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Summary 
 
1 Prologue 

Sugi (Cryptomeria japonica) is a conifer endemic to Japan that has many 
superior characteristics for producing high-quality timber. Sugi grows straight 
and quickly.  Because sugi wood has a fine grain and is easy to process, it has many 
end uses. In Japan, sugi has traditionally been used to build houses and to create 
wooden articles used in daily life. As a result of its ease of processing, sugi has long 
been planted as a profitable timber tree. Indeed, sugi has been grown intensively 
in Japan since the middle of the 20th century. As a result, sugi accounts for 
approximately 43 % of the total area of forest plantations in Japan. However, 
in recent years, wood prices have dropped, meaning that the appropriate 
evaluation and use of sugi wood has declined. 

Because wood is the product of living trees, its characteristics can vary 
greatly, various performance including the density and strength. It is well 
known that the properties of sugi wood show wide variations. For example, 
the strength of sugi wood harvested from Tottori Prefecture varies from 3.5 to 
12 GPa. This wide variation in strength is not optimal for industrial uses.  
Thus, it is important to determine the characteristics of wood that may affect 
performance prior to industrial use for the effective use of the wood and the 
establishment of an appropriate price. Rapid and cost-effective methods of 
evaluating the properties of wood are required for forest tree breeding 
programs and for sorting wood resources to determine the appropriate end 
products. 

One technique to nondestructively estimate the strength performance of 
wood uses the stress-wave method. The purpose of the current study was to 
apply the stress-wave technique to sugi wood grown in Tottori for the 
following purposes: 1) to select strong trees for breeding, 2) to observe the 
drying process of felled trees and logs, and 3) to evaluate the 
water-fluctuations in standing trees. 
 
2 Selecting new varieties of sugi for high-strength performance 

The recent decline in wood prices has discouraged forest owners from 
properly managing their plantations and second plantiing. One way to 



counteract this situation is to breed trees for higher-strength wood that can 
then command a higher market price. To breed such wood, it is necessary to 
first nondestructively evaluate the strength of standing trees and then select 
trees with good wood strength that can be used for breeding programs. 

Measuring stress-wave velocity is a nondestructive method that can be used 
to assess the stiffness of standing woody stems. In this study, stress-wave 
propagation time (SPT) was measured in the stems of sugi standing trees using 
a Fakopp microsecond timer (Fakopp Enterprise, Hungary ). In normal Fakopp 
measurement, the sensors are arranged parallel to logs or standing trees at 
1.0-m intervals and sensors are hit manually with a hammer. However, SPT 
values tend to vary greatly and it is difficult to obtain consistent results using 
this method . This issue with repeatability is likely the result of the sensor 
arrangement and the method of hitting sensors. Therefore, we  examined 
several aspects of the measurement technique, such as the striking force of the 
hammer as well as the alignment and interval of the sensors, to obtain more 
reliable SPT values.  

The results of this investigation indicated that under optimal conditions, the 
sensors are hit with a constant force using the simple machine which was 
made with a knock-type ball-point pen and the sensors are aligned diagonally 
against the longitudinal direction of the logs at 1.5-m intervals. The 
coefficient of variance for the measured SPTs using this optimized method 
was reduced to 1/20 that of the values gained by conventional methods. There 
was a meaningful strong correlation between the values for strength 
performance of standing trees measured using the optimized method and the 
actual values for timber strength performance taken after trees were felled 
(r=0.94, p<0.01).  

After determining the optimal conditions for the wave stress method, we 
then used the method to select sugi trees with particularly high-strength wood 
for breeding in the publicly owned forests of Tottori Prefecture. During this 
investigation, we discovered more than one sugi tree that had greater wood 
strength than the average hinoki (Chamaecyparis obtusa). We gathered some 
branch from these selected sugi trees and planted the cuttings. The trees are 
currently being propagated and we will register the clones as a new variety. 
This new variety is expected to provide a genetic resource for future tree 



breeding programs in Tottori. 
 
3 Application of the stress-wave technique to manage drying of decked logs 

Since the Great East Japan Earthquake and Nuclear Disaster, the use of 
wood for energy production has increased. Wood is often made into chips for 
fuel but the water content of logs strongly affects the heat generated by 
woodchips. However, it is very difficult to dry woodchips in a silo. Therefore, 
careful management of the wood-drying process is very important during the 
period when logs are stored for later processing into woodchips. 

However, logs are typically left in large logging decks in the stockyard, 
making it very difficult to properly manage the water contents in decked logs. 
Therefore, we decided to test the most efficient way to load logs for drying 
using our improved technique for determining water content based on SPT. 
First, we created a small pile of decked logs and then measured the weight of 
each log at regular intervals of date using a standard technique. We also 
measured the SPT of the butt ends of logs using our improved technique. 
There was a highly significant, positive correlation between the weight of logs 
during drying and their SPT (r=0.93,p<0.01). This finding means that it is 
possible to manage the process of drying piled logs by measuring their SPT. 

Using this technique, we evaluated the differences between water contents 
in piled logs according to how logs were loaded in large logging decks in the 
stockyard. The results of this investigation indicated that the water content of 
the logs decreased more quickly in large piles when they were piled crosswise 
than under other piling arrangements. Water contents also varied depending on 
the season and the weather. Thus, a considerable amount of time was required 
to determine which logs would not be able to produce woodchips with 
sufficiently low water content. Through this investigation, we were also able 
to determine differences in the time needed for drying logs according to the 
start date of the drying season. These results will help to determine how logs 
should be loaded and dried in large piles for woodchip production. 
 
4 Monitoring the natural drying process of felled sugi trees by measuring 

stress wave properties. 
The sugi tree is an excellent source of timber; however, its water content is 



high and it must be dried, often via a kiln, prior to use. Hagarashi, or 
natural-drying is a traditional method in which timber is allowed to dry 
naturally after felling. Because hagarashi wood has an appealing color and 
fragrance, it commands a relatively high price on the wood market. However, 
the production of hagarashi wood increases the number of on-site steps 
required to process the wood, meaning that shipment timing is more 
complicated. Determining the period necessary for natural drying is important 
for effective hagarashi wood processing.  

Therefore, study of the time needed for natural drying have been carried out. 
However, the conventional technique requires one to cut a sample tree with a 
saw and measure the water contents. Because sugi tend to have large 
individual differences in water content, a nondestructive technique is 
desirable for determining the appropriate time for drying. However, up till 
now, no methods have been developed to nondestructively measure changes in 
water content during the natural drying process. Yet, we found a highly 
significant correlation between the weight of logs during drying and their SPT. 
Thus, we tried to measure the SPT of felled sugi trees during natural drying 
for grasp of the time needed for natural drying. 

We found that the SPT decreased rapidly for approximately 2 months after 
felling and then reached equilibrium, indicating that the water content of the 
felled trees declined for approximately 2 months and then became stable. This 
result was supported by research of the past. Our results demonstrate that one 
can nondestructively determine the water content of sugi logs by measuring 
their SPT. Using this information, we can determine the periods necessary for 
natural drying under various felling patterns, which should make the natural 
drying process easier to carry out. 
 
5 Evaluating seasonal changes in the water contents of standing tree trunks 

trees using the stress-wave method 
Determining the water content of standing tree trunks is important not only 

to assess potential uses for wood after felling but also to determine other 
aspects of tree growth cycles. However, there are few studies on seasonal 
changes in the water content of standing trees, including broadleaf species. 
Yet, anecdotal evidence from individuals concerned with forestry suggests 



that the water content of standing trees changes seasonally.  
Because water content appears to be correlated with SPT values, changes in 

the water content of standing trees would influence the selection of trees for 
high-strength wood using the stress-wave method. Therefore, we attempted to 
determine changes in the water content of standing sugi trees by measuring 
trends in SPT over a long period and analyzing whether any seasonal changes 
occurred in SPT values. 

The results revealed that the water content of the standing trees did 
demonstrate seasonal changes. The results revealed that the water content of 
the standing trees did demonstrate seasonal changes. However, because these 
seasonal changes only amounted to a few percent of the total SPT value, they 
are unlikely to influence the selection of trees for strength performance. 
Despite this, information on small changes in water content and, hence, timber 
weight would be useful for suppliers who wish to ship lighter trees. In 
addition, this information should be useful in other research fields because we 
expect that the technique will be also effective for tree species other than sugi. 
 
6 Conclusions 

In this study, we applied the stress-wave method towards improving the 
strength and, hence, the value of sugi wood. We developed an improved 
technique for the stress-wave method to measure SPT, and achieved 
high-precision SPT measurements. Using these results, we were able to 
determine and select individual trees with high-strength wood and develop a 
new, higher-strength sugi variety. Furthermore, we were able to evaluate 
changes in water levels in the decked logs, felled trees, standing trees.  Sugi 
is expected to be the most important forestry tree in Japan in the future.  
Therefore, the results of this study should contribute greatly to the success of 
future forestry. 
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