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Chapter I: General introduction

Cultivated and wild species of alliums belong to the genus Allium in the Allioideae
subfamily of the Amaryllidaceae (The Angiosperm Phylogeny Group, 2009). The genus
comprises more than 800 species and includes the cultivated onion, garlic, scallions,
shallots, and leeks, as well as chives and hundreds of other wild species (Li et al., 2010).
Allium cepa L. (2n = 2x = 16), which includes bulb onion (4. cepa L. Common onion
group, genomes CC) and shallot (4. cepa L. Aggregatum group, genomes AA), is among
the most important cultivated species in the world. The bulb onion ranks second in value
after tomatoes on the list of cultivated vegetable crops worldwide and the annual
production of bulb onions is around 85 million tons (FAO, 2013). Although only 1.2%
of the world bulb onion crop is produced in Japan, the annual value of this crop is more
than a hundred billion yen.

The bunching onion (A4. fistulosum L., 2n = 2x = 16, genome FF), also referred to as
the Japanese bunching onion or Welsh onion, originated in northwestern China and is
mainly cultivated in East Asian countries, in particular in Japan, China, and Korea
(Kumazawa and Katsumata, 1965; Ford-Lloyd and Armstrong, 1993). Annual production
of bunching onion is one of the highest among fruit and vegetables grown in Japan,
following production of tomato, strawberry, and cucumber (Ministry of Agriculture,
Forestry and Fisheries, 2014). Many local varieties are adapted to various climatic
conditions, and are classified into four groups: ‘Kaga’, ‘Senju’, ‘Kujo’, and ‘Yagura-
Negi’, according to morphological and agronomic adaptation traits (Inden and Asahira,
1990). Traits that are major targets for improvement in bunching onion are disease
resistance, yield, late bolting, improved consumption qualities (e.g., low pungency or
high sugar content), and suitability for mechanized farming, although the genetic system
of these traits is unclear. The breeding methods for bunching onions are relatively
unsophisticated in comparison to those used for other major crops. Bunching onion is a
typical allogamous crop that arose through protandry, resulting in a high rate of
outcrossing (Ford-Lloyd and Armstrong, 1993). It is self-compatible, but suffers from

severe in breeding depression when self-pollinated. Open-pollinated varieties of bunching



onion exhibit very high degrees of genetic heterogeneity (Haishima et al., 1993) and even
parental lines of F1 hybrids maintain a certain degree of genetic heterogeneity (Tsukazaki
et al., 2006).

Many hybrid cultivars of bunching onion adapted to different climatic conditions and
growing seasons have been developed by private breeding companies. However, there are
sometimes serious impediments to their cultivation, such as various diseases and insect
pests. For example, rust caused by Puccinia allii (DC.) F. Rudolphi is a fungal foliar
disease in bunching onions that causes substantial deterioration of quality and yield.
Uredospores released from uredinia by the pathogen are the main inocula for secondary
infections throughout the year. Epiphytotics of this disease occur frequently in relatively
cool and moist seasons (mainly in the autumn and spring) (Takeuchi, 1990). Because no
commercial bunching onion cultivar possesses sufficient rust resistance, large amounts of
fungicides are used to control this disease. It is difficult to apply fungicides at the time of
disease outbreak, because the growing period of bunching onion is very long. Also, the
overuse of fungicides may have adverse effects on the environment and human health, in
addition to a financial burden on farmers. Thus, breeding for rust resistance would be an
effective, economical, and ecologically compatible measure to prevent epiphytotics.

A. cepa was reported to be less susceptible to P. allii (Morinaka, 1985; Jennings et al.,
1990a). Although 4. fistulosum and A. cepa are in the section Cepa of the genus Allium
(Hanelt, 1990), the genetic basis of resistance to rust in A. cepa remains unknown.
Introgression of resistance genes from related species can be effective for development
of novel cultivars. Monosomic alien addition lines (MAALSs) are invaluable materials for
localizing genes that control traits of interest, as an entire donor genome is subdivided
into individual extra chromosomes added into the genetic background of a recipient
species. A complete set of bunching onion — shallot MAALs (2n =2x + 1 =17, FF+1A
through FF+8A) were developed (Shigyo et al., 1996) for mapping in A. cepa (Shigyo et
al., 1997; Masuzaki et al., 2006b; 2006¢; Yaguchi et al., 2009; Vu et al., 2012) and will
help to determine which shallot chromosomes carry rust resistance.

A recurrent selection program for rust resistance in bunching onion was previously

conducted, and a rust-resistant parental line ‘Negi Chuukanbohon Nou 1’ was developed



(Yamashita et al., 2005; Wako et al., 2012). This line shows a high level of field resistance
to rust, so molecular markers linked to genes controlling rust resistance are needed for
efficient selection. Because many agricultural traits are probably controlled by
quantitative trait loci (QTLs), breeders seek DNA markers closely linked to QTLs to use
for marker-assisted selection. Approximately 2000 genomic simple sequence repeats
(gSSRs) have been identified in the bunching onion genome (Song et al., 2004; Tsukazaki
et al., 2007) and genetic linkage maps have been constructed using these SSR markers
(Ohara et al., 2005a; Tsukazaki et al., 2008; 2011; 2012). A major QTL for pungency was
identified using the population SaT03, which was derived from a cross between a rust-
resistant line and a susceptible line (Tsukazaki et al., 2012). This mapping population will
be useful for investigating QTL for rust resistance.

Bolting, the premature formation of flowering stems before harvest, has a severe
impact on the yield and quality of bunching onion products during spring and early
summer because the flower stalks are so tough that they are inedible. Therefore, the late-
bolting trait is indispensable in cultivars for spring and summer production. Bunching
onion, which is biennial like bulb onion, vernalizes for flower induction in response to
low temperature and short photoperiod (Brewster, 2008). Genetic variation in bolting time
in bunching onion is based on seedling age and low-temperature requirements (Inden and
Asahira, 1990). However, other genetic studies of flowering are very limited in bunching
onion, so it will be important to investigate QTL for bolting time as a first step toward
understanding the genetics of flower initiation.

In Allium vegetable crops, molecular genetic studies are less advanced than in other
major crops. RAPD (random amplified polymorphic DNA) and AFLP (amplified
fragment length polymorphism) analyses have also been performed in A//ium (Wilkie et
al., 1993; Bradeen and Havey, 1995; van Heusden et al., 2000a; 200b; Ohara et al., 2005a;
2005b; Ipek et al., 2005). King et al. (1998) reported a linkage map of bulb onion based
on RAPDs and RFLPs (restriction fragment length polymorphisms). Fischer and
Bachmann (2000) reported the first development of 30 SSR markers in bulb onion. In
contrast, hundreds of expressed sequence tag (EST)-derived SSRs, EST-derived single

nucleotide polymorphisms (SNPs), and insertion—deletion (InDel) markers have been



developed from medium-scale sequencing of ESTs in bulb onion (Kuhl et al., 2004;
Martin et al., 2005). Some of these markers have been effectively used to construct
linkage maps not only in bulb onion (Martin et al., 2005; McCallum et al., 2006; 2007;
2012), but also in bunching onion (Tsukazaki et al., 2008; 2011). Recently, transcriptome
sequencing using next-generation sequencing (NGS) technology has been conducted and
used to detect single nucleotide polymorphisms (SNPs) and insertion—deletions (InDels)
between cultivars or individual plant lines, thereby facilitating the construction of high-
resolution genetic maps (Baldwin et al., 2012; Duangjit et al., 2013). As for bunching
onion, more than 50,000 unigenes were recently obtained from transcriptome shotgun
assembly of next-generation sequencing data, and numerous DNA markers based on
SSRs, SNPs and InDels have been developed (Tsukazaki et al., 2015). However,
comparative mapping between A. fistulosum and A. cepa has not yet been conducted
because the number of markers common to both species is limited. Development of a
linkage map with markers common to both bunching onion and bulb onion will facilitate
comparative mapping and analysis of orthologous genes in both species.

The present studies were conducted with the following objectives: 1) to investigate the
susceptibility of A. fistulosum and A. cepa cultivars to rust and identify the A. cepa
chromosome(s) related to rust resistance, 2) to identify QTL for rust resistance in A.
fistulosum, 3) to identify QTL for bolting time in A. fistulosum, and 4) to construct an 4.
cepa linkage map using a DH population.

This dissertation is composed of six chapters. Chapter 2 addresses Objective 1).
Chapter 3 discusses Objective 2). Chapter 4 refers to Objective 3). Chapter 5 focuses on
Objective 4). And finally, Chapter 6 provides a general discussion. This dissertation
compiles the results of studies conducted by the author at the Laboratory of Vegetable
Crop Science, Division of Agrobiology, Department of Biological and Environmental
Science, Faculty of Agriculture, Yamaguchi University and at the Vegetable Breeding and
Genome Division, Institute of Vegetable and Tea Science, National Agriculture and Food
Research Organization, Japan, with the above-mentioned objectives from 2007 to 2016

(Wako et al., 2015; 2016).



Chapter II: Screening and incorporation of rust resistance from Allium cepa into

bunching onion (Allium fistulosum) via alien chromosome addition

Introduction

Rust caused by Puccinia allii (DC.) F. Rudolphi is a serious foliar disease in bunching
onions and causes substantial deterioration of quality and yield. Because no current
commercial bunching onion cultivar possesses sufficient rust resistance, large amounts of
fungicides are used annually to prevent and control this disease. Recurrent selection for
rust resistance in bunching onion has been previously conducted and a parental line with
rust resistance has been successfully developed (Yamashita et al., 2005; Wako et al., 2012).
Although this line shows a moderate level of field resistance to rust, it does not completely
control the disease. Therefore, it would be desirable to identify stronger sources of rust
resistance that could be incorporated into cultivars.

Also, information regarding the pathogenicity of a range of P. allii isolates on Allium
germplasm is limited. Jennings et al. (1990a) reported on screening experiments in the
UK in which 4. cepa showed higher resistance than A. fistulosum or A. ampeloprasum
ssp. porrum (leek) after inoculation with P. allii isolates from leek. A. cepa is less
susceptible to P. allii isolated from A. fistulosum in Japan (Morinaka, 1985). A. fistulosum
and 4. cepa have been classified into the section Cepa in the genus Allium (Hanelt, 1990),
but the genetic basis of resistance to rust in 4. cepa remains unknown. Introgression of
resistance genes from related species can be effective for the development of novel
resistant cultivars.

MAALSs contain an extra chromosome from a related species. A complete set of
MAALs is invaluable material for facilitating localization of genes responsible for traits
of interest, as an entire donor genome is subdivided into individual extra chromosomes
added to the genetic background of a recipient species. Shigyo et al. (1996) developed a
complete set of bunching onion — shallot (4. cepa Aggregatum group) MAALs (2n = 2x
+ 1 =17, FF+1A through FF+8A). Each MAAL thus displays distinct phenotypic and
physiological characteristics (Shigyo et al., 1997), and can be used to identify which

shallot chromosomes are responsible for its rust resistance. Using MAALs, Vu et al.



(2012) demonstrated that shallot chromosome 2A carried genes for Fusarium wilt
resistance as well as others encoding enzymes that produce antifungal metabolites against
F oxysporum. These complete addition lines have also been effectively used to determine
the chromosomal locations of genes involved in flavonoid biosynthesis (Masuzaki et al.,
2006b; 2006c), sulfur assimilation (McCallum et al., 2007), and sucrose metabolism
(Yaguchi et al., 2008).

The objectives of the present study were to investigate the susceptibility of A.
fistulosum and A. cepa cultivars to rust isolates from bunching onion, and to identify
which A. cepa chromosome is responsible for rust resistance using alien chromosome

addition lines.

Materials and methods
Plant materials and P. allii isolate
Ten cultivars of bunching onion, four cultivars of bulb onion (described in Table 1),

shallot ‘Chiang Mai’ from Thailand, and selfed progenies of a complete set of bunching
onion — shallot MAALSs (Shigyo et al., 1996) were used for seedling tests. Seedlings from

each MAAL were screened for shallot-derived chromosomes using isozyme or
Sequenced Characterized Amplified Region (SCAR) markers. Chromosomes 1A, 2A,
and 6A were identified using the Lap-1, Got-1, and Got-2 isozymes, respectively (Shigyo
et al., 1994; 1995). Chromosomes 3A, 4A, 5A, 7A, and 8A were identified using the
SCAR markers API40, Allinase, AJK265, 5S rDNA, and API73-2, respectively (van
Heusden et al., 2000b). The addition of chromosomes in these lines was confirmed using
microscopic observation or flow cytometry (Shigyo et al., 2003). One hundred seeds from
selfed progenies of each MAAL were sown, and more than eight plants carring each
monosomic addition were identified. For tests using adult plants, the MAALs, multi-
chromosome addition lines, and hypoallotriploids (2n = 2x + 2—7 = 18-23) (Hang et al.,
2004; Yaguchi et al., 2008) were grown in pots for over one year. Uredospore inoculum
of P. allii was collected from a field in Seiro, Niigata Prefecture, Japan, multiplied on

bunching onion plants, and then stored at -30 °C until just before use. Inoculum for use



Table 1. Number of uredinia on leaves of Allium cepa and A. fistulosum cultivars at 14 days

after inoculation with Puccinia allii.

Cultivar

Species

Origin

No. of uredinia per cm

leaf length*

Senshu-chuko-ki A. cepa Takii Seed Co. Ltd., Kyoto, Japan 0.10 £ 0.02 a
Kaiduka-wase A. cepa Sakata Seed Co., Yokohama, Japan 0.12 0.05 a
Imai-wase A. cepa Sakata Seed Co., Yokohama, Japan 021 £ 004 a
Shonan-red A. cepa Sakata Seed Co., Yokohama, Japan 024 £+ 0.10 a
Shimonita A. fistulosum  Kaneko Seed Co., Maebashi, Japan 1.01 + 0.15

Hikawa A. fistulosum  Nihon Norin Seed Co., Tokyo, Japan 1.16 + 0.15 bc
Kasho-ipponfuto A. fistulosum  Sakata Seed Co., Yokohama, Japan 124 + 0.16 be
Shimotae A. fistulosum Mikado Kyowa Seed Co. Ltd., Chiba, Japan 1.27 + 0.15 bc
Choetsu A. fistulosum Mikado Kyowa Seed Co. Ltd., Chiba, Japan 1.27 + 0.16 bc
Choju A. fistulosum Mikado Kyowa Seed Co. Ltd., Chiba, Japan 147 + 0.13 bc
Kincho A. fistulosum Mikado Kyowa Seed Co. Ltd., Chiba, Japan 1.52 + 0.17 bc
Yoshikura A. fistulosum  Musashino Seed Co. Ltd., Tokyo, Japan 1.53 £ 021 be
Kujo-futo A. fistulosum  Takii Seed Co. Ltd., Kyoto, Japan 1.80 + 023 ¢
Ishikura-nebuka-fuyufuto 4. fistulosum Kaneko Seed Co., Maebashi, Japan 1.82 £ 021 ¢

*Mean + SE (n = 20), Significant difference detected using Tukey-Kramer HSD test (P = 0.05). Values followed by

the same letter are not significantly different.



on multi-chromosome addition lines and hypoallotriploids was obtained from uredinia on
bunching onion leaves collected from a field located in Sodegaura, Chiba Prefecture,

Japan.

Inoculation of seedlings

Seedling tests were conducted to compare rust resistance among cultivars of A.
fistulosum, A. cepa and the MAALSs. Seeds for bunching onion, bulb onion, shallot, and
MAALSs were sown into plastic pots (6 cm in diameter) and grown in a greenhouse for
approximately 90 days until leaves were 30 cm in length. In our preliminary tests,
seedlings less than 60 days old were not suitable because their leaves senesced easily after
inoculation. To inoculate each plant, a mixture of 1 mL of 5 x 10* uredospore suspension
with 0.1 % polyoxyethylene sorbitan monolaurate (Tween® 20, Nacalai Tesque, Inc.,
Japan) and 0.5 % talc (Nacalai Tesque, Inc., Japan) was sprayed onto the leaves.
Inoculated plants were placed in a growth chamber (KPSH-30, Ozawa Seisakusho Co.
Ltd., Japan) maintaining a temperature of 18 °C and a 12 h light/dark cycle. To maintain
damp conditions for the germination of uredospores, the atmosphere was kept saturated
with water using an ultrasonic humidifier (FT-10N-14, UCAN Co. Ltd., Japan) for 24 h
after inoculation. After incubation for 14 days, the number of uredinia produced on the
youngest full-grown leaf of each plant was counted. For inoculated seedlings from the
MAALSs and inoculated adult plants from the multi-chromosome addition lines and
hypoallotriploids, the quantities of uredinia were scored using a 0-3 scale as follows: 0,
no uredinia pustule; 1, 1-20 uredinia per leaf (slight symptoms); 2, 21-100 uredinia per

leaf (moderate symptoms); 3, more than 101 uredinia per leaf (severe symptoms).

Inoculation of adult MAAL plants

Inoculation tests were conducted in the field to examine the rust resistance of full-
grown shallot and MAAL plants. Plants of approximately 30 cm in height that had been
grown in plastic pots were transplanted into plots in a plastic greenhouse in a randomized
block design with three replicates and were grown for 2wo months. Before inoculation,

0.006% polyoxyethylene nonylphenyl ether or KUMITEN (Kumiai Chemical Industry



Co., Ltd., Japan) was sprayed onto plants to stimulate germination of the subsequently
inoculated spores. Each plant was sprayed with a mixture of 1 mL 5 x 10° uredospore
suspension with 0.01% Tween 20 and 0.5 % talc. Beginning 14 days after inoculation, the
severity of rust symptoms was scored on full-grown leaves of each plant at 2-week
intervals. Plant responses to inoculation were ranked using a 0-5 scale as follows: 0, no
uredinia; 1, 1-3 uredinia per leaf; 2, 4-10 uredinia per leaf; 3, more than 11 uredinia per
leaf; 4, uredinia distributed over the entire leaf; and 5, uredinia distributed densely over
the entire leaf. To evaluate disease intensity, the area under the disease progress curve
(AUDPC) was calculated according to Shaner and Finney (1977), using the following

equation:
Ni-1

AUDPC = 3" (t12) = t)(DSis) + DS,)/2
i=1

where Ni = number of observations; # = days at the i observation (fo= 0); and DS;= rust
severity at the i™ observation (DSy= 0). After inoculation, the temperature inside the

plastic greenhouse ranged from 10 to 23 °C.

Inoculation of adult plants from multi-chromosome addition lines and
hypoallotriploid lines

A total of 34 individuals from multi-chromosome addition lines and hypoallotriploids
possessing between 1 and 7 shallot chromosomes were used. A solution of 0.1% Tween
20 was sprayed onto the plants to completely remove wax layer of leaves at 1 day before
inoculation. Each plant was sprayed with a mixture of 5 mL of 1 x 10° uredospore
suspension with 0.01% Tween 20 and placed in a moist chamber under high humidity for
48 h. Inoculated plants were then incubated in a greenhouse regulated at 18-20°C, and
rust severity was scored 14 days after inoculation. The scales for rust severity were the
same as those used for seedling tests. Inoculation experiments were replicated twice in

different years.

Results

Comparison of resistance between A. fistulosum and A. cepa cultivars



In both A. fistulosum and A. cepa, small white spots first appeared on each leaf 8-9
days after inoculation. After 2-3 days, the spots developed into orange pustules (i.e.,
uredinia). The mean number of uredinia per cm of leaf length at 14 days after inoculation
differed between A. fistulosum and A. cepa. Numbers of uredinia on plants of all of the
tested A. fistulosum cultivars were significantly greater than in 4. cepa (Table 1). These
data shows that 4. cepa is highly resistant to rust isolated from A. fistulosum. Significant
differences in uredinia numbers among A. fistulosum cultivars were observed. The

cultivars ‘Kujo-futo’ and ‘Ishikura-nebuka-fuyufuto’ were highly susceptible to rust.

Rust resistance of shallot and bunching onion — shallot MAAL:S in seedling tests
Similar to observations on bunching onions and bulb onions, small white spots first
appeared on the leaves of shallot and MAAL plants at 89 days after inoculation. The
number of white spots on shallot leaves was greater than that on bulb onion leaves. Most
of the spots remained white and few developed into orange uredinia (Fig. 1). By 14 days
after inoculation, no uredinia were produced (scored as 0 on the rust symptom scale) on
nearly 40% of shallot plants and the number of uredinia per leaf was fewer than 20 (scored
as 1) on 90% of plants (Table 2). In contrast, more than 101 uredinia developed per leaf
in 70% of A. fistulosum ‘Kujo-hoso’ plants (scored as 3). Within a complete set of A.
fistulosum — shallot MAALs, half of the FF+1A plants were scored as 1 on the rust
symptom scale and the remaining half of the plants were scored as 2 or 3. The mean rust
symptom severity for FF+1A (1.6) was significantly lower than that of FF (2.7). In FF+1A
plants, either white spots did not develop into uredinia, or pale green haloes appeared
around the few uredinia that did develop. All plants from the lines FF+2A through FF+8A
were scored as 2 or 3 on the rust symptom severity scale, with rust severities similar to

those of FF.

Evaluation of adult plant resistance of bunching onion — shallot MAAL:S in the field
test
In A. fistulosum ‘Yoshikura’, a few uredinia were observed 14 days after inoculation,

and rust symptoms increased with days after inoculation. Uredospores released from
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Fig. 1. Symptoms on leaves of Allium fistulosum, shallot, and FF+1A seedlings 14 days

after inoculation with Puccinia allii. A, A. fistulosum ‘Kujo-hoso’; B, shallot ‘Chiang

Mai’; C, FF+1A. Scale bar = 1 cm.

11



Table 2. Rust severity scores on Allium fistulosum (FF), shallot (AA), and eight 4.
fistulosum — shallot MAALs (FF+nA) at 14 days after inoculation with Puccinia allii.

. . No. of Frequency distribution of rust severity®
Cultivar or line plants 0 1 > 3 Mean
FF (Kujo-hoso) 30 9 21 2.7
AA (Chiang Mai) 47 18 24 5 0.7 **
FF+1A 20 10 8 2 1.6 **
FF+2A 8 5 3 2.4
FF+3A 27 5 22 2.8
FF+4A 12 7 5 2.4
FF+5A 8 2 6 2.8
FF+6A 10 2 8 2.8
FF+7A 19 1 18 2.9
FF+8A 14 3 11 2.8

* Rust severities were ranked as follows: 0, no uredinia; 1, 1-20 uredinia per leaf; 2,
21-100 uredinia per leaf; 3,more than 101 uredinia per leaf.

** Significant differences from FF were detected using Wilcoxon rank-sum test (P =
0.01)
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uredinia appeared to infect newly expanded leaves, so rust severity reached scores 4 to 5
at 6 weeks after inoculation. Significantly fewer uredinia were observed developing on
shallots (Fig. 2). The AUDPCs of FF+1A, FF+4A, FF+5A, FF+6A, FF+7A, and FF+8A
were similar to that of 4. fistulosum, suggesting these MAALs were all susceptible to rust.
The AUDPCs of FF+2A and FF+3 A were relatively lower than those of 4. fistulosum and

other MAALs, however the differences between them were not significant.

Evaluation of adult plant rust resistance in bunching onion — shallot multi-
chromosome addition lines

Shallot was scored as 1 on the rust severity scale (< 20 uredinia per leaf) in each
replicate (Table 3). The rust severity scores of plants from multi-chromosome addition
lines and hypoallotriploids were generally higher than those of shallot, regardless of the
particular additional chromosomes. In the first experiment, nine plants with shallot
chromosome addition were scored as 1 on the rust severity scale. However, in the second
experiment, only one plant possessing all of the shallot chromosomes except for 4A, and
2 plants possessing 1A and 5A were scored as 1 on the disease severity scale. Although
two FF+1A+5A individuals showed low disease severity comparable to that of shallot in
both experiments, some individuals from addition lines containing shallot chromosomes

1A and 5A exhibited high disease severity.

Discussion

In the present study, A. cepa cultivars including bulb onions and shallots showed high
resistance at different ages to a P. allii isolate derived from A. fistulosum. These results
were consistent with those of previous studies (Morinaka, 1985; Jennings et al., 1990a).
Morinaka (1985) investigated the pathogenicity to A//ium crops of five isolates of P. allii
collected from A. fistulosum grown in different regions in Japan. All of the isolates
showed no pathogenicity to Chinese chive (4. ramosum) or Japanese scallion (A.
chinense). These isolates produced white flecks on leaves only on bulb onion, leeks, and
chives (4. schoenoprasum), and some isolates did not form sporulating uredinia. Jennings

et al. (1990a) reported that P. allii isolates derived from 4. porrum (leeks) produced pale
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Fig. 2. Area under the disease progress curves (AUDPCs) for Allium fistulosum (FF),
shallot (AA), and eight 4. fistulosum — shallot MAALs (FF + nA) 6 weeks after
inoculation with Puccinia allii. ** indicates significant difference from A. fistulosum

detected by Student’s ¢ test (P = 0.01). Bars indicate = SE (n = 3).
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Table 3. Rust severity on Allium fistulosum, shallot, and A. fistulosum — shallot
hypoallotriploids at 14 days after inoculation with Puccinia allii.

No. of . Rust severity score?
chromosomes Chromosomal composition o YTy
16 FF (Kujo-hoso) 1-2° 2b
16 AA (Chiang Mai) 1 1
23 FF + 1A 2A 3A 5A 6A TA 8A 1-2° 1-2°
23 FF + 1A 2A 3A 4A 5A 6A 8A 3 3
22 FF + 1A 2A 4A 6A TA 8A 1 2
22 FF + 1A 2A 3A 4A 6A TA 1 2
22 FF + 1A 3A SA 6A TA 8A 1 2
22 FF + 1A 2A 3A SA 6A TA 2 2
22 FF + 1A 2A 4A SA 6A TA 3 2
22 FF + 1A 2A 3A 4A 5A 6A 3 2
22 FF + 1A 2A 3A 5A  6A 8A 3 3
22 FF + 1A 2A 3A SA 6A TA 3 3
21 FF + 1A 2A 4A SA O6A 2 3
21 FF + 1A 2A 3A 4A S5A 2 3
21 FF + 1A 2A 3A TA 8A 2 3
21 FF + 1A 2A 3A 5A 6A 2 2
21 FF + 1A 2A 3A S5A 8A 2 3
21 FF + 1A 2A 5A  6A 8A 3 NT
20 FF + 1A 2A SA 7A 1 2
20 FF + 1A 4A 6A 8A 2
20 FF + 1A 3A SA  6A 2
20 FF + 1A 2A 3A S5A 3
20 FF + 1A 3A  4A 6A 3 NTd
19 FF + 1A 5A 8A 1-2° 2b
19 FF + 1A 3A 7A 3 2
18 FF + 1A S5A 1-2¢ 1°
18 FF + 2A 4A 2 3
18 FF + 1A 4A 3
17 FF + 5A 1 2
17 FF + 3A 1° 20
17 FF + 8A 2 2

@ The scales for rust severity scores are noted in the footnote for Table 2. ® Two plants were tested.

¢ Three plants were tested. 9 Not tested.
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green flecks and small pustules with haloes on leaves of A. cepa, and the quantity of
pustules on plants of this species was lower than that on A4. fistulosum. In our results,
white flecks were found on leaves of A. cepa after inoculation, and few uredinia formed.
Thus, while P. allii can presumably infect and colonize 4. cepa, it does not appear able to
form sporulating uredinia (Jennings et al., 1990a). Although the quantitative differences
in uredinia formation between 4. cepa and A. fistulosum were significant, variation in
uredinia formation within each species was low. In A. fistulosum, there were significant
differences between cultivars in field resistance of full-grown plants, which indicated that
recurrent selection for rust resistance was successful (Yamashita et al., 2005). In seedling
tests in the present study, no significant differences were observed among cultivars except
for ‘Shimonita’, ‘Kujo-futo’, and ‘Ishikura-nebuka-fuyufuto’.

Allium ramosum, A. chinense, and A. schoenoprasum have been less useful for
breeding rust resistance in bunching onion because they belong to subgenera and sections
that are genetically distant from A. fistulosum. However, A. cepa and A. fistulosum, which
have been classified into a single section Cepa, are able to cross-pollinate (Emsweller and
Jones, 1935). Therefore, A. cepa should be focused as an important genetic resource for
breeding in 4. fistulosum. No other rust-resistant species within the section Cepa has been
reported. Rust resistance genes from A. cepa will likely be introduced into A. fistulosum
via introgressive hybridization. 4. cepa and A. fistulosum have the same chromosome
numbers (2n = 2x = 16) and similar karyotypes (Albini and Jones, 1988). However the
DNA content of the A. cepa genome is 28% greater than that of 4. fistulosum (Labani and
Elkington, 1987), and A. cepa chromosomes are an average of 12% larger at somatic
metaphase than those of A. fistulosum (Jones and Rees, 1968). To date, attempts to
introgress genes from A. fistulosum into A. cepa by crossing A. cepa and A. fistulosum
followed by backcrossing to 4. cepa have not been successful, except in only one report
(Peffley and Hou, 2000). Sterility in backcrossed generations is thought to be due to an
imbalance between the nuclear and cytoplasmic genomes (Ulloa et al., 1995). On the
other hand, van der Meer and de Vries (1990) showed that 4. roylei (2n = 2x = 16) crosses
readily with either 4. cepa or A. fistulosum. Khrustaleva and Kik (1998) showed that the

three parental genomes in the first generation bridge cross A. cepa % (A. fistulosum x A.
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roylei) could be distinguished from each other by means of genomic in sifu hybridization.
Recombination between the three genomes was frequently observed in meiotic anaphase
1 and prophase 2 chromosomes of the first-generation bridge cross and in mitotic
chromosomes of the second-generation bridge cross (Khrustaleva and Kik, 2000).
Within a set of 4. fistulosum - shallot MAALSs, only FF+1A showed significantly lower
rust disease symptoms during the seedling stage (3 months after sowing). This result
suggests that the gene(s) related to rust resistance are located on chromosome 1A of
shallot and could perform in the genetic background of A. fistulosum. Because the
resistance level of FF+1A was comparatively lower than that of shallot, other genes
involved in rust resistance might exist on chromosomes other than 1A. It is also possible
that alleles on 4. fistulosum chromosomes could counteract or weaken the function of
resistance gene(s) from shallot. The degree of rust resistance exhibited by MAALSs, multi-
chromosome addition lines, and hypoallotriploids was unclear in full-grown plants under
both controlled-environment and field conditions, even though shallot showed distinct
resistance. Some individuals of FF+1A+5A repeatedly showed low severity of symptoms
comparable to that of shallot. However, other individuals with chromosome additions did
not show resistance regardless of whether they carried chromosomes 1A and 5A from
shallot. Thus, consistent results regarding the relationship between rust resistance and
shallot chromosomes have not been obtained. These results implicate possible
interactions between genes from shallot and 4. fistulosum. In field tests, plants were
continuously attacked by rust for a long period of time. As the growth and differentiation
of the pathogen is retarded in A. cepa (Jennings et al., 1990a), uredinia formation likely
varies depending on host and environmental conditions. Results in the present study
indicate that 4. cepa possesses resistance to rust at the seedling stage, but not at the adult
plant stage. Jennings et al. (1990b) discussed the effects of plant age, leaf position, and
leaf segment on infection of leek by rust. They proposed that evaluation of resistance
should be carried out on several leaves per plant on replicate adult plants and that several
components of the disease, including the latent period, pustule density, and pustule length,
should be measured. Resistance to rust and other diseases often changes as plants mature

(de Jong, 1995).
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Vu et al. (2012) reported that shallot expresses chemical compounds that show
antifungal effects against F. oxysporum. In the present study, FF+2A showed the highest
level of resistance to Fusarium wilt among the eight A. fistulosum — shallot MAALSs. The
FF+2A line also showed a specific saponin band derived from shallot. Lanzotti et al.
(2012) reported the inhibition of some phytopathogenic fungus by saponins extracted
from white onion. However, the addition of chromosome 2A had no effect on the rust
resistance of lines carrying it in the present study.

A. fistulosum — shallot MAALSs are highly fertile (Shigyo et al., 1999b) and the extra
chromosomes can be transmitted via both male and female gametes (Shigyo et al., 1999a).
Recombination between A. fistulosum and A. cepa can be induced during homoeologous
chromosome pairing and crossing over during meiosis. Many similar studies using
MAALSs in other crops have been described previously. For example, Savitsky (1978)
developed Beta vulgaris — B. procumbens MAALs for nematode (Heterodera schachtii)
resistance and selected resistant diploid plants from among their progenies that were
assumed to have translocations between homoeologous chromosomes. Resistance genes
for the foliar disease Cercospora beticola and the soil-borne fungus Polymyxa betae, the
vector of Beet Necrotic Yellow Vein virus, were found in Beta vulgaris — B. procumbens
MAALs and B. vulgaris — B. patellaris MAALs (Paul et al., 1992, Mesbah et al., 1997).
Kaneko et al. (1996) identified a Turnip Mosaic Virus resistance gene in kale — radish
MAALs. Akaba et al. (2009) reported club root resistance originating from a radish
chromosome in a Brassica napus — Raphanus sativus MAAL. Peterka et al. (2004)
reported a monosomic chromosome addition for transferring resistance to beet cyst
nematode from radish (R. sativus) to rape (B. napus). Thus MAALs will be useful
materials for stable introgression of beneficial genes from extra chromosomes into
recipient chromosomes.

In conclusion, the present study reported resistance of A. cepa cultivars including bulb
onion and shallot against P. allii isolated from A. fistulosum in controlled environment
and field tests. The gene(s) for rust resistance located on chromosome 1A act mainly
during the seedling stage. The information presented here will be helpful in breeding

programs for the development of rust-resistant bunching onion varieties.
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Chapter I1I: Mapping of quantitative trait loci for rust resistance

in bunching onion

Introduction

Bulb onion (4. cepa) is highly resistant to rust (Wako et al., 2015), therefore, so
resistance genes from A. cepa will be introduced into A4. fistulosum via introgressive
hybridization using alien chromosome addition lines. On the other hand, considerable
variation has been observed in the degree of disease severity, namely the area under the
disease progress curve (AUDPC) (Wako et al., 2012). Bunching onion cultivar types such
as ‘Senju-Aigara’, ‘Kaga’, and ‘Kujo’ exhibit high susceptibility to the disease, whereas
cultivars like ‘Senju-Aiguro’ and ‘Senju-Kurogara’ were found to be more resistant than
the others. This indicated that the rust resistance present in bunching onion was likely a
quantitative trait. Among the 133 cultivars tested, ‘Seito Ippon’, ‘Iwai 2’, ‘Choju’,
‘Senami’, ‘Fuyuogi-Ippon’, and ‘Toyokawa-Futo’ showed the lowest values of AUDPC
(Yamashita et al., 2005). Using these relatively resistant cultivars, a recurrent selection
program was conducted to achieve a high level of field resistance to rust, because this
breeding method has been successful in improving quantitatively inherited traits in other
outcrossing crops. As a results of two cycles of recurrent selection for rust resistance
followed by several generations of continuous selection within selfed-lines, a parental
line ‘Negi Chuukanbohon Nou 1’ with the highest rust resistance found so far in bunching
onion was developed (Wako et al., 2012).

Quantitative trait loci (QTL) analysis based on a genetic linkage map can effectively
reveal the mode of inheritance of agronomic traits. However, despite the economic
importance of bunching onion, its genetic characteristics have been poorly studied and
molecular approaches were needed to help clarify the genetic control of many traits of
interest. Approximately 2000 gSSRs have been identified from bunching onion (Song et
al., 2004; Tsukazaki et al., 2007) and used to construct genetic linkage maps (Ohara et al.,
2005a; Tsukazaki et al., 2008; 2011; 2012). In a previous study, a major QTL for
pseudostem pungency was identified using the SaT03 population derived from a cross

between a rust-resistant line Sa03 and a susceptible line TO3 (Tsukazaki et al., 2012).
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Sa03 is a selfed line derived from ‘Negi Chuukanbohon Nou 1°.
In the present study, QTL analyses of the rust resistance of ‘Negi Chuukanbohon Nou
1” were conducted in order to determine its genetic basis and to develop DNA markers

for efficient selection of rust resistance in bunching onion.

Materials and Methods

Plant materials and pathogen

The mapping population SaT03 (119 individuals) was used in the present study. SaT03
is the segregating F» derived from a cross between Sa48-10s-7ic-3s-2ic-3s-1s-9s (Sa03)
and T26-4s-2s-2s (T03). Sa03 is an inbred line derived from the cultivar ‘Chuukanbohon
Nou 1’ (Wako et al., 2012) and is highly resistant to rust under field conditions. T03, a
susceptible type, is an inbred line derived from the cultivar ‘Fuyuwarabe’ (Wako et al.,
2010).

The P. allii isolate used in the present study was same as that described in Chapter II.
Because P, allii is an obligate biotrophic pathogen, it requires live host tissue to reproduce.
Therefore, P. allii uredospores were collected from bunching onion leaves and stored at -

30 °C until just before use as inoculum.

Evaluation of rust resistance

Triple inoculation tests were conducted in the greenhouse at the NARO Institute of
Vegetable and Tea Science to examine rust resistance in the mapping population SaT03
(Table 4). Seeds of Fz-derived F3 (F2:3) lines of the SaT03 population were sown in 200-
cell plug trays and transplanted into the plastic greenhouse in a randomized design with
five replications and 10 plants per replication. The plants were grown for several months
until reaching the adult plant stage. Inoculation was performed by spraying with a mixture
of 1 mL 5 x 10° uredospore suspension with 0.01% Tween 20 and 0.5 % talc as described
in detail in Chapter II. The disease index (DI) was calculated according to the severity of
rust symptoms scored from one to four times after inoculation. DIs were defined using a
0-5 scale as follows: 0, no uredinia; 1, 1-3 uredinia per leaf; 2, 4-10 uredinia per leaf; 3,

more than 11 uredinia per leaf; 4, uredinia distributed over the entire leaf; and 5, uredinia
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Table 4. Sowing, planting, inoculation and scoring dates for evaluation of rust resistance
in F2.3 population.

Number Transplanting Inoculation
Trial Qf Fa:3 Sowing date date date Scoring date
lines
2009 100 15 July 2008 3 Sep. 2008 6 Mar. 2009 17 Apr. 2009
28 Feb., 6, 13 and 27
2013 80 26 June 2012 28 Aug. 2012 31 Jan. 2013 Mar. 2013
2014 88 5 July 2013 3 Sep. 2013 3 Apr. 2014 21 Apr., 6 May 2014
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distributed densely over the entire leaf. AUDPCs were calculated according to methods

described in Chapter II.

QTL analysis

QTL analysis was performed using the composite interval mapping method with the
computer program QTL Cartographer version 2.5 (Wang et al. 2007). The log likelihood
(LOD) threshold was determined with 1000 permutations at P = 0.05. Statistical analysis
of the associations between the genotypes of plants in the F2 generation and the average
DI or AUDPC of F2:3 plants of the same genotype was conducted at each QTL-linked
SSR locus in each trial using the Tukey—Kramer Honestly Significant Difference (HSD)
test (P = 0.05) with JMP version 4.0 (SAS Institute Inc., NC, USA).

Results

Variation in rust resistance in the SaT03 population

In the 2009 trial, DI was determined only one time at 42 days after inoculation (Table
4). The average DI of Sa03 was 1.4, while the DI of T03 was 3.6 (Fig. 3), and the DI of
F1 hybrids was 3.3. DIs of the F2:3 lines ranged continuously from 1.3 to 3.9. In the 2013
trial, DIs were scored four times at 31 to 59 days after inoculation. In the 2014 trials, DIs
were scored two times, at 18 to 33 days after inoculation. AUDPCs were used for
evaluation of rust resistance in both trials. AUDPCs of Sa03 were 84 in the 2013 trial and
27 in the 2014 trial, while those of T03 were 172 and 52, respectively (Fig. 4). AUDPCs
of the F2:3 lines ranged continuously from 68 to 162 in the 2013 trial and from 28 to 59 in
the 2014 trial. The correlation coefficient between DIs of F2:3 lines in the 2009 trial and
AUDPC:s in the trial 2013 was 0.62 (Fig. 3). The correlation coefficient between AUDPCs
of F2:3 lines in the 2013 trial and the 2014 trial was also 0.62 (Fig. 4). Transgressive
segregation for resistance was observed in the 2013 trial and also for susceptibility in the

2014 trial.

QTL analysis for rust resistance

In the 2009 trial, two QTLs were detected on the linkage groups 1a on chromosome 1
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(Chr. 1a) and 8a on chromosome 8 (Chr. 8a) and were designated as gRst/a and gRst8a,
respectively (Fig. 5). The LOD peak for gRst8a (5.7) was higher than that for gRstla (4.9),
and the proportion of phenotypic variation explained by gRst8a (20.4%) was also higher
than that explained by gRstla (14.2%) (Table 5). To examine the effects of these two
QTLs, the F2 progeny were classified according to the genotype at each marker and the
bolting time of F2:3 lines was correlated with the nine observed genotypes (Table 6). F2
progenies homozygous and heterozygous for the linked AFA02F07 and CF436630 alleles
derived from the Sa03 parent showed significant differences in rust severity from the
progeny carrying the homozygous genotypes derived from the TO3 parent (Table 6).

A QTL was detected in a region on linkage group Chr. 3a in the 2013 trial (¢gRst3a).
The maximum LOD score (3.6) and the observed variation explained (12.7%) for gRst3a
were both lower than for gRst/a and gRstSa detected in the 2009 trial (Table 5). When
the F2:3 lines were categorized according to the genotype of their preceding F2 generation
at the linked locus ACE320, F2 progenies homozygous and heterozygous for the Sa03
allele showed significant differences in AUDPC from the progeny carrying the
homozygous genotypes derived from the TO3 parent (Table 7). No significant QTL was
detected in the 2014 trial.

Discussion

There have been several linkage mapping studies for traits in A//ium crops (Baldwin et
al., 2014; McCallum et al., 2006; 2007; Tsukazaki et al., 2012). However, no approach
had yet been reported for disease resistance in 4. fistulosum. Susceptibility to rust in the
F2:3 individuals showed a continuous distribution from susceptible to resistant, suggesting
that rust resistance is controlled by quantitative trait loci. In the present study, three QTLs
related to rust resistance were identified in two inoculation trials in the greenhouse.
Despite the considerably high correlation of rust severity between trial years, different
QTLs for rust resistance were observed. Variances explained by those QTLs were
relatively low, suggesting that there are other loci involved in rust resistance in Sa03. In
addition, improvement of the current linkage map will make it more informative for future

genetic studies in bunching onion.
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Table 5. QTLs for rust resistance in SaT03 F,.3 population.

Linkage  Closest marker of LOD Additive  Dominant

Trial QTL group peak LOD score peak effect? effect? R (%)

2009  gRstla Chr. la AFA02F07 4.9 0.3 -0.1 14.2

2009  gRst8a Chr. 8a CF436630 5.7 0.3 -0.1 20.4
2013 gRw3a  Chr3a  ACE0 6 so 40 127

2Additive or dominant effect of ‘Sa03’ allele.

®Percentage of variance explained at the peak of QTL.
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Table 6. Rust severity in F».3 individuals categorized by the F» genotypes at AFA02F07 and
CF436630 in SaT03 population (Trial 2009).

Marker genotype® Number Significant
Population AFA02F07  CF436630  of Fas se\}jeursi‘tyb ﬂ
(qRst1a) (qRst8a) fines AA BB
F, (Sa03 x T03) A A 7 2.81 *
A H 7 3.05
A B 8 3.11
H A 9 251 *
H H 32 3.00 *
H B 8 3.32
B A 4 3.8
B H 9 3.26
_________________________________________ B ... B 7T 31 O
Sa03 A A 1.43
F/ (Sa03 x T03) H H 3.27
T03 B B 3.63

2 A, genotypes of homozygous for Sa03 allele (rust resistant); H, heterozygous; B, homozygous
for TO3 allele (rust susceptible).

b Average number of rust severities of Fa:3 lines.

¢ When significant difference between each genotype and AA or BB is detected by Tukey-
Kramer HSD test (P = 0.05), asterisk is denoted.

Table 7. Rust severity in F».3 individuals categorized by the F» genotype at ACE320 (Trial
2013).

Population Genotype Number of F».3 lines AUDPC*

F» (Sa03 x T03) T03 homo 18 128 a
Hetero 39 110 b
Sa03 homo 14 107 b

F1 (Sa03 x T03) Hetero 185

Sa Sa03 homo 84

? AUDPC of F»3 lines. Different letters indicate significance in Tukey-Kramer HSD test (P =
0.05).
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Although no significant differences were observed among cultivars of 4. fistulosum in
seedling tests, there were significant differences in field resistance to rust in full-grown
plants (Wako et al., 2015). The resistance of Sa03 is derived from the cultivar
‘Chuukanbohon Nou 1’ (Wako et al., 2012), which was developed by recurrent selection.
This parental cultivar likely possesses multiple genes relating to rust resistance.

In a previous study, it was reported that A. cepa showed rust resistance and possess
genes relating to resistance on chromosome 1A and 5A (Wako et al., 2015). Resistance
genes from 4. cepa will likely be introgressed into A. fistulosum using MAALs. However,
no recombinant containing a crossover between the genomes of two species both carrying
rust resistance has been obtained thus far. In contrast, recurrent selection would help
accumulate a number of rust resistance genes in A. fistulosum, therefore, this method
would be a practical and reliable breeding approach. For example, in vegetable crops, the
fruit yield of cucumber has been improved by 10 cycles of recurrent selection (Wehner
and Cramer, 1996). Populations with improved resistance to Verticillium dahliae were
developed by two cycles of recurrent selection in pepper (Capsicum annuum) (Palloix et
al., 1990).

Rust resistance genes have been studied in other plant species. In particular, extensive
analyses have been performed in wheat (Dedryver et al., 1996; Huang and Gill, 2001,
Mago et al., 2002; Raupp et al., 1983; Stein et al., 2000) and barley (Dreiseitl and
Steffenson, 2000; Feuerstein et al., 1990; Jagathpriya et al., 2003). To date, a number of
qualitative and quantitative rust resistance alleles have been found in wheat and barley.
The wheat leaf rust resistance genes, Lr10 (Feuillet et al., 2003) and Lr2/ (Huang et al.,
2003), and the barley stem rust resistance gene, Rpg/ (Brueggeman et al., 2002), were
successfully cloned by map-based isolation strategies. In bunching onion, however, rust
resistance genes have not yet been identified. The rust resistance developed in this study
is not true resistance, but rather what is known as field resistance. This type of resistance
is under polygenic control, and is therefore probably more effective against a broad range
of pathogenic races and more durable than monogenic resistance, which may break down
under severe epiphytotics (Brewbaker, 1983).

The QTLs identified here were identified using STS (sequence-tagged site) markers,
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most of which are co-dominant and near the top of the LOD peaks for each QTL.
Therefore, they would be useful for selection of bunching onions with a high level of rust

resistance.
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Chapter IV: Mapping of quantitative trait loci for bolting time in bunching onion

Introduction

Because bunching onions cannot be stored for long periods, adaptation to different
growing locations throughout the country and year-round production are very important
in Japan. The late-bolting trait is essential in bunching onion cultivars for spring and
summer production. Genetic variation in bolting time in bunching onion is based on
seedling age and low-temperature requirements (Inden and Asahira, 1990). Low
temperature (3—15 °C) is required for flower formation, and the optimal temperatures and
exposure periods required for flowering differ according to cultivar (Yamasaki et al.,
2000b; Abe and Nakazumi, 2004; Dong et al., 2013). Additionally, a short photoperiod
also promotes flower bud initiation and a long photoperiod promotes elongation of the
flower stalk after flower initiation (Yamasaki et al., 2000a). However, genetic and
molecular studies of bolting time in bunching onion have not been reported thus far.

In Brassica rapa, several quantitative trait loci (QTL) controlling flowering time were
identified and found to colocalize with the ortholog of FLOWERING LOCUS C (FLC)
from Arabidopsis (Schranz et al., 2002; Kakizaki et al., 2011; Kitamoto et al., 2014).
Several candidate BrFLC genes have also been discussed in terms of their functions in
flowering time and the vernalization response in B. rapa (Kim et al., 2007; Kitamoto et
al., 2014).

In bulb onion, the FLOWERING LOCUS T (FT)-like genes have been investigated for
functional characterization. Up-regulation of the expression of the AcF'T2 gene appears
to be involved in the vernalization-dependent initiation of flowering, whereas the
expression of two other FT genes, AcFTI and AcFT4, has been correlated to bulb
formation (Lee et al., 2013). Additionally, a QTL designated as AcBltI that conditions
bolting has been mapped to chromosome 1 (Baldwin et al., 2014), but the association
between this QTL and the flowering candidate genes is unclear. Genetic studies of
flowering are very limited in bunching onion. Therefore, it is important to investigate the
QTL for bolting time as a first step toward understanding the genetics of flower initiation

in bunching onion.
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In the current study, bolting time was evaluated in two bunching onion populations
under different environmental conditions. Major QTLs detected on the same linkage
groups in the two populations were compared using the same set of markers. The
Taiwanese ever-flowering cultivar ‘Bei-cong’ was used as the genetic source of the early-
bolting trait. Most Taiwanese cultivars have minimal requirements for low-temperature
to induce flower initiation (Inden and Asahina, 1990). Yamasaki et al. (2012) reported
that ‘Bei-cong’ showed seed vernalization-like response for flower formation. A linkage
map was constructed using a population derived from a cross between the ever-flowering
line Ki and the late-bolting line C, and QTL analysis for bolting time was conducted under
vernalized and unvernalized conditions. Additionally, QTL for bolting time was identified
using another SaT03 map constructed in a previous study, and the resulting maps for these

two populations were compared.

Materials and methods

Plant materials

Two mapping populations, KiC (134 individuals) and SaT03 (119 individuals) were
used in the present study. KiC is the segregating F2 derived from a cross between two
bunching onion inbred lines, K1s-5s-2s-2s-4s-5 (Ki) and Chols-1s-2s-2s-8s (C). Ki is an
inbred line derived from the Taiwanese ever-flowering cultivar ‘Bei-cong’ (named
‘Kitanegi’ in Japanese, JP138785). C is an inbred line from the late-bolting cultivar ‘Cho-
etsu’ (JP133892). SaTO03 is the segregating F> derived from a cross between Sa48-10s-
7ic-3s-2ic-3s-1s-9s (Sa03) and T26-4s-2s-2s (T03). Sa03, an early-bolting type, is an
inbred line derived from the cultivar ‘Chuukanbohon Nou 1’ (Wako et al., 2010), and TO3,
a late-bolting type, is an inbred line derived from the cultivar ‘Fuyuwarabe’ (Wako et al.,
2012). The mapping population SaTO03 is identical to that previously used for QTL

analysis of pseudostem pungency (Tsukazaki et al., 2012).
Construction of a linkage map

Mainly genomic SSRs from bunching onion and EST-SSRs from bulb onion were used

in the present study (Tsukazaki et al., 2011). Polymerase chain reaction (PCR) conditions
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and genotyping of SSR and EST markers were performed either as described in Tsukazaki
et al. (2011) or according to the protocols published at the Vegmarks database
(http://vegmarks.nivot.affrc.go.jp). Linkage analysis was performed using the computer
program MAPMAKER/EXP 3.0b (Lander et al., 1987), using the Kosambi function to
obtain cM values (Kosambi, 1944). A log of the odds (LODs) threshold of 4.0 was used
to group and order the markers. Each linkage group was assigned to chromosomes by

comparison to the previously constructed maps (Tsukazaki et al., 2008, 2011, 2015).

Evaluation of bolting time
Bolting time was evaluated during field trials in two years for the populations KiC and
SaT03. Additionally, bolting time for the KiC population was also evaluated under heated
greenhouse conditions in the winter of 2007-2008 (the 2008 greenhouse trial, Table 8).
Firstly, the KiC population was evaluated for bolting time under non-vernalized
conditions. A total of 121 F2-derived F3 (F2:3) lines from the KiC population were sown

in 200-cell plug trays (two seeds per plug) on 18 July 2007, then 20 plants per line were
transplanted into plastic boxes (65 cm x 18 cm x 22 cm) on 29 August 2007 and grown

in the greenhouse kept at a minimum temperature of 10 °C (2008 trial). The KiC
population was then grown in the open field at the NARO Institute of Vegetable and Tea
Science (34.8°N, 136.4°E) through the winter in 2008—2009 and 2009-2010 (2009 field
trial and 2010 field trial) to measure bolting times (Table 8). Bolting time of the SaT03
population was measured in the 2013 field trial and the 2014 field trial (Table 8). Standard
crop management for bunching onion was used and the bolting date of each plant was
recorded. Bolting dates of F2 individuals were used to estimate the average date of bolting
of all plants in the F2:3 lines. A plant was scored as bolting when the top of the flower
scape bud emerged. The bolting time of the KiC population was defined as the number of
days between the average bolting date of Ki and the bolting date of each F2:3 line. In the
same manner, the bolting time of the SaT03 population was defined as the number of days

between the average bolting date of Sa03 and the bolting date of each F2:3 line.
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Table 8. Sowing and planting dates for evaluating bolting time in F».3 populations.

Number
Population  Trial Numbe.:r of O.f plants Condition Sowing date Transplanting
F».3 lines in each date
lines
. Heated
KiC 2008 121 20 a 18 July 2007 30 Aug. 2007
greenhouse

KiC 2009 108 60 Open field 11 July 2008 8 Sep. 2008
KiC 2010 108 45 Open field 4 June 2009 10 Aug. 2009
SaT03 2013 80 42 Open field 26 June 2012 28 Aug. 2012

SaT03 2014 87 42 Open field 5 July 2013 3 Sep. 2013

# Minimum temperature in the greenhouse was 10 °C during winter.
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QTL analysis

QTL analysis was performed by the composite interval mapping method using the
computer program QTL Cartographer version 2.5 (Wang et al., 2007). The log likelihood
(LOD) threshold was determined with 1000 permutations at P = 0.05. Statistical analysis
of the associations between the genotypes of plants in the F2 generation and the average
bolting date of F2:3 plants of the same genotype was conducted at each QTL-linked SSR
locus in each trial using the Tukey—Kramer Honestly Significant Difference (HSD) test
(P =0.05) with JMP version 4.0 (SAS Institute Inc., NC, USA).

Results
Evaluation of bolting time

In the 2008 greenhouse trial, the bolting date of Ki was 12 January 2008, 136 days after
transplanting, while bolting in C was not observed before 30 June 2008. The bolting date
of the F2:3 lines ranged continuously from 49 to 180 days later than that of Ki, and 10 of
the F2:3 lines did not bolt.

In the field trials in 2009 and 2010, the bolting dates of Ki were 19 November 2008
and 20 November 2009, respectively (Fig. 6). The differences in the bolting dates of C
relative to Ki were 159 days in the 2009 field trial and 170 days in the 2010 field trial.
The bolting dates of the F2:3 lines ranged from 64 to 153 days and from 25 to 152 days
later than that of Ki in the 2009 and 2010 field trials, respectively. The bolting times of
the F2:3 lines in the field trials in 2009 and 2010 were highly correlated (» = 0.93).
Transgressive segregation was not observed in these three trials.

The differences in the bolting dates of the F2:3 lines of the SaT03 population were
smaller than those of the F2:3 lines of the KiC population. The bolting dates for Sa03 were
26 March 2013 in the 2013 field trial and 28 March 2014 in the 2014 field trial (Fig. 7).
The differences in the bolting dates between T03 and Sa03 were 49 days in the 2013 field
trial and 51 days in the 2014 field trial. The bolting dates of the F2:3 lines were 19 to 60
days later than that of Sa03 in the 2013 field trial and 17 to 65 days later than that of Sa03
in the 2014 field trial. The bolting times of the F2:3 lines in field trials in 2013 and 2014

were also highly correlated (» = 0.81). Transgressive segregation for late bolting was
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Bolting dates in 2010 field trial (avg. 24-Feb)

30-May
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Bolting dates in 2009 field trial (avg. 5-Mar)

Fig. 6. Distribution of the bolting date in 105 F2:3 lines of KiC population and

correlation coefficient between trials.
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observed in both the 2013 and 2014 field trials of the SaT03 population.

Construction of a linkage map in the KiC population

A linkage map consisting of 16 linkage groups was constructed with a total of 266
markers, including 249 SSRs and one gene from bunching onion, and with two SSRs,
four InDels (insertion-deletion), and 10 CAPS designed from bulb onion ESTs (Table 9
and Table 10). The total map length was 2802 cM and the average marker interval was
10.5 cM. All of the linkage groups were assigned to eight chromosomes on the previously

constructed map using the same markers.

QTL analysis of bolting time in the KiC population

In the 2008 greenhouse trial, two QTLs were detected on the linkage groups 2a on
chromosome 2 (Chr. 2a) and 6a on chromosome 6 (Chr. 6a) and were designated as gBlt2a
and gBlt6a, respectively. The LOD peak for gB/t2a was higher than that for gBl/t6a, and
the proportion of phenotypic variation explained by gBlt2a was also higher than that
explained by gBlt6a (Table 11).
QTLs were detected on the linkage groups 1a on chromosome 1 (Chr. 1a; gBltla) and 2a
on Chr. 2a (¢Blt2a) (Fig. 8 and Table 11) using data from the field trials conducted in
2009 and 2010. The LOD peaks for these two QTLs were located in close proximity in
both trials. The LOD peaks for gBlt2a in the 2009 and 2010 field trials were located close
to the QTL detected in the 2008 greenhouse trial. The maximum LOD scores for gBltla
and gBlt2a were 10.2 and 8.8 in the 2009 field trial, and 10.3 and 10.7 in the 2010 field
trial, respectively (Table 11). The QTL ¢gBl¢la and gBlt2a accounted for 15.4% and 13.1%
of the observed variation, respectively, in the 2009 field trial, and 14.7% and 16.3% of
the observed variation, respectively, in the 2010 field trial. Two additional QTLs were
found on the linkage groups 1b on chromosome 1 (Chr. 1b; ¢Bltib) and 3b on
chromosome 3 (Chr. 3b; gBIlt3b) in the 2010 field trial (Fig. 8), with effects lower than
those of gBltla or gBlt2a. The maximum LOD scores for gB/t1b and gBIt3b were 8.8 and
4.7, and the proportion of variance explained by these QTLs were 12.0% and 6.1%,
respectively (Table 11).
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Table 11. QTLs for bolting time in KiC F».3 population.

Closest marker

Trial QTL Condition ;gﬁgge of peak LOD Ir;gallz Ae(i?;tcitze DZ?;eiE?‘nt R (%)°
score
2008 ¢BIlt2a  Greenhouse  Chr. 2a AFAO1E09 9.2 -19.5 -2.0 30.5
2008 ¢Bltba  Greenhouse  Chr. 6a AFB23C03 43 -13.8 -9.4 22.1
12009 gBitla Openfield  Chr.la  AFBIIEOS 102 -137 17 154
2009 ¢BIlt2a  Open field Chr. 2a AFAT04B03 8.8 -14.1 -1.6 13.1
12010 gBitla Openfield — Chr.la  AFBIIE0S 103 -187 57 147
2010 ¢BIltIb  Open field Chr. 1b AFAO05F04 8.8 -16.3 -5.8 12.0
2010 ¢BIit2a  Open field Chr. 2a AFATO01HO5 10.7 -20.2 -4.1 16.3
2010 ¢BIit3a  Open field Chr. 3b AFATO02B11 4.7 -11.3 0.2 6.1

2 Additive or dominant effect of Ki allele.

b Percentage of variance explained at the peak of the QTL.
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Chr. 1a Chr. 2a Chr. 3a Chr. 4a
AFBO7E06
AFAO5A08 AEAOBATO |~ AFAT13C12 AFAT02C04
AFB13H10 A01G
AFAT02C08 CF451262_InDel L AFAT09G02 AFAA05D11
AFAO06F05 AFATOOHTO I~ AFC04D10 AFA01HO08
AFAT1E06 AFB09D04 | AFC10G12
AFCO02H08 AFA02C10 AFAA04D06 AFB19D01
AFB17B09 {— AFB19HO03 L AFAOSE10 AFRTO3HO1
A\ AFAT04F03 AFB20G03 AFAQSES
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Fig. 8. Linkage map and QTLs detected in KiC population in different trials. QTLs are
indicated by the boxes to the left sides of chromosomes and the positions of LOD peaks

are shown by arrows.
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The LOD peak for gBltla was located in close proximity to the marker AFBI1EOS in
the field trials in 2009 and 2010 (Fig. 8). The LOD peaks for gB/t2a were located close
to the marker AFAT04B03 in the 2009 field trial and were located near the marker
AFATOIHOS in the 2010 field trial. To examine the effects of the two QTLs, the F2
progenies were classified according to their genotypes at each marker, the bolting time of
F2:3 lines were correlated with the nine observed genotypes (Table 12). The F2 progeny
homozygous for the linked AFB11EO5 and AFATO1HOS alleles derived from the Ki
parent showed significant differences in bolting time from the progeny carrying the

homozygous genotypes derived from the C parent (Table 12).

QTL analysis of bolting time in the SaT03 population and comparative mapping of
qBlt2a

A major QTL was detected in a consistent region of linkage group Chr. 2a in both field
trials in 2013 and 2014 (Fig. 9 and Table 13). The maximum LOD scores for this
individual QTL were 10.2 and 19.7 in the 2013 field trial and the 2014 field trial,
respectively. The phenotypic variances explained by this QTL were 33.9 % in the 2013
field trial and 46.8 % in the 2014 field trial. When the F23 lines were categorized
according to the genotype of their preceding F2 generation at the linked locus AFAT10E12,
there were significant differences in bolting time between the genotype categories (Table
14).
Comparative mapping of Chr. 2a between the KiC and SaT03 populations was conducted
using the same 10 markers. Two of the markers, AFAO1E09 and AFAT04B03, which were
closely linked to the LOD peaks for gB/¢2a in the KiC population, were assigned to Chr.
2a in the SaT03 population. These markers were also linked to QTLs detected in the
SaTO03 population and were adjacent to AFAT10E12 (7.6 cM), which is close to the LOD
peak for these QTLs. Therefore, these QTLs are considered identical.

Discussion

To obtain information for marker-assisted selection of the late-bolting trait in bunching

onion, QTLs for bolting time were identified in two populations derived from crosses
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Table 12. Bolting time in F,.3 individuals categorized by the F, genotypes at AFB11EOS and
AFATO1HOS in the KiC population in the field trials in 2009 and 2010.

2009 field trial 2010 field trial
Marker genotype® Number ) Significant ) Significant
Population  AFATOIHO0S AFBIIE0S  of Fas Bt‘i’rlrtlgﬁ,g difference® ]i?rlrtlle?,g difference*
(qBl2a)  (qBltlay S AA BB AA BB
F, (Kix C) A A 5 74 * 77 *
A H 12 72 * 70 *
A B 2 99 * 96
H A 20 72 * 59 *
H H 23 94 * 0 x 95 *
H B 11 113 * 119 *
B A 7 95 * 0 x 98 *
B H 21 113 * 121 *
B B 6 131 e
Ki A A 0 0
Fi (Kix C) H H 90 109
C B B 159 170

2 A, genotypes homozygous for Ki allele (early-bolting); H, heterozygous; B, genotypes homozygous for
C allele (late-bolting).

b Average number of days between bolting dates of Ki and F»3 lines.

¢ Asterisk indicates significant difference between each genotype and AA or BB detected by Tukey-
Kramer HSD test (P = 0.05).
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Fig. 9. Linkage map comparison between KiC and SaT03 populations at linkage group

Chr. 2a. Common markers are connected with lines.

53



Table 13. QTL for bolting time in the SaT03 F.; population in 2013 and 2014 field trials.

Linkage  Marker closest to LOD Additive ~ Dominant

3 2 (0/\b
Trial QTL group peak LOD score peak effect? effect? RE(%)
2013 qBlt2a  Chr.2a  AFAT10E12 10.2 -10.7 -6.9 339
2014 qBlt2a  Chr.2a  AFAT10E12 19.7 -12.3 -10.1 46.8

2 Additive or dominant effect of 'Sa03' allele.

® Percentage of variance explained at the peak of QTL.

Table 14. Bolting time in F»3 individuals categorized by the F, genotype at
AFAT10E12 (Field trial in 2013).

Population Genotype Numkl{er of F2;3 Bolting time®
ines

F> (Sa03 x T03) T03 homozygous 10 56 a

heterozygous 48 45 b
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Sa03 homozygous 20 40 ¢

TO3 T03 homozygous 45

Fi (Sa03 x T03) heterozygous 12

Sa Sa03 homozygous 0

# Average number of days between bolting dates of Sa03 and F»3 lines. Different letters
indicate significant difference according to Tukey-Kramer HSD test (P = 0.05).
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between parental lines differing in bolting time. Because bolting times were highly
correlated between trial years in both the KiC and SaT03 populations (Fig. 6 and Fig. 7),
bolting time appears to be highly heritable.

In the KiC population, a total of five QTLs could be identified on four chromosomes.
Among these, two QTLs, gB/tla and gBlt2a, were both detected in the field trials in 2009
and 2010 (Table 9). The closest markers to the LOD peaks for these QTLs were the same
for gBltla (AFB11EOS) or proximal for gBlt2a (AFAT04B03 in the 2009 field trial and
AFATO01HOS in the 2010 field trial) (Fig. 8). In addition, when the F> genotypes were
classified according to these linked markers, there were significant differences in bolting
time between the homozygous Ki and C genotypes (Table 12). Therefore, these two QTLs
will be effective for predicting bolting time under field conditions. gB/t/a was identified
in the field trials in 2009 and 2010, but was not identified in the 2008 greenhouse trial.
From these results, gBltla is likely involved in the low-temperature requirement for
vernalization response because plants were grown at temperatures higher than 10 °C in
the 2008 greenhouse trial.

In the SaTO03 population, only a single QTL was detected during repeated field trials in
2013 and 2014 (Table 13). Comparative mapping of gBlt2a on both the KiC and SaT03
linkage maps revealed that gB/t2a would be identical in both populations. The parental
line TO3 that harbors the late-bolting trait requires lower temperatures to induce bolting
than does Sa03 (data not shown). These results suggest that gB/t2a plays an important
role in vernalization leading to bolting and flowering based in bunching onion.

In a previous study, a major QTL for pseudostem pungency was identified on Chr. 2a
in the SaTO03 population (Tsukazaki et al., 2012). The position of the pungency QTL
accorded with gBlt2a, the bolting time QTL detected in the present study. Although it is
quite unlikely that genes controlling pungency also function in flowering, the genes
corresponding to these traits are closely linked in the parental line TO3. The TO03-type
allele at AFAT04BO03 closely linked to the QTL for both pungency and bolting time has
not been found in Ki or C (data not shown) and has been observed in only a limited
number of cultivars belonging to the bunching onion cultivar group ‘Kaga’ (Tsukazaki et

al. 2012). These results suggest that the TO3 allele of AFAT04B03 is derived from this
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genetic resource; however, no effect of this allele on variation in the late bolting trait was
found.

The varietal differences in bolting time of bunching onion have been related to the
differences in their low temperature requirements for flower-bud formation and in the size
of adult plants (Inden and Asahira, 1990). Yamasaki et al. (2000a) reported that the
optimum temperature for vernalization in bunching onion was 7 °C; however, some
cultivars could initiate flower buds at 15 °C (Yamasaki et al., 2000b). The very early-
flowering cultivar ‘Bei-cong’ has a low requirement for cold treatment to induce flower
initiation (Lin and Chang, 1980), and can thus flower without overwintering in Japan. In
order to detect QTL for bolting unrelated to a cold requirement, the KiC population was
evaluated under a minimum of 10 °C in the 2008 greenhouse trial. One QTL (¢Blt6a) was
detected only in the 2008 trial and might control a flower induction through a mechanism
other than green plant vernalization. Although it is not clear whether Ki requires
temperatures higher than 10 °C for flowering, this line might use an atypical pathway for
induction of flowering similar to that of ‘Bei-cong’, which possesses a seed vernalization-
like response (Yamasaki et al., 2012).

TO03, the late-bolting line, has short plant stature as it is derived from the short-statured
cultivar ‘Fuyuwarabe’ (Wako et al., 2010). Plant hormones of the gibberellin family
stimulate shoot elongation and bolting (Davies, 2004). Shiraiwa et al. (2011) reported that
the gene coding gibberellin 3-oxidase (4fGA30x1) catalyzes the conversion of GAo to
GA4 and GA20 to GA1 in bunching onion. AfGA3o0xI was highly expressed at early and
middle developmental stages in flower stalks, and was mapped to chromosome 7A of
shallot (4. cepa Aggregatum group) (Shiraiwa et al., 2011). Although AfGA30x1 has not
been mapped in bunching onion, this gene is not predicted to be associated with the QTL
for bolting time identified in the present study.

In conclusion, this study found that a major QTL for bolting time was located on Chr.
2a in bunching onion. The T03-derived allele at AFATIOE12, an SSR locus linked to

gBlt2a would be a useful marker for selecting bunching onions with late bolting traits.
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Chapter V: Construction of an Allium cepa linkage map using

doubled haploid technology

Introduction

A. cepa is subdivided into two groups: Common onion, which is referred to as bulb
onion; and Aggregatum, which is known as shallot (Fritsch and Friesen, 2002; Hanelt,
1990). Shallot has a close genetic relationship to bulb onion, although it differs from bulb
onion in morphological and ecological characters. Shallot is an important genetic
resources for the improvement of bulb onion because it carries useful traits such as
resistance to Fusarium oxysporum (Vu et al., 2012). Genetic studies in A. cepa have been
limited due to its outcrossing nature, biennial generation time, and inbreeding depression.

Although several polymorphic isozyme loci in bulb onion have been found (Cryder et
al., 1991), these were insufficient for construction of a linkage map. Recently, genetic
mapping of 4. cepa using DNA markers has progressed (Wilkie et al., 1993; Bradeen and
Havey, 1995; van Heusden et al., 2000a; 2000b; Ipek et al., 2005; Martin et al., 2005;
Baldwin et al., 2012; McCallum et al., 2012; Duangjit et al., 2013) and genetic
information on various traits has been amassed. For example, QTLs controlling sucrose
and fructan contents (McCallum et al., 2006) and genes encoding lachrymatory factor
synthase (Masamura et al., 2012) have been reported. SSR markers are ideal DNA
markers owing to their simplicity, reproducibility, and codominant inheritance (Jones et
al., 1997). Fischer and Bachmann (2000) reported for the first time the development of
30 SSR markers from bulb onion. Araki et al. (2009) analyzed the genetic relationships
among A. cepa, A. fistulosum, A. vavilovii, A. galanthum, A. roylei, and A. altaicum using
these SSR markers. Tsukazaki et al. (2008; 2011) developed numerous SSR markers from
bunching onion (4. fistulosum) and used them to construct linkage maps in bunching
onion.

Doubled haploid (DH) techniques that use the chromosomal doubling of haploid plants
can shorten the time needed, offer homozygous pure lines, and provide valuable materials
for genomic analysis (Alan et al., 2003). Because dominant loci could be treated equally

to co-dominant loci in segregating DH population, efficient mapping could be conducted

57



in wheat (Jia et al., 2005), Chinese cabbage (Ajisaka et al., 2001) and cabbage (Voorrips
et al., 1997) etc. However, a linkage map construction using DH lines has not been
reported in Allium. Campion and Allon (1990) first reported the haploid plant
regeneration from female gametes by in vitro culture of unpollinated flowers in 4. cepa.
Although chromosome doubling was induced in small percent of regenerated plants
(Jakse et al., 2003; Sulistyaningsih et al., 2006), the colchicine treatment was necessary
in almost haploid plants to survive.

In the present study, gynogenic individuals derived from Fi plants crossed between
shallot and bulb onion DH lines were produced. Informative markers polymorphic
between the parental DH lines were developed and a linkage map was constructed using
this gynogenic population. In addition, several markers closely linked to useful traits were

mapped.

Materials and methods

Plant materials and unpollinated flower culture

F1 hybrids from a cross between the shallot DH line DHA as a seed parent and the bulb
onion DH line DHC as a pollen parent were used for unpollinated flower culture. DHA
was derived from the shallot strain ‘Chiang Mai’ from Thailand, and DHC was derived
from the long-day onion cultivar ‘Sapporo-ki’ from Japan, as described in Abdelrahman
et al. (2015). Unpollinated flower culture of Fi hybrids was conducted according to the
methods of Sulistyaningsih et al. (2006), with some modifications. Flower buds collected
3 days before flowering (6—7 mm in length) were sterilized in 70% ethanol and 0.01%
mercury (II) chloride. Twenty-one florets were placed on a Petri dish (9 cm in diameter)
containing B5 solid media (pH 5.8) with 4% (w/v) sucrose and 2 mg/l 2,4-
dichlorophenoxyacetic acid. Plates were incubated in a growth chamber maintained at
25 °C with a day length of 16 h for 3 months. Shoots emerging from florets were
transferred to MS solid media with 4% sucrose and cultured for two months. Thereafter,
plantlets were acclimatized and grown in greenhouse. The number of somatic
chromosomes in each plantlet was determined by the Feulgen staining and squash method

after treating seedling root tips with 0.05 % colchicine at 4 °C for 3 h.
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Marker analysis

Genomic DNA was isolated from leaf blades of regenerated plants according to the
method described by van Heusden (2000a) and used for marker analysis. To identify
female-derived plants, a primer set (see Table 16) was used to amplify a fragment of the
GI (GIGANTEA; Gene Bank Accession No. GQ232756) gene that is polymorphic
between DHA and DHC. PCR was performed as follows: pre-incubation at 94 °C for 3
min; followed by 35 cycles of denaturation at 94 °C for 1 min, annealing at 60 °C for 1
min, and extension at 94 °C for 1 min. PCR products were digested with 7agl for 3 h and
were separated by electrophoresis through 2% (w/v) agarose gel. To detect
polymorphisms between DHA and DHC, SSR markers derived from the A. cepa genome-
(4. cepa gSSRs, Fischer and Bachmann, 2000), SSR markers derived from the A.
fistulosum genome(A. fistulosum gSSRs), SSR markers derived from 4. cepa ESTs (Kuhl
et al., 2004; Martin et al., 2005; Jakse et al., 2005; Tsukazaki et al., 2008; 2011) and other
mainly CAPS and SCAR markers (Kuhl et al., 2004; Masuzaki et al., 2006a; 2006b;
2006¢; McCallum et al., 2006; Yaguchi et al., 2008) were screened for polymorphisms
between parental lines. In addition, eight markers linked to the Ms locus (Park et al., 2013;

Yang et al., 2013) were also screened.

PCR was performed in a 10-uL reaction mixture containing 20 ng template, 1 pL 10 x

PCR bufter, 0.8 uL dNTPs (2.5 mM each), 0.8 uL forward primer (10 uM), 0.8 puL reverse
primer (10 pM), and 0.05 pL Ex Taq Polymerase (5 units/puL; Takara Bio Inc.). PCR
conditions appropriate for each primer set are described in Table 15, Table 16, and Table
17. PCR products were separated on 3% (w/v) agarose gel or 5% (w/v) denaturing
polyacrylamide gel according to the methods of Song et al. (2004), Ohara et al. (2005a),
and Tsukazaki et al. (2008). In addition, some forward primers were Xuorescent-labeled
with 6-FAM, NED, PET, or VIC dyes (Applied Biosystems, CA, USA) prior to use for
PCR. PCR products were loaded onto a capillary DNA sequencer (ABI3730; Applied

Biosystems), and analyzed using GeneMapper ver. 3.0 software (Applied Biosystems).

Construction of linkage map
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A total of 107 markers polymorphic between the parental lines and an additional
phenotypic marker, a locus controlling bulb pigmentation, were used to construct a
linkage map. Standard * analysis was used to test the segregation pattern at each marker
locus for deviations from the expected Mendelian ratio of 1:1 in the population. Linkage
analysis was performed using the computer program JoinMap ver. 4.0 (van Ooijen, 2006).
The Kosambi function was used to obtain cM values (Kosambi, 1944). A log of the odds
threshold of 3.0 was used to group and order the markers. The chromosomal locations of
each linkage group were determined by comparison to previously developed maps
(McCallum et al., 2012; Tsukazaki et al., 2008, 2011, 2015). Additionally, a complete set
of bunching onion-shallot MAALSs (2n=17; FF + 1A to +8A, where F stands for the basic
chromosome set of 4. fistulosum, and A represents chromosomes of 4. cepa) developed
by Shigyo et al. (1996) was used to determine the chromosome identity of the detected
linkage groups. Shallot ‘Chiang Mai’ and 4. fistulosum ‘Kujo-hoso’ and monosomic
addition lines were used as DNA sources. PCR was conducted as described above and

amplified products were separated on 2—3% (w/v) agarose gel.

Results

Production of gynogenic mapping population
Florets from F1 plants flowered 5—7 days after initiating culture. Ovaries enlarged and
shoots emerged from them after 2—3 months. A total of 291 shoots were obtained from
10,604 florets and 100 shoots regenerated into plants. Observation of somatic
chromosomes indicated that these regenerated plants included 46 haploids (2n = 8), 40
diploids (2n = 16), three triploids (2n = 24), three tetraploids (2n = 32), and eight chimeric
plants (Table 18). Their genotypes at the co-dominant marker locus GI were either shallot-
type or bulb onion-type, indicating that all of the regenerated plants were derived from

female gametes of Fi plants (Fig. 10).
Linkage map construction

Of the 666 markers tested, polymorphisms between DHA and DHC were detected with
235 markers (35.3%) (Table 19). The efficiency of polymorphism detection was highest
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Table 18. Chromosome numbers of plants from gynogenesis in unpollinated
flower culture of F; hybrids.

Frequency distribution of plants that showed different chromosome
No. of plants numbers
tested

2n=28 8,16 16 24 16, 32 32

100 46 7 40 3 1 3

Table 19. Numbers of polymorphic markers between DHA and DHC.

. Marker No. of tested No. of . Percentage ° f

Origin polymorphic  polymorphic
type markers
markers markers

Allium cepa genome? SSR 32 9 28.1
Allium cepa EST SSR 196 96 49.0
Allium cepa genome® SSR 22 5 22.7
Allium cepa EST Non SSR 102 32 31.4
Allium cepa genome® SCAR 8 5 62.5
Allium fistulosum genome  SSR 306 88 28.8
Total 666 235 353

# Fischer and Bachmann (2000).
® BAC library
°Yang et al. (2012) and Park et al. (2012)
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for A. cepa EST-derived SSRs (49.0%), followed by 4. cepa EST-derived InDels or SNPs
(31.4%). A. fistulosum gSSRs showed polymorphisms at the same frequency as 4. cepa
gSSRs. A linkage map was constructed with 108 markers (32 4. cepa EST-SSRs, 31 A.
fistulosum gSSRs, 28 A. cepa EST non-SSRs, 11 A. cepa gSSRs, five 4. cepa SCARs,
and the phenotypic bulb color marker) (Fig. 11). The resulting map contains 12 linkage
groups spanning 799 c¢cM. Of 107 mapped markers, 25 deviated from the expected 1:1
segregation ratio (P < 0.05). Eighteen markers were previously assigned to A. cepa
chromosomes (Masuzaki et al., 2006a, 2006b, 2006c; Yaguchi et al., 2008; Tsukazaki et
al., 2011; Table 15 and Table 16). In the present study, the chromosomal locations of 10
markers were newly identified using MAALSs (Fig. 12). From these results, all 12 linkage
groups were assigned to eight chromosomes. The bulb skin color phenotypic marker was
mapped to the terminal part of chromosome 7 and located in close proximity to the
AY221250 marker that was derived from a gene coding dihydroflavonol 4-reductase
(DFR) (Fig. 11). Twenty-eight A. fistulosum gSSR markers mapped on A. fistulosum
genetic maps (Tsukazaki et al., 2008; 2011; 2015; Wako et al., 2016) were located on an
A. cepa linkage map in the present study (Table 15). Of these, only 10 markers shared
identical chromosomal locations in two species. Five SCAR markers, jnurf05, jnurf07,
jnurf20 (Park et al., 2012), RNS-357, and DNF-566 (Yang et al., 2012), which were
reported to be closely linked to the Ms nuclear male-fertility restoration locus of
cytoplasmic male-sterility (CMS) were located on chromosome 2. Four markers except

jnurf20 were mapped in close proximity within 5 ¢cM of each other (Fig. 11).

Discussion
This is the first report of linkage map based on a gynogenic segregating population in
A. cepa. Compared with previously reported bulb onion maps (e.g., the 1907 ¢cM map
reported by Martin et al. 2005), the map constructed in the present study covering 799
cM does not cover the entire genome, therefore, gaps in this map need to be filled in by
identifying and mapping more markers. Nevertheless, this linkage map contains useful
genetic information for agronomic traits because of the close linkage between the bulb

pigmentation and the gene encoding DFR, and assignment of several markers relevant to
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Ms on chromosome 2.

Shallot has a close genetic relationship with bulb onion and is an economically
important crop in low-latitude regions (Shigyo and Kik, 2008). Using MAALSs, loci
affecting contents of a major metabolite that interacts with abiotic stress (Masuzaki et al.
2006c¢), amino acids, cysteine sulfoxide (Masamura et al. 2011), sucrose, and fructans
(Yaguchi et al. 2008) in shallot have been revealed. Specific saponin compounds
conferring resistance to Fusarium basal rot have been identified in shallot (Vu et al. 2012).
These reports demonstrated the potential of shallots as a useful resource for the genetic
study and future breeding of bulb onions.

Of the markers used in the present study, 4. cepa EST-derived SSRs were most
informative. SSRs comprised the largest category of polymorphic markers (96) identified
here, with a high (49.0%) frequency of marker polymorphism between parental lines.
Thirty-two markers were located on the linkage map and the chromosomal assignments
of nine of 10 markers were consistent with previous studies (Table 15). Furthermore,
seven markers were located on the A. fistulosum genetic map and six of these were
assigned to the same chromosome (Table 15). Synteny comparisons of the genomes of
these species could now be performed using linkage maps with common markers. Many
A. fistulosum-derived gSSR markers have been useful for mapping in 4. cepa. Thirty-one
A. fistulosum-derived gSSR markers were assigned to this linkage map. The frequency of
polymorphism in markers derived from 4. fistulosum gSSRs (28.8%) was equal to those
of A. cepa derived gSSRs (28.1%). About two-thirds of A. fistulosum-derived gSSR
markers located on the 4. cepa map did not show accordant chromosomal assignment.
The chromosomal locations of 3 markers (AFA13G12, AFATO0B7, and AFB08D06 A)
determined using MAALs differed from those of 4. fistulosum. Nevertheless, these
markers could be useful as common markers in both species, as fewer gSSR markers
derived from A. fistulosum have been thus far assigned to 4. cepa genetic maps (Tsukazaki
et al., 2011). Additionally, SSR markers allowing high-throughput genotyping using a
DNA sequencer can enable efficient and low-cost genetic analyses. Recently, Tsukazaki
et al. (2015) isolated more than 2300 di- to penta-nucleotide SSRs from de novo assembly

of transcripts from A. fistulosum. These EST-derived SSRs would be useful for
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constructing a linkage map in 4. cepa.

Molecular markers linked to the male-fertility restoration locus relevant to CMS-S
have been developed in onions. Gokge et al. (2002) identified two RFLP markers flanking
the Ms locus at distances of 0.9 and 8.6 cM, and Bang et al. (2011) converted these two
RFLP markers into PCR markers. Yang et al. (2013) developed SCAR markers (DNF-
566 and RNS-357) tightly linked to both alleles at Ms locus. Park et al. (2013) developed
six SCAR markers linked to the Ms locus and mapped these markers onto chromosome
2. In the present study, five of these eight markers were located on linkage group Chr. 2.
Two markers, jnurf05 and jnurf17, were closely linked at a distance of 5.2 ¢cM. Park et al.
(2013) reported that no recombinant was found between jnurfO5 and the Ms locus, and
jnurfl7 also tightly linked to these loci. The genotype of DHA shallot at the Ms locus
would be msms (data not shown). These results suggest that higher resolution mapping of
Ms locus is possible using a gynogenic segregating population such as the one produced
in this study.

These chromosome-specific markers will be useful for intensive mapping of other
markers on specific chromosomes to obtain markers closely linked to desirable QTL for
agricultural traits, as well as for comparing genomic synteny between 4. cepa and A.

fistulosum using linkage maps.
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Chapter VI: General discussion

Bunching onion is one of the most important vegetable crops in East Asian countries
and represents the highest annual production value of all A//ium crops in Japan. Since the
latter 1980s, F1 hybrid cultivars of bunching onion have been released quickly to the
market. Growers desire cultivars with high yield, quality, and adaptability to a wide range
of environmental conditions. However, published studies on the genetics of bunching
onion have been very limited. Moue and Uehara (1985) have described the mode of
inheritance of cytoplasmic male sterility (CMS) in bunching onion. Yamashita et al.
(2010) have discovered male sterile plants from several bunching onion accessions and
verified the inheritance mode of the male sterility via intraspecific crossings in order to
identify CMS resources. CMS is an indispensable trait for F1 hybrid seed production in
bunching onion. Ohara et al. (2004; 2005b; 2009) examined the seedling growth of Fi
hybrids between various inbred lines or cultivars in bunching onion and demonstrated the
mode of inheritance and heterosis in seedling growth by diallel analysis and QTL analysis
using genetic maps. These results suggest that the breeding of cultivars with vigorous
seedling growth is possible by exploiting heterosis, and the resulting cultivars might be
suitable for plug nursery systems and machine-assisted transplanting. Tsukazaki et al.
(2012) revealed that a major QTL for pungency was located on chromosome 2 in
bunching onion. However, genetic studies of disease resistance and bolting time in
bunching onion had been lacking despite the importance of these agronomic traits. Firstly,
the present study showed the potential of 4. cepa as a useful resource for breeding rust
resistance bunching onion. 4. cepa cultivars were highly resistant to rust fungus P. allii
in controlled environment and field tests. The gene(s) for rust resistance located on
chromosome 1A were found to act mainly during the seedling stage. Secondly, QTL
analysis of rust resistance in the bunching onion parental line developed by recurrent
selection was conducted. Three QTLs with minor effects were detected, although no
major QTL was detected. Thirdly, bolting time was evaluated in two bunching onion
populations under different environmental conditions in order to understand the genetic

relationships between late bolting and vernalization. A major QTL was detected on the
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same linkage group Chr. 2a in the two populations and their maps were compared using
the same set of markers. Fourthly, a linkage map for 4. cepa was constructed using
doubled haploid technology to obtain information for marker-assisted selection in Al/ium
crop species. This general discussion refers to the advanced study of breeding for disease
resistance and late bolting, and offers suggestions regarding development of marker-

assisted selection using genomic information for A//ium vegetable breeding.

1) Genetic studies of disease resistance in bunching onion

In a previous study, 133 cultivars of bunching onion were evaluated for differences in
susceptibility to rust under artificial inoculation in an experimental field; however, no
completely resistant cultivar was found in bunching onion (Yamashita et al., 2005). In the
present study, 4. cepa cultivars including bulb onions and shallots showed high levels of
resistance at different ages to P. allii isolates derived from A. fistulosum. These results
indicate that 4. cepa could serve as a useful resource for breeding rust resistance in
bunching onions. Screening of a set of bunching onion—shallot monosomic addition lines
revealed a high level of resistance only in FF+1A during the seedling stage, suggesting
that the gene(s) controlling rust resistance could be located on chromosome 1A of shallot.
At the adult plant stage, the degree of rust resistance exhibited by MAALSs, multi-
chromosome addition lines, and hypoallotriploids was not consistent under controlled-
environment and field conditions, even though shallot showed distinct rust resistance.
The effects of plant age and position of the inoculated leaf could be considerable, as
discussed by Jennings et al. (1990b). Further, environmental conditions influencing
infection could be variable, particularly during field tests. From the results of the present
study, we can conclude that 4. cepa possesses much greater rust resistance than does A.
fistulosum and that multiple genes quantitatively control this trait. Further investigation
for more accurate assignment of rust resistance genes to shallot chromosomes is necessary.
Introgression of rust resistance of shallot into bunching onion lines could be achieved
using MAALSs. Recombination between homoeologous chromosomes during meiosis has
not been induced by gamma-ray irradiation. However, a minimum of two heteromorphic

bivalents has been observed in meiotic analysis of interspecific hybrids between bunching

79



onion and bulb onion (Peffley, 1986). Complete resistance to downy mildew
(Peronospora destructor) in onion was found in the wild relative 4. roylei Stearn, and
was introgressed into 4. cepa using interspecific hybridization and backcross breeding
(Kofoet et al., 1990; van der Meer and de Vries, 1990). Although A. roylei was
taxonomically assigned to the section Schoenoprasum, its nuclear DNA and cpDNA are
closely related to A. cepa (Havey, 1992; van Raamsdonk et al., 2000; 2003). Successful
hybridization between A. roylei and A. cepa resulted in interspecific hybrid plants and
backcross progenies. The downy mildew resistance locus was located on the distal end of
chromosome 3 via GISH (genomic in situ hybridization) (Scholten et al., 2007) and
mapping study (van Heusden et al., 2000b). Although a large introgressed A. roylei
fragment harbors a recessive lethal factor located proximal to the downy mildew resistant
gene, a recombinant containing a crossover between the lethal factor and the resistance
gene was identified, and a homozygous introgression line was successfully produced
(Scholten et al., 2007). 4. roylei could also serve as a bridging species between A. cepa
and A. fistulosum (Khrustaleva and Kik, 1998; 2000). However, it took about 20 years to
introduce the downy mildew resistant gene successfully into the cultivated onion
(Scholten et al., 2007), so interspecies introgression of genes is a difficult task.

Among bunching onion cultivars, considerable variation has been observed in the
degree of rust severity. This suggests that rust resistance still persists in bunching onion
and is a quantitative trait. QTL analysis is effective for revealing the mode of inheritance
of the traits and is useful for developing selection markers. In the current study, three
QTLs (gRstla, qRst3a, and gRst8a) were detected in different trials and were validated
using a population derived from residual heterozygous lines. Inconsistent results between
trials are partly due to differences in evaluation methods despite a relatively high
correlation coefficient between two experiments (Fig. 3). Fukino et al. (2013) and
Yoshioka et al. (2014) reported a number of QTLs for powdery mildew resistance and
downy mildew resistance in cucumber, the identity of which depend on tests conducted
under different in temperatures or inoculation methods. The rust resistance in bunching
onion is considered to be adult-plant resistance (APR), such as that reported for stripe rust

resistance in wheat (Chen, 2005), because few varietal differences in disease severity are
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observed at the seedling stage in bunching onion (Table 1). APR is more likely conferred
by minor genes that are typically race non-specific, inherited quantitatively, and have
greater potential for durability (Chen, 2005). An APR gene usually contributes partial
resistance and combinations of 4-5 APR genes can act additively to confer adequate
levels of durable resistance (Singh et al., 2011). In wheat, APR genes for stripe rust at 13
loci have been cataloged and more than 160 QTLs that reduce stripe rust severity have
been identified (Rosewarne et al., 2013). Combinations of several such QTLs (genes) are
required to obtain sufficiently high levels of resistance (Singh et al., 2011). Many studies
have shown that selection for resistance can be performed visually in disease nurseries,
but clearly such selection is greatly aided by use of molecular markers. Bunching onion
lines resistant to rust disease have been selected in the field by inoculation or spontaneous
infection. However, disease severity depends on environmental factors and plant
conditions. The use of DNA markers enables reliable selection of resistant plants even at
the seedling stage, especially because selection for disease resistance controlled by
multiple genes requires many plants in a large field, more time, and higher breeding costs

than selection for resistance controlled by a single gene.

2) Genetic studies of late bolting in bunching onion

The bolting time of bunching onion cultivars depends on their low-temperature
requirements (Inden and Asahira, 1990). In the present study, QTL for bolting time were
identified using two populations derived from crosses between parental lines differing in
bolting time. In one population KiC, a parental line with the early-bolting trait, was
derived from the Taiwanese ever-flowering cultivar ‘Bei-cong’, which has minimal
requirements for low-temperature to induce flower initiation. Two QTLs, gB/t/a and
gBlt2a were consistently detected in the two-year field trials. Because markers linked to
each QTL have been validated using populations, these two QTLs will be effective for
predicting bolting time under field conditions. The late-bolting parental line for the
population SaT03 was derived from the recently released cultivar ‘Fuyuwarabe’.
‘Fuyuwarabe’ has novel bunching onion characteristics such as low pungency, short thick

leaves, and a pseudostem (Wako et al., 2010). The late-bolting trait is desirable for
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extending the growing season of this novel type of bunching onion. A single QTL for late
bolting was detected in the SaT03 population during repeated field trials. Comparative
mapping showed that gBlt2a was identical on the KiC and SaT03 linkage maps. These
results suggest that gBlt2a plays an important role in vernalization leading to bolting and
flowering in bunching onion. In order to remove the effect of a low-temperature
requirement, The KiC population was evaluated under a minimum of 10 °C in the heated
greenhouse. gBlt2a was detected, although another QTL, gBlt6a, was observed only in
this trial. This unique QTL could control a flower-induction mechanism different from
vernalization.

Many genes controlling the induction and timing of flowering have been isolated and
characterized in Arabidopsis (Crevillén and Dean, 2010; Dennis and Peacock, 2007). In
Arabidopsis, vernalization results in the epigenetic silencing of the floral repressor
FLOWERING LOCUS C (FLC) (Song et al., 2012). FLC encodes a MADS-box
transcription factor and has been identified as a repressor of the floral transition. The
silencing of FLC allows the photoperiodic induction of FLOWERING LOCUS T (FT),
which encodes a mobile signaling protein involved in regulating flowering (Andrés and
Coupland, 2012). Lee et al. (2013) reported functional characterization of the F7-like
family in onion (4. cepa) and indicated that F'7-/ike genes (AcFT2) were involved in the
vernalization-responsive initiation of flowering, while other FT genes (AcFTI and
AcFT4) were involved in the photoperiodic induction of bulb formation in onion. Baldwin
et al. (2014) revealed significant population differentiation in AcF'72 and AcSOCI in bulb
onion. They also identified a QTL for bolting, designated as AcBlt] on chromosome 1,
using the ‘Nasik Red” x DH2150 population and discussed the association of these
candidate genes with flowering (Baldwin et al., 2014). AcFT2 was mapped to
chromosome 5, and AcFT1 was mapped to chromosome 1 using the W202A x ‘Texas
Grano’ mapping population. However, upon comparative mapping between two
populations, AcFT1 was not closely linked with AcBlt] (Baldwin et al., 2014). Although
AcSOCI1, the homolog of Suppressor of overexpression of constans 1 (SOCI) was
revealed on chromosome 1 using a set of MAALSs (Shigyo et al., 1996), this gene could

not be mapped in either population.
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Mapping studies in bunching onion have implied a high degree of genome synteny
with bulb onion (Tsukazaki et al., 2008), but comparative mapping has not yet been
conducted, because the number of markers common between bunching onion and bulb
onion have been limited. Recently, more than 50,000 unigenes for bunching onion were
obtained from transcriptome shotgun assembly of next-generation sequencing data, and
numerous SSR, SNP, and InDel markers have been developed (Tsukazaki et al., 2015).
These unigene collections should be searched for orthologous candidate genes involved
in flower formation in the future. These informative studies will facilitate the
understanding of genes related to the induction of flowering and comparative mapping of

the genomes of bunching onion and bulb onion.

3) Toward application of marker-assisted selection to the breeding of Allium
vegetables

The efficiency of marker-assisted selection (MAS) using molecular markers closely
linked to genes controlling agronomic traits for decreasing breeding costs and time has
been demonstrated (Tanksley, 1993; Young, 1999; Kumar, 1999; Ohsawa, 2003). The
genetic characteristics of bunching onion and bulb onion had not previously been
investigated using molecular approaches. Molecular genetic analyses will allow
comparative genomics approaches between bunching onion and bulb onion to facilitate
molecular breeding for both crops.

The A. cepa linkage map constructed in the present study consists of 12 linkage groups
with 108 markers including 32 A. cepa EST-SSRs, 31 A. fistulosum gSSRs, 28 A. cepa
non-SSR ESTs, 11 4. cepa gSSRs, five A. cepa SCARs, and a phenotypic marker for bulb
pigmentation, covering 799 cM. This is the first linkage map based on a gynogenic
segregating population in 4. cepa. Although this map has smaller coverage compared
with previously reported bulb onion maps (Martin et al., 2005; McCallum et al., 2012;
Duangjit et al., 2013), the substantial marker resources accumulated in recent years will
enable additional mapping. Many bulb onion-derived markers have been used for genetic
linkage mapping in bunching onion (Tsukazaki et al., 2008). In the present study, seven

SSR markers derived from 4. cepa EST that had previously been assigned to A. fistulosum
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genetic maps (Tsukazaki et al., 2008, 2011) were located on the 4. cepa linkage map.
Additionally, a considerable number of SSR markers derived from bunching onion were
allocated to the A. cepa linkage map. These results permit comparison of genomes of
these species using linkage maps. This map would be useful for molecular mapping and
QTL analysis of other agronomic characters of bulb onion. Furthermore, comparative
mapping between A. cepa and A. fistulosum using common markers would facilitate the
analysis of the genetics of Allium crops.

The availability of genomic information, such as whole-genome sequences, expressed
sequence tag sequences, and high-density genetic linkage maps, facilitates transition from
traditional to molecular breeding. For example, the whole-genome sequencing and
construction of draft genomes have been achieved in tomato, eggplant, and radish (The
Tomato Genome Consortium, 2012; Hirakawa et al., 2014; Kitashiba et al., 2014). In bulb
onion, Baldwin et al. (2012) performed skim sequencing of 6.6 Mbp genomic DNA using
a next-generation sequencer. De novo assembly of transcriptome sequence data has been
used for construction of high-resolution maps (Duangjit et al., 2013; Kim et al., 2015).
Tsukazaki et al. (2015) and Sun et al. (2016) reported more than 50,000 unigenes obtained
from transcriptome shotgun assembly, respectively. However, the genus Allium includes
species with some of the largest nuclear genomes among cultivated plants (12—16 Gbp)
with very low gene density of 1 per 168 kb (Jakse et al., 2008). Several molecular markers
linked to characteristics have been developed in 4. cepa (Gokge and Havey, 2002; Gokce
et al., 2002; McCallum et al., 2006; 2007; Yaguchi et al., 2008; Baldwin et al., 2014) and
A. fistulosum (Ohara et al., 2009; Tsukazaki et al., 2012). Molecular markers for rust
resistance and bolting time QTLs in bunching onion were identified in the present study.
The linkage map developed here will enable assembly of genomic sequence data into
chromosome models. Such genomic information will accelerate the development of DNA
markers linked to important gene functions relevant to agronomic and other traits. It is
expected that these research outcomes will facilitate the breeding of A/lium crops suitable

for the needs of growers and consumers in the future.
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SUMMARY

In Japan, bunching onion (A/lium fistulosum L.) is an indispensable vegetable crop for
its economic value, familiarity in cuisines, and health benefits. Little genetic information
is available about disease resistance and late bolting, which are essential traits in bunting
onion cultivars. Rust caused by Puccinia allii Rudolphi is a serious foliar disease of
bunching onion. To improve rust resistance of bunching onion, it is necessary to identify
genetic resources with high resistance and understand the mode of inheritance of
resistance genes. Late bolting is also one of the most important agronomic traits for year-
round production in bunching onion because it affects the yield and quality of the
harvested products during the spring and early summer. However, genetic and molecular
studies of bolting time in bunching onion have not been reported thus far. The combined
use of doubled haploid (DH) lines and molecular markers in A//ium genetic studies can
provide essential information for breeding programs.

The present studies were conducted to reveal such useful genetic resources and the
genetic basis of rust resistance and late bolting in bunching onion. Further, informative
molecular markers were developed and a linkage map was constructed using a DH
population of 4. cepa to improve selection methods for A/lium vegetable breeding.

(1) Screening and incorporation of rust resistance from Allium cepa into bunching
onion (Allium fistulosum) via alien chromosome addition

Bunching onion (4. fistulosum L.; 2n = 16; genomes FF), bulb onion (4. cepa L.
Common onion group), and shallot (4. cepa L. Aggregatum group; genomes AA)
cultivars were inoculated with rust fungus Puccinia allii isolated from bunching onion.
Bulb onions and shallots are highly resistant to rust, suggesting that they would serve as
useful resources for breeding rust resistant bunching onions. To identify the 4. cepa
chromosome(s) carrying rust resistance, a complete set of eight A. fistulosum — shallot
monosomic alien addition lines (MAALs) were inoculated with P. allii. At the seedling
stage, FF+1A showed a high level of resistance in controlled-environment experiments,
suggesting that the genes related to rust resistance could be located on shallot

chromosome 1A. However, no adult plants from the MAALs, multi-chromosome addition
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lines, or hypoallotriploids exhibited strong resistance comparable to shallot. But the
addition line FF+1A+5A showed reproducibly high levels of rust resistance.
(2) Mapping of quantitative trait loci for rust resistance in bunching onion

Disease severity was evaluated in an F2:3 population derived from crosses between a
resistant line Sa03 and a susceptible line T03, and quantitative trait loci (QTL) analysis
was conducted using the bunching onion genetic linkage map. In two inoculation trials in
the greenhouse, three QTLs related to rust resistance were detected on the linkage groups
la on chromosome 1 (Chr. 1a), 3a on chromosome 3 (Chr. 3a), and 8a on chromosome 8
(Chr. 8a). Although these QTLs were detected in some trials but not others, they were
validated using a population derived from residual heterozygous lines. Variances in rust
resistance explained by those QTLs were relatively low, suggesting that other loci are
involved in rust resistance in line Sa03.

(3) Mapping of quantitative trait loci for bolting time in bunching onion

The bolting times of two F23 populations derived from crosses between cultivars
differing in bolting time were evaluated and QTL analysis was conducted. When the KiC
population, which was derived from a cross between the ever-flowering line Ki and the
late-bolting line C, was grown under field conditions, two QTLs associated with bolting
time were repeatedly detected on the linkage groups 1a on chromosome 1 (Chr. 1a) and
2a on chromosome 2 (Chr. 2a). However, the QTL on Chr. 1a was not detected when the
KiC population was grown in a heated greenhouse under unvernalized conditions. A
single QTL with major effect was identified exclusively on the linkage group Chr. 2a in
the SaTO03 population derived from a cross between early-bolting line Sa03 and late-
bolting TO3 evaluated under field conditions. QTL located on Chr. 2a in both populations
were linked to the same marker loci, suggesting that these regions were strongly related.
Simple sequence repeat loci linked to these QTLs had significant effects on bolting time
in both populations.
(4) Construction of an Allium cepa linkage map using doubled haploid technology

A gynogenic mapping population for constructing the linkage map of 4. cepa was
produced from Fi plants of a cross between DH shallot and bulb onion lines. This

population of 100 plants included 46 haploids (2n = 8), 40 diploids (2n = 16), and 14
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near-polyploids that were obtained from 10,604 unpollinated flower cultures. All of these
were confirmed to have been derived from female gametes by analyzing co-dominant
markers. Using this population, we constructed a map consisting of 12 linkage groups
with 108 markers covering 799 cM. Chromosome assignments of 12 linkage groups were
identified using MAALSs. Bulb pigmentation, which was used as a phenotypic marker,
was closely linked to the DFR gene of on chromosome 7. Five molecular markers were
located in close proximity to Ms, the fertility restoration locus for cytoplasmic male

sterility (CMS) on chromosome 2.
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