural drought: Agricultural drought cases were culled 

from county-level chorographies and meteorological disaster compilation books. The 

chorographies, recording environmental, societal, economic, and important affairs 

within counties, were edited by local governments. The disaster compilation books 

were written by province-level meteorological bureaus. Both records complement 

each other. Records of drought descriptions are complex, because of diverse 

understandings by different people. We selected only drought cases for which the 

records clearly show agricultural damage (Table 4-2).  

 

4.2.8 Statistical analysis 

The coefficient of determination (R
2
) and root-mean-square error (RMSE) were 
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used to evaluate goodness of fit of the EPIC model. For analyzing 49-year temporal 

trends of yearly drought impacts with the WSYR, P and AI methods, the following 

statistical methods (Zhang et al., 2009) were used: (1) simple linear trend fitting using 

SPSS software; (2) Mann–Kendall test (Mann, 1945; Kendall, 1975; Yue et al., 2002) 

using U.S. Geological Survey software 

(http://pubs.usgs.gov/sir/2005/5275/downloads); and (3) the Pettitt (1979) test , which 

identifies a change point in a time series using an IDL language program, following 

the calculation method presented in Zhang et al. (2009). 

 

4.3 Results and Discussion 

4.3.1 Crop model performance 

Both R
2
 and RMSE confirmed that simulated yields fit actual yields well for the 

nine counties over 1996–2001 (Figure 4-3a and b). For a given county, the scatter plot 

approximately followed the line y = x. Based on these results, the EPIC model was 

able to simulate county-level yield for counties in which spring wheat and maize were 

the main crops. The trends of actual and simulated yields from 1996 to 2010 in Hailar 

fit well with each other (Figure 4-3c). Previous research has shown similar good 

agreement between EPIC-simulated yields and national yield data of wheat, maize 

and rice in the world (Liu et al., 2007; Liu, 2009). These support the choice of EPIC 

to simulate the effects of drought in the study area. A recent study (Cooter et al., 2012) 

found that EPIC-simulated fertilizer rates agreed well with the spatial pattern of 

reported national-scale fertilizer application in the United States. The favorable 

simulation of fertilizer rate further supports EPIC model use for regional yield 

estimation. 

EPIC is a plot-based model and has limited consideration of certain environmental 

factors like river flow. Figure 4-3b shows two points indicating that simulated maize 

yields (10.7 t/ha in Nong’an and 11.1 t/ha in Changtu) were substantially higher than 

actual yields. These lower actual yields were recorded in 1998, when there was 

serious summer flooding in the Songhuajiang and Liao river basins, causing 

tremendous crop damage (SCIO, 1998; MWR, 1999). Thus, there must be careful 
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consideration of EPIC use in simulating drought impact on yield for regions with 

frequent flooding. County-level yield modeled by EPIC may be also biased, owing to 

the lack of background information. In the present study, it was assumed that 

meteorological conditions, crop cultivars, and fertilizer application within the counties 

were homogeneous. However, the rainfall distribution could vary within the counties, 

and farmers might use different cultivars. In Northeast China and Inner Mongolia, 

wheat and maize are the two major grain crops, and both can be cultivated without  

 

 

Figure 4-3 Validation of EPIC model for prediction of (a) spring wheat and (b) maize yield in rainfed 

cultivation, and (c) trend of spring wheat in Hailar county between 1996 and 2010.  

Based on actual yield data from nine representative counties between 1996 and 2001, Diagonal line 

represents y = x. n is sample number. County names: SZW, Siziwang; HLR, Hailar; ERGN, Eerguna; 

DL, Duolun; ZHLT, Zhalute; DSH, Dongsheng; NA, Nong’an; CHT, Changtu; HL, Hailun. Double 

asterisks (**) denote significant trend at 1% probability level.  

 

rotation for many years. It was reasonable to simulate maize and wheat continuous 

cultivation as a mono-cropping system for 49 years in the study area, but some studies 

show that crop rotation or intercropping improves soil properties (Dick, 1984) and soil 

moisture (Benson, 1985), and hence crop yield. There has been significant technology 

improvement in the study region. Consequently, actual yield was consistently higher 
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than simulated yield during the last third of the study period (2006–2010) in Hailar 

(Figure 4-3c). Therefore, simulation bias could be reduced by considering additional 

information. 

 

4.3.2 Agricultural drought indices assessment  

Taking 1971–2000 as the reference period in the wheat-growing counties, the 

percentile for mean WSYR was less than 50% in Siziwang (47%) and greater than 

50% in Hailar (60%), Eerguna (58%) and Duolun (54%) (Figure 4-4a). In the 

maize-growing counties, the percentile for the mean was lowest for Zhalute (48%), 

intermediate for Dongsheng (56%) and Nong’an (50%), and highest for Hailun (63%)  

  

  

Figure 4-4 Percentiles of mean WSYR in (a) four counties that grew spring wheat and (b) five counties 

that grew maize from 1971 to 2000; percentiles of drought cases in (c) counties growing wheat and (d) 

counties growing maize.  

Dashed line is mean for the three-decade period. County names: SZW, Siziwang; HLR, Hailar; ERGN, 

Eerguna; DL, Duolun; ZHLT, Zhalute; DSH, Dongsheng; NA, Nong’an; CHT, Changtu; HL, Hailun. 

Triangle (△) indicates drought cases from local chorographies, and circle (○) indicates cases from 

meteorological disaster compilation books. The straight lines are classification threshold between dry 

and normal years. 
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(Figure 4b). Overall, drought years identified by mean values tended to be 

underestimated for relatively wet counties and overestimated for drier ones. The 

average WSYR in Siziwang was greater than that in Hailar, and that in Dongsheng 

greater than in Hailun (Figure 4-4a and b). These indicate that low-rainfall areas had 

greater yield reductions than high-rainfall areas. Similarly, Liu et al. (2012) used the 

APSIM-Maize model to simulate a gap between actual rainfed and potential maize 

yields, with a range between 0.4% and 63% in three provinces in northeastern China. 

They found that the gap was large at locations with low precipitation, but greatly 

decreased in regions of higher precipitation. The results indicate that crops suffered 

from frequent serious yield reductions in the west, possibly because of a substantial 

soil moisture decrease from southeast to northwest in China (Zhang et al. 2008). Thus, 

mean values do not serve for a suitable threshold in my study area. 

A total of 26 drought cases were recorded in the chorographies and disaster 

compilation books (Table 4-2). These records are consistent with high values of WSYR 

in both the wheat- and maize-growing counties. Most of the drought cases (21 of the 

26, or 81%) had WSYR percentiles higher than 80% (Figure 4-4c and d). Exception 

were a few cases in both the wheat (1970 and1977 in Siziwang and 1970 in Duolun) 

and maize counties (1965 in Hailun and 1963 in Changtu). These exceptions could be 

explained by disagreements between of drought case records and of model outputs. 

The drought case of 1977 in Siziwang, which was recorded in the disaster compilation 

books, is described as having impacts on autumn harvest crops such as sunflowers. 

However, the present model simulated a spring wheat WSYR. The drought cases of 

1970 in Duolun, 1963 in Changtu, and 1965 in Hailun are described as the result of 

failure of seedling emergence and re-sowing of crops, but the model could not 

simulate such scenarios. Compared with means, medians are less sensitive to the 

existence of extreme values (Kozak et al., 2008), such that quantile classification, an 

extension of the approach based on the median, improves the determination of 

drought thresholds. By setting the threshold percentile at 66.7% (Figure 4-4c and d), 

there was agreement for 22 of the 26 drought cases, or 85% (Table 4-2), with a high 

WSYR. Using the same threshold percentiles, agreements using P were 16 of the 26 
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cases (65%), and 17 of the 26 (68%) using AI. The agreement using WSYR is greater 

than with P or AI. For example, 1978, 1982 and 1983 in Siziwang, 1979 in Eerguna, 

and 1997 in Nong’an were identified by WSYR.  

 

Table 4-2 Agricultural drought cases in nine counties of Northeast China and Inner Mongolia 

County name Year Description of county-level drought condition 

Siziwang 1968 Drought caused seedling emergence difficulty on some farmland (Shen,2008) 

1970 Summer drought caused dry soil layers to 33-cm depth and field crops wilted or died in some 

cropland (Shen, 2008)  

1977 Drought caused hollow kernels during crop-heading and grain-filling period in autumn harvest 

cropland (Shen, 2008) 

1978 Seldom-seen serious drought, causing great damage to agricultural production (Shen, 2008) 

1982 Serious crop wilting and death on some cropland (Shen, 2008) 

1983 Siziwang and other counties in Ulanqab City suffered serious drought and greatly reduced grain 

production (Shen, 2008) 

Hailar 1986 State farms suffered extreme drought, almost no crop harvest (EBCHC, 1997) 

1992 Drought caused great agriculture losses (Bai, 2008) 

2001 Rare serious drought, causing almost no harvest of wheat, oil rape and beans, and agriculture loss 

4.72 million RMB (Bai, 2008) 

2003 Most cropland suffered from rare serious drought. There was no harvest on some cropland (Bai, 

2008) 

Eerguna 1979 Dry soil layers to 20-cm depth during April–July (EBCEC, 1993) 

1981 Crop suffered great loss from spring drought on State farms (EBCEC, 1993) 

Duolun 1970 Drought caused incomplete seedling emergence (Shen, 2008)  

1972 Drought caused great loss to agriculture (EBCDC, 2000) 

Dongsheng 1972 One third of total sowing area suffered drought and China returned 2750 tons of grain (Shen, 

2008) 

1986 Field crops wilted, causing low production (EBCDC, 1997) 

Zhalute 1982 Summer drought caused 10,000 ha unharvested cropland (EBCZC 2001) 

Nong’an 1982 100,000 ha cropland suffered drought, owing to high temperature and reduced rainfall (Qin, 2008) 

1997 Rare serious drought caused 50–80% damage to maize and other crop production (Qin, 2008) 

2000 Serious drought caused agricultural economic loss of 1.16 billion RMB (Qin, 2008) 

Changtu 1963 Half of total farmland had difficulty in sowing seed, and autumn drought caused a third of maize 

to die from dryness (EBCCC, 1988) 

1982 Serious drought caused crop wilting over large area (EBCCC, 1988) 

1997 Sprouting of field crops dried out in some regions (Li and Meng, 2005) 

2000 Average dry soil layer depth to > 5 cm and no harvest on some cropland (Li and Meng, 2005)  

Hailun 1965 Drought caused seedling emergence difficulty, and some farmland required re-sowing (Sun, 2007) 

1968 Drought caused seedling emergence difficulty, large area of cropland had to be re-sown, much 

waste of labor and time (EBCHC, 1988)  

but not by P or AI (Figure 4-5). It reveals that crop-specific index i.e. WSYR is 
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superior to the meteorological indices for agricultural drought identification. Thus, for 

simplicity, the one-third probability of WSYR was used to classify agricultural 

drought.  

When the one-third probability for the dry class (drought) was used to categorize a 

specific WSYR threshold for each county (Table 4-3), Siziwang had the highest 

threshold (77.5% WSYR), and Hailar, Eerguna and Duolun had lower ones (51.5– 

54.1% WSYR) for the wheat-growing counties. For the maize-growing counties,  

 

Figure 4-5 Relationship between aridity index (ratio of precipitation to potential evapotranspiration) 

from 1971 to 2000, and drought threshold based on WSYR.  

County names: SZW, Siziwang; HLR, Hailar; ERGN, Eerguna; DL, Duolun; ZHLT, Zhalute; DSH, 

Dongsheng; NA, Nong’an; CHT, Changtu; HL, Hailun.   

 

Hailun had the lowest threshold (18.3% WSYR), Zalute and Dongsheng high 

thresholds (57.9–59.3% WSYR), and Nong’an and Changtu intermediate thresholds 

(30.0–41.1% WSYR). Although the Food and Agriculture Organization (FAO) yield 

response factor to water deficit shows that maize is more sensitive (1.5) than spring 

wheat (0.65) during the crop development, the sensitivity during the entire season of 

spring wheat (1.15) is close to that of maize (1.25) (Doorenbos and Kassam,1979). 

The WSYR threshold declined from 77.5% to 18.3% with increased 30-year AI from 

0.26 to 0.66 (Figure 4-6). Thus, aridity has a strong influence on the classification of 

the drought intensity.   
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Table 4-3 Threshold of water stress yield reduction (WSYR) for classifying agricultural drought 

intensity in nine counties of Northeast China and Inner Mongolia for the period 1971–2000.  

Threshold values were determined by the same (one-third) percentile.  

Class Percentile 
WSYR (%) in spring wheat counties  WSYR (%) in maize counties 

Siziwang Hailar Eerguna Duolun Zhalute Dongsheng Nong’an Changtu Hailun 

Wet 
0– 

33.3 

0– 

69.2 

0– 

30.7 

0– 

21.0 

0– 

32.2 

0– 

29.1 

0– 

35.9 

0– 

14.9 

0– 

10.2 

0– 

0.0 

Normal 
33.3– 

66.7 

69.2– 

77.5 

30.7– 

51.9 

21.0– 

51.5 

32.2– 

54.1 

29.1– 

57.9 

35.9– 

59.3 

14.9– 

41.1 

10.2– 

30.0 

0.0– 

18.3 

Dry 
66.7– 

100 

77.5– 

100 

51.9– 

100 

51.5– 

100 

54.1– 

100 

57.9– 

100 

59.3– 

100 

41.1– 

100 

30.0– 

100 

18.3– 

100 

 

 

Figure 4-6 Dry years in time series of WSYR, precipitation (P) and aridity index (AI) from 1962 to 2010 

in (a) four counties that grew spring wheat, and (b) five counties that grew maize.  

County names: SZW, Siziwang; HLR, Hailar; ERGN, Eerguna; DL, Duolun; ZHLT, Zhalute; DSH, 

Dongsheng; NA, Nong’an; CHT, Changtu; HL, Hailun. Solid symbols signify years with identified 

drought cases. 
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4.3.3 Validation of assessment framework  

Linear regression analysis and the Z value of the Mann–Kendall test showed an 

increasing trend of WSYR from 1962 to 2010 in all counties, except for a decrease in 

Siziwang. The Pettitt test indicates upward shifts of WSYR. All tests also show a 

decreasing trend of P and AI in all counties, except for an increasing trend in 

Siziwang. The Pettitt test reveals upward shifts of P and AI in Siziwang and Hailun  

 

Table 4-4 Linear trend slope, Mann–Kendall and Pettitt tests for WSYR (%), precipitation (P) (mm) and 

aridity index (AI) for nine investigated counties during 1962–2010. 

County 
Index Linear trend slope 

(10 yr−1 a) 

Mann–Kendall 

test (Z) 

Pettitt test 

Change point KT
 b Shift 

Siziwang WSYR −0.010 −0.353 2004 -136 Upward 

 P 3.30 0.629 1975 -128 Upward 

 AI 0.012 1.276 1975 -178 Upward 

Hailar WSYR 2.07 0.646 2000 -156 Upward 

 P −6.28 −0.922 1998 156 Downward 

 AI −0.009 −0.940 1998 153 Downward 

Eerguna WSYR 0.38 0.284 1999 -138 Upward 

 P −4.10 −0.784 1999 186 Downward 

 AI 0.005 −0.629 1999 174 Downward 

Duolun WSYR 2.52 1.302 1999 -228 Upward 

 P −1.07 −0.233 1999 114 Downward 

 AI 0.003 0.129 1989 -130 Upward 

Zhalute WSYR 4.54* 2.129* 1994 -304** Upward 

 P −13.3 −1.508 1994 258* Downward 

 AI −0.009 −1.052 1994 216 Downward 

Dongsheng WSYR 3.90* 2.026* 1998 -278* Upward 

 P −3.0 −0.336 1998 138 Downward 

 AI −0.002 −0.207 1998 134 Downward 

Nong’an WSYR 4.13 1.845 1987 -218 Upward 

 P −15.53 −1.405 1994 127 Downward 

 AI −0.004 −0.776 1994 172 Downward 

Changtu WSYR 3.35 1.621 1986 -205 Upward 

 P −17.82 −1.457 1988 168 Downward 

 AI 0.000 −0.672 1995 129 Downward 

Hailun WSYR 0.40 1.019 1975 -166 Upward 

 P −6.0 −0.129 1982 -94 Upward 

 AI −0.01 −0.422 1982 -98 Upward 

* 0.05 significance level; **0.01 significance level 

a10 yr−1
 – every 10 years 

bKT – maximum sum of signed rank between intervals before and after change point 
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(Table 4-4). Among the nine counties, the trends and shifts of WSYR in Zhalute and 

Dongsheng were statistically significant. The shift of the time series of P in Zhalute 

was also significant, and the change point in 1994 was the same as that of the WSYR. 

But the significance level of shift is lower than that of WSYR. It reveals that the 

precipitation and aridity index may underestimate the severity trend of agricultural 

drought in serious counties. 

The frequency of decadal dry years classified by WSYR (Figure 4-7a) shows dry 

years in the 2000s were more frequent in the maize-growing counties (Zhalute and 

Dongsheng). Other maize-growing counties except Hailun had high frequencies of dry 

years in the 1990s and 2000s relative to the 1960s, 1970s and 1980s, but the  

 

 

Figure 4-7 Frequency of decade dry year from 1960s to 2000s in nine counties, via (a) WSYR, (b) 

precipitation, (c) aridity index.  

County names: SZW, Siziwang; HLR, Hailar; ERGN, Eerguna; DL, Duolun; ZHLT, Zhalute; DSH, 

Dongsheng; NA, Nong’an; CHT, Changtu; HL, Hailun. 

 

frequencies were not as high as those for Zhalute and Dongsheng. All the wheat- 

growing counties had lower frequencies of dry years in the 1990s than other decades, 

and no increase in frequency was found in those counties. Using only maize WSYR to 
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assess agricultural drought, the frequency of dry years increased in the five 

maize-growing counties, so agricultural drought has been increasing in northeastern 

China and Inner Mongolia. This is supported by the study of Chen et al. (2011). They 

reported that the drought area where there was yield reduction greater than 10% over 

mean yield during 2001–2008 was larger than that of 1980–2000 in Heilongjiang and 

Jilin provinces and Inner Mongolia, but not in Liaoning Province. The frequency 

identified by P in the 2000s was lower than that in the 1990s in Hailun County 

(Figure 4-7b). In all the counties, the frequency identified by the AI in the 2000s was 

greater than that in the 1990s (Figure 4-7c). The average frequency from WSYR for 

nine counties was 27.8% in the 1990s and 60% in the 2000s. The average frequency 

from P was 33.3% in the 1990s and 54.4% in the 2000s. Average frequency from the 

AI was 27.8% in the 1990s and 53.3% in the 2000s. The increase of frequency from 

the 1990s to 2000s via WSYR was greater than those via P and AI.  

 

4.3.4 The relationship between soil moisture simulation and CMI 

All of the counties are significantly correlated with moisture variation in 20cm 

root layer (Table 4-5). The R
2
 ranges from 0.3 to 0.57. There is smallest R

2
 (R

2
=0.306) 

in Siziwang county. There are also smaller R
2
 in Duolun and Dongsheng counties. 

There are similar R
2
 in Hailar county (R

2
=0.542), Zhalute county (R

2
=0.51), ERGN 

 

Table 4-5 The correlation of determination (R
2
) of soil moisture based drought indices (CMI) to predict 

20cm dekad soil moisture anomaly by model in 9 counties from April to September (n=918) 

 

County Correlation of determination (R2) County Correlation of determination  

(R2) 

Siziwang 0.306** Dongsheng 0.357** 

Hailar 0.542** Zhalute 0.51** 

Eerguna 0.538** Nong’an 0.504** 

Duolun 0.393** Changtu 0.542** 

  Hailun 0.573** 

** Statistically significant at the 0.01 level 

county (R
2
=0.538), Changtu county (R

2
=0.542) and Nong’an county (R

2
=0.504). The 

largest R
2
 is in Hailun (R

2
=0.573). It shows that CMI can depict the root layer soil 
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moisture variation very well. Considering 30-year aridity index (Figure 4-5) of 9 

counties, the counties with higher aridity index values have higher R
2
. 

 

4.4 Conclusions 

Following the newly proposed drought assessment framework, the performance of 

agricultural drought indices were quantified and compared in a rainfed region of the 

Northeast China and Inner Mongolia. The EPIC model simulated long-term crop 

yields under rainfed conditions and performed reasonably well in estimating both 

wheat and maize yields at county level. The percentage of yield reduction caused by 

drought (WSYR) was used to classify the intensity of agricultural drought for the nine 

counties in the study area. The one-third probability of WSYR was identified to 

differentiate drought years from other years. WSYR, which is a crop-specific index, 

was more accurate in representing agricultural drought than meteorological drought 

indicators such as AI and P. The 49-year trend of agricultural drought from WSYR was 

more significant than those from the meteorological indices. The average increase in 

decadal frequency of drought years from the 1990s to 2000s via WSYR was greater 

than those via AI and P. This shows that my framework can be validated by 

long-period analyses. The soil moisture index (CMI) can be validated with surface soil 

moisture anomaly by crop model. It suggests that possibility to improve drought 

indicator by crop model. As demonstrated here, a crop model such as EPIC can be 

useful for simulating the impact of drought on yield, classifying the intensity of 

agricultural drought, and thereby assessing the trend of regional drought. 
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Chapter 5 
The comparison of agricultural practices to mitigate drought by the crop 

model 

 

5.1 Introduction 

The Northeast China and Inner Mongolia, plays a vital role in securing food 

production in China, where grain accounts for 20.9% of China’s total grain 

production (China Statistical Yearbook, 2009). However, large areas of crops are 

rainfed and supplemental irrigation (SI) is used effectively in only 32% of this 

agricultural area (China Statistical Yearbook, 2009). Chapter 2 shows that the 

agricultural productions were heavily influenced by precipitation fluctuation.  

 Drought directly affects household and national food security, as it represents 

a period in which insufficient rain falls or when soil moisture decreases enough to 

cause water stress to crops, leading to some degree of yield reduction and possibly 

to crop failure (Agnew and Anderson, 1992). Human factors, such as farming 

methods, have an effect on the vulnerability of farms to drought, but have received 

little research or policy attention (Knutson et al., 2011). Agricultural practices vary 

widely from place to place. The United Nations Food and Agriculture 

Organization (FAO’s) provides specific recommendations related to agricultural 

practices; these are related to several aspects of agricultural production including 

water, soil, crop and fodder production, harvest and on-farm processing and 

storage (FAO, 2003). I selected three low cost and widely used agricultural 

practices that I believe are designed to mitigate agricultural drought: 1) 

Supplementary irrigation (SI), 2) changes in sowing date and 3) changes in crop 

variety.  

The FAO has identified irrigation as an important aspect of agricultural 

production, and changes in variety and sowing date are two practices that are 

representative of crop and fodder production. SI is one of the most effective 
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strategies used to increase crop yield in rainfed regions. The meaning of SI has 

been defined as providing “additional moisture [to supplement the] limited 

amounts of water [initially available] to [what are] essentially rainfed crops, [with 

the goal of improving and stabilizing] yields during times when rainfall fails to 

provide sufficient moisture [required for] normal plant growth” (Oweis and 

Hachum, 2012). Droughts occur in irregular patterns. In regions lacking the water 

resources needed to provide adequate moisture for crops, using limited irrigation 

water efficiently is important to the goal of reducing the effects of drought on yield. 

Previous study on determination of the optimal sowing date always requires field 

experiments to be conducted across a large region (Jin, 1991). However, these 

regional experiments consume a considerable amount of time and money. The 

present study employed some new technology, such as using RZWQM and 

CERES-Maize models; for example, Anapalli et al. (2005) simulated the effects of 

sowing date on corn production using these models. Liu et al. (2013) used the 

APSIM-Maize crop model in northeastern China to simulate the effects of earlier 

sowing dates and the introduction of different varieties with higher thermal time 

requirements and successfully showed how these methods can compensate for the 

negative effects of climate change. Lv et al. (2013) showed that a change in variety 

can potentially increase yield. These research studies did not model variations in 

climate in different years. I wanted to study the effects of changes in sowing date 

and crop variety on yield and model the effects of drought under dry, normal and 

wet years in the Northeast China and Inner Mongolia. 

 The use of SI as well as changes in sowing date and variety may play different 

roles in drought mitigation. However, common experimental methods make it 

difficult to make a quantitative comparison of the effects of these measures on 

crop yield. Crop models provide a good choice for investigating the measurement 

of crop yield. This is because these models can simulate the underlying 

physiological processes of crop growth and show how these processes change in 

response to changes in the ambient environment. Using a crop model that 
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measures the influence of various factors on yield, makes it is possible to 

quantifiably assess the effects of different factors. Commonly used physical crop 

growth models include The Environmental Policy Integrated Climate (EPIC) 

model (Williams et al. , 1989), the Decision Support System for Agrotechnology 

Transfer (DSSAT) model (IBSNAT 1989), World Food Studies (WOFOST) model 

(de Wit 1965), and the Agricultural Production Systems sIMulator (APSIM) 

(McCown et al. , 1996). EPIC was developed to estimate soil productivity as 

affected by erosion; this model simulates crop growth using unique parameter 

values for each crop (Williams et al., 1989). A number of studies have 

demonstrated the performance of the EPIC model at both plot (Li et al. 2004;Wang 

et al. 2011) and regional scales. Liu et al. (2007) and Liu (2009), for example, 

showed that a good agreement exists between the country-level simulated yields of 

wheat, maize, and rice worldwide. Previous research (Bryant et al., 1992; Rinaldi, 

2001; Ko et al., 2009) has also shown that the EPIC model can be used to model 

crops grown under different irrigation conditions. The study in Chapter 4 has 

confirmed that EPIC can accurately simulate the annual time series of county-level 

yield in typical counties having rainfed cultivation of spring wheat and maize in 

Northeast China and Inner Mongolia China. Using county level yield as a 

reference, I will use an EPIC crop model to simulate our measurement effects on 

the increase in yield. 

 The main objective of this chapter is to assess the effects of different drought 

management techniques currently used in Northeast China and Inner Mongolia. 

Using the crop model, I will study (1) the effects of a single 50 mm of SI, as well 

as changes in (2) sowing date and (3) crop variety on yield.  

 

5.2 Date and Methods 

5.2.1 Study area 

The geographic environment of 9 counties in the Northeast China and Inner 

Mongolia is same as the Chapter 4 (Figure 4-1). Considering the base temperature, 

30-year average total heat units for spring wheat counties ranges from 
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2,339-2,859°C and for maize ranges from 1,494-2,019°C (Table 5-1).  

Table 5-1 Crop and heat resources conditions in the nine counties. 

County Main crop type 30-year average total heat units (℃) c 

Siziwang spring wheat 2859.10 

Hailar spring wheat 2540.04 

Eerguna spring wheat 2339.07 

Duolun spring wheat 2665.65 

Zhalute maize 1974.00 

Dongsheng maize 1594.25 

Nong’an maize 1824.13 

Changtu maize 2019.37 

Hailun maize 1494.37 
a
The sowing and harvest dates were obtained from the Chinese agricultural phenology atlas 

(Zhang et al., 1987) and the Chinese National Agriculture Web site (http://www.xn121.com/).   
b
The main soil texture was determined from the FAO soil map 

(http://www.iiasa.ac.at/Research/LUC/External-World-soil-database/). 
c 
Base temperature for spring wheat is 0℃ and for maize is 8℃. Five-day smooth method (Tian et 

al., 2007) was used to identify the start and end days for temperature accumulation. 

 

5.2.2 Materials 

  1)  Meteorological data 

I downloaded daily meteorological datasets, including precipitation, maximum 

and minimum temperatures, relative humidity, wind speed, and hours of sunshine, 

from 1960 to 2010 for the nine counties from the China Meteorological Data 

Sharing Service System (http://cdc.cma.gov.cn/). The data were undertaken restrict 

quality control. From the remaining data, I estimated solar radiation by using the 

number of sunshine hours following Angström (Angström, 1956). Next, I 

transformed the weather data file for input by EPIC using the Weather Import 

utility provided by Texas A&M University AgriLife Research (http://epicapex. tamu. 

edu /downloads/model-executables/weather-import/).  

 

2)  Soil properties 

http://www.xn121.com/


 

75 
 

I calculated the soil depth, sand content, silt content, bulk density, pH, organic 

carbon content, and calcium carbonate fraction for farmland in the nine counties 

using an area-weighted method based on a 1:1,000,000 scale soil map of China 

created by the Chinese Academy of Sciences and downloaded from the FAO 

Harmonized World Soil Database v 1.2 Web site (http://www.iiasa.ac.at 

/Research/LUC/External-World-soil-database/).These seven soil parameters can 

satisfy the minimum soil input requirements of EPIC (Liu et al. 2007).  

 

3)  Farmland and land use 

Farmland locations were obtained from a 1-km-scale land-use map of China in 

2000. The map was downloaded from the Environmental and Ecological Science 

Data Center for West China, National Natural Science Foundation of China, and 

Data-sharing Network of Earth System Science Web site 

(http://westdc.westgis.ac.cn). The original dataset was a county-level land-use and 

cover type dataset (vector format, 1:100,000 scale) created by the Chinese 

Academy of Sciences. Using the maximum-area method, the datasets were 

combined and transferred to the final 1-km raster product by Liu (Liu et al. 2001). 

 

4) Crop variety information 

The experiment information of spring wheat and maize can be obtained from 

regional variety experiments in Inner Mongolia downloaded from 2008 to 2010  

from Seed Association of Inner Mongolia Automous region 

http://www.nmseed.com/NewsList.aspx?oid=1401. The field experiments were 

organized and strictly operated annually in order to identify the productivity, 

growth period and genetics stability and environment adaptation of the new 

varieties. The experiments were designed by using the randomized block 

arrangement. Not less than 4 protect lines surrenders the experiments region. The 

topography of plot is flat. The sowing dates water and fertilizer condition were in 

accordance with local agricultural production condition. But the management is a 
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little higher than local level. Any types of management and measures need to be 

finished within the same day. The control check (CK) varieties which can be 

adaptive to the changing environment were chosen as the widely spread 

 

Table 5-2 The experiment sites and crop varieties 

Variety County Year Soil texture Planting 

density 

(thousan

d/ha) 

Sowing 

date  

Seeding 

date  

Earing 

(wheat) 

or Silking 

(corn) date 

Maturation 

date 

Condition 

‘Longmai 

26’(Spring 

wheat) 

Hailar 

(SAIMAR

, 2008a, 

2009a, 

2010a) 

2008 Loam 576 5/5 5/24  6/28  8/10 Irrigated 

2009 Loam 486 5/6 5/23  7/12 8/18 Irrigated 

2010 Loam 612 5/4 5/15  6/27  8/20 Irrigated 

 Eerguna 

(SAIMAR

, 2008b, 

2009b, 

2010b) 

2008 Loam 597 5/17 6/1 7/10 8/12 Rainfed 

 2009 Loam 562.5 5/5 5/26 7/16 9/3 Rainfed 

 2010 Loam 612 5/16 5/24 7/1 8/22 Rainfed 

‘Dadi’ 

(Maize) 

Zhalute 2009 Loam 5.95 5/8 5/25  7/21–7/22 9/12 Irrigated 

(SAIMAR

, 2009c, 

2010c) 

2010 Loam 5.95 5/13 5/28 7/15–16 9/6 Irrigated 

‘Zhedan 37’ 

(Maize) 

Zhalute 

(SAIMAR

, 2009d, 

2010d) 

2009 Clay 5.95 5/8 5/25 7/27–7/30 9/24–25 Irrigated 

2010 Clay 5.95 5/13  5/28 7/20 9/15 Irrigated 

 

representative variety (Table 5-2). The experiment was done without irrigation in 

Eerguna County during 2008 to 2010. I would like to use such data to validate the 

simulated crop yield (Table 5-3). 

 

5.2.3 Agricultural practices  

For maize, I changed the origin WA parameter (i.e., the biomass energy ratio) 

value from 43 to 40 based on calibration of the model in northern China by Wang 

et al. (2011). I selected the Penman-Monteith equation to estimate potential 

evapotranspiration. With the assumption of no soil nutrient deficiencies, the 
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county level sowing date and harvest date (Table 5-1) were first fixed to determine 

the county level potential heat units and then I simulated the county level maize 

rainfed dry yield and wheat dry yield by EPIC model.  

 

Table 5-3 The management of seed experiments in Eerguna county during 2008-2010 (SAIMAR, 

2008b, 2009b, 2010b) 

Year Preceding crop Area (m2) Fertilizer during sowing Weeding date Yield (t/ha) 

2008 Oil rape 200 (NH4)2HPO4 8kg, Urea 4kg, Compound 

fertilizer of potassium sulfate 8kg 

Weeding during 

seedling stage 

3.54 

2009 Oil rape 200 (NH4)2HPO4 8kg, Urea 4kg, Compound 

fertilizer of potassium sulfate 8kg 

Weeding on June 2rd，

June 23th  

5.28 

2010 Oil rape 200 (NH4)2HPO4 8kg, Urea 4kg, Compound 

fertilizer of potassium sulfate 8kg 

Weeding on June 8th  3.31 

 

 (1) Irrigation  

A single irrigation serves as the basic unit of an irrigation schedule, the results 

for this treatment can also provide insights into the potential of multiple irrigations. 

For maize and wheat in Northeast and Inner Mongolia, single irrigations usually 

use 30 to 50 mm and 40 to 60 mm of water, respectively (Cui 1990). In dry years, 

surface irrigation quota in Inner Mongolia for spring wheat ranges 270-490mm 

and for maize is 200-430mm (IMWCQ, 2010). I therefore ran the model using a 

specific irrigation amount of 50 mm (an intermediate value suitable for both crops) 

and examined the response to that irrigation which were supplied on each day of 

growth period from the sowing date in 1962 to the harvest date in 2010, and 

looked for the day in each year that gave the highest yield increase. 

 

(2) Sowing date 

  These is a switch for heat unit schedule: one is the normal operation and EPIC 

model can calculate the potential heat unit (PHU), and the other is automatic heat 

unit schedule which potential heat unit must be input at sowing. I firstly used 

normal operation and made the model calculate the PHU and then took it as the 

input and changed the sowing date and used automatic heat unit schedule to 

determine the maturity date. By using EPIC model based simulation experiments, 
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compared with county level normal sowing date(Table 5-1), I designed 7 sowing 

date scenario series for maize ranging from 30 days earlier to 40 days late and 12 

scenarios series for spring wheat ranging from 30 days earlier to 80 days late. 

After calibration of the model with county level yield, by using same county level 

potential heat units, I simulated the multiple sowing dates and the maturity dates 

were automatically determined by the model.  

 

(3) Crop variety changes   

  From the reports from 2008 to 2010 (Table 5-2), I used the modified height of 

crop types by using the actual values. The normal height of ‘Longmai 26’ is 112cm. 

The average height for ‘Yongliang 4’ is 82cm, ‘Dadi’ is 180cm, ‘Zhedan37’ is 

231cm.  I took the average values of same variety in several plots (Table 5-2) as 

suitable potential heat units. Based on the sowing date and maturity date, I 

calculated the potential heat units according to the EPIC model document 

(Sharpley, A.N., and J.R. Villiams, 1990). In 2001, the total sowing area of 

‘Longmai 26’ is 13×104 ha which is top among all wheat varieties in China (Sun 

et al., 2002). The potential heat unit of wheat variety ‘Longmai 26’ is 1853.3℃. 

For maize, “Dadi” is 1829.9℃ and ‘Zhedan37’ is 1941.4℃. The crop growth 

experiment of ‘Yongliang 4’ is from Hohhot County. I calculated the potential heat 

unit (1989.8℃) and used the planting density is determined as 450 thousand/ha. I 

assumed that all the farmland in one county was planted with specific variety and 

there is no change of the sowing date in the county. When validating the 

simulation results with seeding date and actual yield, it can be seen that the 

simulated result fits well with actual seeding date (Figure 5-1a), the RMSE is 3-4 

days. The yield variation fits well with measured dry yield in Eerguna County 

(Figure 5-1b). The earlier stage of ‘Longmai 26’ is resistant to water shortage and 

later stage is resistant to waterlog (Song, 1999). The fitness of seeding and yield 

show that EPIC model can reflect the water sensitivity of ‘Longmai 26’ variety. 
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Therefore, EPIC model is suitable model in this chapter to simulate the growth of 

crop variety. 

  

Figure 5-1 The comparison between (a) actual and EPIC model simulated seeding date and (b) between 

simulated and actual experimental yields of ‘Longmai 26’ in Eerguna county  

double asterisks (**) denote significant trend at 1% probability level 

  

(4) Statistical analysis 

   In order to validate the crop model for new varieties, I compared the measured 

and predicted seeding date and yields. The coefficient of determination (R2) and 

root-mean-square error (RMSE) were used to evaluate goodness of fit of the EPIC 

model.  

I have totally 9 sample counties and two crop types. A paired sample t-test is 

used to determine whether there is a significant difference between the average 

values under two different conditions. Analysis of Variance (ANOVA) was used to 

compare means of three or more samples (using the F distribution) (David C.H., 

2002). Post Hoc Multiple Comparison option was selected with the equal 

variances assumption of Scheffe because it refers to different sample size 

comparison. In this chapter, I divided the 49 years into three types of climate years 

(defined here as dry, normal and wet) based on growth period precipitation using 

the 1/3 percentile method. The number of normal years is 17 years. Dry years and 

wet years are 16 years, respectively. 

   For the irrigation scenario, t-test was firstly used to compare yields under 

reference non-irrigation and 50 mm irrigation. The yield increments (yield 
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difference between non- and 50mm irrigation) under 3 types of climate years was 

compared by using ANOVA and Post Hoc test. 

For the sowing date change, in order to find suitable date, I firstly used 

ANOVA to test the difference among all sowing date scenarios. The Post Hoc 

(Scheffe) were used to test the difference between reference yield and yield under 

sowing date scenarios (e.g. 10 days later than the reference date) under dry, normal 

and wet climate years. 

   For the variety change, due to it refers to three variety types, I firstly used 

ANOVA to test the difference among three varieties (including the reference). The 

Post Hoc (Scheffe) was used to test the difference between reference yield and 

yield under each variety.  

   Different sowing date and variety may have different yield, in order to make 

the comparison among the different strategies, I took the maximum effects of 

sowing date, variety and irrigation to be the representative. I can make the 

comparison by using the ANOVA and Post Hoc. 

Using SPSS ver. 13.0 software (SPSS, Inc., Chicago, IL, USA), I tested the 

factors influenced the variances due to irrigation, sowing date and variety change 

respectively and attempted to make the comparison of the three strategies on yield.  

 

5.3 Results 

5.3.1 The effects of irrigation on yield 

Yield under a single SI was significantly different from county level yield 

without SI for all counties based on the t test (Figure 5-2). However, the 

effectiveness of SI on improving yield seemed to vary with diverse types of 

climate years.  

 For spring wheat counties, the ANOVA test revealed a single SI resulted in 

significantly increased yield in all the counties except Siziwang (Table 5-4). The 

increase in yield with SI during dry years was significant larger than that in wet 

years in Eerguna, Hailar and Duolun counties. The increase in yield during normal 
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precipitation years was significantly larger than that in wet years only in Hailar 

County (Table 5-4). The increase in yield during dry years was significantly larger 

than that in normal years only in Duolun County. 

 For maize-growing counties, the ANOVA test revealed a single SI resulted in 

significantly increased yield in all the counties (Table 5-4). The increase in yield 

with SI during dry years was significant larger than those in wet years in all four 

maize-growing counties (Table 5-4). The increase in yield during normal years 

was significantly larger than that in wet years in all counties except Hailun County. 

  

   

   

   

 

Figure 5-2 The comparison of irrigated yield and county level yield and yield increase under one time 

irrigation in (a-d) 4 counties dominated by wheat and (e-i) 5 counties dominated by maize  

County names: CHT, Changtu; DL, Duolun; DSH, Dongsheng; ERGN, Eerguna; HLR, Hailar; HL, 

Hailun; NA, Nong’an; SZW, Siziwang; ZHLT, Zhalute.  

Generally, for most counties where spring wheat and maize were grown, a single 

50 mm SI was more effective in dry years than in wet years in providing increased 

yield. 
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Table 5-4 The ANOVA test and Post Hoc test (Scheffe) of yield increments among 3 climate year 

types 

County ANOVA Significance of Post Hoc test (Scheffe) 

Sum of 

Squares 

Mean Square Significance Dry– 

Normal 

Normal– 

Wet 

Dry– 

Wet 

SZW 0.767 0.384 0.130 0.646 0.518 0.131 

ERGN 0.143 0.071 0.001* 0.103 0.229 0.002* 

HLR 1.234 0.617 0.014* 0.991 0.042* 0.034* 

DL 0.269 0.134 0.001* 0.028* 0.571 0.002* 

All spring wheat 

counties 

0.338 0.169 0.001* 0.149 0.150 0.001* 

ZHLT 13.375 6.687 0.001* 0.641 0.001* 0.015* 

DSH 0.396 0.198 0.000* 0.996 0.002* 0.002* 

NA 0.359 0.179 0.000* 0.105 0.000* 0.000* 

CHT 8.705 4.352 0.000* 0.057 0.001* 0.000* 

HL 5.415 2.708 0.004* 0.442 0.092 0.005* 

Maize counties 3.233 1.616 0.000* 0.059 0.000* 0.000* 

* 0.05 significant level 

 

5.3.2 The effects of sowing date on yield    

For spring wheat-growing counties, a change in sowing date resulted in 

significantly different yield all the counties with all three types of climate years (dry, 

normal, and wet) with all three types of climate years (dry, normal, and wet) except 

for Hailar County during dry years. The p values in wet and normal years were 

smaller than that in dry years (Table 5-5). Postponing of the sowing date for spring 

wheat caused yield to increase for short postponements and then decrease for longer 

postponements in Siziwang and Duolun. For the other counties, postponing of the 

sowing date for spring wheat caused yield to initially remain stable and then to 

gradually decrease when sowing was postponed for a longer time (Figure 5-3).In dry 

years, the yield increase is not significant in all counties. In normal years, the yield 

increase significantly in Siziwang county when sowing date was postponed to 60 days. 

In wet years, the yield increase significantly in Siziwang County when sowing date 

was postponing from 50 to 70 days. 

 For maize-growing counties, a change in sowing date caused significant 

differences in yield in all counties but varied with climate (defined here as dry,  
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Figure 5-3 The impact of average yield under different sowing date in 4 counties dominated by spring 

wheat and 5 counties dominated by maize under dry (a-b), normal (c-d) and wet conditions (e-f)  

(0 means current sowing date, positive sign (+) means postpone and negative sign (-) means advance) 

County names: CHT, Changtu; DL, Duolun; DSH, Dongsheng; ERGN, Eerguna; HLR, Hailar; HL, 

Hailun; NA, Nong’an; SZW, Siziwang; ZHLT, Zhalute. 

* 0.05 significant level (the comparison between yield under changed sowing date and county level 

yield based on Post Hoc test (Scheffe)) 

 

 

normal, and wet years) except in Dongsheng and Hailun counties during dry years, 

and in Changtu County during dry and normal years. The p values in wet and normal 

years were smaller in all counties than that in dry years (Table 5-5). Significant 

decrease were observed in county level maize yield by postponing sowing 20 days in 

Zhalute County, or 30 days in Nong’an County, or 40 days in Hailun County. 
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However, the p values show that an decrease in yield caused by a change in sowing 

date was higher in a normal or wet year than that in dry year.  

 In summary, for most counties analyzed here, a change in the sowing date in dry 

years was less effective in improving yield than during normal and wet years. 

 

Table 5-5 The ANOVA test of yields in multiple sowing date 

Wheat county and climate Significance Maize counties and climate Significance 

SZW-dry 0.000* ZHLT-dry 0.000* 

SZW -normal 0.000* ZHLT-normal 0.000* 

SZW -wet 0.000* ZHLT-wet 0.000* 

ERGN-dry 0.000* DSH-dry 0.102 

ERGN-normal 0.000* DSH-normal 0.005* 

ERGN-wet 0.000* DSH-wet 0.000* 

HLR-dry 0.145 NA-dry 0.011* 

HLR -normal 0.000* NA-normal 0.000 

HLR -wet 0.000* NA-wet 0.000* 

DL-dry 0.001* CHT-dry 0.389 

DL-normal 0.000* CHT-normal 0.285 

DL-wet 0.000* CHT-wet 0.040* 

  HL-dry 0.115 

  HL-normal 0.000* 

  HL-wet 0.000* 

* 0.05 significant level  

 

5.3.3 The effects of varieties on yield 

 ANOVA was used to test the effects of three varieties of spring wheat on yield 

(including the reference variety). Due to changes of varieties, yield increased 

significantly in Siziwang and Duolun Counties in normal and wet years (Table 5-6). 

‘Yongliang 4’ in Duolun County in normal and wet years had significantly higher 

yield than the reference variety. ‘Yongliang 4’ in Siziwang County in normal years 

had significantly higher yield than the ‘Longmai 26’ variety (Figure 5-4).  

 ANOVA was also used to test the effects of three varieties of maize on yield 

(including the reference variety). For maize, the three varieties had significantly 

higher yield in Zhalute and Changtu counties in wet years and in Hailun in normal 

years and wet years. By Post Hoc test (Scheffe), the yield in ‘Dadi’ of Zhalute and 

Changtu in wet years was significant larger than reference (Table 5-6).  
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Figure 5-4 The average yield under different varieties in dry, normal and wet years in (a-d) 4 counties 

dominated by wheat and (e-i) 5 counties dominated by maize 

County names: CHT, Changtu; DL, Duolun; DSH, Dongsheng; ERGN, Eerguna; HLR, Hailar; HL, 

Hailun; NA, Nong’an; SZW, Siziwang; ZHLT, Zhalute. 

** 0.05 significant level (the comparison between yield under variety change and county level yield 

based on Post Hoc test (Scheffe)) 

 

 In summary, the long growing season variety of wheat tended to have greater 

yield than the reference variety and more than the short growing season variety. The 

short growing season maize variety tended to have increased yield more than the long 

growing season variety especially in wet and normal years. 

 

5.3.4 The comparison among three practices 

    For spring wheat (Figure 5-5a, Table 5-7), significant differences were observed 

in maize yield in dry years among the three practices tested here (SI, variety and 

sowing date). SI improved average yield significantly more than a change in variety. 

For maize (Figure 5-5b, Table 5-7), significant differences in yield were observed 

among SI and among changes in variety and sowing date in both dry and normal years. 
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The increase of yield caused by a change in sowing date was smallest in the 

maize-growing counties (Figure 5-5b). This test shows that the average increase in 

yield caused by SI was significantly larger than that by change in sowing data in dry 

years. 

 

Table 5-6 The ANOVA test and Post Hoc test (Scheffe) of yields in three varieties and relationships 

between varieties 

Wheat County 

and 

climate 

Signific

ance 

Post Hoc test (Scheffe) Maize County and 

climate 

Significa

nce 

Post Hoc test (Scheffe) 

R-L R-Y L-Y R-D R-Z D-Z 

SZW-dry 0.256 0.789 0.623 0.260 Zhalute-dry 0.222 0.222 0.711 0.649 

SZW -normal 0.033* 0.523 0.312 0.034* Zhalute-normal 0.191 0.244 0.974 0.345 

SZW -wet 0.007 0.342 0.197 0.007* Zhalute-wet 0.010 0.010* 0.465 0.167 

ERGN-dry 0.905 0.991 0.909 0.956 Dongsheng-dry 0.674 0.894 0.674 0.916 

ERGN- 

normal 

0.919 0.930 0.998 0.949 Dongsheng- 

normal 

0.490 0.759 0.497 0.905 

ERGN-wet 0.810 0.812 0.964 0.931 Dongsheng-wet 0.128 0.347 0.146 0.869 

HLR-dry 0.686 0.955 0.693 0.857 NA-dry 0.539 0.899 0.543 0.809 

HLR -normal 0.823 0.963 0.824 0.941 NA-normal 0.370 0.779 0.775 0.370 

HLR -wet 0.134 0.719 0.137 0.479 NA-wet 0.239 0.980 0.297 0.395 

DL-dry 0.276 0.694 0.276 0.746 CHT-dry 0.123 0.138 0.843 0.358 

DL-normal 0.003* 0.107 0.003* 0.365 CHT-normal 0.052 0.058 0.730 0.261 

DL-wet 0.028* 0.272 0.029* 0.528 CHT-wet 0.042* 0.042* 0.449 0.416 

     Hailun-dry 0.222 0.222 0.711 0.649 

     Hailun-normal 0.022 0.093 0.035* 0.903 

     Hailun-wet 0.030 0.131 0.041* 0.858 

R: reference; L: ‘Longmai 26’ ; Y: ‘Yongliang 4’; D: ‘Dadi’; Z: ‘Zhendan37’ 

* 0.05 significant level 

 

 

 
Figure 5-5 The average dry yield due to best date of sowing date, best variety and one time irrigation 

under dry, normal and wet conditions for (a) spring wheat and (b) maize. 
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Table 5-7 The One-way ANOVA test and Post Hoc test (Scheffe) of maximum yield among irrigation, 

sowing date and variety 

Significance Spring wheat Maize 

Dry years Normal years Wet years Dry years Normal years Wet years 

Irrigation- Variety 

- Sowing  

0.003* 0.298 0.705 0.008* 0.050* 0.344 

Irrigation- Sowing  0.659 0.986 0.793 0.012* 0.051 0.524 

Irrigation- Variety  0.005* 0.362 0.997 0.073 0.404 0.974 

Variety- Sowing 0.056 0.454 0.749 0.776 0.544 0.394 

* 0.05 significant level 

In summary, the use of SI was more effective in increasing yield than was 

changing the sowing date and variety in dry years. 

 

5.4 Discussion 

5.4.1 Use of irrigation  

    SI is normally scheduled to fill the gap between precipitation and crop 

evapotranspiration (FAO, 1989). My simulation results reveal the difference in the 

effectiveness of SI in dry, normal and wet years. Dry years always include long 

periods without rain. A single SI will easily result in increased yield because the 

danger of water shortage is interrupted resulting in increased yield. Conversely, in wet 

years, the intervals between rainfall days are small, so that a single SI event may be 

less effective in increasing yield.  

 

5.4.2 Sowing date change 

The staff of Agricultural and Husbandry Bureau in Hailar County shared their 

experiences (personal communication) and stated that early sowing and spring 

drought always cause a large reduction in crop yield. Therefore, they postponed the 

sowing date of spring wheat by 10–15 days to May 10–28 in 2011 in their agriculture 

demonstration area in Hailar County while waiting for natural rainfall to prevent 

spring drought. My simulation results confirmed that better than average yield can be 

obtained in Hailar County if the sowing date is postponed by three dekads. Based on 

maize sowing experiments conducted from 1977–1982 in Tieling County (adjacent to 
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Changtu County), Ma et al. (2008) found that dry weight, leaf weight, leaf area index 

and yield of the same variety was larger with an earlier sowing (April 10) than that 

with a late sowing date (May 30). The simulation in Changtu County can be compared 

with that experiment (Ma et al., 2008). Greater yield will be obtained by postponing 

the sowing date by more than 2 months in Siziwang County and a similar situation 

was found in Duolun County. In some unirrigated regions of Chifeng (a city adjacent 

to Duolun County), spring wheat was planted every year in summer; this was 

effective in preventing drought (Fan, 2006; Si and Liu, 1987). These facts can be 

compared with my simulation results.  

 

5.4.3 Variety selection 

   Use of a long growing season variety is expected to result in a large increase in 

yield in Siziwang and Duolun counties because the earlier planting of this wheat 

variety did not make good use of heat resources. Eerguna County has poor heat 

resources; therefore, changing variety resulted in little increase in yield. The 

autumn drought is more frequently than summer drought in Inner Mongolia (Shen 

2008); autumn drought has a 4 year return period in Liaoning Province (Li and 

Meng, 2005). Use of the variety of maize with a short growing season will 

increase yield largely because this reduces the effects of serious drought in August 

and September on the flowering stage of maize. For example, in Zhalute County 

the flower stage for shorter growing season variety ‘Dadi’ starts from middle July 

and the flowering stage for the longer growing season variety ‘Zhedan 37’ starts in 

about late July (Table 5-2). Precipitation from June to August includes 75.8% of 

annual precipitation (1962–2010). The top three dekads with maximum 

precipitation of the year are in the middle of July (43.4 mm), early July (42.0 mm) 

and late July (35.4 mm). ‘Dadi’ makes better use of precipitation than ‘Zhedan 37’ 

especially in wet and normal years. 

 

5.4.4 Three practices comparison 
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A subjective, quantitative and empirical method was always used in a 

previous study to compare different measures to provide social economic options 

for disaster management (such as Mizina, et al., 1999; Yohe and Tol, 2002). The 

chapter attempted to accurately compare three drought management practices 

based on model simulation. All nine counties analyzed here are located in middle 

and high latitudes and have a short growing season (Table 5-1). The time available 

for seeding is limited if crops are to reach fully maturity in autumn (Table 5-2). 

The base temperature of maize is higher than wheat. Therefore, the growing 

season of maize is short, making it difficult to effectively increase yield increase 

by changing the sowing date.  

 

5.5. Conclusion 

   Using the EPIC crop model, I successfully evaluated three agricultural practices 

quantitatively that are typically used to mitigate drought in Northeast China and Inner 

Mongolia, and found these practices have different effects on drought mitigation in 

dry, normal and wet years. For example, a single SI event was more effective in 

increasing yield in dry years than in normal or wet years. Compared with normal and 

wet years, delaying the sowing date was less effective in dry years. For 

wheat-growing counties, the long growing season variety ‘Yongliang 4’ can increase 

the yield, and the short growing season variety ‘Dadi’ performed better in increasing 

yield than ‘Zhedan37’ for maize-growing counties. However, none of the varieties 

provided a significant increase in yield during dry years. The results suggest that 

caution should be used in the implementation of drought mitigation measures. The 

results of this study reveal that changes in crop variety and sowing date were less 

effective in improving yield than was SI; the development of SI may be the most 

stable measurement used to mitigate drought in Northeast China and Inner Mongolia. 

Changes in sowing date and variety are also important to the mitigation of drought in 

an effort to improve food security especially in normal and wet years. Future research 

of the process of drought should consider the calibration of the EPIC model based on 

the addition of more details related to each variety’s biological characteristics and to 
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the actual schedule of SI used for drought mitigation. The methods using this type of 

model simulation are expected to be introduced for drought response and management 

in other drought prone regions. 
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Chapter 6 
General conclusions 

 

6.1 Organization of the research 

The agricultural drought management system I built composes three main parts: 

agricultural drought occurrence, agricultural drought impact and agricultural drought 

mitigation. The study area is chosen in the Northeast China and Inner Mongolia where 

agricultural production is heavily relied on rainfall. In order to explain this point, in 

Chapter 2, I first examined the temporal and spatial pattern of precipitation variation 

in farmland of the Northeast China and Inner Mongolia which provides background of 

agricultural drought. Before yield reduction, it is not easy to judge the occurrence of 

agricultural drought. In Chapter 3, I built and validated new drought monitor 

assessment framework. Based on indices, I make the drought assessment in Hailar 

County, one typical rainfed county in Inner Mongolia for instance; Yield is final result 

of agricultural drought. Therefore, the Chapter 4 is to assess agricultural drought 

severity based on yield damage. I made the drought severity division by using EPIC 

model in 9 counties following steps: standard period setting, mean value and 

agreement assessments with agricultural drought records; after drought severity was 

assessed, how it influenced the drought mitigation? In order to answer this question, 

the Chapter 5 is to assess the effectiveness of irrigation, sowing date change and 

variety change agricultural practices under different drought severity in the 9 typical 

counties.  

The results of the study revealed that there are some internal relationships among 

different chapters. All the counties in Chapter 3, 4 and 5 are located in the regions 

where precipitation show decrease tendency from 1961-2010 in the Chapter 2. The 

wheat yield used in Chapter 3 for prediction in Hailar County can be simulated by 

EPIC model in the Chapter 4. There is good relationship between soil moisture based 

index CMI and soil moisture anomaly simulated by EPIC model in 9 counties in the 

Chapter 4. Drought classification can be validated by drought cases of 9 counties in 
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Chapter 4. It also influences the effectiveness of three practices in Chapter 5. It 

suggests that in order to manage agricultural drought, drought occurrence monitor, 

drought severity assessment and drought mitigation practices assessment should be 

regarded as a whole for consideration.  

 

6.2 Main findings and discussions 

 

6.2.1 Temporal-spatial pattern of precipitation 

Based on monthly 0.5 degree precipitation dataset from 1961-2010, I analyzed 

inter-annual trend by using linear trend method and the seasonal precipitation 

variation by using coefficient of variation (CV) in Northeast China and Inner 

Mongolia. I found that meteorological drought in farmland of Northeast China and 

Inner Mongolia became serious after 2000s. The linear trend method further show that 

there is decrease but not significant trend of annual precipitation for whole Northeast 

China and Inner Mongolia from 1961-2010. Based on CV, I identified the spatial 

pattern of variation; it shows that annual precipitation varied seriously in east part, 

west end of Inner Mongolia, west part of Jilin and Liaoning province. There is 

decrease tendency after 2000s in most of the study areas for case study in Chapter 3 

and Chapter 4. 

 

6.2.2 Index-based agricultural drought monitoring assessment 

The comparison between selected drought indices and assessment show that my 

built agricultural drought assessment model is suitable for regions like Hailar county 

where crop yield is closely related to conditions during the reproductive growth stage. 

Because the water deficit occurs during the key reproductive growth period 

(flowering time) of crops, the energy yield has suffered greatly from the water deficit. 

The results suggest that in semi-arid regions such as Hailar County, the dry and warm 

climate trends that have occurred during the growing season over the past decade 

mean that meteorological drought has easily transformed into agricultural drought. 

The result reveals that soil moisture–based and vegetation indices during the late 
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vegetative to early reproductive growth stages (CMI in June and NDVIA in July, 

respectively) could be used to detect agricultural drought in regions where majority of 

the crops is closely related with reproductive growth. 

In this study, the cumulative period from SPI to CMI was about 4 dekads. 

Monthy SPI is always used for short-term soil moisture. The research seems to show 

more accurate result. The findings show that dekad-scale CMI can bridge the gap 

between short-term vegetation change and water deficit as depicted by an in situ 

meteorological dataset. In May, June, and September, the time lag between CMI and 

NDVI was longer than that in July and August, during the growing period.  

The most frequent average time lag between CMI and NDVI was 1 dekad, 

especially in July. Previous studies by using remote sensing reversal soil moisture and 

actual soil moisture show similar time lag with NDVI in US and Africa. The finding 

that the response time of crop vegetation to soil moisture is 1 dekad is comparable 

with the results of previous studies.  

The result can be compared with previous water stress or NDVI prediction studies 

in regions with a similar crop planting structure. The reason is that there are some 

relationships between leaves detected by remote sensing and yield.  

The results of this 11-year assessment at the dekad time scale in Hailar County fit 

the conceptual model of the agricultural drought process well. SPI, CMI, and NDVI 

can depict the processes underlying a serious drought at the dekad time scale during 

the growing season. Based on these three indices, it is possible to judge the likelihood 

of drought developing and to assess the possible yield damage. Dekad-scale SPI can 

be regarded as the earliest indicator of the drought’s impact on crops. The relationship 

between CMI and NDVIA displays a significant time lag. It suggests that dekad-scale 

NDVI provides sufficient information to reflect the response of crops to drought at the 

dekad time scale. 

 

6.2.3 Agricultural drought severity assessment  

Following the newly proposed drought assessment framework, the performance of 

agricultural drought indices were quantified and compared in typical rainfed regions 
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of Northeast China and Inner Mongolia.  

The study found that EPIC can accurately simulate the annual time series of 

county-level yield in typical counties with rainfed spring wheat and maize cultivation 

in the Northeast China and Inner Mongolia. 

The one-third probability of WSYR was identified to differentiate drought years 

from other years. WSYR, which is a crop-specific index, was more accurate in 

representing agricultural drought than meteorological drought indicators such as AI 

and P. The 49-year trend of agricultural drought from WSYR was more significant 

than those from the meteorological indices. The average increase in decadal frequency 

of drought years from the 1990s to 2000s via WSYR was greater than those via AI and 

P. This shows that the framework can be validated by long-period analyses. I also 

found that the soil moisture index (CMI) can be validated with surface soil moisture 

anomaly by crop model. It suggests that possibility to improve drought indicator by 

crop model.  

 

6.2.4 Agricultural drought practices comparison 

Compared with one time irrigation and variety change, there is less effect of 

sowing date change on yield recovery. All the nine counties are located in middle and 

high latitude and the growth period is short (Table 5-1). Therefore, even the sowing 

date is different; seeding date will be limited to the few days for fully maturity in 

autumn. The comparison result reveals that crop variety and sowing date change are 

less effective than supplementary irrigation; the development of supplementary 

irrigation in Northeast China and Inner Mongolia may be the most stable 

measurement for mitigation. 

 

6.2.5 Practical application of the drought management framework  

   Droughts are particularly well suited to early warning systems because the 

disasters have a slow onset (Wilhite et al., 2000). In order to alert the agricultural 

drought for a region, the meteorology department would like to know timely weather 

information. The agricultural department would like to know the soil moisture and 
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crop growth condition. Water resource department would like to know the best 

mitigation time for low cost and high effectiveness. The thesis provides new drought 

monitoring system in Chapter 3 with the consideration from precipitation to yield 

reduction. The assessment suggested that the precipitation, soil moisture and 

vegetation play the different roles for drought monitoring and yield damage prediction. 

For the government, the similar assessment is useful to estimate the possible damage 

ahead of time and for forward market, it is helpful to assess future grain price. The 

conventional work for agricultural department needs to take many samples of the 

local soils and determine the soil moisture. The indicators methods have advantage of 

information integration and low cost for timely early warning.  

   The contradiction between crop water requirement and water supply occur nearly 

every year. Under limited assistance resources, the civil departments would like to 

know which year is drought year. The Chapter 4 of the thesis provides more objective 

method for drought severity classification. Based on such information, the 

government can determine the high risk drought region for subsidy and long term 

financial support. The research also is helpful insurance company to determinate 

agricultural disaster insurance rate and compensates the economic loss of farmers.  

   Agricultural drought mitigation practices include mitigation activities at national 

government level, agricultural technology extension station level and household level. 

The practices selections by farmers and government are always based on experiences 

and field experiments. The Chapter 5 of the thesis introduces crop model new 

technology for practices selection which has advantages of low cost and high 

efficiency. The method is helpful for agricultural department and agricultural 

technology extension station level to guide farmers to effectively mitigate drought. It 

is also helpful for local farmers to arrange the agricultural affairs for drought 

mitigation. 

   In all, the agricultural drought management framework in this thesis which 

include drought monitoring, drought severity assessment and practices comparison 

considers the practical demands of drought management from different departments 

and levels. They constitute a complete framework for agricultural drought 
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management. 

 

6.3 Significance of the study 

Combined with the new technologies of remote sensing and crop model, I built 

the new operational agricultural drought management framework to objectively 

monitor drought, assess drought intensity and compare drought mitigation practices. 

The studies in the Northeast China and Inner Mongolia successfully validated the 

reasonability of framework.  

A new testable multi-index agricultural drought monitoring model was built. The 

multi-index drought assessment has been challenging because there has been a lack of 

systematic methods for their combination, use, and evaluation (Steinemann and 

Cavalcanti, 2006). I built new drought process conceptual model. The typical rainfed 

county-Hailar county was taken as study area and the evaluation results fit well with 

my built conceptual model. The results reveal the internal logic among short time 

indices and filled the gap of indices combination.  

The regional agricultural drought intensity was validated by historical drought 

cases. The intensity of agricultural drought is difficult to be classified objectively. 

EPIC model can be well simulated county-level rainfed wheat and maize yield in 

northeast China and Inner Mongolia. I found that simulated yield damage and 

historical drought cases can be compared with each other and validated the intensity. 

China has drought records which back to thousands years ago. By the way of 

comparison between drought intensity based on crop model and drought cases, it is 

expected to assimilate information for long term agricultural drought reconstruction.  

The quantitative comparison among different agricultural practices to mitigate 

drought were done. The simulation results show the difference in their effects on yield 

in different dry, normal and wet climate years. It reveals the necessary of drought 

intensity classification for mitigation. 

There is internal relationship between drought index and crop model two 

different quantification methods. There are good correlation (R
2
) between soil 

moisture anomaly and CMI. I filled the gap between two different methods. It is 
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possible to improve the drought index based on the crop model in future. 

The simplest water-agricultural system was chosen as study area in this thesis. 

The crop production system in Northeast China and Inner Mongolia is typically 

characterized as rainfed and one harvest per year. It may be the one of the simplest 

among diverse crop production systems all over the world. Although my systems are 

built based on farmland, due to many water use similarities among crop, grass and 

forest, the methods and results of agricultural drought management in the thesis are 

expected to provide suggestions for other vegetation types and for other cropping 

systems such as with crop rotation and irrigation in future. 

 

6.4 Limitations of the work and suggestions for future research. 

Future research of the drought process should consider the calibration of fixed 

parameters for CMI using cases of drought lasting for longer time periods, the effects 

of snow melt and strong wind on soil moisture in spring, and crop types in the drought 

process.  

The research show that crop models such as EPIC can be useful tools to support 

drought mitigation planning, although county-specific factors such as crop rotation 

and the technology level should be considered in future research to improve the 

simulation. In addition, there are only 0-30cm and 30-100cm two layer soil properties 

in FAO soil dataset. More information is needed in future research. The bias of the 

model could be decreased by accounting for these factors.  

The research considered 50mm single irrigation. Future research of the drought 

mitigation should consider details of irrigation regulation when drought occurs; The 

yield-based index WSYR has great potential because it both describes the drought 

intensity and provides a better explanation of the effects of improving the water 

environment on the yield recovery after irrigation.  

Future research of the drought assessment should consider the role of human 

activity (Economy and society factors) during agricultural drought. Crop models have 

limitations in regional application and remote sensing in describing the growth 

process. Future drought research can focus on their combination. It has been several 



 

98 
 

combination works for winter wheat (Ma et al., 2005). For autumn harvest regions, 

due to complex crop planting structure, with the improvement of resolution for remote 

sensing, annual crop type classification may be required to improve the combination. 

Based on my assessment framework, more details are expected to be considered to 

improve assessment accuracy of agricultural drought in future.  
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