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Chapter 1  

Introduction 
 

1.1 Research Background 

Agricultural sector still plays as the key role of Indonesian economy as it 

contributes as the main income to majority of the household. As a tropical country, 

Indonesia possesses favorable condition of both climate and soil elements to support 

agricultural activities. Sufficient average rainfall and sunshine along the year, as well as 

abundant fertile soils in this country make Indonesia as the major producer of various 

agricultural products, such as rubber, palm oil, cocoa, and coffee.  

Among the main commodities of this country, palm oil is considered as the 

product with greatest potential for further development because of the rising demand of 

palm oil which is marked as the world’s most traded vegetable oil. The palm oil is 

extracted from the fruit of oil palm tree and is mainly used as substances in food, 

cooking oil, hygiene products, and a source of bio-fuel (Budidarsono et al. 2013, 

Verheye 2010). In addition to its high market prospect, the production cost of palm oil is 

known to be cost- and area-effective compared to other oil crops such as soybean and 

sun flower (Dislich et al. 2016). The production of palm oil also requires labor intensive 

works, which means the development of oil palm plantation would widely open the job 

opportunity for people in rural area where the cultivation is normally taken place. On 

the other hand, the labor wage in Indonesia is much lower compared to those in other 

countries, and consequently, reduces the production cost. These factors make oil palm 

as one of the most profitable cash crops as well as the most efficient oil crop across the 

world, while at the same time, contribute to the rural area development (Corley and 

Tinker 2016).  

The oil palm (Elaeis guineensis Jacq.) is an African origin perennial crop that 

grown throughout the low-land equatorial tropics, mainly in Africa, South East Asia, as 

well as South and Central America. The high profit of palm oil leads to the expansion of 

oil palm cultivation in Indonesia in recent decades. During the last 20 years, the 

harvested area of oil palm fruits has been expanded from about 1.8 million ha in 1994 to 

more than 10 million ha in 2014 throughout the country, and is projected to continue 
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increasing (Ministry of Agriculture of Indonesia 2015). In 2014, Indonesia produced 

126.68 million tons of oil palm fruits and shared 46% of total world’s production (FAO 

2017). The expansion has becoming wilder and has brought both pro and contra within 

various stakeholders, scientists and environmentalists. This issue is considered as a 

serious threat to the tropical rainforest and biodiversity as well as land-use management 

(Fitzherbert et al. 2008, Vijay et al. 2016, Wilcove and Koh 2010), while some others 

claim that oil palm brings great impacts to rural household and Indonesian income, and 

stores more carbon than most of other alternative agricultural land uses (Basiron and 

Weng 2004, Lamade and Bouillet 2005, Sayer et al. 2012).  

As the optimum oil palm cultivation is constrained by specific conditions, such 

as rainfall, land altitude, and type of soil, its establishment in Indonesia is particularly 

concentrated in Sumatra, Kalimantan, and Sulawesi Islands. Among these islands, 

Sumatra is especially favorable due to its rich volcanic soils and suitable climate. 

However, the shortage of good and available resources of mineral soil, advancements in 

technology, and the high demand of agroforestry products have driven the oil palm 

planting on peat soil (Corley and Tinker 2016). Miettinen et al. (2012) estimated more 

than 1 Mha or about 15% of total peatland in Sumatra and about 258.000 ha or 4% of 

Figure 1.1 Extent of oil palm plantations on peatland in 2010 (Miettinen et al. 2012) 
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peatland in Kalimantan have been developed for industrial oil palm plantation in 2010 

(Fig. 1.1). This fact has drawn even more controversy because land conversion on 

peatland might harm the environment more than on mineral soil. Tropical peatland store 

abundant of carbon density, contain large amount of organic matters and has high water 

holding capacity (Page et al. 2011). These characteristics make peatland become less 

suitable for any agricultural activities and require additional treatments of peat 

management before the cultivation, such as drainage and compaction, to control the 

water table condition (Melling et al. 2011). On the other hand, drying effect from any 

disturbances to this ecosystem might cause peat become more vulnerable to fire and 

enhanced CO2 loss from decomposition process (Miettinen et al. 2012, Page et al. 

2002).  

Development of oil palm plantation was originally initiated by the Indonesian 

government not only for the domestic consumption purpose, but also as one of export 

commodities along with rubber and cocoa. Hence, the state or private companies were 

commonly entrusted to manage such kind of industrial plantations in large-scale area, 

while the smallholders were more focused on the traditional agriculture crops 

cultivation, such as rice, soybean, maize, and vegetables. However, the involvement of 

the smallholders to the oil palm expansion has been significantly increased and has 

taken about 40% of the total oil palms area in recent years (McCarthy 2010). While this 

activity was started with the support provided by the government through nucleus estate 

and smallholder (NES) schemes in 1980s, the development by smallholders nowadays 

is mainly occurred independently, without any contract or direct support from state or 

company (Euler et al. 2015). The later type of plantation is commonly termed as 

independent smallholder. Cultivation by this smallholders usually follows the existence 

of large plantations complemented with palm oil mills, because oil palm fruits must be 

processed within 48 hours after they are harvested (Budidarsono et al., 2013). This kind 

of expansion is more uncontrollable and might be more harmful to environment and 

land-use management because any household could attempt to cultivate oil palms 

anywhere, regardless the size of their owned land. The plantations are usually randomly 

distributed, covering small area, with average size from 2 ha up to 5 ha, and situated 

between various land covers (Lee et al. 2014). Therefore, the location of independent 

smallholders’ oil palm plantations is almost undetectable and hard to differentiate 

among the other types of land cover.  
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On the other hand, due to the lack of management practice and access to the oil 

palm mill, independent smallholders commonly earns lower oil palm yields and 

incomes compared to the private estate and scheme plantations (Lee et al., 2013). This 

problem becomes more complex for the farmers who grow oil palms on peatland area, 

considering the characteristic of peatland that is not really suitable for oil palm 

cultivation. Peat management procedures prior the planting are hardly applied by 

smallholders because of their limited financial condition to carry out such high-cost 

process, inadequate knowledge regarding to the peat characteristics, and sometimes 

poor management ability. Cultivation under this condition may lead to higher tendency 

of oil palms to lean as the trees grow and more tree toppling in early stage, and as a 

result, yield production will decrease significantly (Corley and Tinker 2016).  

While uncontrolled expansion caused by independent smallholders should be 

avoided, improvement and recovery for the existed oil palm to increase the yield 

production are still important to enhance socio-economic condition of smallholders, and 

at the same time to overcome the environmental problems. As the effort, comprehensive 

study on the identification of smallholders’ oil palms expansion area is necessary for 

detail monitoring of small-scale plantations. On the other hand, spatial mapping of the 

distribution of tree conditions in existed oil palms planted on peatland is essential to 

support rehabilitation process, control, and implementation of best management 

practices for sustainable oil palm plantation (Lim et al., 2012). 

Considering the wide distribution and large area of oil palms expansion, remote 

sensing has become the most suitable method to support this study. This technology 

provides the ability to monitor land cover in various scales. Identification of specific 

land covers such as oil palm plantation has been proven by several studies. Miettinen, et 

al. (2010) had succeeded to discriminate the oil palm plantation with other woody 

plantations using backscatter data of ALOS PALSAR mosaic, while Santos and Messina 

(2008) has applied RADARSAT texture information, Landsat ETM+, and digital video 

data fusion for modeling African oil palm in Ecuadorian Amazon. However, the 

previous studies are mainly attempted to carry out the classification for private estate oil 

palms, which covering large area. On the other hand, while the application of remote 

sensing for land use and land cover monitoring in tropical peatland has also widely done 

(Jaenicke 2010, Koh et al. 2011), there are still limited studies about classifying the 

vegetation conditions, especially for smallholders’ oil palms. Thus, the identification of 
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small-scale smallholder’s plantation and its tree condition are still practically hard to do 

using currently available data, and any further study regarding to this will be helpful for 

monitoring the land use change caused by smallholder’s oil palm expansion and 

rehabilitation for increase the yield of smallholder’s plantations cultivated on peatland 

area.  

Multi-sensor and multi-scale images acquired by Advanced Land Observing 

Satellite (ALOS) are considered as the proper data to conduct the study related to 

smallholder’s oil palm plantations. Penetration ability through tree canopy and 

backscatter characteristic of Phased Array type L-band Synthetic Aperture Radar 

(PALSAR) data offer potential tool for vegetation type identification. Fully polarimetric 

PALSAR data is particularly useful as it provides more information related to the object 

scattering (Negri et al. 2016). Considering the frequent cloud cover in the tropics, active 

remote sensing is very much useful for monitoring purpose. On the other hand, the 

multispectral image derived by AVNIR-2 sensor offers wide range of spectral 

information for identifying other land cover types. Thus, further studies using these data 

are considered to be effective for improving smallholders’ oil palm management.  

 

1.2 Research Objectives  

The main purpose of this study is to explore the methodology of ALOS PALSAR and 

ALOS PALSAR-2 application for identification and mapping of areal distribution and 

tree conditions of smallholders’ oil palm plantations. In order to achieve this purpose, 

this study focused on the following specific objectives:  

(1) to explore the characteristic of oil palm plantation that can be identified by remote 

sensing data,  

(2) to examine the ability of dual and full polarization of ALOS PALSAR data in 

discriminating oil palms from other land cover types,  

(3) to identify the best integration methodology of ALOS-Sensor data to detect 

smallholders’ oil palm plantations, 

(4) to investigate the most effective backscatter and polarimetric parameter for 

identifying oil palm tree conditions on peatland area 
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1.3 Outline of Dissertation  

This dissertation is organized into five chapters. This chapter has described the 

general background of this study, motivation of the research, as well as several targets to 

be achieved by conducting the study.  

Chapter 2 provides information about the main object of this study, which is the 

smallholder’s oil palm plantation, from the plant characteristic up to the explanation of 

smallholder’s oil palm expansion in Indonesia. Moreover, a brief explanation about 

general methodology used in this study, consist of polarimetric SAR and textural 

analysis, are also described. 

Chapter 3 mainly discusses the methodology to discriminate smallholder’s 

plantations from other land cover type. This chapter includes the study using the 

integration of bot SAR and optical sensor of ALOS satellite data, as well as examination 

of fully polarimetric SAR ability to detect this object.  

In chapter 4, the exploration of ALOS-2 PALSAR-2 data was explained. In this 

study, the analysis was conducted for more detail target, which is the oil palm tree 

condition by using combination of textural and polarimetric decomposition method. 

General discussion about overall result of the study was explained in chapter 5. 

This chapter also describes various limitations of the current study and some 

recommendation for future study focusing on smallholder’s oil palm plantation. 
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Chapter 2  

Theoretical Framework 
 

2.1 The Oil Palm 

As the main object of this study, extensive understanding about oil palm tree and 

smallholder’s oil palm plantation are essential. Comprehensive knowledge about the 

physical growth and requirements for oil palm cultivation will be useful for 

understanding the characteristic of oil palm tree, as well as for designing the best 

methodology to discriminate oil palm from other land cover. On the other hand, 

information about variety of oil palm managements and factors affecting expansion are 

necessary for better understanding of oil palm development pattern by the smallholders.  

 

2.1.1 The origin and growth of oil palm 

Oil palm is a tropical crop which mainly grown in the flat and lowland area. It is 

originated from Africa, in particular to West Africa, and was originally cultivated by 

independent small farmers (Budidarsono et al. 2013). Various physical evidences found 

in this area have convinced the use of oil palm for human activities from thousands 

years ago. Since that time, oil palm has been expanded throughout the equatorial tropics. 

The oil palm (Elaeis guineensis Jacq.) is a species of Arecaceae or Palmae family which 

include many plants with enormous economic importance. It is also grouped together 

with the coconut under Cocoideae subfamily, while the genus Elaeis is derived from 

Greek word elaion, which means oil. The other species of this genus is called Elaeis 

oleifera or American oil palm. Unlike E. guineensis, E. oleifera is rarely planted 

commercially, and therefore, the term oil palm is commonly referred as E. guineensis 

instead.  

The early growth stage of oil palm tree is begun with the formation of wide stem 

base and a few of leaves produced in spiral succession from meristem. The number of 

leaves produced increase after 2 years of planting as much as 40 opened leaves per year, 

but then it declines as the tree grows, stabilizing after 8-12 years. The un-branched tree 

trunk is started to be formed after three years of planting, with the rate of grow is about 

25 to 50 cm per year, depending on the environmental and hereditary factors. The height 

may reach 20 m height at the age of 25 years old, and is considered to be not effective 
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for production anymore, because the fruit harvesting process at this height is very 

difficult and time consuming. Therefore, regeneration process by replanting new trees is 

usually carried out to the oil palms after 25-30 years of planting (Corley and Tinker 

2016, Sheil 2009, Verheye 2010).  

The oil palm tree is categorized as a monocotyledon species with male and 

female inflorescences form separately on the same palm. The cluster fruits of oil palm 

are developed on the short stems close to the trunk, and will be ready for harvesting 

after 5-6 months after flowering. A bunch of mature oil palm fruits may contain 1,000 to 

4,000 fruits with 15-25 kg weights, depending on the tree’s age and vigor (Verheye 

2010). Product of oil palm tree, the palm oil, is produced by extracting the fruit and seed 

of oil palm. The oil produced from both parts has different fatty acid, and therefore has 

different uses. Crude palm oil (CPO) produced from the outer mesocarp is usually used 

in food, while palm-kernel oil, extracted from the endosperm, is mostly used for 

non-edible products, such as soap, detergents, cosmetics, as well as industrial and 

agricultural chemicals. About 5 to 7 tons/ha/year of oil yield can be produced from oil 

palms planted under good condition. This yield is 3-8 times higher than any other oil 

Figure 2.1 Oil palm tree (Elaeis guineensis) 



9 
 

seed crop, which makes oil palm as the most area-effective vegetable oil crop (Sheil 

2009, Wahid et al. 2005). 

 

2.1.2 Requirements for oil palm cultivation 
2.1.2.1 Climatic requirements  

As a tropical crop, oil palm demands high and stable temperature with plenty 

rainfall and sunshine throughout the year. The tree may be growing with daily 

temperature range from 21 C to 32 C, with optimal mean between 24-28 C. 

Cultivation at high altitude or at places beyond 15 N/S is still possible, however, slow 

vegetative growth might be happened due to the low mean temperature. On the other 

hand, high temperature above about 38 C is also unfavorable as it may affect the 

photosynthesis.  

The other important factors supporting oil palm growth is supply of water. 

Sufficient amount of rainfall is particularly crucial as it affects to soil water content, 

surface run-off, as well as evapotranspiration. Average rainfall of 150 mm/month with a 

minimum 100 mm/month, and annual mean ranging from 1,800 mm to 2,500 mm are 

considered as the best condition. Decrease in potential of oil palm yield might be 

occurred due to deficit of water when the dry periods happen for more than 2 

consecutive months, while severe stress would be arisen after exceeding 3 months. 

However, temporary flooding or sudden increase in amount of water may also cause 

high damage on young or immature oil palms, while mature palms are less affected. 

Even though water availability and nutrients usually give higher effects, a high 

level of solar radiation is also necessary. It has been proven that solar penetration 

through the canopy affects the growth rate and fruit bunch production, as the oil palms 

planted in the open field generally grow faster and produce higher yields than those 

planted under closed canopy. Shading palms make the growth become slower for all 

ages and reduce the production of female inflorescences for mature palms. As an 

approach to measure solar radiation, sunshine hours are used as they are normally 

well-correlated. Several experiments regarding this matter indicate 5 hours/day of 

sunshine is required for oil palm cultivation (Verheye 2010).  

Corley and Tinker (2016) stated that Adiwiganda et al. (1999) has classified 11 

agroclimatic zones in Indonesia based on the suitability for oil palms cultivation, in 

regard to rainfall, sunshine hours, and length of dry periods, as shown on table 2.1. 
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Table 2.1 Agroclimatic zones for oil palm cultivation in Indonesia 

Zone Characteristics Distribution ASU 

I Rf = 1750-3000mm; < 1 

dry months; sd = 6 h/day 

Eastern part of North Sumatra; eastern of 
Aceh; northern of Riau; northern and 
southern part of Kepala Burung Papua; north 
coast and southern part of Papua 

AS1 n 

II Rf = 1750–3000 mm; 1–

2 dry months; sd = 6 

h/day 

Most of Riau; eastern Jambi; most of 
northern part of South Sumatra; most of 
Central Kalimantan; Aru Islands of Papua; 
small part of southern Papua 

AS1 k1  

III Rf >3000 mm; < 1 dry 

months; sd = 5.0–5.5 

h/day 

Western part of Aceh; western part of North 
Sumatra, Nias Island, northern part of West 
Sumatra 

AS2 m2 

IV Rf >3000 mm; 1–2 dry 

months; sd = 6 h/day 

West Kalimantan; most of western part of 
Papua  

AS2 h1k1 

V Rf >3000 mm; 1–2 dry 

months; sd = 5.5–6.0 

h/day 

Southern part of West Sumatra; northern part 
of Bengkulu 

AS2 h1k1m1 

VI Rf = 1450–1750 mm; 1–

2 dry months; sd = 5.0–

5.5 h/day 

Small area of northern part of East 
Kalimantan; Central Sulawesi (except Palu 
and surroundings); northern part of Maluku 

AS2 h1k1m2 

VII Rf = 1450–1750 mm; 2–

3 dry months; sd = 5.0–

5.5 h/day 

Southern part of South Sumatra, Bangka and 
Belitung; eastern Lampung; most of East 
Kalimantan; small area of eastern part of 
Central Kalimantan; most of South 
Sulawesi; southern part of Papua borders 
with Papua New Guinea 

AS3 h1k2m2 

VIII Rf = 1750–3000 mm; 3–

4 dry months; sd = 5.0–

5.5 h/day 

Western part of Lampung; small area of 
western part of West Java 

AS3 k2m2 

IX Rf = 1250–1450; 3–4 dry 

months; sd = 5.5–6.0 

h/day 

Palu and surroundings; most of Sulawesi 
Tenggara; central Maluku; South Maluku; 
East Timor 

AS3 h2k2m1 

X Rf = 1250–1450 mm; >4 

dry months; sd = 6 h/day 

Eastern part of West Java; central Java; East 
Java; Bali; southern part of South Sulawesi; 
southern part of Sulawesi Tenggara 

ANS h2k3 

XI Rf <1250 mm; >4 dry 

months; sd = 6 h/day 

West Nusa Tenggara; East Nusa Tenggara ANS h3k3 

Source: Adiwiganda et al. (1999) in Corley and Tinker (2016) 

ANS: agroclimatically not suitable; AS: agroclimatically suitable; ASU: agroclimatic suitability unit; h: rainfall as limiting factor; 

k: dry month as limiting factor; m: sunshine duration as limiting factor; n: normal (without any limiting factor). 

Rf: Rainfall; sd: sunshine duration; 1: light intensity; 2: moderate intensity; 3: strong intensity 
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2.1.2.2 Soil condition 
In case of soil requirements, oil palm has quite high toleration for wide range of 

soil variations. The suitability of soil mainly depends on its physical properties which 

determine the stability of soil structure, rather than chemical properties or nutrient 

supply, which can be managed by an appropriate application of fertilizer. The optimal 

soil for oil palms is the one with fine structure, has little gravel, has a texture that good 

enough for drainage, and contains sufficient soil organic matter. Soils with high clay 

content, loam, or silt-dominant are particularly suitable to produce good yields (Pirker 

et al. 2016). 

Corley and Tinker (2016) also mentioned that wetness is one of soil suitability 

criteria designated for South East Asia by Paramananthan (2000). The wetness criterion 

means the soil water content and moisture conditions which should be neither 

excessively or insufficiently drained nor prone to flooding. Even though mature oil 

palms can tolerate temporary flooding, a high water table or low hydraulic conductivity 

may cause anoxic condition in the soil, and affect the palms growth and productivity.  

 
2.1.2.3 Other requirements  

The other requirements for oil palm cultivation consist of the topographic 

condition and land clearing. Planting oil palms on steep slopes is highly not 

recommended as it may increase erosion risk, as well as the effort and cost of 

establishment, maintenance, and harvesting. While oil palms can still be grown on the 

land with slope up to 16˚, flat land with 0 – 4˚ slope inclination is considered as the 

most favorable for the cultivation (Pirker et al. 2016). 

As oil palms are usually planted on the land which previously used for other 

vegetation, land clearing is one of the important procedures prior to the development. 

The initial vegetative cover should be eliminated, and the soil must be freed-up from 

pests, diseases, and other hazard that might be harmful for the crop. This procedure is 

more complex when it is applied to forest concession area, because evacuation of huge 

amount of vegetative matters requires long time and much labor work. Several 

techniques, such as manual uprooting for low vegetation, and mechanical down-pulling 

of the old trees using bulldozer are generally applied in large oil palm estate. However, 

land clearing by burning the previous land cover is still used, particularly by the 

smallholders, because this method is considered as an easy and low-cost tool comparing 
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to other techniques (Verheye 2010). Application of this method, especially during dry 

season, has drawn global attention and has been forbidden as the amount of smoke from 

the fire cause high air pollution and become serious threat for environment as well as 

public health.  

 

2.1.3 The expansion of oil palm plantation in Indonesia 

The initial oil palm seedlings brought to South East Asia were planted at 

Buitenzorg (currently known as Bogor) Botanic Garden in Java Island, Indonesia in 

1848. The seeds from these palms were then distributed to other areas, particularly to 

Sumatra Island, and were originally planted as ornamental plants. Commercialization of 

the crop was started to be developed about over 60 years later and established mainly in 

east coast area of Sumatra (Corley and Tinker 2016).  

Along with growing global demand for palm oil, in late 1690s, Indonesian 

government began to focus on the development of oil palm plantations through 

state-owned companies which was integrated with transmigration program to provide 

labor workers. The state-owned plantations played crucial role in oil palm cultivation 

until several policy changes triggered the establishment by private companies and 

smallholders. Statistical data provided by The Ministry of Agriculture of Indonesia 

show rapid expansion of private estate and smallholder’s oil palms since early 1990s, 

while no significant increase of state-owned plantation area can be seen (Fig. 2.2).  

 
Figure 2.2 Oil palm production area by farming category (Source: Ministry of Agriculture 

of Indonesia 2015) 
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Indonesia has the largest and the most rapid growth of harvested oil palm areas 

among other countries. The harvested area of oil palm fruits has been increased by more 

than ten times, as much as 1 million ha in 1990 to 10.8 million ha in 2014 (Ministry of 

Agriculture of Indonesia 2015). Distribution of oil palm plantations in Indonesia itself is 

mainly concentrated in Sumatra Island, with the largest area could be found in Riau 

Province (Fig.2.3). However, large investment from both local and foreign private 

companies, as well as high interest of smallholders to cultivate oil palms has driven the 

expansion in other areas, such as Kalimantan, Sulawesi, and Papua Islands.  

On the contrary of its contribution to the national income and development of 

rural area, expansion of oil palm has drawn much controversy because of the rapid land 

conversion to oil palm (Fitzherbert et al. 2008, Wilcove and Koh 2010). While some 

studies found that generally the land converted to oil palm was initially either degraded 

or other agricultural land, the expansion on conservation area, such as pristine and peat 

swamp forest, which have rich biodiversity and store huge amount of carbon, are still 

occurred mainly in some part of Sumatra and Kalimantan Islands. 

 

2.1.4 Smallholders’ oil palm plantation in Indonesia 

The smallholder oil palm farmers started to develop their own plantation not 

long after the oil palms plotted as cash crop. After the establishment of state-owned 

plantation, the government encouraged the smallholders to grow oil palms through a 

scheme called Perkebunan Inti Rakyat (PIR) or Nucleus Estate Scheme (NES). The 

farmers, which is named as smallholder-plasma farmers, received several supports from 

 
Figure 2.3 Oil palm distribution map in Indonesia 
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the state-owned companies, including seedlings, technical assistance, finance, as well as 

guaranteed support price for fruits supplied by them. However, In 1990s governmental 

role started to decrease over time and replaced by the partnership with private enterprise 

after the new scheme, called Primary Cooperative Credit for Members (Koperasi Kredit 

Primer untuk Anggota - KPPA), was enforced. With the new policy of decentralization 

system, local communities and farmers, whose crop production was unsuccessful, could 

transform their land to oil palm plantations. This situation caused more smallholder to 

cultivate independently, separate from the companies’ and plasma plantation 

(Budidarsono et al. 2013, Glenday and Paoli 2015).  

Unlike the state-owned or private estate, which are developed at the 1000ha or 

larger, smallholders’ oil palm plantations are generally cover only a few hectare area 

(Corley and Tinker 2016, Lee et al. 2014). It is stated in The Ministry of Agriculture of 

Indonesia’s Decree No. 98/2013 that one can be qualified as ‘smallholder farmer’ if 

only the farmer plantations less than 25 ha in size. In case of plantations managed by 

plasma-farmers in association with private company or state, the plantations of several 

farmers are usually arranged and located in the same area close to the company’s 

plantation. On the other hand, the independent smallholders, are generally develop oil 

palms in much smaller area, ranged about 2-5 ha of land (Glenday and Paoli 2015). This 

type of farmers is not locked in to formal partnerships and is free to sell their fruit bunch 

to any agents (Vermeulen and Goad 2006). Therefore, independent smallholder could 

establish their plantation anywhere as long as they can make sure to sell their fruits to 

be processed within 48 hours after harvesting.  

Unfortunately, due to lack of management practice, yields of smallholder’s oil 

palms are usually lower than estate yields. Vermeulen and Goad (2006) showed that 

scheme smallholders in Indonesia generally produced 90% of estate yields, while the 

independent smallholders’ yields only 57%, mainly because of the poor availability of 

good quality seed stock, access to the oil palm mills, financial problem, and sometimes 

lack of technical knowledge of oil palm cultivation (Corley and Tinker 2016, Papenfus 

2000). However, in spite of their lower productivity, as shown in Fig. 2.2, smallholders 

currently still play very important role in the palm oil industry of Indonesia as they 

manage up to 40% of total oil palms area in recent years (McCarthy 2010). It is 

therefore, management improvement of smallholder sector is necessary in order to 

achieve sustainable development of oil palm plantation.  
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2.2 Basic Theory of Polarimetric Synthetic Aperture Radar (PolSAR) 

Remote sensing is defined as the science and art of obtaining information about 

object, area, or phenomenon through analysis of the data that acquired by device and is 

not in direct contact with the target (Lillesand et al. 2008). Based on the sensor type 

being used, the acquisition method in satellite remote sensing is divided to passive and 

active methods. In passive remote sensing system, data acquisition highly depends upon 

existed energy sources such as the sun or earth itself. The sensor only receives the 

reflectance of the energy from objects. On the other hand, the sensor in active system 

radiates the electromagnetic energy and receives the energy scattered back to sensor by 

itself. This system has ability to measure anytime because it does not depend on the sun 

light. In addition, the long wave that commonly used in this system is particularly useful 

for measurement at any weather conditions as it is able to penetrate cloud cover (Murai 

et al. 1993, CCRS 2014, Richards and Jia 2006). 

 

2.2.1 Polarimetric Synthetic Aperture Radar (PolSAR) 

Synthetic Aperture Radar (SAR), the most common radar system being used, 

transmits microwave in the range direction at right angles to the flight direction 

(azimuth direction), receives the backscattering from the object and measures the delay 

time between those two processes with a small antenna. In SAR imaging process, the 

most significant factors of microwave characteristics are frequency range (or 

wavelength) and polarization.  

Polarization is defined as the oscillating direction involved in an electrical field. 

While microwave is usually transmitted and received either in horizontal (H) or vertical 

(V) polarization, four combinations of polarizations could be applied in SAR system 

which have different backscattering characteristic respect to the polarization. Those 

combinations are HH, HV, VH, and VV, where each letter represents the polarization 

while transmitted and received by sensor, respectively. In this study, dual and fully 

polarimetric SAR data were used to detect the target object. Dual-polarized SAR detects 

the object target using scattering from either combination of HH and HV or VH and VV. 

On the other hand, fully polarimetric data provide more scattering information from the 

object using four types of linear polarization and their combination.  

SAR polarimetric offers the ability to interpret different representations of 

electromagnetic scattering mechanisms without in-situ information. For fully 
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polarimetric radars, scattering properties of image pixels are directly described by the 2 

 2 scattering matrix [S] which connecting the vectors representing the incident and 

scattered waves: 

 (Eq. 2.1) 

The elements of this matrix express the change due to scattering interaction of 

horizontal (H) and vertical (V) wave components. However, since the real process 

involves dynamic environments, scattering processes are interpreted using the 

higher-order matrices, covariance matrix (C) and coherency matrix (T), which has taken 

into account the environment condition (Alberga et al. 2008). 

 

2.2.2 Polarimetric Decomposition Theorems  

Polarimetric target decomposition has been developed to provide interpretation 

based on sensible physical constraints by observing the coherency or covariance matrix 

of polarization (Lee and Pottier 2009). Among several decomposition methods for 

extracting the information of scattering mechanism, this study focused on using three 

decomposition theorems as follows (Alberga et al. 2008, Lee and Pottier 2009): 

a. Eigenvalue-eigenvector decomposition (Cloude and Pottier 1997) 

This decomposition was proposed to extract average parameters from experimental 

data using eigenvector analysis of coherency matrix, which provides a basis 

invariant description of the scatterer with a specific decomposition into types of 

scattering process (the eigenvectors) and their relative magnitudes (the eigenvalues). 

The method is free of physical constraints and provides information about 

polarimetric scattering with matrix-characterizing such as polarimetric entropy (H), 

Anisotropy (A), and average or mean scattering angle, alpha ( ).  

 Entropy (H) indicates the randomness of the scatterer represented in a value 

ranged from 0 to 1. An H value equal to 0 indicates a deterministic scatteing 

process, while H equal to 1 means a degenerated eigenvalues spectrum with 

high random scattering.  

 Anisotropy (A) shows the relationship between secondary scattering processes. 

It measures the relative importance of the second and third eigenvalues of the 

decomposition. 

 Alpha ( ) is an angle ranging from 0 to /2 and indicates the mean scattering 
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mechanism. Among the mean parameters ( , , , and ), is determined 

as the main parameter for identifying the dominant scattering. 

b. Freeman-Durden 3 components decomposition (Freeman and Durden 1998) 

This decomposition theorem defines the technique of physically-based scattering 

mechanisms, including odd, double-bounce, and volume scatterings (Fig. 2.4). This 

scattering model is known for its simplicity because it decomposes Pol-SAR image 

under reflection symmetry condition of covariance matrix: 

 (Eq. 2.2) 

In this method, odd scattering is produced from the Bragg small roughness model 

that describes co-polarized polarization from the object. This scattering is also called 

as surface scattering (s) as it principally represents the scattering information from 

moderately rough surface such as soil. On the other hand, double-bounce scattering 

(d) is usually modeled the reflection from tree trunk and ground, while volume 

scattering (v) describe the random distribution of very thin, cylinder-like scatterers 

in response to branch of canopy cover. 

c. Yamaguchi 4 components decomposition (Yamaguchi et al. 2005) 

Yamaguchi decompositions mainly modeled the similar characteristics as 

Freeman-Durden model. However, unlike the previous one, this model considering 

the Pol-SAR analysis for urban area in which the reflection symmetry condition 

does not apply. Therefore, this model tried to approach the Freeman-Durden model 

with new condition of  and  in the covariance 

 
Figure 2.4 Scattering mechaninsm used in Freeman-Durden decomposition model 

(Freeman and Durden 1998) 
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matrix. In this case, additional helix scattering, which corresponds to non-symmetry 

condition, was proposed as the fourth component for characterizing scatter in 

man-made or urban area. 

 

2.3 Texture Analysis 

Texture is defined as representation of local tonal variations that is repeated in 

the larger spatial domain and determines visual smoothness or coarseness of image 

features (Lilesand & Kiefer 1994, Srinivasan & Shobha 2008). Rosenfeld and Kak 

(1982) described texture as a similarity grouping of complex visual pattern composed of 

entities that have characteristic of brightness, color, size, etc. In digital image, texture 

determines the pixel relation with its neighbor pixel within a small area centered on the 

pixel (Murray, et al. 2010). It is therefore the analysis of texture requires mathematical 

function that could characterize the variation of tonal primitive properties and the spatial 

dependence between them. 

Texture characteristics measurement could be approached through various sides, 

based on the dimension and statistical model being used. Haralick (1979) mentioned 

there are at least eight statistical approaches to the measurement and characterization of 

image textures. Recently, the statistical approaches has been explored and compared 

with each other to find the most applicable model. Murray et al. (2010) summarized the 

comparison of two texture classes, structural and statistical method, for classification 

purpose. The structural techniques, which classify texture by looking for repeating 

patterns and other structural characteristics in the image, is best applied for artificial 

environment. Otherwise, the statistical techniques, that performing statistical operations 

for classifying the image and commonly focusing on a small moving window, are best 

work with natural environment. Among all of the texture approaches, statistical Grey 

18
Figure 2.5 Four directional angles for GLCM computation (Abolghasemi et al. 2010) 
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Level Co-occurrence Matrix (GLCM) proposed by Haralick et al. (1973) is one of the 

most widely used texture measurement. 

GLCM, or sometimes called grey-tone spatial-dependency matrix, is a square 

matrix which has same number of row and column as N quantization level of the image 

and symmetrical around a diagonal (Murray et al. 2010, Basile Giannini et al. 2012). In 

GLCM, the texture information of digital image is principally defined by the adjacency 

relationships for a pair of pixels with certain grey tone value which are separated by a 

fixed spatial relationship (Gadkari 2004). It is computed by assuming p(i,j) as the 

frequency of occurrence of two cells of grey tone i and j, separated by distance d with 

specific direction that generally corresponding to four angles of 0º, 45º, 90º, and 135º as 

illustrated in Figure 2.5 (Tso & Mather 2009). 

As an example, the texture feature of an image (Figure 2.6(a)) with 4 

quantization levels (has grey tone 0-3) will be calculated. The 4 x 4 GLCM (Figure 

2.6(b)) calculates how often the grey tone i which is contained in the pixel of interest 

could be paired up with grey tone j in the image with distance 1 pixel from the pixel of 

interest and four directional angles. The results are presented in the Figure 2.6 (c) to (f) 

for directions with angles 0º, 90º, 135º, and 45º, respectively. Each matrix is normalized 

by dividing each cell by the total number of pairs (Tso & Mather 2009). The texture 

19

Figure 2.6 An example of GLCM computation; (a) 4 quantization level digital image; (b) 
4x4 form of GLCM with grey level 0-3; (c)-(f) results of GLCM computation with four 

directional angles 0º, 90º, 135º, and 45º, respectively (Tso & Mather, 2009) 
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features are calculated by averaging over the four directional co-occurrence matrices. 

There are various types of GLCM features which are formulated based on the 

most significant texture factors being measured. Santos and Messina (2008) has 

summarized eight features from Haralick (1973) that will be used in this study as 

describe on Table 2.2  
Table 2.2 GLCM texture features used in the study 

Feature Formula Explanation 

Mean  

Measures both of tone and texture 
information; calculates the average 
grey level inside the moving 
window  

Variance  Image heterogeneity measurement 

Entropy  

Measures the image disorder. Large 
values mean small values of GLCM 
measurement due to the image 
texture that not uniform 

Angular Second 

Moment 
 

A measure of textural uniformity. 
Value will be large when there is 
less local texture variation; when 
the grey level distribution is 
constant  

Contrast  

Measures the contrast or amount of 
local variation present in the image; 
High values indicate contrasting 
grey tones in the image 

Correlation  

Measures grey tone linear 
dependencies in the image; 
expressed by the correlation 
coefficient between grey-levels and 
the probability densities at each of 
the grey –level pairs. 

Dissimilarity  Measurement of the difference grey 
tone in the image  

Homogeneity  
A measure of homogeneity; high 
value if the difference in pairs of 
grey-levels are small 

(Haralick, et al. 1973, Santos & Messina 2008) 
Where : N  = Number of distinct gray levels in the quantized image  

  = (i,j)th entry in a normalized gray-tone spatial-dependence matrix 

 px(i) =   py(j) =  
 μ μ  = means of px and py σ σ  = standard deviations of px and py 
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It has been proved that there is no exact feature will be effective for all kind of 

applications. The suitable feature will be different depends on the object of interest. 

Beside the feature types, previous studies indicated that window size is the other 

important part to be considered when applying GLCM. It is believed that the final result 

will much relies on the size of moving window. Too small window size will lead to less 

textural information of each category. Otherwise, too big size of moving window will 

cause overlap measurement with other land cover types and produce errors in 

classification at the boundaries between classes because the specific characteristic that 

could differentiate each class could not be obtained. Therefore, the ideal window size 

also important to be examined as it will depends on the resolution of the image and the 

size of object being explored (Murray et al. 2010, Haralick et al. 1973). 
 

2.4 SAR and Texture-Analysis Studies on Vegetation Mapping 

Availability of reliable and up-to-date land use and land cover information is 

substantial for planning, management, and monitoring systems. While land use and land 

cover classification using satellite remote sensing and GIS has been developed for a 

long time, identification methods, particularly for vegetation, still remain difficult due to 

various considerations and techniques involved. In term of vegetation classification at 

community and species level, interpretation of spectral elements from each pixel only is 

considered to be inadequate, and therefore, spatial context by taking into account the 

spatial properties of a region in the image need to be developed.  

Texture analysis, as one of the methodology that measure relationship of pixel 

values in large spatial domain of the image, has been applied in several studies to 

improve the vegetation mapping. Murray et al. (2010) has stated the importance of 

selecting appropriate data, GLCM texture features, and moving window in vegetation 

classification based on the objects. In the study, it was found that the combination of all 

multispectral IKONOS bands with texture extracted using mean, dissimilarity, and 

entropy features provided the most robust methodology to classify sub-Antarctic 

vegetation communities. Textural approach has also been applied for forest structure 

mapping as demonstrated by Franklin et al. (2001) and Shamsoddini (2012). On the 

other hand, study by Rakwatin et al. (2012) proved the ability of 50-m resolution dual 

polarization ALOS PALSAR backscatter data for tropical forest mapping in central 

Sumatra, Indonesia by applying multi-scale texture. However, classification of 
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plantations in this study still remains unsolved as significant confusions were found 

between acacia and oil palm plantations with natural forest and clear cuts, respectively.  

Improvement of oil palm classification has been achieved in several studies by 

employing textural analysis using the image integration from both optical and SAR 

sensors. A study by Laurin et al. (2013) demonstrated GLCM application to the 

integration of ALOS PALSAR, Landsat TM, and ALOS AVNIR-2 data for land cover 

mapping in tropical site in West Africa, which included large scale oil palm plantations. 

In this study, mean, entropy, correlation, variance, and second-moment GLCM features 

were extracted from Landsat TM (band 4 and 5) and AVNIR-2 (band 3 and 4) which are 

known to be useful for detecting vegetation, as well as from HH and HV polarization of 

ALOS PALSAR image. Overall accuracy as much as 95.6% of land cover classification 

was obtained by combining these data. The highest accuracy at 99.6% and 98.9% of 

producer’s and user’s accuracy, respectively, were also achieved for the oil palm class. 

Another study by Santos and Messina (2008) has successfully applied the fusion of 

C-band SAR and Landsat ETM+ assisted by ground-based digital video data for 

modeling African Oil Palm in the Ecuadorian Amazon. This study also successfully 

detected the diseased oil palms that existed in the plantation. Highest accuracies were 

obtained by combining the mean, variance, contrast, and correlation features of SAR 

image and Landsat ETM+ band 1, 2, 3, 4, 5, and 7. Since both of these oil palm studies 

were conducted in large scale oil palm plantations, further development to identify oil 

palms planted in small scale area still need to be observed. 

Beside the multi-sensors data integration method, interpretation of scattering 

mechanism of SAR polarizations allows the identification of vegetation even in more 

detail analysis. Lee and Pottier (2009) explain about various applications regarding to 

vegetation mapping that can be explored using polarimetric information of SAR data. 

Polarization bands and parameters obtained after decompositions were proved to be 

useful for land cover classification, forest mapping, until crop classification. Study by 

Chowdhury et al. (2013) also successfully applied polarimetric decomposition to 

estimate Growing Stoke Volume (GSV) in a Siberian forest without applying 

multi-temporal data. This study also found the significant correlation of double-bounce 

and volume scattering powers with GSV. These previous studies proved the potential 

ability of PolSAR in detail analysis such as tree growth and tree conditions even within 

same species.   
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Chapter 3  

ALOS Data Integration and Fully Polarimetric SAR for Identification 

of Smallholders’ Oil Palm Plantations in Southern Sumatra, Indonesia 
 

3.1 Introduction 

High global demand for palm oil has driven massive oil palm expansion in the 

tropics (Sayer et al. 2012, Gaskell 2015). Indonesia and Malaysia have become the 

major location of this activity due to availability of supporting factors such as favorable 

climate, suitable soils, and lower labor cost comparing to other countries (Clay 2004, 

Kongsager and Reenberg 2012). Known as the most area-effective and the highest 

yielding oil crop, cultivation of oil palms has turned into a vital economic strategy for 

both countries, as it highly contributes to national income as well as becomes a strong 

driver of economic development in rural areas, where the cultivation is commonly taken 

place. Moreover, the product of palm oil itself is useful as an alternative source of 

bio-fuel (Comte et al. 2012, Gatto et al. 2015, Susanti and Burgers 2011). Unfortunately, 

this phenomenon has also attracted controversy as it leads to biodiversity loss 

(Fitzherbert et al. 2008, Wilcove and Koh 2010), deforestation (Vijay et al. 2016), and 

increased greenhouse gas emission (Germer and Sauerborn 2008). While state and 

private-owned oil palm plantations have given high contribution to those impacts, it has 

been proven that besides those plantations, oil palm plantations managed by 

smallholdings also play important role, especially in Indonesia, making the careful 

monitoring and management of this type of plantation also necessary (Lee et al. 2014).  

Mesuji District of Lampung Province in Southern Sumatra, Indonesia is known 

as one of the locations of smallholders’ oil palms development. The smallholders in this 

area tend to establish oil palm by converting rubber or agricultural lands which are 

considered to be less profitable. This expansion is feared to be uncontrolled, with a 

larger conversion of land cover especially in protected areas. For a more detailed 

monitoring of the environmental impacts of oil palm expansion regarding to land use 

conversion to oil palm plantation, and better land cover management, a comprehensive 

spatial planning and mapping are necessary for this area. However, the small-scale area 

and randomly distributed characteristics of smallholders' plantations make the works 

become more complicated. 
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The identification of oil palm plantation using remote sensing has been proved 

for several studies. Miettinen et al. (2010) have successfully discriminated woody 

plantations from palm plantations using backscatter information of ALOS PALSAR data. 

On the other hand, Santos and Messina (2008) have performed texture analysis to model 

the African oil palm using C-band SAR, and Landsat ETM+ data. Nonetheless, those 

studies were predominantly performed for private-owned and large-scale oil palm 

properties. The identification of small scale oil palm plantations is believed to be 

practically hard using the currently available remote sensing data. It is therefore further 

studies regarding the detection of smallholder's oil palm plantations using remote 

sensing data is then necessary.  

It has been suggested that the integration of multi-sensor, multi-temporal, or 

multi-modal images may provide more informative and reliable imagery to improve the 

interpretation capabilities for object detection (Pohl and Van Genderen 1998, Bedi and 

Khandelwal 2013). Laurin et al. (2013) also described the beneficial combination of 

optic and SAR data as optical data is useful to measure the reflectance of the topmost 

layer of the vegetation, while SAR data provides geometric information and volume 

scattering detection without the effect of weather conditions. Combining those 

advantages with texture analysis, they have successfully performed forest and land 

cover mapping for a tropical site in West Africa, characterized by very complex 

landscape, fragmented in small patches of different land use and land cover types.  

On the other hand, fully polarimetric of SAR data offers more information about 

scattering mechanism from the object target. Four types of linear polarization and their 

combination, as well as other parameters, such as the amplitude, phase, and orientation, 

are helpful to improve separability between objects, and consequently, improve 

accuracy of classification result (Negri et al., 2016). A study by Bagan et al. (2010) has 

proved the effectiveness of using polarimetric data for land cover classification in 

Kalimantan, Indonesia. The study also proved that using combination of polarimetric 

through polarimetric coherency T3 matrix combine with intensity data yielded higher 

accuracy than using only the original four bands polarization data. Moreover, in order to 

improve classification result, classifier algorithm is also affected, depends on the object 

target, availability and distribution of training samples. Support Vector Machine (SVM) 

is one of common classification tools for classification and detection (Zhang et al., 

2010). The ability of this classifier has been proved in several land cover classification. 
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Trisasongko (2017) has examined the ability of SVM for stand age of rubber plantation 

mapping using ALOS-2 polarimetric SAR, and proved that the higher overall accuracy 

was obtained by using SVM, compared with other classifier. Moreover, application of 

SVM for classifying the oil palm plantation using Landsat ETM+ data has also been 

performed by Nooni et al. (2014) and its superiority over MLC has been proven.  

By referring to these studies, we tried to apply a texture analysis to solve the 

problem in the detection of smallholder’s oil palm plantation, while the integration of 

both SAR and optical sensor data is believed to be improving the analysis. In addition, 

classification using fully polarimetric SAR and alternative classification algorithm is 

also examined. In this study, multi-sensor and multi-scale images acquired by the ALOS 

were considered adequate to detect small oil palm plantations managed by smallholders. 

Medium resolution of both images is considered to be good enough for identifying the 

small scale plantation. Given the frequent cloud cover present in tropical countries, 

radar data was mainly examined, with optical imagery used as supporting data and for 

result comparison. This study aimed to explore the ability of ALOS data integration and 

fully polarimetric ALOS PALSAR to discriminate oil palms from other vegetation 

covers and to develop an effective methodology to accurately detect smallholder's oil 

palm plantations in Southern Sumatra. 

 

3.2 Study Area and Data 

3.2.1 Study Area 

The study area is located in Simpang Pematang Sub-District, Mesuji Regency, 

Lampung Province, in the southern part of Sumatra Island, Indonesia (Fig. 3.1). Mesuji 

Regency was part of Tulang Bawang Province that seceded in 2008. It is situated in the 

north-east area of Lampung Province, which is adjacent to South Sumatra Province in 

the north and west side, separated by Mesuji River. The study was performed to 5 × 5 

km area in the border of Mesuji Regency of Lampung Province and Mesuji Sub-District 

of Ogan Komering Ilir Regency in South Sumatra Province. It covers the area 

surrounding the Lintas Timur national road which connecting the two provinces. 

In terms of meteorological condition, Mesuji Regency is generally favorable for 

oil palm development. This area has two distinct seasons with tropical rainforest climate 

and receives average sunshine for about 5 until 5.5 hours per day. It experiences 

abundant rainfall during rainy or wet season from November to May, while during June 
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to October the dry season is occurred with limited rainfall. The average rainfall is about 

175 mm of per year, with average temperature ranges from 26˚C to 28˚C. Based on the 

requirements of oil palm cultivation on Section 2.1.2, the above conditions can be 

considered as suitable condition for oil palms. Moreover, the classification of 

agroclimatic zones for oil palm cultivation in Indonesia as mentioned on the Chapter 2 

(Table 2.1), this eastern side of Lampung Province region is classified as an 

Agroclimatically Suitable (AS) region with AS3-h1k2m2 unit, which means 

agroclimatically suitable with strong intensity of limiting factors – light intensity of 

rainfall limitation (h1) with moderate intensities of both dry month and limitation of 

sunshine duration (k2m2) (Corley and Tinker 2016). As for topography condition, 

Mesuji Regency has relatively flat topography, with slope is ranged between 3 to 30 %. 

The study area is located as a part of the Mesuji River Basin area, the main river basin 

in Mesuji regency, and is generally covered by dry soil (Ministry of Manpower and 

Transmigration of Republic of Indonesia 2007).  

As shown on Worldview-1 image (Fig. 3.1), among total of 25 km2 of study area 

is mainly used as rubber plantation, and about 30% is covered by oil palm plantations, 

both managed by private estate and smallholders. The private estate located on the 

 

Figure 3.1 Location and Worldview-1 scene of study area 
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south-east part of the area is belonged to PT Lambang Jaya, who started to develop the 

oil palm in this area since 1998. Meanwhile, smallholder’s oil palm plantations were 

established following the existence of the private estate. According to the information 

derived during field survey activity, smallholder’s plantations are usually planted on 

small area, located in random places, and surrounded by rubber plantation or acacia. 

Those areas mainly developed in irregular shape. Even though there are several 

plantations that are located next to each other, the planting age are not always same, 

because the smallholders sometimes start to grow oil palm based on their financial 

condition. Smallholders who cultivate oil palms are generally residents who came to 

this area through a program which relocate some residents from densely populated area, 

such as Java Island, to less populated one, or so called transmigration program. The 

remaining area is comprised of settlement area with some mixed garden crops located in 

their neighborhood, as well as agricultural and grass land. The main commodities of this 

area beside oil palm and rubber are included maize and cassava, meanwhile, paddy field 

area has been gradually decreasing due to its conversion to oil palm plantation.  

 

3.2.2 Data  

The data used for the analysis consist of primary and secondary data. The 

primary data comprise ALOS images, while the secondary or ancillary data include the 

other satellite image and field survey data (Table 3.1).  

Table 3.1 List of data used for the analysis 

Data 
Type of data / 

processing level 
Acquisition date 

Resolution 

(m) 

ALOS PALSAR FBD Primary / 1.5 14 September 2010 12.5 

ALOS PALSAR PLR Primary / 1.1 25 October 2010 12.5 

ALOS AVNIR-2 Primary / 1.5 20 June 2008 10 

Worldview-1 (panchromatic) Secondary  26 September 2011 0.46 

SRTM DEM Secondary - 90 

Field data Secondary 18 April – 20 May 2013  

 

3.2.2.1  Primary data 

In order to detect smallholders’ oil palm plantation, remote sensing images 

acquired by ALOS are used for the analysis. ALOS, or called ‘Daichi’ in Japanese, is a 
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remote sensing satellite developed by Japan Aerospace Exploration Agency (JAXA) 

which carried three sensors, a radar sensor named PALSAR, and two optical sensors 

called Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) and 

Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2). Each of sensor has 

different spatial and radiometric resolution, and therefore, images acquired by three of 

them can be use simultaneously to complement each other information.  

The ALOS PALSAR data acquired in Fine Beam Dual (FBD) and Polarimetry 

(PLR) modes were used as the main data to analyze the characteristic of smallholders’ 

oil palm plantations. The FBD image used in this study consist of Horizontal-Horizontal 

(HH) and Horizontal-Vertical (HV) polarizations. The data has been processed in level 

1.5 before used as the main source for texture extraction and combined with the optical 

image for smallholders’ oil palms detection. On the other hand, the PLR or fully 

polarization SAR image has four bands polarizations, including HH, HV, VH, VV 

polarizations. This image was analyzed independently from data processing level 1.1. 

However, due to the coverage of available data for the study area, the PLR data could 

not fully cover all over 5 5 km2 area. Some missing part on the north-east area will 

then be neglected from this analysis. The two images used in this study were taken at 

relatively close date to minimize the temporal distortion. 

The multispectral image derived by optical sensor, ALOS AVNIR-2, has four 

bands electromagnetic corresponding to blue wave (band 1), green wave (band 2), red 

wave (band 3), and Near Infrared wave (band 4) with 10 meter spatial resolution in each 

scene. The image was selected with less than 20% of cloud coverage on the study area. 

 

3.2.2.2  Secondary data 

The high resolution image taken by Worldview-1 satellite, Digital Elevation 

Model (DEM) derived by ASTER satellite, and information from field survey were used 

as secondary data. The Worldview-1 is an earth observation satellite owned by 

DigitalGlobe, which offers panchromatic imaging system with image taken under 

half-meter resolution. By examining this image, detail land cover in the study area can 

be clearly seen, and accurate information for training sample of classification and 

accuracy assessment procedure, while the Digital Elevation Model (DEM) derived by 

Shuttle Radar Topographic Mission (SRTM) data were used for terrain correction 

process as a part of SAR pre-processing. 
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Field survey activity was conducted on 18 April until 20 May 2013 to gain 

information about real condition of land cover in the present time. Ground truth data of 

several smallholders’ oil palm plantations and other land cover types were acquired 

using GPS receiver and map sketches. In particular area of smallholders’ plantations, oil 

palm tree’s structural parameters was measured to obtain general knowledge about 

tree’s characteristics in each growing stages. Additionally, interview with local 

communities and residents was performed to gain information related to oil palm 

development system by local smallholders and issues caused by oil palm expansion. All 

of the information obtained from the field survey activity was used as one of the basic 

knowledge for analysis as well as complementary data for training sampling and 

accuracy assessment.   

 

3.3 Methodology 

Methodology of this study is divided into two main parts. Firstly is the detection 

of smallholders’ oil palm plantation using ALOS- sensor data integration, consisted of 

ALOS PALSAR FBD and ALOS AVNIR-2 data, which mainly discuss about the 

methodology to figure out characteristic of oil palm plantations that can be detected by 

satellite image, to assess the ability of PALSAR data only and the effect of data 

integration on identification of smallholders’ oil palms. On the other hand, the second 

part of methodology is mainly focused on the exploration of fully polarimetric PALSAR 

data and the effect of SVM classifier for oil palm detection.  

 

3.3.1 ALOS-Sensor data integration analysis 

3.3.1.1 Image pre-processing 

Pre-processing procedures was carried out to satellite image in order to reduce 

error and distortions from internal and external factors. Geometric correction was 

performed to PALSAR FBD and AVNIR-2 images by transforming the images to the 

local coordinate of Universal Transverse Mercator (UTM) projection zone 48 South of 

datum World Geodetic System 1984 (WGS 1984). Both of the images were 

co-registered to Worldview-1 image and four Ground Control Points (GCPs) from field 

survey using affine transformation method. Additionally, terrain correction was 

performed to the PALSAR data using DEM of SRTM. This step was carried out in order 
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to reduce geometric and brightness distortions over elevated and sloping terrain due to 

the nature of SAR’s side looking scan system. On the other hand, as an image derived 

by optical sensor, cloud existence also sometimes affects the AVNIR-2 image. In this 

case, ISODATA classification was applied to AVNIR-2 data in order to remove clouds 

along with the shadows from the image.  

  

3.3.1.2 Determination of classification criteria 

Even though the main target of this analysis is detecting the smallholders’ oil 

palm plantation, the image classification must be conducted for land cover exists on all 

over the study area. Therefore, understanding of each land cover classes characteristics 

should be done prior to the classification. In this study, seven land cover classes 

according to the condition and the objective of the study area were formed and 

described on Table 3.2. Oil palm plantation, as the main target of this analysis, is 

particularly divided into two classes. Because, based on visual interpretation on the 

reference data and the information from field data, characteristics of oil palm tree, such 

Table 3.2 Description of land cover criteria 

No. Class Name Criteria 

1. Agriculture Includes all areas covered by agricultural activities, such as corn, 

cassava, and paddy field. Additionally, grassland, which has similar 

feature with agricultural land cover, also been included. 

2. Bare land Represented by bare land areas that has just opened or agriculture area 

that has not been cultivated yet. 

3. Mature oil palm Oil palm plantation that older than 5 years when the oldest image was 

acquired. The trees are normally higher than 3 meter. 

4. Young oil palm Oil palm plantation that has been planted less than 5 years before the 

oldest image acquired. The tree’s height is generally less than 3 meter. 

5. Other woody 

vegetation 

Included all kinds of woody vegetation beside oil palm. Dominated by 

rubber plantation. The others are consisted of acacia, cajuput trees and 

the yard areas surround the settlement that has mix plantations of 

acacia, rubber, banana, and coconut trees. 

6. Settlement Characterized by all of artificial features, such as houses, roads, and 

other buildings. 

7. Water bodies Represented by the pound that exist in oil palm mill factory as water 

supply for the oil palm processing and waste container from the 

process. No natural water body existed in this area. 
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as tree height and crown cover, are very distinguishable when the tree is still just 

planted (young stage) and when tree has grown up (mature stage). Therefore, the oil 

palm land cover class was discriminate as young oil palm and mature oil palm. Picture 

condition of each class in the study can be seen in Appendix A. 

 

3.3.1.3 Texture analysis 

In order to detect smallholder’s oil palm plantation, particular feature that will 

be helpful for discriminating oil palms from other land cover should be explored. By 

studying the oil palm cultivation system, it is known that oil palm plantation has unique 

characteristic of its planting pattern. The design of planting pattern affects yield of 

plantations because the palm does not grow irregularly as does a dicotyledonous tree, 

and the canopy is almost covering in circular area. Therefore, in order to make sure that 

all plants could obtain sufficient nutrients, sunlight, and water supply, oil palm trees are 

planted in very clear pattern with certain distance between each tree. While the pattern 

usually can be either in square or triangular shape, it has been examined that the 

equilateral triangular planting pattern with 9 × 9 meter interval (Figure 3.2) is the most 

effective method (Corley and Tinker 2016, Verheye 2010).  

Based on the knowledge that electromagnetic energy reflected by objects will 

give different signature with respect to the land cover type, the backscatter or 

reflectance value from ground and oil palm tree also will be different to each other 

(Murai et al. 1993). With such interval of oil palm, the planting pattern will construct 

similar regular pattern of tonal distribution covering wide area in the image. Therefore, 

 
Figure 3.2 Oil palm equilateral triangular planting pattern 
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it was hypothesized that smooth textural features of this plantation could be identified in 

remote sensing imagery by examining the spatial distribution of neighboring backscatter 

or reflectance value within certain area size.  

Based on the hypothesis, textural analysis was considered as the most 

appropriate methodology to detect the regular planting pattern, because this method 

provide the ability to measure the tonal distribution through its statistical calculation 

within certain area of moving window. Accordingly, textural analysis procedure was 

performed to extract land cover information from PALSAR data. The most commonly 

used texture processing method, the GLCM, was used to detect the planting pattern 

signature the image.  

Before extracting texture feature, radiometric conversion was firstly performed 

to ALOS PALSAR image. In this step, pixel value was converted to radar backscattering 

coefficient ( ) in decibel (dB) unit, using the following formula (Shimada 2002):  

 

  (Eq. 3.1) 

 

where, I is pixel value of each pixel and CF is an offset conversion factor (- 86 dB). 

A synthetic band of HH-HV polarization band was produced from the original 

PALSAR data by subtacting the backscatter coefficient value of each pixel on HH band 

with the value in the same pixel on HV band. This method was carried out following the 

study of Miettinen et al. (2010) who obtained significant improvement in separating 

palms from other woody plantations using this synthetic band. A new composite ALOS 

PALSAR image was generated from the two original polarization bands and the 

additional synthetic band.  

As mentioned on the Chapter 2, there is no exact suitable window size and 

texture feature for all land cover classification. Specific pairs of those parameters 

always different according to the target object. Therefore, selection process is important 

in order to produce accurate classification results.  

Total of 48 texture images were extracted using eight texture features from the 

backscatter image of the new composite ALOS PALSAR. The features, consisted of 

contrast, correlation, dissimilarity, entropy, homogeneity, mean, second moment, and 

variance, were extracted using 3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11, and 13 × 13 moving 

window sizes, in 64 quantization levels, and same separation parameters (d=1 and 
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=45°or shifting X=1 and Y=1). The 13 × 13 window size was selected as the 

highest threshold by considering the characteristic of smallholder's plantations that 

usually covering on small area. The ability of each texture feature-window size pair on 

detecting smallholder’s oil palm was evaluated by assessing classification images 

produced by Maximum Likelihood method. Training sample been used in this process 

were taken from the reference image of Worldview-1 and ground truth data. 

Albregtsen (2008) stated that within the several texture features available, 

some are strongly correlated with each other. Therefore, a suitable combination of 

several texture features to classify the target object must be selected. The selection 

procedure applied involved the image classification to determine the features that gave 

the smallest classification errors. As the main target of this study, the classification 

result of each pair was mainly evaluated based on the smallest classification errors of 

mature and young oil palms, as well as the overall accuracy. 

 Firstly, the MLC was applied to the 48 images extracted from each single 

texture features. Based on the producer’s and user’s accuracy for young and mature oil 

palm classes for all moving window sizes, the texture features that showed high 

accuracy were selected as potential texture features, from which several combinations 

were formed. New texture extractions were then produced from PALSAR image using 

the selected feature combinations from each window size. The MLC was applied to all 

combinations and accuracy was assessed to obtain the best feature combination result 

for a specific window size in the detection of smallholder's oil palms using only the 

ALOS PALSAR. 
 

3.3.1.4 Optical image processing 

The AVNIR-2 image was processed to examine the ability of optical imagery 

for oil palm discrimination and to prepare the integration with the texture features 

derived from the ALOS PALSAR. The processing included Principal Component (PC) 

extraction and optical image classification.  

The ortho-rectified and cloud-free ALOS AVNIR-2 image was re-sampled 

from 10 to 12.5 m pixels, to match the size of the PALSAR data, as the same spatial 

resolution is required for data integration. Moreover, to prevent any processing problem 

caused by data format differences, the original 8-bit data of AVNIR-2 image, which 

differed from the texture image, were converted to single float data as demonstrated by 
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Santos and Messina (2008). In addition, the multispectral images, such as ALOS 

AVNIR-2, consist of several bands that might be correlated, potentially caused 

redundant information that will significantly reduce the accuracy of the classification 

(Murray et al. 2010). In order to reduce this possibility, Principal Component Analysis 

(PCA) was used.  

Principle component was extracted using IDRISI Selva software. Percentage of 

variance value from each principle component will be shown in the covariance matrix. 

This result could be used for deciding the significant PCs should be included in 

classification process. Whilst the correlation between each extracted principle 

component and ALOS AVNIR-2 bands could be examined from the degree of 

correlation matrix in order to analyzed the most correlated band with each PC.  

Both of the full bands of AVNIR-2 image and its PCs were classified using MLC 

to the same category as texture analysis and the results were assessed for accuracy. The 

results were compared to analyze the effect of reducing dimensionality of AVNIR-2 data 

for detecting oil palm plantation. 

 

3.3.1.5 Classification of integrated ALOS data 

Satellite image provides data in different portions based on the sensor type, 

coverage of electromagnetic spectrum range of the sensor, spatial resolutions, and 

temporal resolutions. In some cases, an analysis could not be optimally done because of 

limited specifications of the data. On purpose of increasing the exploitation of 

multisource data for certain analysis, advanced analytical and numerical data integration 

techniques are being developed. By combining several data with different 

characteristics, image integration or image fusion could increase interpretation and 

analytical capabilities for more reliable results and give more thorough information 

about observed object (Pohl and Van Genderen 1998). In order to explore more 

information to classify small scale oil palm plantation, the integration of SAR and 

multispectral data was performed. 

The selected PALSAR texture data were enriched by integrating with 

multispectral information from AVNIR-2 image. This process was carried out at pixel 

level, when both of data types were not extracted either into any feature kind or 

classified image yet. In this step, the texture image from ALOS PALSAR extracted 

using best combination of two texture features and window size, consisted whether the 
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original two polarization bands (HH and HV) or three polarization bands (HH, HV, and 

HH-HV) were combined with all ALOS AVNIR-2 bands or principle components (PCs) 

bands of the optical image. Finally, the MLC was applied once again to detect oil palm 

plantations from the integrated ALOS data. This analysis was determined the most 

significant combination to detect smallholder's oil palm plantation in the study area. 

 

3.3.1.6 Accuracy Assessment 

All of accuracy assessment processes were performed by deriving 625 points 

from the center of 200 meter mesh in size in WorldView-1 image with additional 

information from the field surveys (Figure 3.3). The results were obtained for each 

confusion matrix, examining the user’s, producer’s, and overall accuracies, as well as 

the kappa statistics.  

 

Figure 3.3 Accuracy assessment method 

The error matrix is generally used to presenting accuracy in which the accuracy 

of each class are described with both errors of inclusion (commission errors) and errors 

of exclusion (omission errors) present in the classification. This matrix has square array 

of rows and columns which express the number of sample being used for accuracy 

assessment process. The columns present the reference data while the rows show the 
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classified data generated from remote sensing image classification. The overall accuracy 

of the produced map from classification process is computed by dividing the total 

correctly classified pixels by the total number of samples. Producer’s accuracy indicates 

the probability of a reference pixel being correctly classified in the produced map. It is 

calculated by dividing the total number of correct pixels in a class by the total number 

of the same class that derived from reference data. On the other hand, user’s accuracy 

indicates the probability of a pixel that classified on the produced map actually 

represent the right object or class on the ground. This accuracy is computed by dividing 

the total number of correct pixels in a class by the total number of pixels that were 

classified in the same class (Congalton 1991). 

Kappa statistic is commonly used for assessing the total agreement whether the 

classification result could represent the real condition or not. Kappa is calculated based 

on the number of agreement that actually present the real condition compared to the 

agreement would be expected to be present just by chance. Interpretation of kappa 

statistic is described as on Table 3.3 (Viera & Garrett 2005). 
Table 3.3 Interpretation of kappa statistics 

Kappa Agreement 

< 0 Less than chance agreement  

0.01 – 0.20 Slight agreement 

0.21 – 0.40 Fair agreement  

0.41 – 0.60 Moderate agreement 

0.61 – 0.80 Substantial agreement 

0.81 – 0.99 Almost perfect agreement 

(Source : Viera & Garrett, 2005) 

The assessment was mainly focused on the accuracy of young and mature oil 

palm plantation classes. However, even though the main target of this analysis is the 

smallholder’s plantation, its evaluation was performed simultaneously with the 

private-owned plantation since the characteristics of both types are similar. 

 

3.3.2 Fully Polarimetric PALSAR image classification using SVM 

3.3.2.1 Image pre-processing 

In this study, the fully polarimetric ALOS PALSAR data was mainly used as 
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the primary data. A level 1.1 PALSAR image was firstly multilooked and extracted to 

intensity data [S2] and polarimetric coherency matrix for polarimetric decomposition 

process. The intensity data, which consisted of four bands corresponding to each 

polarization type, were converted to backscatter coefficient ( ) using the Equation 3.1 

and then corrected by terrain flattening to get the gamma nought data ( ). These data 

will be used as four bands backscatter parameters (B) for further classification process.  

The speckle filtering process was performed using lee filter to both intensity 

and polarimetric data. Total of 18 additional backscatter data were produced using 

arithmetical operations of each bands, such as addition, subtraction, multiplication, and 

division. These additional bands will be mentioned as backscatter bands from 

arithmetical process (BA). On the other hand, decomposition processes were carried out 

to produce various kind of combination from polarimetric data before terrain corrected 

and geocoded to UTM projection zone 48S datum WGS 84 using SRTM DEM.  

 

3.3.2.2 Polarimetric decomposition  

Total of 18 parameters of polarimetric decomposition (PD) comprises of 3 

components of Freeman-Durden decomposition (FD3), 4 components of Yamaguchi 

decomposition (Y4), and 11 parameters of eigenvalue-eigenvector (H/A/ ) 

decomposition theorem were produced and tested for this analysis. Besides the main 

parameters of entropy, anisotropy, and alpha, all of the decomposition parameters of 

H/A/  theorem, as mentioned on the Table 3.4 below, were also used in this part in 

order to analyze the effect of cumulative parameters.  
 

Table 3.4 List of H/A/ deocmposition parameters 

Alpha ( ) Combination 1-HA Entropy (H) 

Anisotropy (A) Combination H(1-A) gamma 

Beta  Combination HA lambda 

Combination 1-H1-A delta  

  

3.3.2.3 Image classification using Support Vector Machine (SVM) 

Support Vector Machine classifier is based on statistical or binary function, 

which is considered as an alternatives classifier to improve classification. This is 

because the SVM has tendency to minimize classification error by determining the 
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unknown probability distribution. Accuracy of classification using SVM depends on the 

type of kernel function used because the kernel function assigns new classes into one 

class or other (Nooni et al., 2014). The kernel function that commonly used for 

classification is Gaussian Radial Basis Filter (RBF). In this study, RBF is mainly used.  

The application of Gaussian RBF kernel requires two parameters that should be 

determined, including cost or penalty parameter (C) and specific function parameter ( ). 

The penalty parameter controls the trade-off between allowing training errors and 

forcing rigid margins. Increasing value on this parameter will make SVM create more 

accurate model. While  is a floating value greater than or equal to 0.01, and usually the 

inverse number of input bands.  

 The analysis in this study will address three conditions that might affect the 

classification result: 

a. Determination of potential polarimetric parameter  

 This process aims to find the most suitable parameter from PD for detecting the 

smallholder’s oil palm. The input parameter comprises of all of grouped parameter 

(for example 4 parameters of Y4), combination between the linear polarization or 

intensity data (I) with one of PD, and the combination of all data. In this process, 

Gaussian RBF was applied using default parameter in ENVI software, C = 100 and 

 = 1/number of bands. The amount of sample polygon used here are 225 samples, 

with each class has 30 samples except for water body (20) and settlement (25), 

because of the small area exist. 

b. Changing on RBF parameter condition 

 In this condition, the PD parameters with potential of high accuracy based on 

the (a) conditions will be tested using various of penalty and gamma parameters  

c. Changing on sample number 

In this case, the input bands are similar to b case but test will be conducted using 

several numbers of samples. The sample tested here are 155, 225, and 350 

 

3.3.2.4 Accuracy Assessment 

Accuracy assessment of this study was carried out using the same method as 

the study on ALOS-Sensor data integration on section 3.3.1.6. The assessment was 

carried out at every stage of classification 
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3.4 Results and Discussions 

3.4.1 Results of Smallholders’ Oil Palm Detection using ALOS-Sensor Data 

Integration 

a. ALOS PALSAR texture image classification 

The classification result of each texture feature from three ALOS PALSAR 

composite bands for six types of moving window sizes is presented in Fig.3.4. The 

graph shows that mean feature was consistently resulting good accuracy if compared to 

other features. Low accuracy results are only shown in producer’s accuracy using 9x9 

and 11x11 window sizes. The superiority of the mean feature resulted from its 

characteristics which calculating the average grey-level value inside a moving window. 

Oil palm trees are normally planted covering a certain area at the same time. This 

uniform planting age will make SAR sensor receive identical signature of backscatter 

value and construct similar value distribution pattern in certain area of the image so that 

the average value in window size will be similar to each other within one window size 

oil palm plantation area. This was followed by variance that showed relatively high 

accuracy, especially for big window sizes.  

Fig. 3.4 also shows that only mean feature was effective for small window size, 

but not the others. Thus, to extract the morphological characteristic in texture, 9 x 9 or 

more window size is required. Based on these results, the combination of mean and 

variance features was selected as potential combination. The other features, such as 
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Figure 3.4 Accuracy oi oil palm classification in single texture feature 
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entropy, correlation, second moment, and homogeneity which showed good accuracy 

for big window sizes were also examined for alternative combinations. 

Among those selections, however, there were several combinations that could 

not be extracted in this process. Successful combinations were classified and the result 

was summarized in Table 3.5. The highest overall accuracy (55.68%) and kappa 

statistics (0.4095) were produced by an 11 x 11 mean and variance combination, even 

though the same combination for a 9 x 9 window size showed higher accuracy for all oil 

palm classes. This result agrees with Santos and Messina (2008) who found that the 

combination between mean and variance is effective to detect African palm trees, since 

it provides significant structural information from the radar images. On the other hand, 

correlation and variance combination also showed a very high producer’s accuracy for 

mature oil palm, but not for other oil palm and land cover classes.  

By this result, mean and variance combination in 11 x 11 window size was 

concluded as the most significant feature and window size parameter for oil palm 

detection and land cover classification for the study area as shown by land cover map 

result in Fig. 3.5. The 9 x 9 window size was not selected because for further analysis, 

good accuracy for the general land cover also considered as important parameter to 

avoid wrong classifications due to confusion with other land cover types. 

Table 3.5 proves that sufficient statistical result and improvement were obtained 

by combining two texture features. Because each texture feature contains very 

voluminous data and should be extracted for all types of polarization bands, 

combination using more types of texture features was not performed in this study in 

Table 3.5 Statistical results of texture feature combination test 

Window 
Size 

Feature 
Combination 

Mature Oil Palm Young Oil Palm Overall 
Accuracy 

Kappa 
Statistics PA  UA  PA UA 

9 x 9 
Mean Variance 82.11% 60.48% 56.82% 44.64% 52.16% 0.3814 
Mean Entropy 42.50% 47.89% 20.77% 40.00% 39.76% 0.2375 

11 x 11 
Correlation Mean 42.11% 51.06% 59.18% 48.33% 55.20% 0.4019 
Correlation Variance 81.58% 24.73% 12.24% 26.09% 29.44% 0.1347 

Mean Variance 75.44% 48.59% 44.90% 47.83% 55.68% 0.4095 

13 x 13 
Correlation Mean 28.07% 50.00% 44.90% 45.83% 45.76% 0.298 
Correlation Variance 85.09% 25.39% 12.24% 27.27% 29.28% 0.1331 

Mean Variance 67.54% 43.06% 46.67% 49.90% 55.34% 0.4081 
PA : Producer’s Accuracy;   UA : User’s Accuracy  
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order to simplify the process and avoid the large amount of data. Nevertheless, that 

combination should be examined for future verification. 

 
Figure 3.5 Land cover classification map using mean-variance of ALOS PALSAR texture 

features in 11 x 11 moving window sizes 

 
Figure 3.6 Land cover classification map using all ALOS AVNIR-2 bands 
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b. Optical image classification 

All four bands of the ALOS AVNIR-2 image were transformed using PCA. The 

first two PCs accounted 97.16% of the variance, and 99.28% if accumulated with the 

third PC. The correlation matrix between generated PC and the original bands showed 

that PC1 was strong correlation with bands 1, 2, and 3, while PC2 was only strongly 

correlated with band 4. Finally, the PC3 correlated primarily with band 3 and 4 in small 

amount. 

The classification using only the optical sensor data was not better than with the 

PALSAR texture analysis. All bands of the AVNIR-2 image classification had a high 

producer’s accuracy (85.85%) for mature oil palms and a moderate accuracy (57.78%) 

for young oil palms. However, the results of user’s accuracy for both stages were still 

under 50% and were considered as low accuracy. From Fig.3.6, we could see that 

mature oil palms mainly contaminated woody plantations. This is because spectral 

information of the AVNIR-2 sensor could detect the presence of vegetation, but lack of 

ability for distinguishing the vegetation types which has similar characteristic. The 

reflectance from oil palm and woody plantations were regarded as dense vegetation, but 

the unique characteristic of oil palm plantations were not detected as well as with the 

texture analysis. More salt and paper was also found in the classification image, 

especially for the mature oil palms. Moreover, young oil palms were detected in oil 

palm mill areas because of the land cover change from agriculture and grassland areas 

into ponds and roads. These changes occurred after the AVNIR-2 data was acquired 

(two years before the PALSAR data).  

 

c. Object detection using integrated ALOS-Sensor 

The texture feature combination of the ALOS PALSAR integrated with ALOS 

AVNIR-2 image produced six combinations. All of these digital data combinations 

produced improved accuracies over the results derived from each sensor only as much 

as 18.56% and 16.80% comparing with the individual classification of AVNIR-2 and 

PALSAR, respectively. This also resulted in a 0.6326 kappa statistic value which is 

considered as a substantial agreement of classification result (Viera and Garrett 2005). 

As described in Table 3.6, the highest accuracy was achieved by combining all 

polarization bands of mean-variance features in 11 x 11 window size with all AVNIR-2 

bands (Combination 1). This result indicated the significance of adding synthetic 
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HH-HV band instead of using the original HH and HV bands only to support oil palm 

discrimination. The use of both HH and HV polarization improved the classification 

because each polarization has different backscatter in response to different biophysical 

characteristics. The HH shows the surface scattering while depolarization HV measures 

the volume scattering of vegetation. However, adding HH-HV band improved the 

detection because of the unique canopy structure of palm trees, which have no branch 

stem with leave clusters, thereby creating an open space right below the canopy. This is 

believed to lower the HV backscatter and increase the HH-HV backscatter value from 

oil palm as explained by Miettinen et al. (2010). The classification using all AVNIR-2 

bands was more effective in detecting oil palms, whereas the use of PCs still resulting in 

a lower accuracy.  

Table 3.6 Accuracy assessment results of ALOS data integration 

No. 
PALSAR 

Texture  
AVNIR -2  

Total 

band 

Mature Oil Palm  Young Oil Palm  Overall 

Accuracy 

Kappa 

Stat. PA  UA  PA UA 

1 Mean and 

Variance (all 

bands) 

All bands  10 92.45% 66.67% 64.44% 63.04% 72.48% 0.632 

2 PC 1,2  8 87.74% 56.36% 53.33% 57.14% 67.84% 0.570 

3 PC 1,2,3  9 90.57% 57.14% 53.33% 60.00% 69.28% 0.590 

4 Mean and 

Variance 

(HH & HV) 

All bands  8 89.62% 66.90% 64.44% 65.91% 71.84% 0.620 

5 PC 1,2  6 89.62% 56.89% 53.33% 53.33% 67.84% 0.570 

6 PC 1,2,3  7 90.57% 54.86% 62.22% 66.67% 68.80% 0.584 

PA : Producer’s Accuracy;     UA :  User’s Accuracy;       PC :  Principle Component 

Table 3.7 Error matrix of combination 1 

Classified Data 
Reference Data Row 

Total 
Producer’s 
Accuracy 

User’s 
Accuracy AG  BR  MO YO  WD ST  WB  CL  

Agriculture (AG) 55 3 4 10 26 3 1 0 102 57.89% 53.92% 
Bare land (BR) 4 20 0 0 1 2 0 0 27 71.43% 74.07% 
Mature Oil Palm (MO) 3 0 98 3 41 2 0 0 147 92.45% 66.67% 
Young Oil Palm (YO) 9 3 1 29 3 1 0 0 46 64.44% 63.04% 
Other Woody Veg. (WD) 19 1 1 3 206 8 0 1 239 72.03% 86.19% 
Settlement (ST) 5 0 2 0 7 15 1 0 30 46.88% 50.00% 
Water body (WB) 0 1 0 0 2 1 9 0 13 81.82% 69.23% 
Cloud (CL) 0 0 0 0 0 0 0 21 21 95.45% 100.00% 
Column Total 95 28 106 45 286 32 11 22 625 
Overall Accuracy 72.48% 
Kappa Statistic 0.6326 
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By examining the error matrix of combination 1 (Table 3.7), It could be 

observed that low user’s accuracy for mature oil palm is mainly caused by confusion 

with other woody vegetation. It caused many woody plantations, which is dominated by 

rubber, detected as mature oil palm. Visual comparison between classified data (Fig. 4) 

and reference image revealed that the error also occurred for mixed vegetation from 

yards or gardens surrounding the settlement areas. These confusions mainly occurred 

due to their similarity of vertical structure vegetation in L-Band, as mentioned by  

Laurin et al. (2013) for their texture classification results using ALOS PALSAR data. 

The existence of similar kind of vegetation with oil palm in the yard also determined as 

one of the error factor. This fact is supported by field survey data that describe about 

existence of coconut trees and a few oil palm trees (less than 0.5 Ha) planted adjacent to 

various kinds of vegetation and houses. Comparing with the results of using only 

texture data, the error for the yard area was indeed reduced by its combination with 

optical data. The detection of young oil palm, however, mainly confused with 

agriculture or grassland because both of them have similarity that lack of woody 

component and the reflecting the electromagnetic energy come from the ground as the 

size of vegetation is small. 

The 11 x 11 was identified as the most suitable window size for detecting 

smallholder's plantations in the Mesuji area. It proved that increasing window size 

would not always improve the accuracy. As in case of this study, the object of interest is 

smallholder's plantation which generally has very small size of 1 Ha until medium size 

area. Fig. 3.7 illustrates the comparison between the classification result of 11 x 11 (Fig. 

3.7-a) and 13 x 13 window size (Fig. 3.7-b) for a very small oil palm plantation 

(presented with the blue box). Based on the reference image (Fig. 3.7-c), classification 

result of 11 x 11 window size (a) shows good result as it could detect 66 of the 72 pixels, 

or 91.67% of oil palm plantation. Oppositely, for the 13 x 13 window size (b), 15 of the 

72 pixels of the area were detected as agriculture or other woody vegetation, and only 

79.17% was well detected. It is might be caused by the effect of the backscatter value 

from the area surrounding the oil palms. Nevertheless, applying window size suitable 

for the size of the object of interest results in more effective measurements since enough 

characteristic information is obtained. 

Additionally, this classification method was not only useful to detect 

smallholder’s oil palm from its surrounding land cover, but also to differentiate between 
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Figure 3.7 Comparison of oil palm plantation classification using (a) mean-variance in (b)  
11 x 11 and (c) 13 x 13 window sizes based on reference image  

different oil palm growing stages. It is shown by the small error between young and 

mature oil palm occurred (Table 3.7). This was possible because of the different vertical 

structure of vegetation signature obtained by PALSAR, and also the gap between 

canopy's difference between young and mature oil palm. These factors are beneficial to 

distinguish the growing stage of oil palm even though both of them have the same 

planting pattern.   
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3.4.2 Result of Classification using Fully Polarimetric PALSAR Data 

a. Suitable PD parameters for smallholder’s oil palm detection 

This process was carried out to the 10 kinds of PD parameter combinations. By 

examining the results on figure 3.8, it can be seen that the highest overall accuracy was 

achieved by using H/A/  parameters and combination of intensity and H/A/α. From 

the Table 3.8, it is also clear that both of parameters yield relatively higher accuracy for 

mature and young oil palms. 

 
Figure 3.8 Overall accuracy and kappa statistics of each parameter and its combination 

Table 3.8 Producer’s and User’s accuracies for oil palm classes  

No. Bands 
Mature Oil palm Young Oil palm 
PA UA PA UA 

1 Backscatter (B) 37.63% 43.21% 40% 35.56% 
2 Bacscatter-arithmatic (BA) 37.63% 41.18% 25% 40% 
3 Backscatter + BA (B+BA) 34.41% 40.51% 37.50% 34.88% 
4 Freeman-Durden dec. (FD3) 19.35% 35.29% 62.50% 34.25% 
5 Yamaguchi dec. (Y4) 6.45% 60% 60% 36.36% 
6 H/A/α 50.54% 54.02% 75% 40.54% 
7 Backscatter and Freeman-Durden (B + FD3) 41.94% 41.05% 57.50% 34.85% 
8 Backscatter and Yamaguchi dec. (B + Y4) 39.78% 46.25% 65% 41.94% 
9 Backscatter and H/A/α (B+H/A/α) 51.61% 51.61% 72.50% 42.03% 

10 all parameter 46.24% 50% 72.50% 40.85% 

 

b. Effect of changing Gaussian RBF parameter  

This process was carried out by changing the parameter as can be seen on 

Table 3.9. This result indicated no changes in term of classification accuracy. 
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Table 3.9 Accuracy assessment after changing parameter 

No. 
Parameter 

(C-gamma) 
Bands OA 

Kappa 

statistics 

Mature Oil palm Young Oil palm 

PA (%) UA (%) PA (%) UA (%) 

1 

100-0 

B 52.07% 0.2957 37.63 43.21 40 35.56 

2 H/A/α 57.93% 0.4008 50.54 54.02 75 40.54 

3 B + H/A/α 58.62% 0.413 51.61 51.61 72.5 42.03 

4 

100-1 

B 52.07% 0.2957 37.63 43.21 40 35.56 

5 H/A/α 57.93% 0.4008 50.54 54.02 75 40.54 

6 B + H/A/α 58.62% 0.413 51.61 51.61 72.5 42.03 

7 

100-2 

B 52.07% 0.2957 37.63 43.21 40 35.56 

8 H/A/α 57.93% 0.4008 50.54 54.02 75 40.54 

9 B + H/A/α 58.62% 0.413 51.61 51.61 72.5 42.03 

10 

200-0 

B 52.41% 0.3 39.78 43.53 37.5 34.88 

11 H/A/α 57.24% 0.3918 49.46 52.27 72.5 40.28 

12 B + H/A/α 57.24% 0.3946 50.54 47.47 70 41.18 

 

c. Effect of the number of training sample 

The number of polygon samples was changed to the lower and higher number 

then the samples used for test (a). Based on the result on table 3.10, increasing number 

of sample polygons will increase the overall accuracy and accuracy of oil palm classes. 

 
Table 3.10 Changing of samples result for classification 

No. 
No. of 

sample 
Bands OA 

Mature Oil palm Young Oil palm 

PA UA PA UA 

1 

225 

B 52.07% 37.63 43.21 40 35.56 

2 H/A/α 57.93% 50.54 54.02 75 40.54 

3 B + H/A/α 58.62% 51.61 51.61 72.5 42.03 

4 

350 

B 56.55% 44.19 48.1 44.68 43.75 

5 H/A/α 62.58% 59.3 51.52 70.21 47.83 

6 B + H/A/α 63.62% 65.12 53.85 74.47 47.95 

7 

155 

B 49.48% 35.48 38.82 27.5 44 

8 H/A/α 55.00% 44.09 48.81 67.5 38.03 

9 B + H/A/α 56.03% 45.16 48.28 77.5 40.79 
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3.5 Conclusion 

In this study, the detection of smallholder's oil palm plantations in Simpang 

Pematang Sub-district, Mesuji District, Lampung Province, Indonesia was performed 

successfully using integration of both radar and optical sensor data from the ALOS 

satellite. The triangular planting pattern of the plantation has been discovered as unique 

characteristic of oil palms. The GLCM of textural analysis was selected as the most 

suitable method to extract this unique pattern due to its ability to measure the 

correlation between grey tones. The extraction of this pattern was successful to identify 

the smallholder’s oil palm plantations even when surrounded by other types of 

vegetation cover.  

Combination of mean and variance texture features from the PALSAR data was 

particularly useful for their detection, especially for the mature growing stage, showing 

that in the absence of cloud-free optical data, smallholder's oil palm plantations can still 

be identified using only PALSAR data. This is particularly useful for the tropical 

countries. The study also revealed that the integration of texture data derived from the 

PALSAR and multispectral data from the AVNIR-2 image highly improved the 

classification accuracy. The mean and variance from the HH, HV, and HH-HV bands 

combining with all AVNIR-2 bands resulted in the best producer’s accuracy of mature 

oil palm as much as 92.45%, with user’s accuracy of 66.67%. For young oil palms, the 

producer’s and user’s accuracy were 64.44% and 63.04%, respectively. 

Fully polarimetric PALSAR classification using the SVM has resulted generally 

slightly greater accuracy than the classification using texture analysis of AOS PALSAR 

FBD data. However, direct comparison could not be explained here because the 

classifier used for both analysis are different. Analysis using SVM analysis also 

indicates that combination parameters of backscatter (B) with 11 parameter of H/A/α 

yielded the best accuracy for classifying smallholder’s oil palm plantation. Therefore, 

when the fully polarimetric data is available while cloud free image of ALOS AVNIR-2 

is not, this method can be a good alternative for ALOS-Sensor data integration.  

As this is one of the initial studies of smallholder's oil palm plantation detection 

using remote sensing, further study to improve the classification accuracy is necessary. 

The use of more polarization types for the texture extraction or application of other land 

cover classifier should be examined. The implementation of PCA to reduce redundancy 

while selecting combinations of integrated data or texture features is also suggested. We 
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hope this study will improve the land cover management of the study area and general 

monitoring of the environmental impact associated with the expansion of oil palm 

plantations. 
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Figure 3.9 Smallholder’s oil palm plantation maps using combination I 
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Figure 3.10 Land cover classification map of study area produced by combination I 
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Chapter 4  

Classifying the Smallholders’ Oil Palm Tree Conditions on Peatland 

Area using ALOS-2 PALSAR-2 data  
 

4.1 Introduction 

As one of the country’s main commodities, palm oil production has been 

developed extensively in Indonesia. Started in Peninsular Malaysia, oil palm cultivation 

has been expanded to the peatland area in Sumatra and Kalimantan Islands of Indonesia, 

in response to the growing demand for vegetable oil (Miettinen et al. 2012).  

Peatland in Indonesia is categorized as tropical peatland, where abundant carbon 

density is stored (Page et al. 2011). Peat has large amount of organic matter and 

enormous water holding capacity, but it becomes susceptible to fire when dry (Mutert et 

al. 1999, Page et al. 2002). However, crop production under undrained peat is usually 

not profitable. Thus, beside the standard planting techniques, sustainable peat soil 

management techniques are required prior and during the agronomic development on 

peatland. Proper compaction and effective drainage are the key procedures to maintain 

water table conditions, avoid over-drainage, and increase the bulk density and bearing 

capacity of the peat, which is essential for minimizing the leaning oil palm and 

optimizing yield (Melling et al. 2011, Melling and Chaddy 2016, Sidhu et al. 2016).  

While high market demand of palm oil has become a promising strategy for 

poverty alleviation, limitation of available area on mineral soils has triggered the 

smallholders to grow oil palm in peatland area. However, peat management techniques 

are hardly ever applied, especially by independent smallholders; this is due to their 

limited financial condition to execute the high cost procedures, inadequate knowledge 

related to peat soil characteristics, and sometimes poor management technique. As a 

result, oil palm leaning in random directions is frequently found as the trees grow, and 

tree toppling tends to happened, even at a young planting stage. Leaning trees are 

known as one of the major problems for oil palms planted on peat soil as they may 

complicate management and harvesting, as well as decrease the yield up to 25% (Corley 

and Tinker 2016). Additionally, new trees have to be replanted to replace the toppling 

palms, which means early regeneration is carried out to several trees and results in 

various planting ages with diverse fruit productions occur in one plantation. Detection 
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and mapping of such tree conditions is necessary to monitor less productive or even 

un-productive trees, which so that early rehabilitation, and effective implementation of 

best management practices in existing plantations can be realized (Lim et al. 2012).  

Bandar Sei-kijang Sub-district area, Pelalawan Regency in Riau Province is one 

of peatland area where smallholder’s oil palm plantations are being developed. Even 

though this area has suitable climatic condition, this area is still unfavorable for oil 

palms because peat soils has too high water table for oil palm. This condition causes the 

oil palm growth in this area become not normal and the yields remain relative low, 

because of the lack of peat soil management. Thus, further monitoring in this area is 

important for rehabilitation.  

Remote sensing has been widely applied for land use/land cover classification 

and monitoring in tropical peatlands (Jaenicke 2010, Koh et al. 2011), while Synthetic 

Aperture Radar (SAR) is notably favorable to overcome cloud coverage in the tropics 

(Morel et al. 2011). Nonetheless, there are still limited studies about classifying the 

vegetation conditions, especially for oil palms. The study on Chapter 3 has successfully 

identified smallholders’ oil palm plantations using a texture analysis of the integrated 

SAR backscatter and optical data. Scattering mechanisms modeled using polarimetric 

decompositions (PD) were proved to be effective in surface features extraction. 

Chowdhury et al. (2013) had applied PD to estimate growing stock volume in a Siberian 

forest without multi-temporal data, while Kobayashi et al. (2012) discovered the 

relationship between decomposition powers and tree growth of Acacia plantations in 

Sumatra, Indonesia. By exploiting the higher resolution offered by the PALSAR-2 

sensor, better monitoring for detail analysis such as tree conditions becomes more 

possible. This study aimed to explore the backscatter and polarimetric decomposition 

from the full polarimetry data for classifying the three types of oil palm tree conditions 

in smallholders’ plantations on peatland area.  

 

4.2 Study Area and Materials 

4.2.1 Study Area 

The study was performed in Bandar Sei Kijang Sub-district, Pelalawan Regency, 

Riau Province of Indonesia (Fig. 4.1). Pelalawan regency area spans from the central 

part of Riau Province to the east coast of Sumatra Island. The study area itself, Bandar 
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Sei-kijang Sub-district, is located in the central part of Riau, which is close to 

Pekanbaru city, the capital city of Riau Province. 

According to topographic condition as described by The Government of 

Pelalawan Regency (2014), Pelalawan Regency is mostly a low-land area. However, 

hilly area also can be found in some places, which mainly covered by peat soil. 

Therefore, some part of Pelalawan Regency has been claimed as protected area, 

especially the location where peat swamp forest exists. Day time temperature of this 

area can be as high as 33 C to 35 C, while night temperature ranged about 20 C to 23

C with average humidity about 80-88%. According to the agroclimatic zones for oil 

palm cultivation mentioned on Chapter 2, this area is categorized in zone II with 

AS1-k1 class (Corley and Tinker 2016). This class indicates that this area is 

agroclimatically suitable for oil palms with light intensity of rainfall and dry month 

duration as limiting factors. The residents of Pelalawan Regency are mainly occupied 

the river basin side, and area close to plantation. About 65% of them work in 

agricultural sectors, especially in industrial plantation, such as oil palms and acacia.  

The present study is focused on about 46 km2 area that mostly covered by oil 

Figure 4.1 Location and false-color composite Pleiades image of study area 
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palm plantation as shown on Fig.4.1. This area is a part of concession land given to the 

local citizens for agricultural activities. According to the information gathered from 

field survey, before the oil palm establishment, acacia plantation and shrubs are mainly 

occupied the area. In some part, the oil palms even directly developed by converting the 

natural forest. At the present time, oil palms are mostly planted by the smallholders 

along the main road, as shown inside the yellow line on Fig. 4.1.   

Despite the agroclimatically suitability status for oil palm cultivation, this area is 

less suitable in term of soil condition, because most of the extent area is occupied by 

deep peat soil, which is not favorable for oil palm. Unfortunately, proper peat soil 

managements, such as drainage and compaction, are hardly done by the smallholders. It 

makes many oil palm trees lean in random direction and early replanted trees are 

commonly found in this area, especially in mature growing stage. 

In order to detect oil palm tree conditions in the study area, the methodology 

was tested in three representative areas of 1 × 1 km in size (Fig.4.1). The first area is 

dominated by smallholders’ oil palms that are older than 10 years, where leaning trees 

can be commonly found. In addition, the area also has a small portion of 5-years-olds 

smallholders’ plantations and private company’s mature oil palms. The second area 

consists of both mature and young oil palms, while young trees and newly planted oil 

palms are dominant in the third 

 

4.2.2 Materials 

Data used for analysis of this study consist of fully polarimetric ALOS-2 

PALSAR-2 image as the main data, and high resolution peiades image as well as ground 

truth data as reference.  

ALOS-2 or ‘Daichi-2’ satellite is the new generation of former ALOS satellite, 

which ended its mission in 2011. The ALOS-2 is especially operated for observation 

using PALSAR-2 sensor. Comparing to the former sensor, PALSAR-2 provides 

improvement in various sectors, including higher spatial and temporal resolution. In this 

study, a level 1.1 PALSAR-2 high-sensitivity image was used as the primary data. The 

data was acquired on 15 October 2015, which is the end period of dry season in Riau 

Province and is the closest acquisition time of full polarization data with ground truth 

activity. The image has four polarization bands, consisting of HH, HV, VH, and VV.  

A multispectral Pleiades image, consist of red, green, blue, and Near-Infrared 
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bands were fused with the higher resolution of the panchromatic Pleiades image to 

produce a 0.5 m resolution pan-sharpened image. This image was used as a reference 

data to collect training samples for classification and accuracy assessment alongside the 

ground truth data acquired during field survey in September 2015. In addition, GDEM 

data acquired by ASTER were used for terrain correction of PALSAR-2 data. 

 

4.3 Methodology  

Based on the observation about oil palm cultivation in study on Chapter 3, it is 

known that planting pattern of an oil palm plantation usually becomes the characteristic 

to differentiate it from other land covers. However, tree conditions on peatland, such as 

leaning palms and replanted trees might change its three-dimensional characteristic. A 

plantation with leaning palms is expected to give diverse ground-trunk-ground 

(double-bounce) and volume scattering in the pixel compare to the one with trees that 

 
Figure 4.2 Methodology for classifying oil palm tree conditions 
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grow upright. Because the tree trunks of leaning oil palms are partially or mostly close 

to the ground, more double-bounce scattering is expected to be reflected than in 

plantation with normal condition. On the other hand, random leaning direction of the 

trees will cause higher volume scattering in the area with dense leaning trunk and less 

scattering in wide open space area with less leaning trunk. This situation is different 

with common oil palm plantation which has uniform spaces between tree trunks. 

Backscatter intensity and scattering mechanism generated from PD are hypothesized to 

be effective for differentiating scattering properties of leaning oil palms and detecting 

the different growing stage of the replanted trees from their surrounding area. 

Furthermore, texture analysis was applied to identify the spatial pattern change, such as 

the random ground exposure caused by random canopy closure of leaning palms and 

scattering difference in an area caused by the replanted trees. 

 

4.3.1 SAR data processing 

Backscatter analysis and PD were applied to the PALSAR-2 data using Sentinel 

Application Platform (SNAP) open source software version 4.0 module Sentinel 1 

Toolbox (S1TBX). S1TBX is a toolbox consists of processing tools for SAR data 

including ALOS PALSAR-2, which can be freely downloaded from 

http://step.esa.int/main/download/. The data were multi-looked with a 2 × 3 factor in 

range and azimuth resolution. For backscatter analysis, the image was converted to 

backscatter coefficient ( ) and was corrected using terrain flattening, while in PD 

analysis, coherency and covariance matrices were extracted. A 5 × 5 window size of two 

different types of speckle filter was applied based on the data type. Box-car filter was 

applied to polarimetric data because of its characteristic to preserve the mean value 

while reducing the speckle noise. This is essential to keep the PD information for 

discriminating oil palm tree conditions. On the other hand, the Lee filter was applied for 

backscatter data as the statistical test proved this filter has higher equivalent number of 

looks (ENL) value, as one of the indicator for noise reduction, compared to other filters. 

As the additional data of the four bands polarization, Radar Vegetation Index 

(RVI) was produced by the following formula (Kim and van Zyl, 2009) :  

RVI = 8 HV

HH+ VV+ 2 HV
   (Eq. 4.1) 

where, HH HV , and VV  are backscatter of HH, HV, and VV polarizations, 
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respectively. RVI has been implemented for crop monitoring and indicated as an 

effective technique for estimating forest parameters (Kim and van Zyl, 2001). 

Ten polarimetric parameters were generated using the Eigenvalue-Eigenvector 

(H/A/ ), Freeman-Durden, and Yamaguchi - 4 components decomposition methods. 

Eigenvalue-Eigenvector based decomposition was proposed by (Cloude and Pottier, 

1997) for target classification. The Freeman-Durden approach was developed to model 

three scatterings representing surface, double-bounce, and volume scatterings (Freeman 

and Durden 1998), while Yamaguchi et al. (2005) improved the decomposition with 

helix scattering as the fourth component for urban area and modification of volume 

scattering model.  

A total of 15 extracted backscatter and polarimetric parameters were terrain 

corrected and geocoded to the Universal Transverse Mercator (UTM) projection Zone 

47 N of the World Geodetic System (WGS) 1984, using the ASTER Global Digital 

Elevation Model (GDEM), and resampled to a 9.5 m spatial resolution. Additionally, 

because the 15-bands of parameters was considered as a large number for classification 

process, Principal Component Analysis (PCA) was carried out to reduce the 

dimensionality and maximize the information of the original data into least number of 

principal components (Estornell et al., 2013, Gupta et al. 2013). 

 

4.3.2 Texture analysis 

For the first analysis, eight GLCM texture features, consisting of mean, variance, 

homogeneity, contrast, dissimilarity, entropy, second moment, and correlation in 

singular moving window, 3 × 3, were tested to the 15 SAR parameters. The image 

extracted from each feature was then classified, and the accuracy was assessed for all 

classes to obtain the most significant texture feature.  

Second, the best feature from the first analysis was used to extract the texture of 

several SAR parameter combinations, such as backscatter parameter only, the texture 

from each decomposition method, and 15 bands integrated of all SAR parameters. The 

texture images were produced using 3 × 3, 5 × 5, and 7 × 7 moving window sizes and 

were classified. The most suitable methodology to classify tree conditions can be 

obtained by evaluating the accuracy of each classified image. 
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4.3.3 Image classification and accuracy assessment 

Image classifications performed in the texture analysis were carried out by 

applying an MLC. The texture images were classified to three oil palm tree conditions 

classes and other land covers including bare land and shrubs. The tree conditions in this 

study are defined as normal, replanted, and leaning trees (Fig. 4.3). Normal oil palm is 

the usual condition of oil palm trees, which grow upright and are planted at the same 

time as other trees in the plantation. A replanted or dead tree is the condition when a tree 

has toppled and should be removed; the area remains empty or has been replanted with 

new an oil palm, which is much younger than the surrounding trees. The leaning oil 

palm is the tree that could not grow upright and has a curving trunk due to soil 

conditions. This condition usually occurs in mature oil palms. 
 

 
Figure 4.3 Oil palms in (a) normal, (b)replanted, and (c)leaning tree conditions  

Ground truth data and Pleiades image were applied for training sampling of 

classification and accuracy assessment. The ground truth data were used to identify and 

confirmed the types of tree conditions on Pleiades image (Fig.4.3), while visual 

interpretation was conducted to the remaining study area on the image to acquire 

training samples. The stratified systematic unaligned sampling schema was applied to 

assess the accuracy of each classified image. Different with the sampling method as 

demonstrated on the previous chapter, this method was carried out by taking several 

random sampling points from each mesh or grid on the reference image. In other word, 

this sampling method is more random, but still systematically taken inside each mesh. 

In this case, this accuracy assessment was performed by taking four random samples for 

each 100 × 100 m mesh on the Pleiades image.  

 



60 
 

4.4 Result and Discussion  

4.4.1 Texture feature selection 

Classifications using each texture feature in a single moving window and 

combination bands were performed to determine the optimal feature for the further 

combination approach. The summary of overall classification accuracy using the eight 

texture features for the three areas is displayed in Fig. 4.4.  

The graph shows that mean feature steadily outperformed all other texture 

features in every area, producing 51.52%, 51.45%, and 46.50% overall accuracy for 

areas 1, 2, and 3, respectively. This is consistent with our previous result, which found 

the mean to be the most effective feature to classify oil palms. This indicated that 

different tree conditions also change SAR intensity and polarimetric properties, which 

by averaging those values within a certain area may generate a particular value for each 

tree’s condition.  

Variance, homogeneity, contrast, and dissimilarity features yielded accuracy 

from about 7% to 18% lower than mean in all areas. Similar accuracies were produced 

by entropy and second moment in areas 1 and 3, but they decreased rather significantly 

for area 2, where most confusion mainly occurred from the oil palm classes with bare 

land. The correlation, however, showed insignificancy, because the extraction using this 

feature sometimes yields non-value data, which affects the classification.  

From this analysis, mean feature is selected as the most significant feature and 

will be used for the combination approach. In this study, only one optimal texture 

Figure 4.4 Overall accuracy of classification using texture feautre in areas 1, 2, 3 
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feature was taken, since the main analysis will put more emphasis on the combination of 

several SAR parameter bands. 

 

4.4.2 Classification using SAR parameter combination 

The mean texture feature using 3 × 3, 5 × 5, and 7 × 7 moving window sizes was 

applied to several combinations of both backscatter and polarimetric parameters. The 

combinations include four backscatter intensities and RVI (which further will be 

mentioned as [B] combination), three Freeman- Durden decompositions (FD3), 

Eigenvalue-Eigenvector parameters (H/A/ ), four bands of the Yamaguchi method (Y4), 

the combination of 15 bands SAR parameter, and PCA. Moreover, to access the effect 

of each decomposition method to the backscatter, B+FD3 and B+Y4 combinations were 

examined.  

The classification results of a total of 24 combinations are presented in Fig.4.5. 

The figure shows that a 15-bands combination of all SAR parameters constantly yielded 

the highest accuracy for the three areas using the same window size. This result 

indicates that increasing the information of each SAR parameters is essential for 

improving the accuracy. This combination increased 14.39%, 18.47%, and 12.75% of 

overall accuracy when compared to the best result from B+Y4 combination in areas 1, 2, 

and 3, respectively. The result of B+FD3 and B+Y4 also proved that adding the 

polarimetric parameters is effective in improving the classification, particularly for Y4, 

which has slightly better accuracy than adding the FD3. On the other hand, the H/A/

parameter produced the lowest accuracies in all areas. This result might be caused by 
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Figure 4.5 Producer’s and user’s accuracy of normal, replanted, and leaning tree 
conditions in each area 
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algorithm of this decomposition which derives only eigenvalue of coherency matrix and 

does not express intensity or power measurement (Alberga et al. 2008).  

Ten Principal Components (PCs) with accumulative of 99.83% variance were 

also extracted from the combination of 15-bands parameter using PCA. The eigenvector 

of the image shows similar contribution of all bands in the first PC. On the other hand, 

the contrast of relatively high and positive values of surface scattering from both 

Freeman-Durden and Yamaguchi decomposition methods were observed in the second 

PC. This data indicates that the information of surface scattering plays the most 

important role for discriminating the condition of oil palm, regardless the PD method. 

Random spatial distribution of surface scattering might be indicating the leaning trees, 

while homogenous scattering feature could be stated as normal palms. However, the 

accuracy of the classification using PC bands still behind the total combination of 

15-bands which indicating the importance of applying all of the parameters (Fig. 4.5). 

This result approved that PC process does not always improve the classification, 

because the structure of the image itself might be too complex and detail that 

compression into few components by this process may cause significant loss of 

information instead (Eklundh and Singh 1993).   

Fig.4.5 also shows the comparison of the classification result derived by three 

moving windows. Mostly, an improvement in overall accuracy can be seen by 

increasing the moving window from 3 × 3 to 5 × 5 in area 1 and area 2, but not likewise 

in area 3, where the oil palms are mainly still in a young stage. However, a significant 

effect was shown by using 7 × 7 moving windows with an overall accuracy of 68.69% 

(Kappa: 0.60) in area 1, 70.18% (0.55) in area 2, and 72.75% (0.60) in area 3. This 
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result confirmed the 7 × 7 moving window as the optimum extent of mean feature 

computation for classifying tree conditions both in mature and young planting stages, as 

well as other land covers. Nevertheless, larger moving windows were not examined in 

this study by considering pixel size and the detail analysis of the target objects inside 

the plantation. 

From these results, mean texture extraction of 15-bands SAR parameters in 7 × 7 

moving window is determined as the best combination for classifying the land cover in 

the three study areas. Further analysis of this combination was also carried out by 

examining the producer’s accuracy (PA) and user’s accuracy (UA) for tree condition 

classes of each area. The accuracy result presented in Fig.4.6 shows that backscatter and 

RVI (B) are more effective in detecting normal plantations than polarimetric parameters. 

This might be caused by the homogenous condition of normal palms, which reflect a 

similar intensity without much effect from the condition of the tree stands. However, an 

inconsistency is shown as it produced high accuracy for normal trees in areas 2 and 3, 

but not in area 1. The replanted trees in area 1 that mainly cover a large area are 

considered to be the main reason since they might reflect similar average intensity and 

cause confusion with normal and leaning palms. Moreover, this confusion also occurred 

in the classification using PD and combinations of backscatter and single decomposition. 

However, the significant improvement was obtained by combining all 15 parameters, as 

it reduced the confusion and increased the UA of replanted trees.  

On the contrary, the identification of leaning oil palms increased by applying PD, 

particularly the FD3 and Y4. This confirmed our expectation that the effect of 

polarimetric parameters in the pixel is essential for identifying tree stand conditions of 

leaning palms. The characteristic of volume and double-bounce scattering from FD3 

and Y4 might be useful for identifying random leaning tree trunks and canopy cover, 

while surface scattering may be beneficial for measuring the ground exposure because 

random canopy coverage makes high surface scatter from one open place but low at 

other place with dense canopy (Freeman and Durden 1998, Lee and Pottier 2009, 

Yamaguchi et al. 2005). 

 

4.4.3 Oil palm tree conditions classification map 

The tree conditions classification map of smallholders’ oil palm plantations was 

produced by applying the 15-bands combination of SAR parameters using mean texture 
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in 7 × 7 moving windows. Comparisons of the produced map and Pleiades images of 

each area are presented in Fig.4.7. Area 1 shows the largest number of leaning trees 

because oil palms have been developed in this area since 1998 and earlier. Some small 

areas of normal trees were also identified nearby or within the area of leaning palms. 

Compared to the reference image, the distribution of leaning oil palms has been well 

generated. Some normal plantations seem to be misclassified as replanted palms, 

especially in the right top of the area as the result of confusion caused by the large 

coverage of replanted palms. However, this condition has been much improved by 

implementing the 15-bands combination.  

More random distribution is presented in the tree conditions map of area 2. More 

normal conditions of mature oil palms exist in this area, while several leaning palms are 

sparsely identified. On the right-middle side of the map, a newly replanted plantation 

can be identified. From the Pleiades image, more than half of the trees in this plantation 

are young with various planting ages, but some mature trees can still be found randomly. 

Therefore, the whole plantation is classified as a replanted plantation in the tree 

conditions map. The classification map of area 3 shows that no leaning oil palms exist 

in this area; this is because most of the plantations are still in the young planting stage. 

Confusion only occurred in some parts of very young oil palms, where the difference 

between the replanted and the original tree is difficult to discriminate. 

Overall, the results of the three classification maps show more random 

distribution compared to the usual land cover map; this is because the leaning, replanted 

and normal trees can randomly exist even in the same plantation. In several cases, single 

replanted tree surrounded by normal trees are sometimes identified as a large area of 

replanted palms because of the effect of the large size of the optimum moving window. 

Therefore, increasing the moving window size more than 7 × 7 is not necessary. 
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Figure 4.7 Oil palm tree conditions map produced using mean texture of 15-bands SAR 
parameters’ combination in 7×7 moving windows (left) and Pleiades image (right) 
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Figure 4.8 Smallholder’s oil palm tree condition map of area 1 
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Figure 4.9 Smallholder’s oil palm tree condition map of area 2 
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Figure 4.10 Smallholder’s oil palm tree condition map of area 3 
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4.5 Conclusion 

Texture analysis of SAR parameters combination from ALOS-2 PALSAR-2 

fully polarimetric data was examined to classify tree conditions of smallholders’ oil 

palm plantations on peatland area. The normal, replanted, and leaning oil palm tree 

conditions were attempted to be identified in three representative study areas. The mean 

feature of texture analysis was discovered as the most effective feature for identifying 

tree conditions, while 7 × 7 is the optimum moving window size.  

The backscatter intensities are particularly effective to identify the normal oil 

palm trees. However, polarimetric parameters derived after decomposition are 

confirmed to be useful for identifying the standing condition of leaning oil palms, while 

combining backscatter and polarimetric parameters can improve the classification of all 

tree conditions. Finally, the mean texture analysis of 15-bands SAR parameter in a 7 × 7 

window size was determined as the most effective combination. This combination 

obtained the highest overall accuracy, with as much as 68.69% (Kappa statistic: 0.60), 

70.18% (0.55), and 72.75% (0.60) in areas 1, 2, and 3, respectively. 

This study also revealed that detail target in the same species, such as tree 

conditions of smallholders’ oil palms, can be identified by using the data of a single 

SAR sensor, PALSAR-2, which will be useful for application in tropical countries. 

Lastly, we suggest further analysis regarding the classification approach suitable for the 

target and the application for other tree species for the future studies 
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Chapter 5  

General Discussion and Recommendation 
 

5.1 Discussion and conclusion 

This study aimed to conduct remote sensing analysis for the smallholder’s oil 

palm plantations management purpose. The research tried to design the best 

methodology for detecting the distribution of smallholder’s oil palm plantations as well 

as the detail analysis of oil palm tree condition on peatland area.  

Before conducting the first study regarding to the detection of smallholder’s oil 

palms, the biggest constraint in use of remote sensing should be found out. In this study, 

we figure out the characteristic of the smallholder’s oil palm plantation as the main 

problems. Firstly, the scale of the area usually planted by the smallholder’s makes the 

utilization of medium to high resolution of satellite image become necessary. Secondly, 

the random distribution of the plantations occupying remote area that surrounded by 

other vegetation problem lead to the requirement of remote sensing data and 

methodology that has the ability to distinguish the type of vegetation, as well as the 

need of specific characteristic of oil palm plantation that can differentiate its feature 

from other land cover types. Thirdly, location of study area itself, which is situated in 

tropical country where the cloud cover almost all of the time.  

By considering these problems, we broke down the main objectives to solve 

each limitation. The first objective, to explore the characteristic of oil palm plantation 

that can be identified by remote sensing data. By learning the procedure of oil palm 

cultivation, it was found out that the oil palm trees are always planted in regular interval 

between each tree in order to make sure that all of tree could receive sufficient nutrient, 

sunshine, and water supply. We also confirmed this fact from the field survey activity to 

the study area where the most effective triangular planting pattern is used. We therefore 

used this unique characteristic to as the main feature of oil palm and the methodology to 

extract this pattern on satellite image. In this case, GLCM of texture analysis was used 

because of its ability to measure the grey tone pattern in the image. The result of the 

first study that confirmed that mean and variance texture features in 11 x 11 window 

size are efficient to discriminating oil palms from other land cover. 

The second objective is to examine the ability of dual and full polarization of 
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ALOS PALSAR data in discriminating oil palms from other land cover types. According 

to the third problem about the cloud cover problem in Indonesia, this objective become 

necessary to be conducted, because of the ability of ALOS PALSAR data in penetrating 

the cloud cover. In this study, we tried to carry out the classification using both of FBD 

and PLR data. FBD has the limitation of only consist of two linear polarizations. 

Therefore, in this study, we tried to make synthetic band to add more information for the 

classification. Based on the solution of the first problem, the classification of FBD data 

was conducted by extracting the texture feature. Based on the classification, the ALOS 

PALSAR FBD data alone also can be used for the detection. 

On the other hand, fully polarimetric ALOS PALSAR data has the advantages 

of having four polarization bands. This fact was utilized to produce more parameters 

from decomposition. This study then tried to examine the ability of this data by using 

SVM classifier. It has been proven that the combination of intensity bands and H/A/

parameters can produced the highest accuracy. The data also yielded higher accuracy 

than the analysis of ALOS PALSAR FBD only. 

Finally, on the third objective, to identify the best integration methodology of 

ALOS-Sensor data to detect smallholders’ oil palm plantations, we tried to design more 

comprehensive analysis for detecting oil palms. The integration of both SAR and optical 

data was hypothesized to be effective for classification, because of the multispectral 

information owned by the AVNIR-2data may enrich the information. The result shows 

that even though low accuracy was obtained by using ALOS AVNIR-2 data only, when 

this data were integrated with ALOS PALSAR texture data, it indeed improved the 

accuracy. This is particularly caused by the fact that AVNIR-2 data increase the 

separability of vegetation and man-made land cover. Finally, the methodology of mean 

and variance texture feature extracted from the ALOS PALSAR data in 11 x 11 moving 

window combined with all band of ALOS AVNIR-2 data, the best accuracy was 

achieved as much as 72.48% of overall accuracy with 0.63 kappa statistics.  

As for the last objective, to investigate the most effective backscatter and 

polarimetric parameter for identifying oil palm tree conditions on peatland area, the 

analysis was carried out in different area with the first study. By considering the detail 

target to be analyzed, which is the oil palm tree condition, the ALOS-2 PALSAR-2 data 

that offers higher spatial resolution were used. By this study, we found out that the 

backscatter data and polarimetric decomposition parameters produced from the data is 
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useful to detect the normal, replanted, and leaning oil palm. This study also revealed 

that the combination of backscatter, with Freeman-Durden, Yamaguchi, and 

eigenvalue-eigenvector parameters is the best methodology by yielding the best 

accuracy when they are extracted using mean texture feature by resulting by resulting 

68.69% overall accuracy in area 1, 70.18%, and 72.75% for area 2 and 3, respectively. 

By the result of this study, detail monitoring of oil palm expansion, especially 

by the smallholder farmers is hopefully can be carried out in order to avoid more 

problem for the environment. Moreover, we also hope this study will be useful for 

rehabilitation process of un-productive and less-productive oil palm trees planted on the 

peatland. Finally, we wish the study will be helpful for improvement of the management 

of smallholder oil palm farmer, and so that the sustainable oil palm cultivation can be 

accomplished.  

 

5.2 Recommendation  

This study provides the methodological analysis for the issue related to 

mapping of smallholder’s oil palm plantation and their tree condition. However, there 

are still some limitations on this study that should be improved for the future study. 

Firstly, better methodology for selecting the parameter should be improved. This study 

conducted pre-classification using the MLC for selecting the effective texture feature 

and analyzed the effectiveness from the accuracy result. Another method that can be 

used for determining the separability of each parameter should be employed to improve 

the effectivity of analysis.  

Second, the dimensionality reduction using PCA in this study is proven to be 

not useful for improving the classification. However, big amount of data because of 

many parameter used for identification is not effective either. Therefore, examination of 

effective parameter for detecting smallholder’s oil palm plantations and the tree 

conditions should be explored. 
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APPENDIX A 
Photograph of each land cover type in Simpang Pematang, Mesuji, Lampung 
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a. Agricultural land 
b. Bare land 
c. Mature oil palm 
d. Young oil palm 
e. Other woody vegetation 
f. Settlement  
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APPENDIX B 
Photograph of smallholder’s oil palm tree condition in Riau  

 
1. Normal oil palm tree 

 

 
Oil palms grow straight up in normal condition, similar as common oil palms planted on 

mineral soil 
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2. Replanted oil palms 
 

 
Fallen oil palm tree since young stage 

 

 
Contrast condition (height and canopy cover) of replanted oil palm with other 

surrounding mature trees 
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3. Leaning oil palms 

Oil palm tree trunk lean close or up to the ground when it grow higher 
 

 
Oil palms lean to similar direction, leaving exposed-ground in one place (center) and 

densely-covered area in other place (left side of picture) 
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Oil palms lean to random direction, causing uneven sunshine penetration to the ground 
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Summary 
 

Expansion of oil palm plantation on low-land tropics has rapidly increased in 

response of high global demand for palm oil. Indonesia has become a major location of 

oil palm cultivation as it possess favorable conditions supporting this activity. While it 

plays role as a vital economic strategy for the country, massive expansion in recent 

years has drawn criticisms for its potential of environmental damage and land use 

management problems. The involvement of independent smallholders in oil palm 

cultivation has caused even more uncontrollable expansion and land fragmentation since 

the cultivation is usually carried out in small patches area in random location. Moreover, 

decreasing availability of mineral soils has driven the expansion to the rich-carbon 

peatland area, which is principally less suitable for oil palms. Proper peat soil 

management, however, is still hardly applied by the smallholders that lead to decrease in 

production. Addressing the problem regarding the uncontrolled oil palm expansion by 

independent smallholders, and the urgency of improvement and recovery for existed 

plantations on peatland, comprehensive study on the detection of distribution and tree 

conditions of smallholders’ oil palm plantations are necessary for detail monitoring of 

small-scale plantation, as well as to support rehabilitation process, control, and 

implementation of best management practice. Synthetic Aperture Radar (SAR) data, 

which is notably favorable to overcome the cloud cover in tropics, is mainly explored. 

The main purpose of this study is to explore the methodology of ALOS PALSAR 

and ALOS PALSAR-2 application for identification and mapping of areal distribution 

and tree conditions of smallholders’ oil palm plantations. In order to achieve this 

purpose, this study focused on the following specific objectives: (1) to explore the 

characteristic of oil palm plantation that can be identified by remote sensing data, (2) to 

examine the ability of dual and full polarization of ALOS PALSAR data in 

discriminating oil palms from other land cover types, (3) to identify the best integration 

methodology of ALOS-Sensor data to detect smallholders’ oil palm plantations, (4) to 

investigate the most effective backscatter and polarimetric parameter for identifying oil 

palm tree conditions on peatland area. 

Texture analysis is mainly applied as the methodology for classifying oil palm 

plantations and their tree conditions. Total of eight texture features of Gray Level 

Co-occurrence Matrix (GLCM) in 6 window sizes are tested and the most effective 
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features and window size are selected to generate best combination for identifying oil 

palms. Land cover classification, as the general part to detect both area distribution and 

oil palm trees conditions, is performed using Maximum Likelihood Classifier (MLC). 

Support Vector Machine method was also used as alternative and comparison for 

detecting smallholders’ oil palms using full polarization of ALOS PALSAR data.  

The study on the detection of smallholders’ oil palm plantations was carried out in 

Mesuji District of Lampung Province in Southern Sumatra, Indonesia, which is known 

as the development area of independent smallholders’ oil palm. The smallholders in this 

area mainly cultivate the oil palm covering small area in random locations, which are 

surrounded by other land cover types. The result of this study revealed that the 

triangular planting pattern of oil palm plantation is the unique characteristic that can be 

interpreted in satellite image as distinct texture. Combination of mean and texture 

feature from dual polarization ALOS PALSAR data was discovered as the most 

effective features to distinguish oil palms from other land covers. This is proved the 

ability of PALSAR data only for detecting oil palms. However, significant improvement 

in accuracy was achieved by integrating those data with multispectral AVNIR-2 image. 

The mean and variance extracted from HH, HV and HH-HV bands combined with all 

AVNIR-2 bands yielded in the best classification of mature oil palm with 92.45% of 

producer’s accuracy and 66.67% of user’s accuracy. While for the young oil palms, the 

producer’s accuracy was 64.44% and the user’s accuracy was 63.04%. The analysis for 

detecting smallholder’ oil palms was also carried out using full polarization of ALOS 

PALSAR data which showed that the combination of four backscatter bands and 11 

eigenvalue-eigenvector decomposition parameters  resulted the best accuracy. It is also 

proved that classification using SVM yields slightly better accuracy than using MLC 

method. Overall, detection using full polarization image might produce higher accuracy 

comparing to result of detection using dual polarization of PALSAR data only, however, 

it is still lower than the result achieved by using data integration of both PALSAR and 

AVNIR-2 image, which remarks the important of multispectral information for the 

classification. 

The second study related to classification of smallholders’ oil palm tree conditions 

was conducted in Pelalawan Regency of Riau Province, where the expansion of oil 

palm has been expanded to peatland area. In spite of the smallholders in this area 

generally own only slightly larger land than the first study area, the plantations in this 
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area are located close to each other. The methodology in this study was tested in 3 

representative areas. Oil palm tree was classified in to three conditions, namely normal, 

replanted, and leaning trees. The classification using single texture feature in this study 

showed similar pattern with the previous one, which proved that mean feature has the 

greatest ability in detecting tree conditions, while 7 × 7 was the optimum window size. 

On the other hand, the analysis using PALSAR-2 parameters showed that even though 

the backscatter intensities are already effective to identify the normal palm trees, the 

other polarimetric parameters derived after decompositions are useful for identifying the 

standing condition of leaning oil palm trees. It is found that the 15 bands SAR 

parameter in 7 × 7 moving windows are the most combination for identifying tree 

conditions, by resulting 68.69% overall accuracy in area 1, 70.18%, and 72.75% for 

area 2 and 3, respectively.  

The findings of the current study emphasize that the regular feature of oil palm 

planting patterns are the main characteristic and reason why the textural analysis 

become suitable for identification process. In this analysis, mean feature was constantly 

showed as the most significant GLCM feature, and can be directly applied for any 

further analysis related to oil palm classification. This study also proved that data 

integration derived from SAR and optical sensor will enrich the information and 

improve the classification accuracy. However, it is also revealed that whenever 

cloud-free image is not available, the identification of smallholders’ oil palms and their 

tree conditions are still can be conducted using SAR data only. In this case, various 

polarimetric decompositions produced from the full polarization data are useful to 

provide more information of three-dimensional condition of tree standings, and 

therefore, detail analysis of identification of tree conditions are also possible. Finally, 

the distribution of smallholders’ oil palm plantations map produced in this study, are 

hopefully can be useful for analyzing and predicting the expansion pattern by the 

smallholders, so that detail monitoring and policy making regarding to land 

management can be conducted to avoid more fragmented area. On the other hand, the 

tree condition maps on peatland area are hopefully will be useful as the guide for 

rehabilitation process to increase the yield and to encourage the application of best 

management practice by smallholders.  

Keywords : Oil palm, smallholder, ALOS, PALSAR, PALSAR-2, polarimetric 

decomposition, texture analysis 
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