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CHAPTER 1 	
    Introduction 

 
1.1 Research Background 

The Kingdom of Thailand is located in the tropical area of Southeast Asia between 
latitudes 50° 35  and 200° 15  north and longitudes 97° 30  and 105° 45  east. Its total 
area is 513,115 km2 consisting of mountainous areas, highlands and lowlands. Thailand 
is situated in a hot and humid climatic zone which supports a variety of tropical 
ecosystems. According to the climate pattern and topography, Thailand has complex 
and varied types of forests, classified as tropical forests, which are rich in ecosystem 
diversity, natural communities and habitats. Moreover, forest areas are important 
places for the protection of ecological systems and natural resources as well as for the 
provision of recreational and tourism opportunities for people (Boyd, 2006). Therefore, 
these forest areas have been protected to prevent loss or degradation resulting from 
natural or man-made causes. National parks represent one type of protected forest area 
with special habitats, plants and wildlife. National parks are managed by the 
Department of National Parks, Wildlife and Plant Conservation of Thailand (DNP). A 
national park is a park with a large area of land that is protected because it has a wide 
variety of landscapes and a high diversity of native plants and animals. In addition, a 
national park is an open space providing outdoor recreation and camping opportunities 
as well as education for the public on the importance of conservation and on the natural 
wonders of the country in which the national park is located. Therefore, recreation and 
tourism play an important role in the life of a national park. Recreational areas are 
open sites which have a wide variety of natural features and landscapes that support 
tourist attractions and activities. Forests are major recreational areas in national 
parks, supporting nature-based activities in these areas. Thus, when forests are lost or 
destroyed, their destruction necessarily has a significant effect on recreational areas.  

In present times, many forests in Thailand have been completely lost and destroyed, 
mainly as a result of human activities or natural forces. In the past, Thailand was a 
country with a high percentage of forest cover: around 27,360,000 hectares (ha) 
accounting for half of the land area (53.33%). This area is now considerably reduced, 
and only 31.60% of forest area remains compared to the situation 50 years ago (Figure 
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1. continuously decreasing 
trend. 
 

 

Figure 1.1  (The Seub Nakhasathien foundation, 2017) 
 

As previously mentioned, human activities and natural occurrences are the main 
causes of forest area degradation. In a developing country like Thailand, people interact 
with nature and forests for their livelihoods, contributing to problems caused by human 
actions. Plantation agriculture and illegal logging especially are major threats in forest 
areas. In addition, the damage caused by natural occurrences such as flood, drought 
and wildfire endanger tropical forest areas to an extreme degree. Interestingly, wildfire 
can be caused both naturally and by humans. It has become a serious problem in 
Thailand.  

 

 

Figure 1.2 Wildfire frequency and area burned over a number of years within Thai 
protected forest areas (Forest Fire Control Division, 2016) 
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Wildfire is one of the important causes of devastating impacts on soil nutrient loss, 
disturbance of wildlife habitat and air pollution, as well as resulting in large burned 
forest areas. Moreover, wildfire in forest landscapes can also damage the natural 
resources, biophysical scenery and landscapes which are the bases of tourism and 
recreation. Since Thailand is located in a hot-humid climate, it can result in a drought. 
The dry season runs from November to April. In the dry season, the forest faces a dry 
and hot climate, resulting in drought conditions, and the forest is therefore vulnerable 
to fire, which is a major cause of forest degradation. Human activity is also a major 
cause of fire ignition, especially burning to clear agricultural areas for large plantations 
and the small fires used in livelihood activities. As a result, fires can burn out of control 
in degraded landscapes and encroach upon forest areas. Protected forest areas in 
Thailand have experienced a large number of wildfires over the past few decades. The 
statistical evidence in Figure 1.2 shows that wildfires occurring in Thai protected forest 
areas have been increasing in frequency and severity since 2011. This implies that the 
number of wildfires has been increasing, but that there is also a trend toward larger 
burned areas. Therefore wildfire has become a problematic phenomenon and wildfire 
management takes a high priority in protected forest areas, as an integral part of forest 
management. 

FAO (2006) gives a definition of wildfire management as an approach that requires 
many activities for the protection of burnable forest and other valuable vegetation from 
fire. It involves the strategic integration of such factors as knowledge of fire regimes, 
probable fire effects, values at risk, level of forest protection required, cost of fire-related 
activities and prescribed fire technology into multiple-use planning, decision-making 
and day-to-day activities to accomplish stated resource management objectives. 
Therefore, wildfire management is the process of planning for, preventing and fighting 
fires in order to protect forest resource including landscape and wildlife. Moreover, the 
principles of wildfire management state that these processes should be considered 
before making decisions about what actions to take on wildfires. Wildfire prevention is 
the most important part of wildfire management. It is directly related to both processes 
of wildfire, as firstly, it can help to stop wildfires before they start and secondly, it can 
also reduce the spread and intensity of wildfires after they have started. Therefore, 
wildfire prevention plays a significant role in wildfire management. There are several 
strategies for wildfire prevention, such as local community-based approaches, fire 
detection, fuel reduction, firebreak creation and fire risk assessment. With regard to 
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wildfire risk assessment, the key approach is to prevent a wildfire from starting and to 
reduce the intensity of a wildfire, once started. In addition, it can be used for planning 
and preparation for wildfire suppression activities. 

Risk assessments are decision support tools that integrate information regarding the 
likelihood and magnitude of resource responses to risk factors, in order to synthesize a 
conclusion about risk that can inform decision-making (Sikder et al., 2006). Assessing 
wildfire risk essentially requires an understanding of the likelihood of wildfires by 
intensity level, and the magnitude of the potential beneficial and harmful effects on 
valued resources from fires at different intensity levels (Finney, 2005). Therefore, 
wildfire risk assessment is a holistic approach that integrates the likelihood of wildfire 
and the critical factors responsible for igniting and driving wildfire, in order to evaluate 
exposure to fire risk and to identify levels of risk. In other words, assessment of wildfire 
risk must include consideration of the factors responsible for driving wildfire 
occurrence, based on understanding wildfire behavior and the factors catalyzing 
wildfire ignition. Wildfire behavior is a product of the environment in which the fire is 
burning. The fire environment includes the surrounding conditions, influences and 
modifying forces that determine the behavior of the fire. Fuel, weather and topography 
are the main interacting influences that make up the fire environment (Pyne et al., 
1996). Wildfire risk assessment should also consider other factors contributing to 
wildfire ignition, particularly human activity, which is a major factor in the occurrence 
of wildfires. Essentially, through wildfire risk assessment, a combination of many 
factors (based firstly on fire environment, i.e., fuel, weather and topography and 
secondly on human activity or anthropogenic factors, i.e., distance from roads and 
proximity to settlements) should be considered for modeling wildfire risk. 

Many tools and techniques are used for assessing wildfire risk, especially Earth 
observation (EO) and geographic information system (GIS) techniques. The use of EO 
data enables the detection and classification of objects on the Earth, including on its 
surface. EO data are normally acquired from remote sensing platforms such as 
satellites. The use of satellite remote sensing data is traditionally based on the use of 
various spectral indices. Vegetation indices (VIs) are a mathematical combination of 
different spectral bands. VIs are widely used and have benefited numerous disciplines 
concerned with the assessment of biomass, forest detection, plant stress, plant health, 
crop production and wildfire. Regarding wildfire assessment, VI has been applied in the 
analysis of wildfires including the effects of fire severity, pre- and post-fire events, 
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wildfire factors and wildfire risk zones. The use of satellite remote sensing data for the 
analysis of wildfire risk is traditionally based on the use of various spectral indices. 
Hence, the application of VI derived from remote sensing data for the extraction of 
wildfire factors is an interesting approach to assessing and modeling wildfire risk. GIS 
is an information system designed to work with data referenced by spatial or geographic 
coordinates. In other words, a GIS is both a database system with specific capabilities 
for spatially-referenced data, and also a set of operations for working with the data 
(Star and Estes, 1990). Therefore, GIS techniques have opened up opportunities for 
analyzing and integrating a great variety of wildfire factors at all geographic and 
spatial scales as well as for establishing a GIS-based wildfire risk model. To move 
forward, both techniques should be combined for the application of wildfire 
management at large scales and in remote areas. These techniques are suitable for 
identifying the spatial distribution of wildfire risk at recreation sites located in forest 
areas, especially in national parks. Using remote sensing and GIS techniques for 
wildfire risk assessment means that it is typically easier and cheaper to prevent a 
wildfire from starting than to put it out. In addition, remote sensing and GIS can 
increase the efficiency of wildfire risk reduction in forest areas and assist in the 
development of guidelines regarding the prevention of wildfires at recreation sites.  

 
1.2 Objectives and Research Hypotheses 

The purpose of this dissertation is firstly to assess wildfire risk and its corresponding 
risk levels by integrating the techniques of remote sensing and GIS, based on several 
factors associated with wildfire, and then to exploit the assessed wildfire risk to evaluate 
the wildfire risk at recreational sites. The factors selected for modeling and mapping 
wildfire risk are commonly recognized as factors in wildfire occurrence, namely, leaf 
fuel loads, soil moisture, slope, aspect, elevation, distance from roads and proximity to 
settlements. The capabilities of remote sensing and GIS techniques are utilized for 
analyzing wildfire risk at recreational sites. Therefore, the objectives of the research 
were formulated as follows:  

(1) To estimate the spatial distribution of the leaf fuel load, as one of the 
selected factors influencing wildfire, by generating a predictive model of 
leaf fuel load using remotely sensed data based on VIs derived from a 
Landsat 8 Operational Land Imager (OLI). 
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(2) To predict the spatial distribution of soil moisture, as one of the selected 
factors responsible for wildfire occurrence, by establishing a predictive 
model of soil moisture using remote sensing based on VIs computed from 
Landsat 8 OLI/thermal infrared sensor (TIRS) and moderate-resolution 
imaging spectroradiometer (MODIS) data. 

(3) To evaluate the use of soil moisture data for wildfire risk assessment. 
(4) To map wildfire risk zones based on the integration of several factors 

contributing to wildfire, including leaf fuel loads, soil moisture, slope, 
aspect, elevation, distance from roads and proximity to settlements. 

(5) To assess wildfire risk at recreational sites using GIS. 
In addressing these objectives, the research concentrated particularly on the 

following hypotheses:  
Regarding the first objective, to study the leaf fuel load estimation based on VIs, we 

hypothesized that:
 

Regarding the second objective, to estimate the soil moisture based on VIs, we 
hypothesized that:

 
1.3 Dissertation Outline 

This dissertation is divided into seven chapters. This first chapter is intended to 
provide an introduction to the research, and consists of three main elements: the 
background, the objectives and an outline of the whole thesis. Chapter 2 reviews 
theoretical definitions of important terms drawn from the literature on national parks 
and recreational areas, wildfire, wildfire risk assessment and the applications of remote 
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sensing and GIS techniques in evaluating wildfire risk. This chapter also provides a 
conceptual framework for the methodology used in the study. Chapter 3 gives the 
characteristics and details of the study area. 

 Chapter 4 describes the leaf fuel load estimation required to achieve the first 
objective. Many potential VIs extracted from remote sensing data are compared for 
their ability to estimate leaf biomass, and are then used to estimate leaf biomass in 
normal and dry seasons (a seasonal VI). The leaf fuel load is estimated based on the 
difference in the estimated leaf biomass in normal and dry seasons. The difference in 
the estimated leaf biomass can determine the quantity of the missing leaf biomass 
which is regarded as the leaf fuel load on the ground surface.  

To accomplish the second and third objectives, chapter 4 investigates the relationship 
between VIs (NDVI and NDWI) and the LST before calculating the TVDI. The spatial 
distribution of soil moisture is estimated based on the TVDI (modified from NDWI and 
LST) and the normalized difference drought index (NDDI). Based on the results for the 
estimated soil moisture, the correlation with leaf fuel moisture for wildfire risk 
assessment is evaluated. 

To fulfill the fourth and fifth objectives, chapter 5 integrates crucial factors 
influencing wildfire computed from remote sensing data, (i.e., leaf fuel load and soil 
moisture) and GIS data, (i.e., slope, aspect, elevation, distance from roads and 
proximity to settlements), to establish a wildfire risk model using pairwise comparison 
and GIS approaches. A map of wildfire risk zones generated from the model is later 
used to assess the risks of wildfire at recreational sites.  

Finally, in chapter 6, overall conclusions are given.  
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CHAPTER 2                                                             

Theoretical and Conceptual Framework 
 

2.1 National Parks and Recreational Areas 

Thailand is one of the tropical countries located in Southeast Asia in which forests 
are valued for their high biodiversity, ecosystems and commercial importance (Kummer 
and Turner, 1994). Forests in Thailand are rich in biological diversity, containing 
approximately 6-10% of the total number of species known thus far (Baimai, 2010). 
There are various kinds of tropical forest in Thailand including evergreen forest, pine 
forest, dry dipterocarp forest, mixed deciduous forest, mangrove forest and peat swamp 
forest (Figure 2.1). These variations in forest type provide a multitude of benefits in 
terms of goods (timber, food, fuel and bioproducts), ecological functions (habitat for a 
vast array of plants and wildlife) and places for recreation. Thailand's forests have been 
managed according to conservation and protection objectives. Forest conservation 
refers to a range of activities, tools and approaches to maintain forest health and 
biodiversity. Forest protection refers to the creation of parks and other areas to legally 
protect them from industrial activity and to help preserve healthy ecosystems. Forests 
in Thailand representing around 20% of total land area have been placed in protected 
areas managed by DNP. These protected areas have been divided into four main types 
and include 130 national parks, 59 wildlife sanctuaries, 79 non-hunting areas, and 120 
forests (Office of National Park, 2017). Clearly, national parks make up the largest 
number of these protected areas and play an important role in sustainable forest 
management. 

National parks are usually large areas of protected land, primarily established for 
the purpose of conservation and enhancement of the natural scenery, wildlife and 
cultural heritage (Mallarach, 2008). IUCN defines a national park as a natural area of 
land or sea which provides a foundation for spiritual, scientific, educational, 
recreational and visitor opportunities (IUCN, 1994). Hence, national parks encompass 
a wide range of native plants and animals as well as unspoilt landscapes, and they 
allow and encourage access for educational, recreational and tourism purposes. 
Nowadays, national parks are always open to visitors (Gissibl et al., 2012) and are 
important tourist destinations. According to Fennel and Smale (1992), national parks 
are attracting increasing numbers of nature-oriented ecotourists. 
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Figure 2.1 Different types of forest in Thailand 

 

This means that most national parks provide tourism facilities based on natural 
outdoor recreation and camping opportunities, as well as classes designed to educate 
the public on the importance of conservation and on the natural features of the country 
in which the national park is located. Tourism and conservation objectives are 
complementary and jointly achievable in both national parks and game reserves, 
although tourism should be secondary to conservation, as asserted by the proponents 
of ecological tourism (Yunis, 2003). Therefore, recreational activities and areas play an 
important role in the life of a national park since they contribute to tourism 
opportunities and even have the potential to actively promote the sustainable 
management of the national park.  

There are many different kinds of tourism and recreation based on the unique 
landscape and special scenery of a particular national park, including recreation, 
outdoor recreation, adventure tourism and nature-based tourism. Recreation can be 
define
include many different activities such as hiking, climbing and fishing. This definition 
of recreation therefore pertains to tourism. A recreational area is an area used by the 
public for recreation and provides satisfaction and pleasure for people. Recreational 
areas in national parks which are associated with forests and other natural resources 
(such as mountains, waterfalls, caves, hot springs and beaches), offer nature-based 
recreational activities (Figure 2.2).  
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Figure 2.2 Natural resources and nature-based recreation activities in                         

Thai national parks 
 

Hence, forests, natural resources and wildlife in national parks provide recreation 
opportunities and settings, and support a wide range of activities, (e.g., walking and 
hiking on trails, nature observation, camping and picnicking, biking, watching birds 
and wildlife, boating and canoeing). Recently, these recreation activities have become 
the fastest-growing tourism sector in national parks while the areas supporting these 
activities have been increasingly threatened in many ways. One of the causes of damage 
to recreational areas is wildfires. Wildfires have a negative impact on recreational areas 
due to landscape-scale damage and result in a decline in tourism activities. Hence, it is 
necessary to recognize the need for professionalism in the management of tourism and 
recreation in protected areas (Weaver, 2001; Worboys et al., 2001; Eagles et al., 2002; 
Newsome, 2002). This therefore implies that providing recreational areas for tourism 
while also protecting the national park resources from wildfire is an important 
component of national park management.   
 
2.2 Wildfire  

2.2.1 Characteristics of Wildfire 

Wildfire is fire in a wild area, especially in a forest, that is not controlled and that 
can burn a large area of the forest landscape. The pattern of fire effects on forests 
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depends on the temporal and spatial scale of fires. Wildfire is one of the most important 
causes of impacts on landscapes and ecosystems (Brown and Kapler, 2000; Bond and 
Keeley, 2005; Santi et al., 2013). A concept of three fire triangles can describe the 
characteristics of wildfire and its role in a forest landscape and ecology (Figure 2.3).  
This concept indicates the relative importance of the major factors of climate, fuel and 
landscape variables at different scales (Timothy, 2014).  At the smallest scale (Figure 
2.3  lower left), fire begins with combustion as described in the fire triangle. There are 
three basic components that are required for a fire to ignite, burn and continue to burn. 
These are oxygen, heat and fuel. Fuel is any material that can ignite and be burned, 
oxygen is an essential part of the chemical reaction needed to create fire and heat is 
needed for ignition.  

 

 

Figure 2.3 Concepts of fire change across spatial and temporal scales,                
modified from Mark and Kevin (2009) 

 

At the next temporal and spatial scale (Figure 2.3  middle), there are three factors 
that make up the fire environment, namely fuel, weather and topography. These factors 
influence fire behavior including ignition probability, rate of fire spreading, and fire 
intensity at seasonal to annual time scales (Rothermel, 1972; Pyne et al., 1996). Fire 
behavior is a product of the environment in which the fire is burning (Pyne et al., 1996). 
It refers to the manner in which fuel ignites and flame develops, how fast a fire spreads 
and how intensely a fire burns. In wildfires, this behavior is primarily related to the 
fire environment, i.e., the weather, topography, and fuel characteristics. Many 
researchers have studied fire behavior and found that it is affected by many factors, 
such as weather conditions (Bailing et al., 1992), fuel characteristics (Mouillot et al., 
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2002; Schoenberg, 2003), human activities (Velez, 1992), fire management activities 
(Fried et al., 2008) and changes in land uses (Rego, 1992) and climate (Flannigan et al., 
2000; Fried et al., 2004).  

On timescales of decades to millennia (Figure 2.3  upper right), the fire regime 
triangle describes variables that determine the characteristic pattern, frequency, and 
intensity of fire at landscape and broader scales, reflecting the linkages between 
vegetation as a determinant of fuel, climate conditions as a creator of weather and 
ignition sources, whether human or natural (Parisien and Moritz, 2009; Krawchuk and 
Moritz, 2011). Therefore, in understanding the characteristics of fire, it is helpful to 
define linkages between the factors responsible for wildfire and the surrounding 
conditions, influences and modifying forces that determine fire behavior, and which can 
affect fire spreading and fire severity across landscape-scale forest areas. 

There are three types of wildfire: ground fire, surface fire and crown fire (Figure 2.4). 
A ground fire burns organic material in the soil or peat, and other materials which can 
ignite and burn under the ground. This is a persistent slow-burning fire because the 
combustible materials (ground fuels) are compacted, have a limited oxygen supply and 
are protected from wind. A surface fire burns in the surface fuel layer which lies 
immediately above the ground fuels but below the canopy or aerial fuels. Surface fuels 
consist of needles, leaves, grass, dead and fallen branches and logs, shrubs, low brush, 
and short trees (Brown et al., 1982). The rate of surface fire spreading depends on the 
density of these fuels, the continuity and size of trees and  

 

 

Figure 2.4 Types of wildfire (source: Slideshare.net) 



13 

underbrush, the slope of the terrain and the weather. A crown fire burns and spreads 
through the crown or canopy of trees. Canopy fuels normally consumed in crown fires 
consist of live and dead foliage, lichen, and fine live and dead branch wood found in a 
forest canopy (Scott and Reinhardt, 2001). The influence of wind is greater in the tree 
canopy and where this canopy is interconnected or continuous, fires can spread quickly 
and extremely. In general, wildfire in Thailand is classified as surface fire (Figure 2.5). 
It occurs annually during the dry season from November to April with the peak period 
in February and March. The most common surface fires take place mainly in dry 
dipterocarp forests and in mixed deciduous forests. This is because during the dry 
season, under certain drought conditions, dipterocarp and deciduous trees shed their 
leaves in a cycle which helps them to survive in drought conditions. The dead leaves 
fall to the ground surface and form the largest part of the fuel load. This results in fuel 
accumulation on the ground surface, which can ignite and burn down to the surface to 
become a surface fire. Therefore, dipterocarp and deciduous forests are the main areas 
prone to wildfire in Thailand, and their dead leaves can result in the development of 
extreme fire behavior, contributing to intense and uncontrolled fires. 
 

 

Figure 2.5 A surface wildfire in Thailand 
 

2.2.2 Factors Influencing Wildfire  

There are several factors that must be considered with regard to wildfire occurrence. 
Not only factors based on the fire environment, but also factors derived from human 
activities influence the stages of wildfire occurrence. At the initial stage of wildfires, 
human activities are the most important factor contributing to wildfire ignition. After 
combustion occurs and a fire begins to burn, there are several factors that determine 
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how the fire behaves and spreads. These factors are based on the fire environment 
including fuel, weather and topography. Hence, determining these factors can reduce 
fire likelihood and the occurrence of conditions that contribute to wildfire. The factors 
affecting wildfire occurrence which are considered in this research for analyzing 
wildfire risk, are listed below; 

 
Fuel Load 

Fuel is any organic material, living or dead, that can ignite and burn. In the case of 
wildfire, fuels are primarily carbohydrates (cellulose and hemicellulose) derived from 
vegetative biomass that can be burned (Mark and Kevin, 2009). Bracmort (2013) states 
that fuel loads typically exclude biomass in live, commercially valuable trees. Thus, fuel 
loads consist of dead biomass (needles or leaves, branches that have fallen, and older 
dead cellulose). Therefore, the leaf biomass of trees in forests, especially dipterocarp 
and deciduous forests, can provide annually available surface fuel, because these leaves 
are typically shed in the dry season. Consequently, this dead-leaf biomass becomes an 
important fuel lying on the ground (Figure 2.6). 

  

 

Figure 2.6 Most of the surface fuel in dipterocarp (left) and deciduous (right) forests 
derives from dead leaves 

 

As reviewed above, fuel is one of the components of combustion and fire environment; 
the amount of fuel has therefore a considerable effect on fire behavior. Thus, analysis 
of the fuel characteristics is a strategy in the evaluation of fire behavior. Several 
researchers have devised fuel models to provide estimated values of fuel loadings, 
surface area to volume ratios, fuel depths, fuel particle density, heat content and 
moisture of extinction for fire behavior modeling (Rothermel, 1983; Scott and Burgan, 
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2005). Three sets of fuel models are commonly used in large landscape-scale contexts to 
describe predicted fire behaviors (Anderson, 1982; Noonan-Wright et al., 2013), fire 
danger (Deeming and Brown, 1975; Deeming and Burgan, 1977) and fire risk and 
potential (Burgan et al., 1998). Anderson (1982) states that fuel load and fuel depth are 
significant fuel properties for predicting whether a fire will be ignited, its rate of 
spreading and its intensity. Very low volumes of surface fuel can result in a low fire 
intensity, whereas larger volumes of surface fuel define a risk of high-intensity fires 
and an extreme overall fuel hazard. Thus, total fuel accumulations (fuel loads) 
contribute to fire intensity and damage and should be considered when assessing 
wildfire risk. 

 
Soil Moisture 

The climate in Thailand is controlled by tropical monsoons and the weather is 

hot or dry season and the rainy season. In reality, however, the weather is relatively 
hot for most of the year.  Dry weather is one of the most important parameters 
influencing wildfire occurrence (Yongqiang et al., 2010). Drier conditions increase the 
chances of a fire starting, and help a burning fire spread, resulting in a more intense 
and long-burning fire. One of the indicators commonly used for detecting drought 
conditions is the level of soil moisture. Drier conditions cause soils to be drier for longer, 
increasing the likelihood of drought and a longer wildfire season. Moreover, the level of 
fire severity depends upon heat transfer in the soil during the combustion of above-
ground fuels and surface organic layers (Neary et al., 2005). During the burning process 
in a wildfire, heat can rapidly transfer from the fire to the dry soil. Consequently, the 
wildfire spreads quickly and soon becomes intense. Krueger et al. (2015) studied the 
influence of soil moisture on wildfire size and found that large growing-season wildfires 
occurred exclusively under conditions of low soil moisture. In addition, soil moisture is 
positively correlated with fuel moisture, because fuel moisture is fundamentally 
controlled by plant physiology and soil water availability. Dead-fuel moisture especially 
is affected by soil moisture (which is also affected by weather) near the dead-fuel surface 
(Dimitrakopoulos et al., 2011). Therefore, considering soil moisture as a factor linked 
to wildfire is likely to be effective for evaluating wildfire risk. 

 
 
 
 



16 

Topography  
Topography refers to the surface features of the land, and this is the most constant 

of the three fire environment components. Topographic features can cause dramatic 
changes in wildfire behavior and can affect how prone the area is to fire. All topographic 
features, including slope, aspect and elevation, influence fire behavior (Rothermel, 
1991; Anderson, 1982) and particularly fire spread (how fast a fire moves in feet per 
hour), therefore affecting the distribution of burned areas across landscapes.  

Slope is the angle of incline on a hillside. Slope can be a primary influence on wildfire 
behavior because the slope increases the radiation and convection heat transfer up the 
slope. The steeper the slope the greater the up-slope heat transfer and thus, the higher 
the fire spreading rate and intensity. Curry and Fons (1938; 1940) suggested that slope 
resulted in increased heat transfer between the flames and the fuel ahead of them. 
McArthur (1968) suggests that slope can significantly affect the rate of spread of fire, 
especially immediately following ignition. He suggests that when compared to flat 
terrain, directional fire spreading rates will double on 10-degree slopes and increase 
fourfold on 20-degree slopes. Therefore, as the steepness of the slope increases, the fire 
spreads more quickly. On the other hand, fires tend to move more slowly as the slope 
decreases.  

Aspect is the direction in which a slope faces. Aspect affects fire behavior through 
the degree of solar exposure and the wind that different aspects receive. Normally, in 
the northern hemisphere, a north-facing slope faces away from the sun and thus is 
generally cooler and moister than south-facing slopes. Conversely, south and southwest 
aspects receive more sunshine leading to lower humidities and higher fuel 
temperatures (Pyne et al., 1996) and therefore have the most favorable conditions for 
starting and spreading fires. 

Elevation is the height of the given terrain above mean sea level. Elevation 
influences fire spread by impacting the wind behavior and precipitation patterns 
(Bennett et al., 2010) and thereby plays a large role in determining the conditions and 
amount of fuel. Fuels at lower elevations will dry out earlier than fuels at a higher 
elevation due to higher temperature. In extremely high elevations there may be no fuel. 
Therefore, low elevation areas are more prone to fire due to higher temperature and 
less precipitation (Veblen et al., 2000; Harmon, 1982).  
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Human Activities 
Human activity is the primary cause of wildfires in terms of the probability of 

ignition and combustion, though it does not influence the behavior of wildfire. Most 
fires caused by humans are accidental. Accidental fires in forests are usually caused by 
carelessness or inattention. Some are intentionally set by arsonists. An important cause 
of wildfire ignition in Thailand is human activity on the part of people living in areas 
surrounding the forests and visitors traveling through national parks (Table 2.1). The 
most frequent cause of wildfire ignition, accounting for 43.01% of fires, is the collection 
of non-timber forest products from forest areas by local people in pursuit of their 
livelihoods. The second most frequent is unidentified causes associated with campers, 
hikers or others traveling through the forest, followed by illegal hunting (15.98 %). Even 
if hunting wildlife is prohibited in forest protected areas, there are still some people, 
especially local people living in or near the forests, who hunt wildlife for their livelihood. 
These people use fire to flush out wildlife. Another important cause is the burning of 
agricultural debris by farmers (11.31%). Burning debris in agricultural lands can cause 
fires to spread to nearby forests accidentally. Since most wildfires are ignited as a result 
of human activity and behavior, these anthropogenic sources should be considered as a 
wildfire factor. Anthropogenic factors which are important variables influencing fire 
occurrences are represented by factors such as distance from roads and proximity to 
settlements (Avila-Flores et al., 2010). 

 

Table 2.1 Causes of wildfire ignition in Thailand (Forest Fire Control Division, 2011) 

Causes of wildfire ignition % 
1. Gathering forest non-timber products 43.01 
2. Illegal wildlife hunting 15.98 
3. Agricultural debris burning 11.31 
4. Cattle raising 3.48 
5. Incendiary fire 0.43 
6. Illegal logging 1.08 
7. Carelessness 0.60 
8. Other causes/Unidentified causes 24.11 

 
Distance from roads is an indicator of accessibility to the forest. Forests located near 

roads are more prone to disturbance than forests located in remote areas which are not 
easily accessible (Laurance et al., 2009; Nepstad, 2001). This is because roads provide 
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a transportation route leading to increased human activity and thus roads inside and 
surrounding the forest provide more opportunities for accidental or man-made fires. 
The second factor identified as an anthropogenic causative factor is proximity to 
settlements. Forest areas near to settlements are more prone to fire ignition because 
accidental fires can be caused by residents inside the forest through day-to-day or 
cultural practices (Jaiswal et al., 2005). 

In accordance with the reviewed literature, the factors considered in this research 
that influence wildfire occurrence include leaf fuel load, soil moisture, slope, aspect, 
elevation, distance from roads and proximity to settlements. These factors are used as 
inputs into wildfire risk assessments for mapping the wildfire risk of recreational areas 
in the national park.  

 
2.3 Wildfire Risk Assessment 

A risk assessment is conducted when predicted outcomes are uncertain, but possible 
outcomes can be described and their likelihoods can be estimated (Haynes and Cleaves, 
1999). Typically, risk analysis concerns the measurement and communication of 
uncertain future events with extreme consequences (Brillinger, 2010). In addition, 
Sikder et al. (2006) consider risk assessments as decision support tools that integrate 
information regarding the likelihood and magnitude of the resource response to risk 
factors, in order to synthesize a conclusion about risk that can inform decision-making. 
Thus, it can be said that risk assessment is the process of estimating the likelihood and 
magnitude of the occurrence of an unwanted and adverse effect. The risk assessment is 
also generally used to describe the potential for loss, determined from estimates of 
likelihood and associated outcomes. Analysis of risk can help scientists and managers 
better understand the issues and can serve as a decision support tool regarding the 
timing, location and potential effects that might occur in future events. Wildfire risk, 
therefore, is the chance that a fire might start in wild lands or forests, as affected by 
the nature and incidence of causative factors. Assessing wildfire risk therefore requires 
the likelihood of wildfire to be analyzed by intensity level, so that the magnitude of 
potential beneficial and adverse effects to valued resources from fire can be assessed at 
different intensity levels (Finney, 2005). Bachmann and Allgower (2000) have 

terms of probability and outcome, but also considers issues of wildfire occurrence, 
wildfire behavior, and wildfire effects. Therefore, the concept of risk assessment is 
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fundamentally related to the factors influencing wildfire occurrence and behavior. 
These factors can be used not only to evaluate potential wildfire areas but also to 
identify, quantify, and prioritize the different intensity classes of the risk.  

 
2.4 Remote Sensing Data and GIS  

In the context of wildfire risk assessment at a landscape level, remote sensing and 
GIS are appropriate techniques for providing a large-scale geospatial assessment of the 
wildfire risk potential. Application of remote sensing and GIS techniques for wildfire 
risk mapping is increasingly recognized as a technique for sustainable management of 
forest resources and recreational areas in national parks. Therefore, understanding 
remote sensing and GIS concepts is important in order to apply them to assessing 
wildfire risk over wide areas. 

 
2.4.1 General Concepts of Remote Sensing 

Remote sensing, also called EO, is the technique of observing and analyzing objects 

them. There are numerous books devoted to remote sensing, dealing with the general 
background to remote sensing and its applications (Cracknell and Hayes, 2007; Gibson 
and Power, 2000; Barrett and Curtis, 1992; Colwell, 1983; Swain and Davis, 1979).   

Remote sensing activities include recording, processing, analyzing, interpreting and 
finally obtaining useful information from the data in the form of images usually 
generated from sensors on platforms (satellites and aircraft). Remote sensing 

regions of the electromagnetic spectrum. Remote sensing systems can be categorized as 
using active or passive sensors (Figure 2.7). Active sensors provide their own energy 
source for illumination. For example, a radar sensor sends out sound waves and records 
the reflected waves coming back from the surface. Advantages of active sensors include 
the ability to obtain measurements whenever they are required. Passive sensors, on the 
other hand, need an external energy source. These sensors measure reflected light that 
was emitted from the sun. They detect sunlight radiation reflected from the Earth and 
thermal radiation in the visible and infrared parts of the electromagnetic spectrum. 
These sensors do not emit their own radiation, but receive natural light and thermal 
radiation from the Earth's surface. Most passive sensors make use of a scanner for imaging, 
e.g., Landsat and moderate-resolution imaging spectroradiometer (MODIS) sensors. 
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Figure 2.7 Types of remote sensors (a) active remote sensing and (b) passive remote 
sensing (source: Canada Centre for Remote Sensing-CCRS) 

 
Equipped with spectrometers they measure signals in several spectral bands 
simultaneously, resulting in so-called multispectral images which allow numerous 
interpretations (Albertz, 2007). Passive systems are therefore much more common than 
active systems.  

Passive systems used in remote sensing applications operate in the visible, infrared, 
thermal infrared, and microwave portions of the electromagnetic spectrum. These 
wavelength intervals in the electromagnetic spectrum (bands) are usually used to 
interpret remote sensing data. Of these, the red ( RED: 0.6-0.7 µm) and near-infrared 
(NIR) ( NIR: 0.75-1.35 µm) bands have been found to be the most relevant for remote 
sensing of vegetation (Myneni et al., 1995). Compressing spectral bands into VIs is more 
effective for the interpretation of remotely sensed data than using reflectance from 
individual spectral bands.  

VIs are mathematical functions calculated from the ratio, difference, ratio difference 
and sum of the reflectances of two bands (Jackson and Huete, 1991). They are designed 
to enhance the contribution of vegetation properties and allow reliable spatial and 
temporal comparisons of terrestrial photosynthetic activity and canopy structural 
variations (Bannari et al., 1995). Such indices are not only used for vegetation analysis 
but can also be applied for wildfire analysis. Some VIs have been applied to wildfire 
assessment. For instance, Escuin et al. (2008) studied the capacity of the NDVI and the 
normalized burn ratio (NBR) derived from Landsat TM/ETM to enable fire severity 
assessment. They found that both indices were suitable for discriminating between fire 
severity levels. Chuvieco et al. (2004) combined NDVI and surface temperature to 
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obtain an estimate of live fuel moisture content for forest fire danger ratings. The 
results showed that using NDVI and surface temperature together with data on the 
seasonal trends of fuel moisture content and vegetation types can provide an empirical 
model which enables the spatial estimation of fuel moisture content to be derived. 
Moreover, Chafer et al. (2004) used different images of NDVI to define six fire severity 
classes and found that NDVI values produced a high-accuracy classification. Therefore, 
applying VIs for wildfire risk assessment is likely to be an effective technique in spatial 
mapping of wildfire factors computed from VIs, (i.e., leaf fuel load and soil moisture). 

 
2.4.2 General Concepts of GIS 

2.4.2.1  Definitions of GIS 

A GIS is a set of tools for collecting, storing, retrieving, transforming and displaying 
spatial data from the real world for a particular set of purposes (Burrough, 1986). In 
addition, a GIS is an organized collection of computer hardware, software, geographic 
data and personnel, designed to efficiently capture, store, update, manipulate, analyze, 
and display all forms of geographically referenced information (ESRI, 1990). A GIS is 
defined by Young (1986) as a method of storing and retrieving data which are held in a 
structured form, have a location identifier and can therefore be manipulated and 
mapped in variety of ways. In essence, a GIS is a computer system for capturing, 
storing, querying, analyzing, and displaying geospatial data (Chang, 2014).  

 

2.4.2.2  Data and Spatial Data Model 

Data types in GIS can be classified into two main categories: 1) spatial data used for 
describing the absolute and relative location of geographic features and 2) attribute 
data or non-spatial data used for describing the characteristics of the spatial features. 
The spatial data, also known as geospatial data, describe both the location and the 
attributes of spatial features. This means that spatial data in a GIS give information 
about a physical object that is identified as features and boundaries with a geographic 
location and represented by numerical values in a geographic coordinate system. 

A model is simply a means of representing reality, and spatial data models provide 
abstractions of spatially referenced features in the real world (Lloyd, 2010). A model of 
spatial features explains how spatial objects and spatial phenomena are related. The 
most common form of model, used for representation of real-world objects or phenomena 
associated with a location on the Earth, is the map. Spatial data can represent real-
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world features with discrete boundaries as well as real-world phenomena with non-
discrete boundaries. In general, spatial data can be stored and analyzed in vector and 
raster models. A vector data model uses the geometric objects points, lines and polygons 
to represent spatial features with a clarified spatial location and boundary. Each 
feature is assigned an ID so that it can be associated with its attributes. Furthermore, 
the vector data model uses a two-dimensional Cartesian (x, y) coordinate system to 
store the shape of a spatial feature. 

The raster data model, on the other hand, uses a grid and grid cells to represent 
spatial features. A matrix of cells (or pixels) is organized into rows and columns (or a 
grid) where each cell contains a value representing information. Thus, points can be 
represented by single cells, lines by sequences of neighboring cells, and polygons by 
collections of contiguous cells. Data stored in a raster format representing real-world 
phenomena consist of: 1) thematic data representing discrete objects that have known 
and definable boundaries and 2) continuous data, representing phenomena in which 
the value at each cell location is measured from a fixed registration point. The main 
difference between vector and raster data is that raster data have spatial resolution. 
The spatial resolution of the raster data set is determined by the size or resolution of 
individual grid cells. For instance, Landsat satellite image data are raster data with 
cell sizes of 30m x 30m.  

Thus, a GIS data model is a conceptual description of how spatial data are organized 
for use by the GIS. Combining vector and raster data, i.e., the two different ways of 
representing spatial data, can create a rich set of informative maps. 

 
2.5 Integrating Remote Sensing and GIS for Wildfire Risk Assessment  

Remote sensing and GIS are complementary technologies that, when combined, 
enable improved monitoring, mapping, and management of forest resources (Franklin, 
2001). The integration of the two technologies can efficiently manipulate, spatially analyze 
and display landscape variables which can support the management of wildfires, (e.g., 
Chuvieco and Congalton, 1989; Ambrosi et al., 1998; Kuntz and Karteris, 1995). Likewise, 
these technologies can be used as an effective and powerful method for developing 
decision support systems for planners or decision makers concerned with wildfire.  

With respect to wildfire risk assessment, the combination of remote sensing and GIS 
techniques has been applied to enhance and develop wildfire risk models and wildfire 
risk classification maps. Typically, both techniques have been used to analyze wildfire 
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risk through mathematical modeling for generating wildfire risk classification maps. 
Firstly, remote sensing imagery needs to be converted into tangible information which 
can be utilized in conjunction with other data sets, often within a widely used GIS 
(Blaschke, 2010). For inputting spatial data in GIS, the resource information must be 
in the form of a map, hence the mapping of the thematic layers is one of the primary 
requirements. This means that remote sensing is the primary source for many kinds of 
thematic data critical to GIS analyses for generating resource maps. In a GIS database, 
all features must be accurately positioned. Later, all data layers from remotely sensed 
and GIS data should be correctly georeferenced to a map projection and coordinate 
system. Finally, these layers are considered as different layers of information in an 
integrated analysis, using mathematical functions in order to create a specific and 
useful model and map. 

A large number of studies have been carried out using remote sensing and GIS 
techniques for wildfire risk assessment, as shown in Table 2.2. Based on this table, 
factors influencing wildfire are produced from remote sensing and GIS data, and are 
created in different layers and overlaid using many mathematical methods to classify 
wildfire risk. Therefore, in this research, remote sensing is used as a source of 
information on leaf fuel load and soil moisture factors, and GIS is used to provide 
information on other factors such as slope, aspect, elevation, distance from roads and 
proximity to settlements. Subsequently, GIS processing makes it possible to create 
wildfire risk models using mathematical functions. For the remote sensing and GIS 
analysis in this research, ERDAS IMAGINE 9.1 software is used for remote sensing 
processing and ArcGIS 10.4 software is used for GIS processing. 

 
2.6 Overall Conceptual Framework of the Research 

This research sets out to assess and classify wildfire risk in Sri Lanna national park 
and thereby evaluate the risk at recreation sites in this park. The conceptual definition 
of a wildfire risk assessment should include the most relevant factors associated with 
wildfire. Factors chosen for the study are widely recognized as crucial for wildfire 
occurrences. These factors, especially leaf fuel load and soil moisture, are analyzed 
using remote sensing data, and subsequently all factors are overlaid using a pairwise 
comparison matrix to model the wildfire risk classification. Finally, a map produced 
from this model is used to evaluate recreation sites with respect to wildfire. Figure 2.8 
shows the structured methodology applied in the various chapters of the research.  
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Table 2.2 Previous studies that have used remote sensing (RS) and GIS for assessing 
wildfire risk 

Factors and theirs sources Country Methods Authors Results 

RS: Vegetation species 
GIS: Elevation, slope, 
aspect, and proximity to 
roads 

Spain An integrated analysis of 
spatial factors by 
weighting factors 
(structural fire index) to 
create fire hazard models 

Chuvieco and 
Congalton 
(1989) 

The proposed model 
performed properly in 
identifying the areas 
subjected to a higher fire 
hazard 

     
RS: Vegetation type  
GIS: Slope, proximity to 
settlements, and distance 
from roads 
 

India The utilization of spatial 
factors by weighting 
factors to establish a fire 
risk model 

Jaiswal et al. 
(2002) 

The model was found to be 
in strong agreement with 
actual fire-affected sites.  

RS: Fuel  
GIS: Solar radiation, 
topographic wetness, and 
population density and 
distance from roads 

US The five factors were 
modeled and ranked for 
each factor to create a 
weighted overlay model 

Lein and 
Stump (2009) 

The results of a 
parsimonious GIS-based 
model were reasonable 
when compared to the 
historic pattern. 

     

RS: Vegetation moisture  
GIS: Slope, aspect, and 
distance from roads 
and settlements 

Greece The combination of five 
influential factors by 
using risk indices for 
weighting factors to map 
forest fire risk  
 

Siachalou et al. 
(2009) 

Overlaying the fire risk 
zones to the classified 
burned areas provided        
a good reliability for the 
approach 

RS: Vegetation moisture, 
GIS: Elevation, slope, 
aspect, distance from roads 
and proximity to 
settlement areas 

Iran The six factors were 
assembled into a model 
by weighting factors to 
produce forest fire risk 
maps 

Adab et al., 
(2013) 

The effective combination 
of different forest fire-
causing variables with 
remote sensing data in a 
GIS environment can 
identify and map forest fire 
risk. 

     
RS: Normalized difference 
water index (NDWI) 
GIS: Slope, aspect, 
elevation and distance 
from roads and 
settlements  

India The utilization of 
geospatial data by GIS 
and use of an analytic 
hierarchy process (AHP) 

Thakur and 
Singh (2014) 

The GIS along with AHP 
can be successfully 
employed in identifying 
fire-prone areas. Moreover, 
using AHP helps to 
understand the nature of 
the problem and the 
results thus obtained can 
be used for planning and 
management of forest 
resources. 
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Figure 2.8 Overall conceptual framework of wildfire risk assessment at recreational areas
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CHAPTER 3  

Study Area Characteristics - Sri Lanna National Park 
 

3.1 Physical Conditions  

3.1.1 Geographic Location 

Sri Lanna national park is situated in Chiang Mai province in northern Thailand. 

3.1). The national park is the eighth largest national park in Thailand with an area of 
140,600 ha of forested and mountainous terrain occupying three districts of Chiang 
Mai: Chiang Dao, Prao and Mae Tang. Sri Lanna national park is geographically 
characterized by several mountain ranges, which are aligned north to south with 
differences in altitude, and the area has generally a slope of more than 35%. The park 
therefore includes rich and fertile forest which provides habitats for many plants and 
wildlife species. 

 

 

Figure 3.1 Geographic location of Sri Lanna national park (Office of National Park, 2017) 
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3.1.2 Topographical Characteristics 

Most of the area of Sri Lanna national park consists of a mountain chain, running 
north to south, with elevations varying from 400 to 1,718 m above sea level (Figure 3.2). 
The highest point is Doi Chom Hot peak at 1,718 m. The park is part of a great 
watershed area on the upper Ping River basin, which is one of the largest drainage 
basins of the Chao Phraya watershed. Hence, this park is the source of various 
tributaries of the Ping River and the Mae Ngat River. In 1973, there was a severe flood 
in Inthakhin and Chorlae subdistricts of Chiang Mai province. To provide the desired 
flood protection, the Mae Ngat Somboon Chol reservoir was constructed in 1997 on the 
Ping River. The reservoir is located in the mountains in the western part of Sri Lanna 
national park, and is approximately 20 km2 in size. This reservoir has provided multiple 
benefits for the people, such as mitigation of severe floods, irrigation and distribution 
of water resources, hydroelectric power generation, fishing and outdoor recreation in 
Sri Lanna national park. 

 

 

Figure 3.2  Topographical characteristic of Sri Lanna national park (DNP, 2003) 
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3.1.3 Geological and Soil Characteristics	

The park generally features a rugged mountain range with steep slopes. The western 
area is covered by limestone mountains with a height of 300-400 m above sea level. The 
limestone formations have been covered by sandstone, limestone and shale. The 
geological characteristics consist mainly of sedimentary rock, igneous rock and alluvial 
and flood plain deposits (DNP, 2003). The strata were formed between the Ordovician 
period and the Quaternary period. Soil properties in the park are closely related to 
slope; 92.2% of the park area is classified as a soil slope complex series, which is found 
in areas with slopes that exceed 35%. Sandy and sandy loam soils are dominant. The 
soil surface in places covered with forest is still deep and fertile but the cleared areas 
are shallow as a result of soil erosion, with some gravels at the surface. Large and small 
gullies run mainly from east to west (DNP, 2003). 
 
3.2 Meteorological Conditions 

Sri Lanna national park is located in the tropical area where the climate is controlled 
by tropical monsoons. The climate can be described as a tropical monsoon climate with 
a rainy and a dry season, due to strong monsoon influences. The weather is generally 
hot and humid with high temperatures across most of the park throughout most of the 
year. The average humidity is 72%, with a maximum value of 89% from June to October 
and a minimum value of 49% in March. The seasons are generally divided into the rainy 
season (June to October), cool season (November to February), and hot or dry season 
(March to May). In reality, it is, however, relatively hot for most of the year, and 
between November and April the weather is mostly dry.  

Temperature: the mean annual temperature in the area is 26.7°C, while the 
minimum and maximum temperatures of the coldest (January) and hottest (April) 
months are 11.0°C and 39.5°C, respectively. However, over 30 years, the minimum and 
maximum temperatures have been 3.7°C and 41.4°C respectively. 

Precipitation: this area has mean annual precipitation of 1,156.26 mm, which is 
rather lower than other areas in the northern part of Thailand.  The rainy season lasts 
from May to October and reaches its peak in August with a maximum precipitation of 
256.76 mm. The lowest average precipitation of 4.10 mm occurs in February. 

According to the facts, the dry season extends for five months, from November to 
April, when maximum temperatures usually reach 40°C. The total rainfall is very low 
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and represents just 6.8% of the total for the year (Figure 3.3). During the long dry 
period, rain is rare, leading to drought conditions. This is when wildfire typically occurs. 

 

 

Figure 3.3  Average temperature and precipitation in the years 2010 to 2016 

 

3.3 Resources Base in Sri Lanna National Park 

3.3.1 Forest Resources 

Sri Lanna national park is located in a hot, humid climatic zone and has valleys and 
mountain ranges with altitude differences that support a variety of tropical ecosystems 
and a diversity of plants and animals. The forest in Sri Lanna national park is composed 
of numerous forest types (Table 3.1). Dipterocarp and deciduous forests are the main 

rea (63.39% of the total area). This research 
focused only on dipterocarp and deciduous forests because wildfire occurs mostly in 
these forest types. 

Dipterocarp forest is distributed at an elevation of 200-1,200 m and 800-1,200 m 
above sea level. Trees in dipterocarp forest consist of more than 45 species with 

 as the five most common species. 
The distribution of deciduous forest is found at an elevation of 50-800 m above sea level, 
with approximately 98 tree species. Common trees found in this type of forest are 

. In addition, various bamboos, ferns and palms 
can be found in the low areas of the national park. However, because of human 
disturbances, logging concessions in the past and areas annually burned by forest fire, 
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almost all of the natural forests in dipterocarp and deciduous forests have been 
damaged and have become secondary forests. The forests re-emerged after the land was 
converted to farms and then abandoned, and much of the forest has recovered from 
fires. Therefore, trees in dipterocarp and deciduous forests are usually small trees. 
Dipterocarp and deciduous forests have semi-open canopies and tall and straight-
stemmed trees. According to our field survey, these forests have a structure of up to 
four different layers: 1) a top layer of trees with heights of 12 15 m or more and stem 
diameters exceeding 30 35 cm, 2) a main layer of trees with heights of 5 12 m or more 
and stem diameters exceeding 10 20 cm, 3) a layer of weeds and saplings and 4) a 
ground layer of generally sparse grass cover. Layers 3 and 4 are generally clear and 
sparse because of annual burning by wildfires.  

 

Table 3.1 Variety of forest types in Sri Lanna national park (DNP, 2003) 

Forest types Area (ha) % 
1. Dipterocarp forest 51,450.73 36.60 
2. Deciduous forest 37,665.68 26.79 
3. Hill evergreen forest 28,799.87 20.48 
4. Pine forest 12,280.69 8.73 
5. Dry evergreen forest 6,805.38 4.84 
6. Other (Mixed forest plantation, 
    water sources) 

6,805.38 2.56 

Total 140,600.00 100.00 
 

3.3.2 Wildlife Resources 

This park is a habitat for wildlife, especially mammals including tiger, barking deer, 
serow, black bear, wild boar, chiroptera, siamese hare and northern red muntjac, and 
also various species of birds such as ducks, coucals, bulbuls, egrets and barbets. Based 
on a survey report from DNP (2003) as shown in Table 3.2, a large number of bird 
species are found in this area, and Sri Lanna national park is therefore one of the best 
places for birdwatching. Bats are the most mammals and one of the protected wildlife 
is goral. Most reptiles are of the snake family, most amphibians are of the ranidae 
family, and most fish are of the cyprinidae family.  
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Table 3.2 Wildlife resources in Sri Lanna national park 

Types Order Family Species 
1. Mammals 9 26 64 
2. Birds 11 33 117 
3. Reptiles 2 12 38 
4. Amphibians 2 6 33 
5. Fish 6 15 40 

Total 30 92 292 
 

3.4 Human Resources 

There are 3,499 and 14,848 households inside and near Sri Lanna national park, 
respectively (DNP, 2003). Almost all community members are local people who have a 
similar education level within the compulsory education system (primary education). 
Of these, 70% work in farming and agricultural occupations and another 30% are 
employees and merchants. Agricultural land surrounding the park extends to around 
42,500 ha. The main agricultural crop is rice, followed by longan, mango, soybean and 
tobacco. Almost all the people are Buddhist, and they therefore share similar lifestyles, 
beliefs and traditional culture. Some of the local people rely on the forest in Sri Lanna 
national park for their livelihood, especially for gathering forest non-timber products 
such as firewood and food. Furthermore, some of them benefit from the water source of 
Mae Ngat Somboon Chol reservoir for consumption and farming.  

 
3.5 Tourism and Recreation in Sri Lanna National Park 

Due to its geographical location and its variety of tropical ecosystems, Sri Lanna 
national park has several large forests and much interesting scenery, and is therefore 
attractive to tourists. These attractions have become well-known recreational and 
tourism locations. Moreover, many forms of recreation are available in this park, such 
as campsites, natural study trails, and a reservoir. The statistical evidence presented 
in Figure 3.4 shows that the number of tourists who visit and travel in Sri Lanna 
national park has been continuously increasing for several years, resulting in a high 
income from the tourism sector in the park. The growing tourism in Sri Lanna national 
park highlights the fact that Sri Lanna national park has a unique landscape and a 
high diversity of plants and wildlife, and is therefore able to support a high level of 
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tourism and many recreational activities. Therefore, the park has become a popular 
tourist destination.  

 

 

Figure 3.4 Number of tourists and total income from tourism in Sri Lanna national 
park in the years 2010 to 2016 

 

There are many different kinds of tourist activities in this mountainous park 
including recreation, outdoor recreation, adventure tourism and nature-based tourism 
(Figure 3.5). Below are examples of various tourist attractions contributing to the 
recreational activities in the park.  

Mon Hin Lai waterfall consists of nine levels of waterfall, and is full of water all year 
round, creating spectacular views, grandiose rivers and pristine streams. 

Mae Ngat Somboon Chol reservoir is situated in a large area of forest and is therefore 
surrounded by beautiful natural scenery. There are many activities available on the 
reservoir such as boating, canoeing, fishing and staying in a floating house. 

Pha Daeng cave is a large limestone cave with beautiful stalactites and stalagmites. 
The cave has a large room and an 800 m passage. Many bat species inhabit the cave. 

Huay Kum nature trail is forest roadways providing an educational experience in a 
diverse forest containing both primary and native trees and flora.  
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(a) Attractive places of nature-based tourism 

 
(b) Recreational activities 

Figure 3.5 Attractive places for nature-based tourism and recreational activities in Sri 
Lanna national park 

 

Table 3.3 gives a list of attractive places and recreational sites in Sri Lanna national park. 
There are several sites for each of many kinds of recreational activities such as 
cultivated and managed landscape for camping, mountains for hiking, climbing and 
biking, hot spring sources for relaxing and fertile forests for bird watching and wildlife 
viewing. Unfortunately, some of the recreation areas have been damaged by wildfires 
which occur annually during the dry season, peaking in February and March, and 
mainly occur in the dipterocarp and deciduous forests. Most wildfires in the park are 
classified as surface fires. Fires start during the dry season, when there is the greatest 
leaf accumulation on the ground surface from dipterocarp and deciduous trees, 
providing the largest proportion of fuel load. Thus, this study was limited to such areas 
of the national park with the highest potential for wildfires. 



34 

Table 3.3 List of attractive places and recreational sites in Sri Lanna national park 

No. Name of recreational site Type of recreation 
1 Wat Mae Pang Temple site 
2 Wat Tham Doi Kham Temple site 
3 Nam Ru Conservation Forest Natural learning site 
4 Wat Phra Chao Lan Thong  Temple site 
5 Mae Wa Reservoir Rest viewpoint  
6 Ban Nong Krok Hot Spring Hot spring 
7 Wat Phrathat Doi Nang Lae Temple site 
8 Huai Pa Phlu Waterfall Waterfall 
9 Mae Kon Reservoir Rest viewpoint  
10 Wat Phrathat Jai Klang Muang Temple site 
11 Mae Pang Reservoir Rest viewpoint  
12 Huay Kum Nature Trail and Camping site Nature trail and campsite 
13 Pha Daeng Cave Cave 
14 Pla Prung Reservoir Rest viewpoint  
15 The Elephant Training Center, Chiang Dao Elephant Training Center 
16 The Elephant Training Center, Mae Ping Elephant Training Center 
17 Wat Phrathat Muang Noeng Temple site 
18 Nang Lae Waterfall Waterfall 
19 Mon Hin Lai Waterfall Waterfall 
20 Mon Hin Lai Viewpoint  Rest viewpoint  
21 Sri Lanna office area, Mae Ngad Reservoir  Rest viewpoint and campsite 
22 Doi Jom Hod Rest viewpoint  
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CHAPTER 4 	
Mapping wildfire fuel load distribution using Landsat 8 

Operational Land Imager (OLI) data  
in Sri Lanna National Park, northern Thailand 

 
4.1 Introduction  

Wildfires, which occur in many countries during the dry season, can be said to have 
both advantages and disadvantages. If managed properly, a wildfire could be 
advantageous as a vital component of the normal functioning of a forest ecosystem. 
Conversely, when uncontrolled, a wildfire represents a major threat because it could 
devastate huge areas of forest, degrade the environment, and diminish natural 
resources (Landsberg, 1997). Wildfires, especially in northern Thailand, have become 
an increasingly frequent and problematic phenomenon. Wildfires, especially in northern 
Thailand, have become an increasingly frequent and problematic phenomenon. For 
example, an area of 22,995 ha of forest that recently burned down accounted for 1.2% 
of the entire area of national protected forest (DNP, 2014; Forest Fire Control Division, 
2015). This resulted in soil nutrient loss, disturbance of wildlife habitat, air pollution, 
and a decline in tourism. Wildfires in Thailand are mostly classified as surface fires in 
dipterocarp and deciduous forests, and they occur annually during the dry season, with 
peak activity in February and March. A surface fire occurs via ignition of the surface fuel 
layer, which consists of combustible materials lying on the ground, i.e., mainly fallen dead 
leaves, twigs, grasses, forbs, boles, stumps, shrubs, and short trees (Brown and Davis, 1973). 

Fire behavior, defined as the manner in which fuel ignites, flame develops, and fire 
spreads, is affected by many factors, such as the fuel load and its characteristics, 
weather conditions, human activities, and land use changes. Among these, fuel is 
considered one of the most important factors leading to wildfire occurrence. The control 
of fuel (combustible material) levels can result in the avoidance of catastrophic wildfires 
(Wagle and Eakle, 1979). Thus, management of fuel on the forest floor is a feasible and 
effective approach for controlling and reducing the risk of wildfires (Rothermel, 1972). 
Fuel load refers to the weight of all fuels present per unit area, and it represents the 
proportion of the total biomass that could burn during a worst-case scenario (DeBano 
et al., 1998). Therefore, the biomass found within a particular area can be truly 
representative when estimating fuel load. 
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Remote sensing techniques are capable of quantitative estimation and monitoring of 
biomass (Tucker, 1979). A combination of two or more wavelength characteristics can 
be used to construct VIs, which have been shown correlated with vegetation biomass, 
such as the soil-adjusted vegetation index (SAVI) (Huete 1988, Richardson and Everitt 
1992), two-band enhanced vegetation index (EVI2) (Pfeifer et al., 2012), and ratio 
vegetation index (RVI) (Anderson and Hanson 1992). In particular, the NDVI has been 
used widely as a predictor of ground vegetation biomass. Curran et al. (1992) applied 
Landsat TM data to a study of the linear relationship that exists between the NDVI 
and the leaf area index, demonstrating the potential use of Landsat TM data in 
studying seasonal dynamics of a forest canopy. In addition, many studies have applied 
the NDVI for wildfire and fuel assessments. For example, an investigation by 
Wagtendonk and Root (2003) showed that a temporal NDVI, derived from Landsat TM 
data, could be used for fuel classification. Similarly, Darmaran et al. (2001) presented 
an NDVI analysis of Landsat TM data to derive fuel types for mapping forest fire hazard 
in East Kalimantan, Indonesia. However, these studies focused on classification of fuel 
type, which is insufficient for understanding fire behavior and minimizing wildfire 
intensity and spread. The amount of fuel load should also be considered and addressed 
as one of the primary factors influencing fire behavior because fuel load can determine 
the hazard classification of wildfires. 

The aim of the present study was to identify techniques for generating a predictive 
model of leaf fuel load using VIs derived from a Landsat 8 OLI, based on regression 
analysis and ground data, and to apply the model to map the spatial distribution of leaf 
fuel load. To achieve this goal, we investigated the relationships between the calculated 
standard leaf biomass in sample plots and each potential VI, i.e., NDVI, SAVI, EVI2, 
RVI, different vegetation index (DVI), NDWI, and chlorophyll vegetation index (CVI), 
to compare the strength of correlation of each index with the calculated standard leaf 
biomass, in order to establish a linear equation for leaf biomass estimation. 
Furthermore, we explored the seasonal difference of estimated leaf biomass to 
determine the leaf fuel load model. According to Shugart et al. (2006), fuel load is 
associated with changes in total biomass. Lastly, we hypothesized that the difference 
of estimated leaf biomass between normal and dry seasons (estimated by a seasonal VI) 
can express the quantity of the missing leaf biomass (i.e., the surface leaf fuel load), 
and that this can be used as a substitute for the actual leaf fuel load in the forest.  
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4.2 Materials and methods 

4.2.1 Field data measurement 

The sample plots with heterogeneous ecological conditions were selected from 
radiometrically and geometrically corrected Landsat 8 images and topographic maps 
(indicating different slopes, aspects, and forest types). The twenty-seven selected plots 
(14 plots of dipterocarp forest and 13 plots of deciduous forest) were surveyed in Sri 
Lanna national park during the dry season in March 2015 (Figure 4.1). Leaf biomass 
was measured from the 30 × 30 m2 sample plots, corresponding to the spatial resolution 
of the Landsat 8 pixel size, for the linear regression analysis. Each sample plot was 
centered on the coordinates assigned to the center of the respective Landsat 8 pixel. 
The location of the center of the sample plot was determined and recorded using a 
handheld GPS (Oregon550TC, GARMIN, USA). Each plot was allocated a 1 × 1 m2 
subplot at the center of the 30 × 30 m2 sample plot in order to collect leaf litter on the 
ground surface. Then, the leaf litter in the 30 × 30 m2 sample plot was estimated based 
on the 1 × 1 m2 subplot using the method of ratio and proportion.  

 

 
Figure 4.1 Sample plots in dipterocarp and deciduous forests 

 
4.2.2 Standard leaf biomass calculation 

A survey was performed in each of the 30 × 30 m2 sampling areas. All live trees with 
a diameter of 4.5 cm or more (or a girth of 15 cm or more) and a height of more than 1.5 
m were identified for each of the tree species. The identified trees were also measured 
for stem circumference at breast height (girth at breast height) (GBH) or 1.3 m height 
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from the ground surface using a tape, and the tree height was estimated using a 
clinometer. The values of GBH were then converted to diameter at breast height (DBH) 
in an Excel spreadsheet. Allometric equations based on the relationship between DBH 
and height were used to calculate the standard leaf biomass produced by the trees, 
which can be seen as green canopies. The leaf biomass of the dipterocarp forest was 
calculated using Equation 4.1, developed by Ogino et al. (1967). Equation 4.2, modified 
from Ogawa et al. (1965), was used for the calculation of the leaf biomass of the 
deciduous forest: 

     (4.1) 

 
     (4.2) 

 

where WL-dip and WL-dec are the leaf biomass (kg) of the dipterocarp and deciduous 
samples, respectively, generally expressed in dry weight, which is proportional to fresh 
weight. The parameters WS-dip and WS-dec represent the stem biomass (kg) of the 
dipterocarp and deciduous samples, respectively, calculated from D (DBH in m) and H 
(height in m) using the following equations:  

 

                    log WS-dip = 0.902log(D2H) + 2.2764             (4.3) 
 

 
                              log WS-dec = 0.9326log((D(100))2H)  1.402               (4.4) 

 
 
4.2.3 Leaf fuel load calculation 

During the sampling process, leaf litter mass was collected for leaf fuel load calculation, 
later used for model validation. Leaf fuel load was measured in a representative 1 × 1 
m2 subplot of the 30 × 30 m2 sampling area. All leaf litter on the ground surface within 
each subplot was collected and weighed (kg) using a field scale. A small sample of the 
leaf litter from each subplot was selected at random and placed in a sealed envelope for 
later laboratory analysis to determine the fuel moisture content (FMC) for the leaf fuel 
load calculation. 

Leaf fuel load is defined as the weight of the leaf fuel per unit area, often expressed 
in kg ha-1, as described in Equation 4.5. 
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                                        (4.5) 

 

where WCL is the weight of all the leaf litter collected from the 1 × 1 m2 subplot (kg) and 
FMC is the fuel moisture content (%). 

The FMC was calculated following procedures described by Desbois et al. (1997). 
Leaf litter samples were weighed on the scale before drying in an oven (wet weight in 
g) at 80°C for 48 h. After drying, the samples were weighed again (dry weight in g) to 
calculate FMC, as follows: 

 

         (4.6) 

 
4.2.4 Landsat 8 OLI data and preprocessing  

Establishment of leaf fuel load model required two Landsat 8 images from different 
seasons; here, we used images acquired on October 14, 2014 (normal season) and 
February 19, 2015 (dry season). The Landsat 8 data sets used were the L1G-level 
products, which were geographically corrected and projected onto the UTM Zone 47N 
with a WGS84 datum, and clipped based on the study area. The Landsat 8 data were 
available in the form of digital numbers (DNs). We then followed the steps to transform 
these DNs using the reflectance values provided by the USGS (2013) for calculating the 
VIs. Finally, image preprocessing was performed, which included masking of clouds and 
cloud shadows.  
 
4.2.5 Calculation of VIs  

VIs are generally defined based on the calculation of surface reflectance from sensors 
mainly using visible (red) and NIR spectral bands. The seven VIs considered in this 
study have been commonly used for the detection and quantitative assessment of 
biomass. The NDVI represents the normalized reflectance difference between the red 
and NIR bands, as introduced by Rouse et al. (1973), which is used to evaluate the 
density of vegetation. The NDWI is calculated from NIR and shortwave infrared (SWIR) 
reflectance (Gao, 1996) and it is normally used for estimating the leaf water content at 
the canopy level. The CVI is proposed to estimate leaf chlorophyll concentration at the 
canopy scale (Vincini et al., 2007). This index is obtained from the NIR/green reflectance 
ratio by introducing the red/green ratio to minimize the sensitivity to differences within 
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the canopy. The DVI, suggested by Richardson and Wiegand (1977), is the simplest VI 
that reflects the amount of vegetation. The EVI2 is also calculated from the red and 
NIR reflectance to obtain the sensitivity of high canopies. This index can effectively 
reduce the noise caused by soil or the atmosphere (Jiang et al., 2008). Jordan (1969) 
developed the RVI for capturing, in the simplest form, the contrast in the NIR and red 
values of areas of healthy green vegetation. Finally, the SAVI was proposed by Huete 
(1988). This index is suitable for minimizing the effects of the soil background on the 
vegetation signal by incorporating a constant soil adjustment factor L into the 
denominator of the NDVI equation. Factor L varies with the reflectance characteristics 
of the soil (e.g., color and brightness). All the above VIs are calculated as per the 
following equations: 
 

   (4.7) 
 

              (4.8) 
 

             (4.9) 
 
              (4.10) 
 

         (4.11) 

 

                 (4.12) 
 

           (4.13) 

 
where NIR, RED, and GREEN are the reflectances of the NIR, red, and green bands, 
respectively, and L is a constant soil adjustment factor (L = 0.5). 

According to the outlined functions of these VIs, they are reasonable for the 
estimation of vegetation status and as surrogates of the amount of vegetation and green 
biomass. Therefore, these VIs were extracted from the Landsat 8 image of the normal 
season, because trees during the normal season are fully leaved and thus, more 
representative of the standard leaf biomass. The extraction of the VIs in the normal 
season were later analyzed in relation to the calculated standard leaf biomass in the 
sample plots to establish the leaf biomass estimation equation. 
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4.2.6 Leaf biomass estimation equation based on VI  

In this study, biomass was defined as leaf biomass because leaves represent a core 
component of the surface fuel. Regression analysis, which is the most commonly used 
approach in estimations of aboveground biomass (Steininger, 2000; Zheng et al., 2004), 
was used to establish a linear equation for leaf biomass estimation. The equation was 
based on the relationship between the VIs and the calculated standard leaf biomass in 
the plots (Note: the VIs were extracted at the same locations as the calculated standard 
leaf biomass in the plots). Then, the equation with the highest R-squared (R2) value and 
lowest root mean square error (RMSE) was selected as the leaf biomass estimation 
equation, which was used to estimate the leaf biomass in the normal and dry seasons. 
The estimated leaf biomass equation was expressed by the following linear equation: 
 

                  LB = a + b(VI)                             (4.14) 

where LB is the estimated leaf biomass of the entire tree (kg ha-1), which was generated 
separately for the dipterocarp and deciduous forests based on allometric equations, VI 
is the VI most highly correlated with the calculated standard leaf biomass extracted 
during the normal season, and a and b are the intercept and slope of the regression 
coefficient, respectively.  

The equation of leaf biomass estimation was tested with assumptions to confirm it 
was the best-fitting equation for estimating leaf biomass. We used the following key 
assumptions in the statistical tests. (i) Linearity was checked using the F-test for 
testing both the overall significance of the equations and the linear relationship 
between both variables (the calculated standard leaf biomass as the dependent variable 
and VI as the independent variable). (ii) Normality was checked with a histogram and 
a fitted normal curve or a normal probability plot (P-P plot) to verify the normality of 
the distributed variables. (iii) Homoscedasticity (constant variance) was checked using 
a scatter plot of the residual and the Breusch-Pagan test to confirm that the errors of 
the leaf biomass estimation were the same across all values of the independent variable.  
 
4.2.7 Leaf fuel load prediction model  

An estimate of the leaf biomass could be achieved using VI as a predictor; therefore, 
the quantity of green leaf biomass in different seasons (normal and dry seasons) could 
be estimated using the seasonal variation of the VI values, and this could contribute to 
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the assessment of leaf fuel load. Thus, the seasonal variation of the VI values between 
normal and dry seasons was applied to estimate the different quantities of leaf biomass 
in both seasons based on the leaf biomass estimation equation (Equation 4.14). 
Subsequently, the difference between the leaf biomass values was calculated to 
determine the missing leaf biomass that was considered equivalent to the surface leaf 
fuel load during the dry season. The missing leaf biomass was considered to comprise 
the fallen leaves on the ground surface, which constituted dead leaves or the so-called 

therefore be defined as: 
 

                Leaf fuel load = LBN  LBD                                       (4.15) 

where leaf fuel load is the missing leaf biomass (kg ha-1), while LBN and LBD represent 
the estimated leaf biomass (Equation 4.14) extracted from a VI during the normal and 
dry seasons, respectively. 

The predictive model was validated by ground and remote sensing data. We used the 
calculated leaf fuel load in the plots to evaluate the accuracy of the model by statistical 

2, (iii) RMSE, (iv) the precision of 
the model, and (v) the paired t-test (p-value = 0.05). The paired t-test was used for 
testing the null hypothesis that there is no significant difference between the means in 
respect of the calculated and predicted leaf fuel loads. The precision (%) of the model 
was calculated as follows: 

 

                      (4.16) 

 

where Yi is the calculated leaf fuel load of the field samples, Y'i is the predicted leaf fuel 
load using the developed regression model, and N is the sample size. 

Finally, the validated model was applied to the seasonal Landsat 8 images acquired 
on October 14, 2014 (normal season) and February 19, 2015 (dry season), in relation to 
the dipterocarp and deciduous forests within the study area, to predict and map the 
leaf fuel load distribution 
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4.3 Results and Discussion 

4.3.1 Relationship between calculated standard leaf biomass and VIs 

This study focused on leaf biomass because dead leafage forms the largest component 
of fuel on the ground surface. Field data collection revealed that surface fuel consisted 
of dead leaves (83.34%), dead or downed branches (9.16%), and weeds (7.50%). The 
capabilities of seven VIs (NDVI, NDWI, CVI, DVI, EVI2, RVI, and SAVI) extracted from 
Landsat 8 OLI data were compared for estimating leaf biomass. The VI with the 
strongest correlation with leaf biomass was then used to establish a leaf fuel load model. 
Table 4.1 shows that the leaf biomass estimation equations generated from the NDVI, 
for both dipterocarp and deciduous forests, had a stronger relationship with the 
calculated standard leaf biomass (R2 = 0.87 and 0.78, respectively; p-value <0.01) than 
with the other VIs. Using the NDVI as a predictor for estimating leaf biomass also 
resulted in a lower RMSE (dipterocarp: 211.41 kg ha-1 and deciduous: 315.54 kg ha-1). 
The sequence of relationships between the VIs and leaf biomass for dipterocarp forest 
(ranked from high to low based on R2) was as follows: NDVI, SAVI, EVI2, RVI, DVI, 
and NDWI. The CVI was weakly related to leaf biomass. Similar results were evident 
for deciduous forest, where the NDVI had the strongest correlation with leaf biomass 
(highest R2). Although the RVI was also strongly correlated with leaf biomass, the 
RMSE indicated that the error of leaf biomass estimation was higher than with the 
NDVI, whereas, SAVI, EVI2, DVI, NDWI, and CVI performed with lower values of R2. 
Notably, the relationships of NDWI and CVI with leaf biomass had the lowest 
significance. 

The established statistical equations for leaf biomass estimation (Table 4.1) revealed 
the relationship between the VIs and the calculated standard leaf biomass. The 
sequence of their relationship in dipterocarp forest (ranked from high to low) was as 
follows: NDVI, SAVI, EVI2, RVI, DVI, NDWI, and CVI. Meanwhile, the sequence of 
their relationship in deciduous forest (ranked from high to low) was as follows: NDVI, 
RVI, SAVI, EVI2, RVI, DVI, NDWI, and CVI. The equations relating the NDVI to the 
calculated standard leaf biomass showed the best performance for both dipterocarp and 
deciduous forests, with the highest R2 values and lowest RMSEs. This is because the 
principle of the NDVI formula, which is defined as the ratio of the differences of the 
NIR and red bands, normalized by the sum of those bands, can determine and quantify 
the density of biomass. Radiation in the visible red light part of the spectrum is strongly 
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Table 4.1 Summary of leaf biomass equations for dipterocarp and deciduous forests 
Forest type 

 
Variable 

 
Linear leaf biomass equation 

(kg ha-1) 
Statistical significance 

        R2 RMSE F value
Dipterocarp NDVI 13,231.58(NDVI) 6,093.07 0.87* 211.41 82.26* 
 NDWI 9,270.37(NDWI)  709.02 0.57 389.90 15.71 
 CVI 61,405.06(CVI) + 1,282.17 0.04 580.11  0.52 
 DVI 18,066.85(DVI) 1,786.52 0.79* 270.84 45.43* 
 EVI2 12,064.45(EVI2) 2,416.56 0.84* 240.41 60.89* 
 RVI 739.94(RVI)  1,299.84 0.82* 250.07 55.37* 
 SAVI 13,727.03(SAVI) 3,137.06 0.85* 231.70 66.47* 
Deciduous NDVI 16,943.39(NDVI) 8,350.30 0.78* 315.54 38.93* 
 NDWI 5,496.61(NDWI) + 621.38 0.12 629.22 1.56 
 CVI 85,954.07(CVI) + 1,039.88 0.11 635.00 1.33 
 DVI 16,380.13(DVI) 1,099.38 0.56 445.02 14.10 
 EVI2 11,615.77(EVI2) 1,957.75 0.62 415.26 17.83 
 RVI 988.38(RVI)  2,064.29 0.73* 352.49  29.01* 
 SAVI 13,281.48(SAVI) 2,677.71 0.63 407.85 18.89 

        [a] * is significant at the 0.01 level 
 

absorbed (or poorly reflected) by the chlorophyll in green plants, while radiation in the 
NIR part of the spectrum is strongly reflected by the mesophyll cells of leaves. 
Therefore, the NDVI can serve for detecting green stands or biomass. 

The results also showed that all VIs were correlated more strongly with leaf biomass 
in dipterocarp forest than in deciduous forest. A possible reason for this is the difference 
in leaf structure of trees between the two forest types. Typically, the leaf size of the 
dipterocarp species is large and ovular (5 7-cm wide and 10 16-cm long), whereas the 
leaves of deciduous species are typically smaller and rounder (3 6-cm wide and 4 8-cm 
long). Therefore, the leaves of dipterocarp trees tend to have greater area. This means the 
VI values based on dipterocarp species can be improved by leveraging information of 
reflectance; thus, showing better correlation with leaf biomass than for deciduous species. 

The SAVI is calculated using a soil adjustment factor (L), which means it also is 
highly correlated with leaf biomass, although it is only appropriate for use with 
dipterocarp species. Possible reasons for this are related to the structural differences of 
the leaves of trees between the two forest types and the use of a constant value of the 
L factor (i.e., 0.5), which is appropriate for dipterocarp forest but might not be 
appropriate for deciduous forest. Similarly, the EVI2 was also better correlated with 
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the leaf biomass of dipterocarp forest than deciduous forest because of soil interference, 
which is dependent on vegetation coverage. The RVI had significant correlation with 
leaf biomass for both forest types because its mathematical formula is applied from the 
contrast in the NIR and red values. However, the RVI shows only a ratio calculation, 
which has low dynamic range; therefore, it is not as precise as the NDVI indicating the 
different proportions of vegetation or leaf biomass. The DVI is also the simplest VI, such 
that the dense canopy cover of the study area limited its potential for providing accurate 
information on leaf biomass. The NDWI and the CVI had the lowest correlations with 
leaf biomass in both forest types. As the NDWI varies according to the relative water 
content of leaves (Gao, 1996), the index is suited to indicate healthy leaves, although it 
is poorly correlated to quantities of vegetation biomass. The CVI results in this study 
presented the least significant correlation with leaf biomass. This is because the 
efficiency of the CVI depends on the type of vegetation. The CVI index can be used well 
as a leaf chlorophyll estimator for planophile/herbaceous crops such as wheat, corn, and 
soybean (Vincini et al. 2008), i.e., green structural crops (leaf, sheath, and stem are 
normally green), which can be considered for pigment content estimation by the CVI. 
However, this index was weakly correlated with the leaf biomass of trees in the forests 
in this study. 

A comparison of the capabilities and limitations of each VI revealed that the 
relationships between the VIs and leaf biomass varied because of the different 
characteristics and structures of the forest types, e.g., canopy structure, leaf area index, 
and crown cover. Consequently, this reduced the reliability of the relationship between 
those VIs and leaf biomass in both forest types. The NDVI demonstrated a stable and 
reliable correlation with leaf biomass in both forest types.  Therefore, the NDVI was 
selected as a predictor to estimate leaf biomass because it was strongly correlated with 
leaf biomass for both forest types (highest R2) and it demonstrated greater ability in 
estimating leaf biomass (lowest RMSE values).  

 
4.3.2 Leaf biomass estimation equation based on VI 

We then tested the assumptions of linear regression to verify that the selected 
equation was appropriate for leaf biomass estimation. The results of the F-test showed 
there was linear correlation between the calculated standard leaf biomass and the 
NDVI (p-value <0.01; Table 4.1).  
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(a) Dipterocarp  

 
          (b) Deciduous 

 
Figure 4.2 Test results for assumptions of regression leaf biomass equations: (i) the 

histograms, (ii) probability plots, and (iii) scatter plots-dispersion plots:                     
(a) dipterocarp and (b) deciduous forests 

 

With regard to normality, a normal distribution was found, as shown in Figure 
4.2a(i) and 4.2b(i), where the histograms are symmetric and bell-shaped within 0.96 
(dipterocarp) and 0.96 (deciduous) of the standard deviations (SDs). The P-P plots also 
show normal distributions, because the points on both plots have a nearly linear pattern 
(Figure 4.2a(ii) and 4.2b(ii)). Finally, homoscedasticity was satisfied because the errors 
in the relationship between the calculated standard leaf biomass and the NDVI were 
constant, as shown by spread of the residuals without a pattern in Figure 4.2a(iii) and 
4.2b(iii). In addition, the results of the Breusch-Pagan test were not significant at a p-
value >0.05, which indicated that the errors of the leaf biomass estimation from the 
values of the NDVI were the same.  

Based on the results of these tests, the equations were found reliable and accurate 
following statistical tests with three key assumptions of linear regression (i.e., linearity, 
normality, and homoscedasticity). The results of reliability from the statistical tests 
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demonstrated that the equations using the NDVI as a predictor were was satisfactory 
and reliable for the estimation of leaf biomass. The verified equations were later used 
to estimate the quantity of seasonal leaf biomass, using a seasonal NDVI, during the 
normal and dry seasons.  
 
4.3.3 Leaf fuel load prediction model  

The verified equations were applied to estimate leaf biomass in normal (LBN) and 
dry (LBD) seasons (Table 4.2), as predicted by a seasonal NDVI (normal and dry 
seasons). The quantities of LBN and LBD in both forest types were distinctly different; 
some plots had no leaf biomass in the dry season because the trees had shed all their 
leaves. The values of LBN and LBD were subtracted following the leaf fuel load 
prediction model to determine the missing leaf biomass, which became the predicted 
leaf fuel load on the ground surface. In dipterocarp forest, the average predicted leaf 
fuel load and the calculated leaf fuel load in the field showed a slight difference 
(1,966.94 and 2,118.06 kg ha-1) with SDs of 517.75 and 635.27 kg ha-1, respectively. In 
the deciduous forest, the average predicted and calculated leaf fuel loads were closer at 
1,637.67 and 1,771.22 kg ha-1 with SDs of 534.34 and 509.16 kg ha-1, respectively. 

A seasonal NDVI can result in different estimations of leaf biomass. This is because 
during the normal season with full-cover green canopies, the NDVI mainly reflects 
healthy green canopies, which results in a high value of leaf biomass estimation. 
Conversely, during the dry season with canopy leaf-out, the NDVI mainly reflects other 
objects unrelated to greenness (e.g., stems, branches, soil, and fallen leaves on the 
ground surface). Consequently, these objects show low values of the NDVI that could 
be considered to represent unhealthy green canopies showing a decrease in estimated 
leaf biomass. Therefore, the estimated leaf biomass based on the seasonal variation of 
the NDVI values showed different quantities (as shown in Table 4.2). In some instances, 
some trees had shed all their leaves (i.e., there was no canopy cover) and thus, the NDVI 
value was very low. Consequently, the leaf biomass estimated by our model became 
negative and therefore, negative values of estimated leaf biomass were substituted by 
0.00 (kg), expressing no leaf biomass, as shown in Table 4.2. 
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Table 4.2 Estimated leaf fuel biomass in normal and dry seasons, and a comparison 
between the missing leaf biomass or predicted leaf fuel loads and the calculated leaf 

fuel loads in the field 
Dipterocarp (kg ha-1)  Deciduous (kg ha-1) 

 Plot 
 no. 

LBN* LBD** Predicted 
leaf fuel 
load or 
missing 

leaf 
biomass 

Calculated 
leaf fuel 

load in the 
field 

  Plot 
  no. 

LBN* LBD** Predicted 
leaf fuel 
load or 
missing 

leaf 
biomass 

Calculated 
leaf fuel 

load in the 
field 

1 1,869.03 377.84 1,491.19 1,449.80  1 2,157.68 1,032.21 1,125.47 1,288.36 
2 1,446.94 0.00*** 1,446.94 1,250.93  2 3,392.54 1,759.62 1,632.92 1,481.99 
3 3,036.30 954.05 2,082.25 1,773.64  3 2,521.99 720.74 1,801.25 2,324.49 
4 1,863.91 0.00*** 1,863.91 1,820.96  4 2,348.97 1,426.04 922.93 1,194.51 
5 2,311.39 0.00*** 2,311.39 2,589.47  5 1,685.21 0.00*** 1,685.21 1,606.42 
6 2,651.96 197.06 2,454.90 2,827.87  6 2,389.38 0.00*** 2,389.38 2,528.81 
7 1,682.07 0.00*** 1,682.07 2,250.20  7 2,241.85 227.67 2,014.18 1,992.28 
8 2,602.11 819.66 1,782.45 2,514.15  8 2,472.76 709.79 1,762.97 1,507.27 
9 3,179.39 0.00*** 3,179.39 3,408.52  9 3,569.25 3,056.33 512.92 985.50 

10 3,343.91 1,925.05 1,418.86 1,187.23  10 1,894.27 0.00*** 1,894.27 1,773.75 
11 2,940.96 1,438.99 1,501.97 1,671.71  11 3,023.80 864.53 2,159.27 2,407.94 
12 2,496.42 903.92 1,592.50 2,087.33  12 1,751.32 0.00*** 1,751.32 2,163.32 
13 2,331.16 123.03 2,208.13 2,547.74       
14 2,521.22 0.00*** 2,521.22 2,273.23       

Mean 2,448.34 481.40 1,966.94 2,118.06  Mean 2,454.09 816.41 1,637.67 1,771.22 
SD 574.94 628.06 517.75 635.27  SD 603.05 922.48 534.34 509.16 

[a] * is the estimated leaf biomass in normal season,  [b] ** is the estimated leaf biomass in dry season 
[c] *** shows no leaf biomass on trees, meaning all leaves were shed 
 
 

The estimated leaf biomass between the normal and dry seasons for the dipterocarp 
and deciduous forests was clearly different. Leaf biomass was higher in the normal 
season than in the dry season, because trees in both types of forest shed their leaves 
cyclically in order to survive the changing weather conditions. Trees shed their leaves 
at the beginning of the dry season, resulting in a leaf biomass reduction. Consequently, 
the shed or fallen leaves become the primary fuel, which acts as an ignition source and 
cause of fire intensity. The estimated leaf biomass of the normal and dry seasons was 
subtracted to assess the quantity of missing leaf biomass in the dry season (Table 4.2), 
which reflects the leaf fuel load on the ground surface. Therefore, a seasonal NDVI 
between the normal and dry seasons can be applied to estimate the different quantities 
of leaf biomass, which establishes the missing leaf biomass that represents the quantity 
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of dead leaves on the ground surface. In other words, the fuel load, derived from changes 
in leaf biomass, can be estimated based on difference of a seasonal NDVI. 

The calculated leaf fuel loads in the sample plots were essential to verify the 
findings, as well as to confirm whether the predicted leaf fuel loads of both forest types 
differed from the calculated leaf fuel loads. Based on the results from Table 7, the 
predicted leaf fuel load generated by the models and the calculated leaf fuel load in the 
field were then used to validate the model accuracy based on statistical metrics, as 
shown in Table 4.3. The models showed a strong relationship between the predicted 

for both 
models were >0.80 and the models had RMSE values of dipterocarp and deciduous 
forests at 355.43 and 261.56 kg ha-1, respectively. The paired t-test results for both 
models indicated there were no significant differences between the means of the 
predicted and calculated leaf fuel loads (p-value >0.05). This supports our hypothesis 
that the predicted leaf fuel load generated from models can be used as a substitute for 
the leaf fuel load in forest areas. Moreover, the model precisions based on statistical 
inference, which were evaluated from field and estimated data, achieved at 80.43% 
(dipterocarp) and 71.36%, (deciduous), respectively. 

  
Table 4.3 Statistical validations of leaf fuel load prediction models for dipterocarp and 

deciduous forests 
Forest type Leaf fuel load prediction models (kg ha-1) N 

correlation 
coefficient 

 
R2 

 
RMSE 

Paired 
t-test 
sig. 

Precision 
(%) 

Dipterocarp [13,231.58(NDVIN)  6,093.07]  [13,231.58(NDVID)  6,093.07] 14 0.85* 0.73* 355.43 0.11 80.43 

Deciduous [16,943.39(NDVIN)  8,350.30]  [16,943.39(NDVID)  8,350.30] 12 0.88* 0.77* 261.56 0.10 71.36 

[a] * is significant at the 0.01 level 
 

Figure 4.3 shows the spatial distributions in the study area of the predicted leaf fuel 
load derived from the models. The predicted leaf fuel loads in the dry season of both 
forest types showed close values. The estimated leaf fuel load ranged from 17.48
4,474.39 kg ha-1 with a mean value of 2,228.46 kg ha-1 in the dipterocarp forest, and 
from 20.75 5,262.74 kg ha-1 with a mean value of 2,631.43 kg ha-1 in the deciduous 
forest. 
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(a) Dipterocarp 

 

Figure 4.3 Distribution of leaf fuel loads from statistical models of (a) dipterocarp and 
(b) deciduous forests in Sri Lanna National Park during the dry season 
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(b) Deciduous 

 

Figure 4.3 Continued 
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Mapping the distribution of leaf fuel load generated from the models showed the 
average predicted leaf fuel loads were similar to those reported by Akaakara et al. 
(2004), who studied fuel characteristics of dry dipterocarp forest at Huai Kha Khaeng 
Wildlife Sanctuary in Thailand. Their results showed that the highest average loading 
of leaf fuel was 2,688.82 kg ha-1 in February, which is a value close to our average 
predicted leaf fuel load (2,228.46 kg ha-1). Mapping fuel load distribution is a short-term 
estimation in the dry season, which can be used to investigate areas prone to wildfires. 
Areas with heavy fuel load are at higher risk of wildfire occurrence, which leads to 
negative fire behavior. Moreover, such distribution maps can be useful to fire managers 
as a guideline for reducing overloaded fuel by creating fuel breaks to reduce fire spread 
and intensity, as well as to local governments attempting to mitigate fire risk and 
making decisions on wildfire management. However, the application of predictive 
models derived from remotely sensed data for leaf fuel load estimation should be 
considered on optimally selected dates in both seasons.  

 
4.4 Conclusions 

In this study, we combined field data with remotely sensed Landsat 8 OLI data to 
generate models of leaf fuel load prediction for two forest types (dipterocarp and 
deciduous), based on VI and using regression analysis, and we mapped the spatial 
distribution of leaf fuel load. The capabilities of seven potential VIs were explored in 
terms of the relationship with the standard leaf biomass calculated in the field. The 
NDVI had the strongest correlation (R2 of 0.87 and 0.78 for dipterocarp forest and 
deciduous forest, respectively; p-value < 0.01), and it was selected to estimate the 
seasonal leaf biomass to establish a fuel load prediction model. Using the NDVI as a 
predictor provided a statistically reliable linear equation for leaf biomass estimation. 
Our study advanced the work of previous studies that have estimated leaf biomass 
based on the NDVI. We exploited this strong relationship between leaf biomass and the 
NDVI further to determine the seasonal changes in leaf biomass, as measured by a 
seasonal NDVI (normal and dry seasons), for the purpose of establishing a fuel load 
prediction model. A seasonal NDVI can deliver different estimations of leaf biomass 
values in different seasons, which allows the missing leaf biomass or leaf fuel load on 
the ground surface to be assessed. The model validation supported the hypothesis and 
revealed that the leaf fuel load predicted by the remotely sensed model can be used as 
a substitute for the field-derived leaf fuel load (paired t-test results; p-value > 0.05). In 
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addition, the model precisions based on statistical inference, which were based on the 
measured field data and data predicted by the model, were greater than 80% and 71% 
for dipterocarp and deciduous forests, respectively. Therefore, it is because fuel load is 
associated with changes in total biomass, a seasonal NDVI can estimate the change in 
seasonal leaf biomass between the normal and dry seasons, contributing to the 
determination of the leaf fuel load on the ground surface. Mapping of leaf fuel load 
distribution can be used as complementary data when updating decisions on fire pre-
suppression and suppression activities, as well as creating a guide for fuel load 
reduction. 
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CHAPTER 5 	
 

Mapping Soil Moisture as an Indicator of Wildfire Risk  
Using Landsat 8 Images in Sri Lanna National Park,  

Northern Thailand 
 

5.1 Introduction  

Severely dry climate plays an important role in the occurrence of wildfires. In 
Thailand, wildfires are particularly prevalent during the dry season and are especially 
damaging because of forest loss and degradation. During the dry season, the number of 
wildfires in Thai conserved forest areas were 4207, 4982, and 6685 in 2014, 2015, and 
2016, respectively (Forest Fire Control Division, 2016). These numbers indicate that 
the number of wildfires appears to be increasing because Thailand has been 
experiencing longer dry seasons and under dry conditions, wildfires can ignite easily, 
as fuel sources are readily available. Fuel availability, which drives wildfire occurrences 
and directly affects wildfire behavior, depends on fuel characteristics, which are fuel 
load (influencing fire intensity) and fuel moisture content (influencing both fire ignition 
and spread). It appears that recurring dry seasons foster fuel availability and reduce 
fuel moisture content, resulting in potentially more damaging high-intensity fires, 
which may spread rapidly during extremely dry conditions. 

Soil moisture, defined as the volumetric water content of soil (Eller and Denoth, 
1996), is an important indicator of dry conditions and is linked to wildfire occurrence. 
The reduction of water in soil increases dry conditions (Kozlowski and Pallardy, 2002; 
Chmura et al., 2011), resulting in more intense and longer burning fires. Previous 
studies pointed out that soil moisture affects wildfire occurrence. For example, Krueger 
et al. (2015) showed that large growing-season wildfires occurred exclusively under 
conditions of low soil moisture. Yebra et al. (2013) suggested that improving wildfire 
assessments involves using soil moisture as a representative for fuel moisture, which 
is a key factor for ignition and spread of wildfires. Therefore, surface measurements of 
soil moisture may provide opportunities for improving estimates of fuel moisture (Qi, 
et al., 2012), because both are physically linked through soil-plant interactions (Hillel, 
1998). 
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Remote sensing techniques have been extensively used for the analysis of soil 
moisture, and have provided alternative tools for obtaining rapid estimates of soil 
moisture on large spatial scales (Goward et al., 2002; Sandholt et al., 2002; Ishimura et 
al., 2011). VIs, which are mathematical combinations of different spectral bands from 
satellite remotely sensed data, have been utilized to estimate soil moisture (Z. Gao et 
al., 2011; Chen et al., 2015). The NDVI is the normalized reflectance difference between 
NIR and visible red bands, which measures changes in chlorophyll content. As a result, 
it is considered a function of vegetation strength, which changes as vegetation interacts 
with soil moisture. The NDWI is a more recent satellite-derived index from the NIR 
and SWIR channels that reflects changes in both water content and spongy mesophyll 
in vegetation canopies (Gao, 1996). This index has been employed for the determination 
of vegetation water content and stress (Ceccato et al., 2002), and is therefore expected 
to be linked to soil moisture due to its impact on vegetation water stress. Moreover, 
LST can rise rapidly with water stress (Goetz, 1997), which is directly related to soil 
moisture. Accordingly, LST is also widely used as a soil moisture indicator (Carlson, 
2007). 

The relationship between VI and LST has been investigated to evaluate 
evapotranspiration rates. The VI-LST relationship normally shows a negative 
correlation, resulting in triangular-shaped VI-LST plots at different spatial scales 
(Nemani et al., 1993; Goetz, 1997). Based on the VI-LST correlation, the TVDI, 
computed from the NDVI-LST relationship has become a widely used dryness index to 
estimate surface soil moisture (Sandholt et al., 2002; Mallick et al., 2009; Patel et al., 
2009). For example, Wang et al. (2007) applied NDVI-LST produced from MODIS data 
to investigate the correlation with soil moisture determined by field measurements. The 
results revealed that NDVI-LST is strongly correlated with soil moisture and can be 
used to generate soil moisture estimates. Chen et al. (2015) used the TVDI (NDVI-LST) 
derived from Landsat-5 TM data to estimate soil moisture and found that the TVDI can 
reflect the soil moisture status under different tree species. In this study, we propose a 
new application of the NDWI-LST relationship, which could enhance the efficiency of 
the TVDI calculation. Additionally, the NDDI, which combines information about both 
greenness and water obtained from the NDVI and the NDWI (Gu et al., 2007), has been 
applied in numerous studies to evaluate drought and it was found that it is an 
appropriate indicator for the dryness of a particular area (Renza et al., 2010; Gouveia 
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et al., 2012). The NDDI appears to respond to soil moisture based on drought conditions, 
and was used in this study to determine soil moisture.  

The objectives of this study are to estimate the spatial distribution of soil moisture 
using VIs based on Landsat 8 OLI/TIRS data and to evaluate the use of soil moisture 
data for wildfire risk assessment. Specifically, this paper includes: (1) soil moisture 
estimates for mapping the spatial distribution of soil moisture by combining TVDI and 
NDDI based on a regression approach. We propose a possible adaptation and 
application of NDWI and LST for constructing a TVDI based on the similar design of 
the triangular NDVI-LST space. We then compare the efficiencies of NDVI-LST and 
NDWI-LST for calculating the TVDI. (2) An investigation of the relationship between 
estimated soil moisture and fuel moisture measured in the field to assess the suitability 
of the simulated soil moisture data for wildfire prediction. (3) We hypothesize that (i) 
the NDWI-LST relationship performs as well as or better than the NDVI-LST 
relationship and can be applied for calculating TVDI, and (ii) that estimated soil 
moisture derived from our model is directly related to fuel moisture, influencing wildfire 
occurrence. In this study, we used the Landsat 8 TIRS and MODIS products for 
calculating LST and the Landsat 8 OLI product for determining TVDI and NDDI. 

This study could also be used as an approach to enhance the efficiency of wildfire 
assessment using soil moisture as a surrogate for fuel moisture, identifying areas prone 
to wildfire across different landscapes. Until now, Thailand has not widely applied 
remote sensing to wildfire management. Using soil moisture measured by remote 
sensing as a complementary dataset for wildfire management may have the unique 

effectiveness of planning and decision-making in the area of wildfire management. 
 

5.2 Materials and methods 

5.2.1 Field data measurement 

Thirty-four sample plots with heterogeneous landscape and ecological conditions 
were selected using a topographic map and Landsat 8 image provided radiometric and 
geometric corrections for different slopes, aspects, and forest types. The selected plots 
were evaluated during the dry season in March 2015. Larger 30 m × 30 m sample areas, 
corresponding to the spatial resolution of Landsat 8 images (30 m × 30 m pixel size) 
used for linear regression analysis, were divided into five subplots (1 m × 1 m) for 
collecting soil samples and fuel or litter from the ground surface (Figure 5.1).  
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Figure 5.1 Sample plots in dipterocarp and deciduous forests 

 
5.2.2 Gravimetric Soil Moisture Measurements 

Soil samples were collected from each of the five 1-m2 subplots, which are 
representative of the soil within each sample plot. The soil samples were taken at a 
standard depth of 10 cm, because previous studies have indicated that it is feasible to 
estimate surface (0 to 0.76 cm) soil moisture from visible and NIR reflectance (Kaleita 
et al., 2005). In addition, VIs show the highest correlation with surface soil moisture at 
10 cm depth (Zhang et al., 2013). Each soil sample was placed in a plastic container and 
sealed tightly for further laboratory analysis. For the gravimetric analysis of soil 
moisture, we first weighed the soil samples (wet weight in grams) using a standard 
laboratory scale and then placed them in a drying oven at 105 °C for 48 hours (Gardner, 
1986). After drying, we weighed the dried soil samples (dry weight in grams). The 
percentage of gravimetric soil moisture was calculated using Equation 5.1: 

                           (5.1) 

 

Five soil moisture measurements from each of the five subplots within each sample plot 
were averaged to obtain representative soil moisture for each 30-m2 site, corresponding 
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to the spatial resolution of the Landsat 8 images. The averaged soil moisture data from 
34 sample plots were used for both training (80%) and validation (20%) data.  

 
5.2.3 Leaf Fuel Moisture Measurements  

Leaf fuel was collected for fuel moisture measurements, which were used for 
analyzing the relationship with simulated soil moisture. We specifically focused on dead 
leaves on the ground surface, because those represent the largest fuel component. A 
small sample of leaf litter was randomly collected from each 1-m2 subplot and then 
placed into a sealed envelope for further laboratory analysis. In the laboratory, leaf 
litter samples were weighed and oven-dried at 80 °C for 48 h, then weighed again to 
calculate the FMC in percent following the procedure described by Desbois et al. (1997). 
The most common FMC calculation is the ratio of water to dry weight as expressed by 
Equation 5.2. The FMC values for the five subplots were averaged to obtain a 
representative FMC for each 30-m2 sample plot. 

 

      100%
dry weight

dry weight - wet weight
FMC               (5.2) 

 

5.2.4 Remotely Sensed Data and Preprocessing   

We used cloud-free Landsat 8 OLI/TIRS and MODIS eight-day composite LST 
datasets at a spatial resolution of 30 m and 1000 m, respectively, as primary data (Table 
5.1). The Landsat 8 data were converted from DNs to reflectance values before 
calculating the VI values. The DN conversion followed the steps of the USGS (2013). 
Estimates of soil moisture require: (i) Landsat 8 images to extract the TVDI and NDDI, 
and (ii) MODIS eight-day composite LST and Landsat 8 thermal infrared (TIR) data to 
produce the LST. Landsat 8 datasets used are the L1G level product and were 

data were (i) projected to UTM Zone 47N with the WGS84 datum, (ii) clipped based on 
 (iii) co-registered to Landsat 8 images to reduce 

potential geometric errors.  
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Table 5.1 Selected Landsat 8 and MODIS images for dry season 

Season Parameter 
Landsat 8  MODIS eight-day composite 

Acquisition 
date 

Spectral band  Acquisition date Product 

Dry TVDI, NDDI 19 Feb 2015 Visible, NIR, SWIR    
Dry LST 19 Feb 2015 TIR (band 10)  18-25 Feb 2015 MOD11A2 

 

5.2.5 Soil Moisture Estimates  
 
5.2.5.1 Calculation of the TVDI 

thermal infrared data (Weng, Fu, and Gao, 2014). It depends on the albedo, vegetation 
cover, and soil moisture. The Landsat 8 LST was computed by fusing images of MODIS 
LST and Landsat 8 brightness temperature (Tb), provided by Hazaymeh and Hassan 
(2015). Generating Landsat 8 LST was based on the linear relationship between 
MODIS LST and Landsat 8 Tb, which were obtained almost simultaneously and under 
similar atmospheric conditions.  

 

 

Figure 5.2 Simplified presentation of TVDI based on the triangular shape of the 
NDVI-LST relationship (adapted from Sandholt et al., 2002) 

 

A scatter plot of remotely sensed LST and VI often results in a triangular shape 
(Price, 1990; Carlson et al.
used to obtain information on soil moisture content. Figure 5.2 shows the conceptual 
TVDI based on the NDVI-LST triangle, where LST is plotted as a function of NDVI. 
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The linear combination of NDVI-LST typically shows a strongly negative relationship 
and the TVDI can be estimated from the dry and wet edges of the triangle.  

In the feature space, TVDI is computed based on information about the wet edge 
representing the minimum LST (LSTmin, maximum evapotranspiration and thereby, 
unlimited water access) as a straight line parallel to the NDVI axis. The dry edge, 
representing the maximum LST (LSTmax, limited water availability) is linearly 
correlated with NDVI. Therefore, the TVDI is related to the soil moisture status in that 
high values indicate dry conditions and low values indicate moist conditions. In this 
study, the correlations of both NDVI and NDWI to the LST were observed. The TVDI 
for each pixel can be defined using Equation 5.3: 

 

                                  (5.3) 

 
Where, LST is the LST (°C) at a given NDVI and NDWI value, LSTmin is the 

minimum LST (°C) based on the NDVI and NDWI values along the wet edge, and 
LSTmax is the maximum LST (°C) based on the NDVI and NDWI values along the dry 
edge. 

To calculate LSTmax (dry edge) and LSTmin (wet edge), we created scatter plots for 
each NDVI-LST and NDWI-LST pair. Linear regression was applied to scatter plots of 
the resulting LSTmax and LSTmin based on the upper and lower boundary lines of the 
scatter plots. Positive NDVI and NDWI values were ranked from 0 to 1 and divided into 

NDVI and NDWI were paired with a corresponding LST such as NDVI1, LSTmax1 and 
NDVI1, LSTmin1 or NDWI1, LSTmax1 and NDWI1, LSTmin1. Finally, we employed a linear 
regression approach to fit the point pairs for generating LSTmax and LSTmin: 
 

       LSTmax = a + b (VI)                                  (5.4) 

                          LSTmin = a' + b' (VI)                                                                    (5.5) 

where, a and b are regression coefficients of LSTmax, a' and b' are regression coefficients 
of LSTmin, and VI represents the NDVI and NDWI values. The NDVI is a normalized 
ratio of the NIR and red reflectance (Tucker, 1979) as described in Equation 5.6. The 
NDWI is calculated from NIR and SWIR reflectance (Gao, 1996) as shown in Equation 
5.7. 
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   (5.6) 
 

              (5.7) 

 
We investigated the NDVI and the NDWI performance and selected the index 

showing the strongest correlation with LST based on the adjusted R-squared (adj-R2) of 
LSTmax and LSTmin. The best relationship of the index and LST was later used for TVDI 
calculation following Equation 5.3. 
 
5.2.5.2 Calculation of the NDDI 

The NDDI was computed from the NDVI and NDWI values according to the definition 
proposed by Gu et al. (2007). The combination of information about both vegetation 
(NDVI) and water (NDWI) conditions can be used to determine vegetation drought 
conditions, which reflect the effects of soil moisture. Due to the variation of the NDVI 
and NDWI within a range from -1 to +1, these values were converted to 8 bits (0-255) 
for the calculation of the NDDI, which ranges between -1 and +1. Higher NDDI values 
indicate more severe drought and lower soil moisture. The NDDI is computed as: 
 

                                                (5.8) 

 
5.2.5.3 Soil Moisture Model and Validation 

We established a soil moisture estimation model based on a collection of field 
sampling and remote sensing data. A stepwise multiple regression approach was used 
to assess the relationship between field soil moisture data and remote sensing data, i.e., 
TVDI and NDDI were used as independent variables. The model can be computed by a 
regression formula as follows: 

 

                                        Estimated soil moisture = a + b(TVDI) + b'(NDDI)                      (5.9) 
 

where, the estimated soil moisture is given as a percentage (%), and a, b, and b' are the 
coefficients of the regression lines of the TVDI and NDDI. 

The model was validated by ground and remote sensing data. We used the actual 
soil moisture from the field measurements to evaluate the accuracy of the predictive 
model by statistical inference: (i) the adjusted R-squared (adj-R2), (ii) root mean squared 
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error (RMSE), (iii) absolute average difference (AAD), and (iv) the precision of the 
model. The precision (%) of the model is calculated as follows: 
 

                      (5.10) 

 

where, Yi is the actual soil moisture of the field samples (%), Y'i is the estimated soil 
moisture from remotely sensed data (%), and N is the sample size. 

Finally, the validated model was applied to a Landsat 8 image acquired on 19 
February 2015 in Sri Lanna National Park (dipterocarp and deciduous forests) in order 
to estimate and map the spatial soil moisture distribution during the dry season. 
 

5.2.6 Analysis of the Relationship Between Estimated Soil Moisture and Leaf 
Fuel Moisture 

To investigate the relationship between soil moisture estimated from our model and 
FMC, we performed a correlation analysis using the Pearson correlation and linear 
regression methods. Estimated soil moisture was extracted from the model at the same 
locations as were used to measure leaf fuel moisture in the field to determine 
correlation. We then explored the possibility of applying estimated soil moisture from 
our model to the prediction of wildfire occurrences. 
 

5.3 Results and Discussion  

Scatter plots of the relationships between NDVI-LST and NDWI-LST are shown in 
Figure 5.3. Compared to the NDVI-LST plot, the NDWI-LST relationship shows a 
clearer triangular shape, following the theoretical triangle of the TVDI. We determined 
LSTmax (dry edge) and LSTmin (wet edge) to highlight linear trends. A comparison of 
pixels representing LSTmax and LSTmin extracted from the NDVI-LST and the NDWI-
LST plots indicates a stronger relationship between these pixels in the NDWI-LST 
space. Based on Figure 5.3, the LSTmax, representing the dry edge, shows a strong 
negative correlation between the NDWI and LST (adj-R2 = 0.84, p-value < 0.01), and 
the LSTmin, representing the wet edge, shows a negative correlation between the NDWI 
and LST with adj-R2 = 0.63 at a significant level for p < 0.01. In contrast, NDVI has a 
lower correlation with LST, with LSTmax at adj-R2 = 0.62 (p-value > 0.05) and LSTmin at 
adj-R2 = 0.47 (p-value < 0.01). The results of the collinearity requirement indicate that  
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Figure 5.3 Observed relationships for NDVI-LST and NDWI-LST, based on the 
conceptual TVDI model 

 

the NDWI has a stronger negative correlation with the LST than the NDVI, which is 
why the NDWI was used to calculate TVDI. 

The reason for the better correlation between the NDWI and LST might be that LST 
is more strongly related to the water content of vegetation (captured by NDWI) than to 
the chlorophyll content (captured by NDVI). The NDVI measures changes in 
chlorophyll content (absorption of visible red radiation) and in the leaf spongy 
mesophyll (reflection of NIR radiation) within the vegetation canopy. Consequently, the 
NDVI has a limited capability for retrieving vegetation water content information, as 
it provides information on vegetation greenness (chlorophyll), which is not directly and 
uniformly related to the quantity of water in the vegetation (Ceccato et al., 2002). A 
change in chlorophyll content detected using the NDVI does not imply a direct change 
in leaf water content. Conversely, the NDWI is sensitive to changes in leaf water 
content because the green vegetation spectra in the SWIR region are dominated by 
water absorption. 

The water content in leaves is directly affected by temperature conditions, especially 
high temperatures. As temperature increases, evaporation from leaves is higher, which 
affects the water content of the leaves. Evaporation within leaves also causes an 
increase in heat, and the leaf temperature rises relative to the air temperature or LST. 
Therefore, NDWI is more sensitive to LST, resulting in a stronger negative correlation 
with LST. Gu et al. (2007) found that NDWI values exhibited a quicker response to 
drought conditions when compared to NDVI values. This is because the NDWI is 
constructed from the SWIR, which is more sensitive to moisture than other spectra. As 
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a result, the NDWI shows a better correlation with LST and follows more closely the 
conceptual TVDI model. This result supports our hypothesis that the relationship 
between the NDWI and LST can be used to improve the calculation of the TVDI. 

A TVDI map of the study area extracted from LSTmax and LSTmin based on the strong 
NDWI-LST relationship is shown in Figure 5.4a, while a NDDI map computed from the 
NDVI and the NDWI is shown in Figure 5.4b. Both maps, which show drought 
conditions during the dry season, can reflect the degree of soil moisture because drought 
influences the soil moisture status. Extreme drought results in lower soil moisture 
content. Therefore, both VIs can be used as predictor variables to estimate soil 
moisture. 

 
(a) TVDINDWI-LST                                                (b) NDDI 
 

Figure 5.4 Extraction of a Landsat 8 image from 19 February 2015 for                                    
(a) TVDINDWI-LST and (b) NDDI 

 

Linear regression models for soil moisture estimation shown in Table 5.2 were 
calculated using the modified TVDINDWI-LST and the NDDI as independent variables, 
and field-measured soil moisture content as the independent variable. The model 
constructed from both indices has the strongest response to the actual soil moisture and 
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likely has a greater ability to accurately estimate soil moisture, based on its high adj-
R2 (0.89, p-value < 0.01) and low RMSE (0.87%) for actual versus estimated soil 
moisture. In contrast, the model that only uses TVDINDWI-LST has a lower adj-R2 (0.72, 
p-value < 0.01) and a higher RMSE value of 1.39 %. Similarly, the model that only uses 
the NDDI shows the weakest correlation with an adj-R2 of 0.52 (p-value < 0.01) and the 
highest RMSE of 1.82%. Thus, the soil moisture model using both the TVDINDWI-LST and 
the NDDI fulfills the collinearity requirements with an increase in the adj-R2 and a 
reduced RMSE, which can enhance the efficiency of soil moisture estimation.  
 

Table 5.2 Comparison of statistical soil moisture models 
Predictor variable Soil moisture model (%) N adj-R2 RMSE (%) 

TVDINDWI-LST 10.67  12.24(TVDI NDWI-LST) 27 0.72* 1.39 

NDDI 13.93  35.44(NDDI) 27 0.52* 1.82 

TVDINDWI-LST, NDDI 14.32  9.45(TVDI NDWI-LST)  21.78(NDDI) 27 0.89* 0.87 

[a]  * is significant at the 0.01 level. 
 

The best model, developed from the combination of the modified TVDINDWI-LST and 
the NDDI, was tested for accuracy with regard to field-measured soil moisture, 
resulting in the statistical parameters shown in Table 5.3. The model fulfills the 
statistical requirements. We found a high adj-R2 of 0.75 with a p-value of < 0.01. We 
obtained low RMSE and AAD values of 1.22% and 1.06% between the actual and 
estimated soil moisture, respectively. In addition, the model precision was found it to 
be 76.65% consistent with the actual and estimated soil moisture. These statistical tests 
demonstrate that the model generated from the modified TVDINDWI-LST and the NDDI 
can provide reliable estimates of soil moisture. 
 

Table 5.3 Statistical validation between the actual and soil moisture estimated from 
the model 

Soil moisture model (%) N adj-R2 
RMSE  

(%) 
AAD  
(%) 

Precision 
 (%) 

14.32  9.45(TVDI NDWI-LST)  21.78(NDDI) 7 0.75* 1.22 1.06 76.65 
[a]   * is significant at the 0.01 level. 

 

These results demonstrate that the efficacy of soil moisture estimation can be greatly 
enhanced using TVDI (modified from NDWI-LST) and NDDI as dependent variables, 
because both VIs show a strong correlation with soil moisture measured in the field. 
The reason for this strong correlation is the causal relationship between variations in 
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soil moisture and changes in vegetation; consequently, soil moisture deficits are 
ultimately tied to drought stress in plants (Gu et al., 2008), which is captured by both 
the TVDI and NDDI. Based on these results, we applied the model to a Landsat 8 image 
taken during the dry season to estimate soil moisture (Figure 5.5). The spatial 
distribution map shows that the percentage of soil moisture in Sri Lanna National Park 
is quite low during the dry season at around 0.001% to 31.1%, with a mean value of 
15.49%. The degree of estimated soil moisture can indicate drought conditions, which 
in turn influence the occurrence of wildfires. Areas with  

 

 

Figure 5.5 Spatial distribution of soil moisture derived from the model generated by 
the modified TVDINDWI-LST and the NDDI in Sri Lanna National Park during the dry 

season on 19 February 2015 
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lower soil moisture and resulting lower fuel moisture, which influences fire ignition and 
spread, are more prone to wildfire occurrence. 

We also investigated the correlation between the estimated soil moisture and leaf 
fuel moisture determined in the field (Figure 5.6
leaf fuel moisture shows a statistically significant positive correlation to the estimated 

-value < 0.01). Larger values of 
estimated soil moisture tend to be associated with larger values of leaf fuel moisture. 
This implies that leaf fuel moisture has a tendency to increase when estimated soil 
moisture increases and vice versa. The statistical tests also support our hypothesis that 
the estimated soil moisture is directly related to FMC. 

 

 

Figure 5.6 Scatter plot of leaf fuel moisture measured in the field and estimated soil 
moisture 

 

Moreover, a median adj-R2 of 0.45 with a p-value of < 0.01 as shown in Figure 24 
indicates that estimated soil moisture is a significant variable for predicting leaf fuel 
moisture. This suggests that soil moisture is a factor that influences FMC since soil 
moisture condition affects fuel moisture levels which are directly related to wildfire 
occurrence. At high temperatures during the dry season, soil moisture and FMC are 
positively correlated, because high temperatures result in low soil moisture, which in 
turn leads to low FMC. As a result, we can use soil moisture to assess wildfire risks by 
exploiting the relationship between soil moisture and FMC. When FMC is high, fires 
do not readily ignite, because heat energy has to be used to evaporate water from plant 
material before it can burn. During the combustion of the above ground plant material 
and surface organic layers, the heat energy created is then transferred in the soil 
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(DeBano et al., 1998). Thus, fuel load with low moisture can transfer more heat into the 
soil during the combustion of fuel. Soils with higher moisture content tend to absorb 
more heat energy (DeBano et al., 1998; 2005); as a result, the intensity of the fire is 
reduced. In cases where both the FMC and soil moisture are low, wildfires will start 
much easily and spread rapidly resulting in uncontrollable fire condition. 

Based on the result, mapping of estimated soil moisture can be used to investigate 
wildfire risk in large areas. Additionally, soil moisture can give an insight on the 
dryness of the fuel, which is a crucial parameter for wildfire risk. Therefore, to reduce 
wildfire risk and intensity, soil moisture should be considered as another indicator for 
monitoring wildfire prone areas. An analysis of soil moisture could considerable 
enhance wildfire management, thus in our study we highly recommend estimating soil 
moisture by remotely sensed data to be used as a complementary dataset for wildlife 
management in terms of risks and danger assessment. 

 

5.4 Conclusions 

The main goal of this study was to estimate the spatial distribution of soil moisture 
using TVDI and NDDI derived from Landsat 8 OLI/TIRS data for wildfire risk 
assessment. Results reveal that an accurate estimate of TVDI can be obtained from the 
relationship between NDWI, which is more significantly correlated to LST than the 
NDVI, and LST. This modified TVDINDWI-LST can be used together with the NDDI to 
enhance the efficacy of soil moisture estimation. A scatter plot of NDWI-LST shows a 
linear relationship and is a good match with the theoretical concept of the TVDI, which 
is characterized by the triangular shape of the NDVI-LST relationship. The good 
correlation between NDWI and LST fulfills the collinearity requirements for extracting 
LSTmax and LSTmin; consequently, the NDWI-LST relationship provides a better 
estimate of the TVDI than the NDVI-LST relationship. 

The soil moisture model generated from a combination of the modified TVDINDWI-LST 

and NDDI can improve the accuracy of soil moisture estimates. The accuracy of the 
model was tested using statistical metrics, and was found to be more than 76% 
consistent with actual soil moisture and estimated soil moisture derived from our 
model. We further explored the relationship between estimated soil moisture and 
wildfire risk by investigating the correlation between estimated soil moisture and leaf 
fuel moisture measured in the field. Results show that estimated soil moisture is 
positively correlate
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(p-value < 0.01). This relationship demonstrates that wildfire-prone areas, which are 
characterized by low FMC, can be identified through soil moisture estimates, because 
both soil moisture and FMC show the same or similar behavior under conditions of high 
temperatures during the dry season. 

The model allows to remotely determine the spatial distribution of soil moisture as 
a complementary dataset for identifying wildfire-prone areas, which is a fundamental 
step toward involving soil moisture in the assessment of wildfire risk. We therefore 
recommend soil moisture estimation by remotely sensed model as another indicator for 
monitoring wildfire risks and intensity. Furthermore, the demonstrated NDWI-LST 
relationship provides another option for researchers studying soil moisture when the 
established TVDI based on the NDVI-LST relationship is insufficient.  
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CHAPTER 6 	
 

Assessment of Wildfire Risk at Recreational Sites in Sri Lanna 
National Park, Chiang Mai, Northern Thailand, using Remote 

Sensing and GIS Techniques 
 

6.1 Introduction  

National parks in Thailand are protected forest areas that contain natural resources, 
biodiversity, and appealing scenery and landscape that attracts tourism. Recreation 
and tourism play an important role in the life of the national park because most visitors 
cite scenery and landscape as their main reasons for visiting a national park. 
Recreation areas in the national park have a wide variety of natural places and 
landscapes that enable activities for tourism such as camping, boating, walking and 
climbing trails, and wildlife viewing. Such recreational areas are increasingly 
threatened and damaged by wildfires, resulting in a decline in tourism activities. 
Wildfires are complicated events that occur as a result of natural processes and human 
activities (Vasilakos et al., 2009). Statistical evidence demonstrates increasing trends 
in fire frequency and area burned within Thai protected forest areas from 2014 to 2016, 
with 4,207, 4,982, and 6,685 wildfires, accounting for 50,723, 60,453 and 125,896 ha of 
burned area in 2014, 2015, and 2016, respectively (Forest Fire Control Division, 2016). 
These numbers imply that the wildfires are occurring more frequently and are burning 
larger areas, expanding into recreational zones. Most wildfires in Thailand occur in 
national parks, especially in the north, and are mainly attributed to human activities. 

Wildfires occur when three requirements needed for ignition and combustion are 
met, the so-called fire triangle: fuel to burn, air to supply oxygen, and a heat source to 
ignite the fire. After a fire starts, a wide range of factors determines the fire duration 
and intensity. These factors include the quantity and type of fuel, topographic 
characteristics (slope, aspect, and elevation), favorable environmental conditions (e.g., 
extreme drought and low soil moisture), which can accelerate fire combustion and result 
in uncontrollable spread of fire over large areas. Hence, factors influencing fire behavior 
need to be analyzed when mapping wildfire risk zones (Chuvieco and Congalton, 1989). 

Satellite remote sensing and GIS techniques have been widely used in wildfire 
assessment, such as predicting wildfire severity based on VI, establishing wildfire risk 
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models, and analyzing factors responsible for wildfire. Topography, anthropogenic data, 
and the characteristics of vegetation or fuel have been used as the most important 
factors influencing wildfire occurrence. Many studies have integrated these factors to 
establish wildfire risk models. Jaiswal et al., (2002) undertook a wildfire risk 
assessment for areas in India. They used the vegetation type, slope, aspect, and 
distance from roads and settlements to establish a wildfire risk model that showed 
strong agreement with actual fire-affected sites. Adab et al., (2013) applied vegetation 
moisture, slope, aspect, elevation, distance from roads, and vicinity to settlements as 
factors influencing accidental fires. Moreover, the quality, size, and shape of vegetation 
or fuel were used with other wildfire potential factors (slope, elevation, aspect, weather, 
land cover/use map, etc.) to establish a wildfire risk and hazard model (Yakubu et al., 
2013). In addition to fuel type and moisture input, the quantity of fuel should also be 
analyzed, since large amounts of fuel result in higher intensity fires. Additionally, soil 
moisture should be considered as a wildfire factor because it is positively correlated 
with fuel moisture content (Burapapol and Nagasawa, 2016a). The present study 
integrated remote sensing and GIS techniques for modeling and mapping wildfire risk 
and evaluating recreation sites at risk from wildfires. To achieve these goals, data were 
obtained from Landsat 8 OLI/TIRS, and MODIS images, and were integrated with GIS 
data to establish a wildfire risk model for mapping wildfire-prone areas in Sri Lanna 
national park. This study introduces soil moisture as a new factor for establishing a 
wildfire risk model, and proposes a differenced normalized burn ratio (dNBR) to rate 
wildfire sensitivity for subclasses of each risk factor. A wildfire risk map produced from 
our model was used to assess potential wildfire risk at recreation sites. We propose that 
a wildfire risk map produced our model can be used as a complementary data for local 
officials and other decision makers dealing with wildfires, in developing appropriate 
plans for preventing wildfires in national parks and recreational areas. 

 
6.2 Materials and methods 

6.2.1 Dataset 

The datasets and overall methodology used in the present study are presented in 
Figure 6.1, where the corresponding data sources are shown in Table 6.1. The 
parameters involved in wildfire occurrence and those influencing wildfire behavior were 
selected as described in the following sub-sections: 
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Figure 6.1 Overall methodology 
 

1) Leaf Fuel Load 

The fuel plays a major role in the initial stage of wildfires (fire ignition), and the fuel 
load also contributes to fire intensity. Higher fuel loads create longer flames and more 
intense fires for a given rate of spread. The largest component of surface fuel is dead 
leaves, which provide an efficient fuel for surface wildfires. In this study, we therefore 
focused on analyzing leaf fuel load. Leaf fuel load can be assessed using the greenness 
index, especially the NDVI which has been tested to predict leaf fuel load (Burapapol 
and Nagasawa, 2016b) as analyzed in chapter 4. Their predictions were applied here to 
estimate the spatial distribution of leaf fuel load. Seasonal NDVI values were calculated 
from the Landsat 8 OLI.  

2) Soil Moisture 

A low degree of soil moisture can indicate drought conditions, which influence the 
likelihood of wildfires. Soil moisture is positively correlated with fuel moisture. Under 
dry conditions, areas with low soil moisture and resulting low fuel moisture are more 
prone to wildfires and fires spread quickly. Therefore, soil moisture should be 
considered as a factor in wildfire models. A soil moisture model established by 
Burapapol and Nagasawa (2016a) was used to estimate the spatial distribution of soil 
moisture in the study area as analyzed in chapter 5. 
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Table 6.1 Data sources of parameters used for modeling and mapping wildfire risk 
and evaluating wildfire risk to recreational sites 

Data/Parameters Source of data Creation of data Acquisition 
date 

Purpose

Leaf fuel load  Landsat 8 OLI 
(30m) 
 

NDVI in normal season 
NDVI in dry season 

14 Oct 2014 
19 Feb 2015 

Modeling wildfire risk 

Soil moisture 
 

Landsat 8 
OLI/TIRS (30m) 
 

MODIS (1km)/ 
MOD11A2 

NDDI and TVDI 
 
 
LST 

19 Feb 2015 
 
 

18 25 Feb 2015 

Modeling wildfire risk 

Slope DEM (30 m) Slope map Modeling wildfire risk

Aspect DEM (30 m) Aspect map Modeling wildfire risk

Elevation DEM (30 m) Elevation map  Modeling wildfire risk 

Distance from roads Shapefile Lines  Modeling wildfire risk 

Proximity to 
settlements 

Shapefile Points  Modeling wildfire risk 

dNBR Landsat 8 OLI 
(30m) 

NBR pre fire            
NBR post fire 

14 Oct 2014 
19 Feb 2015 

Rating wildfire 
sensitivity scores 

Actual wildfire sites Shapefile Points 2013 2015 Validating wildfire 
risk map 

Recreation sites Shapefile Points  Evaluating risk of 
wildfire 

 

3) Topographic data 

The topography is the most stable variable in fire behavior. The slope can be a 
primary influence on wildfire behavior (Weise and Biging, 1997) and affects both the 
rate and direction of fire spread. Fires generally tend to move faster up, rather than 
down, a slope (Adab et al., 2011). Steeper slopes result in faster fires due to more 
aggressive wind action. The aspect (slope direction) determines how much radiated heat 
a slope will receive from the sun. South to southwest aspects receive the most solar 
radiation, with comparatively higher temperature and lower humidity. Therefore, fuels 
tend to dry out sooner, ignite more thoroughly, and burn longer on south-facing slopes 
(Noonan, 2003 and Iwan et al., 2004). The elevation influences the amount of 
precipitation, wind exposure, temperature, and moisture that an area receives. Thus, 
elevation plays a large role in determining the condition of the fuel (Castro and 
Chuvieco, 1998). At lower elevations, fuels tend to dry out fast because of higher 
temperatures and lower precipitation. In this study, the slope, aspect, and elevation 
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data were extracted from a digital elevation model (DEM), provided by the Royal Thai 
Survey Department. 

4) Anthropogenic data  

Wildfires can be caused by the movements of humans and vehicles. Human activities 
are often linked to the occurrence of fires (Dong et al., 2005). Forests that are near 
centers of human activity, such as roads and settlements, can be more prone to fires, 
especially accidental man-made fires and hence, the distance from roads and 
settlements are important variables. For the proposed model, distances from roads and 
settlements were obtained from the DNP and were available in the GIS database in 
vector format (Shapefile). 

5) dNBR  

The dNBR is calculated from the normalized burn ratio (NBR) of pre-fire and post-
fire events. Initially, the dNBR and NBR estimated from remotely sensed data were 
developed to identify burned from unburned areas (Lopez-Garcia and Caselles, 1991). 
Both indices were accepted for their ability to distinguish levels of burn severity within 
a fire-affected region (Bisson et al., 2008 and Key and Benson, 2006). We therefore applied 
the dNBR to evaluate the wildfire sensitivity rating scores for subclasses of each factor. 
An NBR dataset was generated from the reflectances of the NIR and SWIR bands of 
Landsat 8 OLI images, as expressed by Equation 6.1. A final dNBR dataset was derived 
from NBR values of pre-fire and post-fire images, as described by Equation 6.2. 

 

     (6.1) 
 

    (6.2) 
 

 
 

6.2.2 Methodology  

The study methodology comprised two main parts: modeling and mapping wildfire 
risk, and evaluating recreational sites for wildfire risk. These are presented in the 
following sections in more detail. 

6.2.2.1 Preprocessing Remotely Sensed Data   

Landsat 8 and MODIS images acquired for the study area are shown in Table 12. The 
Landsat 8 data were converted from DNs to reflectance values before calculating the 
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VI values. The DN conversion followed the steps of the USGS (2013). The Landsat 8 
dataset used were L1G-level products, which were geographically corrected and 
projected into the UTM (Zone 47N, WGS 84 datum) coordinate system. Then, MODIS 
imagery was co-registered to Landsat 8 imagery to reduce potential geometric errors. 
Finally, both Landsat 8 and MODIS data were clipped within the boundary of the study 
area, and clouds and cloud shadows were removed.  

 
6.2.2.2 Preparing GIS Data   

Leaf fuel load and soil moisture were classified into three intervals on thematic maps. 
Slope, aspect, and elevation computed from the DEM (30 m resolution) were clipped 
based on the corresponding study area, and then categorized into different intervals on 
thematic maps. Settlement and road locations were buffered at specified distances. 
Buffer zones of 2,000 m and 4,000 m were created around the settlement locations, and 
1,000 m and 2,000 m were used around roads. The stratification of each factor is 
presented in Table 6.2. 

 

Table 6.2 Subclasses of each factor 
 

Factors 
 

 

Subclasses 
 

Leaf fuel load (kg ha-1) <1000, 1000 2500, >2500 
Soil moisture (%) <5 , 5 10 , >10 
Slope(degrees) <15 , 15 35 , >35 
Aspect north, east, south, west 
Elevation (m) <700, 7000 1400, >1400 
Distance from roads (m) < 1000, 1000  2000, > 2000 
Proximity to settlements (m) < 2000, 2000  4000, > 4000 

 

6.2.2.3 Rating Wildfire Sensitivity Scores  

The dNBR of the thematic map was assigned a value of 1 for burned areas and 0 for 
non-burned. The stratified subclasses of each factor were overlaid with the dNBR. The 
frequency of burned areas was used to assign different wildfire sensitivity scores to 
subclasses. For each class, the total number of burned pixels was calculated as a 
percentage of the total class area. The percentage was ordered to evaluate its 
susceptibility to wildfire (3 = high, 2 = moderate, and 1 = low). The subclass with the 
highest percentage of burned area was labelled as high wildfire risk and was given the 
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highest ranking of 3. Next, the class with a smaller percentage was assigned a moderate 
risk of score 2, and the class with lowest percentage was rated as low risk with a score of 1. 

 
6.2.2.4 Weighting Factors on Wildfire  

A pairwise comparison method developed by Saaty (1980) in the context of the 
analytic hierarchy process (AHP) decision making process, was applied to prioritize the 
factors for wildfire risk in the study area. The pairwise comparison was weighted by 
decision makers to make comparative judgments. This method has been tested 
theoretically and empirically for a variety of decision situations and multi-criteria 
decision making problems, including spatial decision making (Malczewski, 1999). It has 
been effectively adopted into GIS-based decision making on wildfires (Vasilakos et al., 
2007, Vadrevu et al., 2010 and Yakubu et al., 2013). Each factor was compared pairwise 

nking scale, a scale of 1 
indicates equal importance for wildfire risk between two factors, whereas a scale of 9 
indicates that one factor is 9 times more important for wildfire risk than the other 
(Table 6.3). Three wildfire experts and stakeholders from the DNP (a fire specialist, a 
fire planner, and a wildfire fighter), who are involved in wildfire management in 
Thailand, were asked to weight the importance and priority of these pairwise 
comparisons. Then, a decision matrix (comparison table) was constructed using a ratio 
matrix. The relative weights were normalized to sum to 1, and finally averaged among 
the three experts.  

 

Table 6.3 Numerical rating of the fundamental scale 
 

Verbal importance 
 

 

Numerical rating 
 

Extremely important 9 
Very strongly to extremely 8 
Very strongly 7 
Strongly to very strongly 6 
Strongly 5 
Moderately to strongly 4 
Moderately 3 
Equally to moderately 2 
Equally 1 
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6.2.2.5 Establishing and Validating Wildfire Risk Model and Map  

The weighted factors (layers), which were rated in different subclasses, were 
integrated using the GIS union process to establish a wildfire risk model. The model 
used to determine wildlife risk areas is shown in Equation 6.3:  

 
WFR = W1(Fi=1-3) + W2(SM i=1-3) + W3(S i=1-3) + W4(A i=1-4)  + W5(E i=1-3) + W6(R i=1-3) + W7(ST i=1-3) 

      (6.3)       

where WFR is the numerical index of wildfire risk; W1 7 are the weighting values of 
each factors based on the pairwise comparison; F, SM, S, A, E, R and ST are the factors 
influencing wildfire, namely: leaf fuel load, soil moisture, slope, aspect, elevation, 
distance from roads, and proximity to settlements, respectively. The superscript i 
indicates subclasses based on rating the wildfire sensitivity scores using the dNBR. We 
then defined the interval size of the WFR value to classify wildfire risks into three risk 
categories; low, medium, and high. Finally, we obtained a map showing the wildfire 
risk zones in different categories.  

The accuracy of the wildfire risk map was tested against actual wildfire occurrences 
during 2013 2015. A confusion matrix, showing the correspondence between predicted 
and actual classifications (Congalton, 1991), was adopted to verify the map. The actual 
wildfire points were used as ground-truth data for the high risk class only. Both the 
actual and predicted wildfire points were evaluated in the matrix (Table 6.4) and the 
accuracy was calculated from the percentage of correctly classified instances, as 
described by Equation 6.4: 

 
 

                    (6.4) 

 
Table 6.4 Confusion matrix modified from Congalton (1991) 

 
 

Actual 
wildfire 
points 

 
Predicted wildfire points 

  
 H M or L 

H A B 
M or L C D 

 

[a]  H = High risk, M = Moderate risk and L = Low risk 
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6.2.2.6 Assessment of Wildfire Risk at Recreational Sites 

The verified wildfire risk map was further used to evaluate the risk of wildfire to 
recreational sites within Sri Lanna national park. Buffers of 500 m were created around 
recreational sites and overlaid with the wildfire risk map. From the buffered areas, the 
fraction of each area prone to wildfire was assessed based on the wildfire risk 
categories. Finally, a map was produced showing wildfire risk within the buffered 
areas, which can help in wildfire prevention at these locations. 
 
6.3 Results and Discussion  

The burned areas in 2015 (Figure 6.2a) detected by dNBR covered 4,489.38 ha (5.40% 
of total area). The dNBR in the thematic map was overlaid with each factor assigned to 
different subclasses. The relative frequencies of burned areas in each subclass were 
calculated to evaluate the wildfire sensitivity of each subclass, as illustrated in Table 
6.5. 

Areas with leaf fuel load >2,500 kg ha-1 showed the highest percentage of burned 
area, indicating greatest sensitivity to wildfire (score of 3). In comparison, leaf fuel loads 
of 1,000 2,500 kg ha-1 and <1,000 kg ha-1 had lower percentages of burned areas, and 
were ranked as having moderate (score of 2) and low (score of 1) wildfire sensitivity, 
respectively (Figure 6.2b). Hence, the risk of wildfire is a function of the amount of leaf 
fuels. The results showed that soil moisture levels were inversely related to the number 
of burned areas. Areas with soil moisture <5% showed a high percentage of burned 
area, and therefore categorized as having high wildfire sensitivity (score of 3). Areas 
with soil moisture of 5 10% and >10% had lower percentages of burned areas and were 
classified as having moderate (score of 2) and low (score of 1) wildfire sensitivity, 
respectively (Figure 6.2c). This implies that lower soil moisture is associated with 
increased wildfire risk, and vice versa. This supports the findings of previous research, 
which showed that low soil moisture was associated with large wildfires during the 
vegetation growing season (Krueger et al., 2015). 
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Table 6.5 Rating wildfire sensitivity scores assigned to subclasses for wildfire risk 
modeling 

 

Factor 
 

Subclass 
 

Burned 
area (ha) 

 

 

Total area 
(ha) 

 

 

Percentage 
of burned 

area 
 

 

Rating 
 

Wildfire 
sensitivity 

 

Leaf fuel load 
(kg ha-1) 

<1000 171.99 25,532.37 3.84% 1 Low 
1000 2500 1,034.55 45,253.98 23.04% 2 Moderate 
>2500 3,282.84 12,407.94 73.12% 3 High 

Soil moisture 
(%) 

<5 4,188.06 36,952.02 93.29% 3 High 
5 10 299.43 38,757.60 6.67% 2 Moderate 
>10 1.89 7,484.67 0.04% 1 Low 

Slope 
(degrees) 

<15 2,641.05 35,957.97 58.83% 3 High 
15 35 1,579.41 44,394.30 35.18% 2 Moderate 
>35 268.92 28,42.02 5.99% 1 Low 

Aspect North 678.06 19,524.15 17.79% 1 Low 
 East 1,028.92 19,827.63 27.00% 2 Moderate 
 South 1,834.20 22,371.84 48.13% 3 High 
 West 948.24 21,470.67 24.88% 2 Moderate 
Elevation (m) <700 3,355.29 46,425.24 74.74% 3 High 
 700 1400 1,133.10 36,749.61 25.24% 2 Moderate 
 >1400 0.99 19.44 0.02% 1 Low 
Distance from 
roads (m) 

<1000 1,796.76 28,714.86 40.02% 3 High 
1000 2000 982.08 22,721.31 21.88% 1 Low 
>2000 1,710.54 31,758.12 38.10% 2 Moderate 

Proximity to 
settlements 
(m) 

<2000 1,749.60 26,458.38 38.97% 3 High 
2000 4000 1,623.06 40,861.71 36.16% 2 Moderate 
>4000 1,116.72 15,874.2 24.87% 1 Low 
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                                 (a) dNBR       (b) Leaf fuel load 

 
c) Soil moisture                  (d) Slope 

Figure 6.2 (a) The dNBR in Sri Lanna National Park obtained from Landsat 8 images; 
(b) leaf fuel load with rated subclasses; (c) soil moisture with rated subclasses; (d) 

slope with rated subclasses; (e) aspect with rated subclasses; (f) elevation with rated 
subclasses; (g) road buffer with rated subclasses, and (h) settlement buffer with rated 

subclasses 



81 

 

       (e) Aspect               (f) Elevation 

 

                  (g) Distance from roads   (h) Proximity to settlements  

Figure 6.2 Continued 
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In Figure 6.2d, a large percentage of burned areas occurred in areas with slopes less 
than 15 degrees, which was therefore classified as having high wildfire sensitivity 
(score of 3). It was found that most of the areas with slopes less than 15 degrees were 
close to settlements and agricultural areas, which might account for their high 
sensitivity to wildfire. Areas with the slopes of 15 35 degrees and slopes steeper than 
35 degrees were evaluated as having moderate (score of 2) and low (score of 1) wildfire 
sensitivity, respectively. It was found in Figure 6.2e that south-facing areas showed the 
highest percentage of burned areas (approximately 48%), and were therefore rated as 
having high wildfire sensitivity (a score of 3). This is because south-facing areas usually 
receive more sunlight resulting in higher temperatures and fuel with a lower moisture 
content. Therefore, wildfires can more easily ignite and spread more rapidly. Hence, 
south-facing areas are the most critical in terms of the initiation and spread of wildfires. 
East- and west-facing areas were assigned moderate wildfire sensitivity (score of 2). 
Lastly, north-facing areas had lower percentage of burned area (approximately 17%), 
and were therefore evaluated as having low wildfire sensitivity (a score of 1). According 
to the percentage of burned area, high elevation areas were less susceptible to wildfires 
(Figure 6.2f). Most of the burned area occurred at elevations below 700 m which was 
assigned a score of 3. This is probably because there is much more moisture in the air 
and less oxygen at higher elevations, so wildfires are less likely to occur. Meanwhile, 
areas at 700 1,400 m elevation had the second-highest percentage of burned area, and 
were assigned moderate wildfire sensitivity (a score of 2). The smallest percentage of 
burned area was found at elevations higher than 1,400 m, which were evaluated as 
having low wildfire sensitivity with a score of 1. 

Areas <1,000 m from road networks had the highest percentage of burned area and 
were assigned a high wildfire sensitivity of 3, while areas 1,000 2,000 m and >2,000 m 
from roads were classified as having low and moderate wildfire sensitivity, respectively 
(Figure 6.2g). The largest percentage of burned areas was found at distances <2,000 m 
from settlements (highly sensitive to wildfire). Those areas at distances of 2,000 4,000 
m and >4,000 m from settlements were classified as having moderate and low wildfire 
sensitivity, respectively (Figure 6.2h). Hence, forest areas located close to roads and 
settlements are at highest risk from wildfires. According to the results of rating scores, 
dNBR can be appropriately applied to all factors to evaluate the levels of wildfire 
sensitivity. This is because factors assigned a wildfire sensitivity by the dNBR followed 
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the same trends as the physical theory of wildfire behavior and interactions in the fire 
environment. 

All factors with subclasses rated the scores were weighted according to their 
corresponding risk for wildfire, based on the judgments of wildfire experts and 
stakeholders. Calculation of the weighting scores of factors using pairwise the 
comparison matrix of each person is presented in Table 6.6. Then, the calculated 
weighted scores of three experts were averaged to finalize the weighted scores as shown 
in Table 6.7. 

 

Table 6.6 Calculation of factor weightings based on pairwise comparison matrix of 
three experts in wildfires. Weightings based on opinions and judgments of: 

1) Wildfire specialist 
 

Factor 
 

Leaf fuel 
load 

 

 
Soil 

moisture 
 

 
 

Slope 
 

Aspect 
 

Elevation 
 

Roads 
 

Settlements 
 

Normalized 
weight (1) 

Leaf fuel load  0.365 0.209 0.276 0.267 0.232 0.368 0.387 0.301 
Soil moisture  0.041 0.023 0.006 0.008 0.007 0.011 0.043 0.020 
Slope  0.052 0.163 0.039 0.038 0.166 0.011 0.043 0.073 
Aspect  0.052 0.116 0.039 0.038 0.033 0.011 0.043 0.048 
Elevation  0.052 0.116 0.008 0.038 0.033 0.011 0.043 0.043 
Roads  0.073 0.163 0.276 0.267 0.232 0.074 0.055 0.163 
Settlements  0.365 0.209 0.355 0.344 0.298 0.516 0.387 0.353 
Sum  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2) Wildfire planner 
 

Factor 
 

Leaf fuel 
load 

 

 
Soil 

moisture 
 

 
Slope 

 
Aspect 

 
Elevation 

 
Roads 

 
Settlements 

 
Normalized 
weight (1) 

Leaf fuel load  0.431 0.366 0.600 0.333 0.217 0.446 0.446 0.406 
Soil moisture  0.086 0.073 0.086 0.111 0.130 0.050 0.050 0.084 
Slope  0.062 0.073 0.086 0.111 0.130 0.149 0.149 0.108 
Aspect  0.048 0.024 0.029 0.037 0.043 0.030 0.030 0.034 
Elevation  0.086 0.024 0.029 0.037 0.043 0.030 0.030 0.040 
Roads  0.144 0.220 0.086 0.185 0.217 0.149 0.149 0.164 
Settlements  0.144 0.220 0.086 0.185 0.217 0.149 0.149 0.164 
Sum  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table 6.6 Continued 

3) Wildfire-fighter 
 

Factor 
 

Leaf fuel 
load 

 

 
Soil 

moisture 
 

 
Slope 

 
Aspect 

 
Elevation 

 
Roads 

 
Settlements 

 
Normalized 
weight (1) 

Leaf fuel load  0.039 0.232 0.061 0.010 0.010 0.023 0.200 0.082 
Soil moisture  0.006 0.033 0.078 0.010 0.007 0.339 0.067 0.077 
Slope  0.353 0.232 0.548 0.483 0.362 0.475 0.467 0.417 
Aspect  0.275 0.232 0.078 0.069 0.258 0.014 0.067 0.142 
Elevation  0.196 0.232 0.078 0.014 0.052 0.014 0.067 0.093 
Roads  0.118 0.007 0.078 0.345 0.258 0.068 0.067 0.134 
Settlements  0.013 0.033 0.078 0.069 0.052 0.068 0.067 0.054 
Sum  1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

 
 

Table 6.7 Weightings assigned to factors influencing wildfire, based on the judgments 
of wildfire experts and stakeholders using a pairwise comparison method 

 
 

Factors 

 

Weighting scores 
 

Wildfire 
specialist 

 

Wildfire 
planner 

Wildfire-
fighter 

Average 

Leaf fuel load  0.301 0.406 0.082 0.263 
Soil moisture  0.020 0.084 0.077 0.060 
Slope  0.073 0.108 0.417 0.200 
Aspect  0.048 0.034 0.142 0.075 
Elevation  0.043 0.040 0.093 0.059 
Distance from roads  0.163 0.164 0.134 0.154 
Proximity to settlements  0.353 0.164 0.054 0.191 
Sum  1.000 1.000 1.000 1.000 

 

Leaf fuel load had the highest weighting (therefore contributing greatly to wildfire), 
followed by slope, proximity to settlements, distance from roads, aspect, and soil 
moisture, whereas elevation was the least important. It can be concluded that, among 
these factors, fuel load is highly influential for wildfire and is considered the most 
important factor because it contributes both stages of wildfire occurrence (ignition and 
spread/intensity). The averaged weighting of each factor was substituted in the wildfire 
risk model using Equation 6.3. The wildfire risk map produced from the model shows 
the estimated possibility of wildfires in the study area (Figure 6.3a) 
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                             (a)                                                          (b)  

Figure 6.3 (a) Spatial map of estimated wildfire risk and (b) estimated wildfire risk 
compared with actual wildfire sites 

 

Model validation is an essential part in any natural hazards assessment, where the 
predictions are compared to a real-world dataset (Begueria, 2006). Therefore, in this 
study, we used wildfire site data to validate our wildfire risk maps. The number of 
wildfire sites in each risk class was determined and the fraction of correctly classified 
instances. The results shown in Figure 6.3b demonstrate that the actual wildfire sites 
are mostly found in the high risk zone (56) as classified by the model. In addition, the 
confusion matrix showed that the map achieved 74.67% classification accuracy (Table 
6.8). Hence, the proposed model can reliably estimate wildfire risk. The use of the seven 
factors generated from remotely sensed and GIS data was effective for predicting 
wildfire-prone areas. 
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Table 6.8 Accuracy assessment of wildfire risk map based on the confusion matrix 
 

 
Actual 
wildfire 
points 

 

Predicted wildfire points 
 

 

% of correctly 
classified 
instances 

 

  

H 
 

M or L 
H 56 0  

74.67% 
M or L 19 0 

 
Table 6.9 shows the verified wildfire risk zones corresponding to levels of wildfire 

risk. The map identified low, moderate, and high risk levels. An area of 18,868 ha 
(22.15%) was estimated as having high wildfire risk, followed by 42.25% moderate and 
35.60% low risk. The high-risk zones were mostly located around the boundary of the 
national park, adjacent to roads and settlements, and generally had large amounts of 
leaf fuel. 

 

Table 6.9 Results of the wildfire risk map 

 
WFR value 

 
Description of the value 

 

Number of 
pixels 

 

Total area prone to 
wildfire 

 

 ha 
 

% 
0.5  1.9 Low-risk wildfire area 209,640 30,330 35.60 
2.0 2.4 Moderate-risk wildfire area 399,889 35,990 42.25
2.5  3.0 High-risk wildfire area 336,998 18,868 22.15 

 Total 946,527 85,188 100 
 
 
Finally, the verified map was overlaid with the 500 m buffer zones created around 

recreational sites, producing a map of sites susceptible to wildfire risk (Figure 6.4), 
where the potential effects of wildfires on these sites was evaluated (Table 6.10). The 
majority of recreational sites had a moderate to high risk of wildfire. Six recreational 
sites had high risk of being affected by wildfire, especially sites 5, 17, and 22, which had 
>70% risk. A further seven sites showed moderate risk and only one recreational site 
was in the low-risk category. Eight recreation sites had negligible probability of wildfire 
risk. The resulting map contributes to minimizing wildfire impacts at recreational sites 
and can help in planning and decision making regarding the prevention and control of 
wildfires. Moreover, the findings of this study can help develop appropriate method for 
accessing areas prone to wildfires. 
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Figure 6.4 Recreational sites overlaid onto zones of estimated wildfire risk 
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Table 6.10 Evaluation of wildfire potential at recreational sites based on                     
the wildfire risk map 

     

ID 
(Figure 28b) 

 
Name of recreational site 

 

 
Type of recreation 

Areas prone to wildfire 

Risk level 
 

% ha 

1 Wat Mae Pang Temple site None 0.00 0.00 
2 Wat Tham Doi Kham Temple site None 0.00 0.00 
3 Nam Ru Conservation Forest Natural learning site None 0.00 0.00 
4 Wat Phra Chao Lan Thong  Temple site None 0.00 0.00 
5 Mae Wa Reservoir Rest viewpoint  High 77.68 24.75 
6 Ban Nong Krok Hot Spring Hot spring High 65.63 5.67 
7 Wat Phrathat Doi Nang Lae Temple site None 0.00 0.00 
8 Huai Pa Phlu Waterfall Waterfall Low 50.39 35.10 
9 Mae Kon Reservoir Rest viewpoint  Moderate 74.44 29.88 

10 Wat Phrathat Jai Klang Muang Temple site None 0.00 0.00 
11 Mae Pang Reservoir Rest viewpoint  None 0.00 0.00 
12 Huay Kum Nature Trail and 

Camping site Nature trail and campsite Moderate 54.12 40.77 

13 Pha Daeng Cave Cave High 51.89 40.77 
14 Pla Prung Reservoir Rest viewpoint  Moderate 63.41 37.44 
15 The Elephant Training Center, 

Chiang Dao 
The Elephant Training 
Center 

Moderate 72.71 39.33 

16 The Elephant Training Center, 
Mae Ping 

The Elephant Training 
Center 

High 53.38 29.88 

17 Wat Phrathat Muang Noeng Temple site High 76.76 22.59 
18 Nang Lae Waterfall Waterfall Moderate 60.71 47.7 
19 Mon Hin Lai Waterfall Waterfall Moderate 65.37 18.18 
20 Mon Hin Lai Viewpoint  Rest viewpoint  None 0.00 0.00 
21 Sri Lanna office area, Mae Ngad 

Reservoir  
Rest viewpoint and 
campsite 

Moderate 46.92 17.82 

22 Doi Jom Hod Rest viewpoint  High 72.36 56.07 

 
 

6.4 Conclusions 

The present study proposes integrating remote sensing and GIS techniques to 
identify areas prone to wildfires in forest areas of Sri Lanna National Park, northern 
Thailand. GIS and remotely sensed data were combined to model wildfire risk based on 
leaf fuel load, soil moisture, slope, aspect, elevation, distance from roads, and proximity 
to settlements. The findings revealed that using dNBR as an evaluator was appropriate 
for rating the wildfire sensitivity of factor subclasses. The selected factors produced a 
reliable model for mapping wildfire-prone areas, with the resulting risk map showing 
strong agreement with actual wildfire sites. The leaf fuel load showed the greatest 
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influence on wildfires, and we proposed soil moisture as a new factor for predicting 
wildfires. The resulting map of wildfire risk can be used for evaluating recreational 
sites under threat of potential fires, which is helpful for preventing fire damage at such 
sites. The findings of this study could improve wildfire risk assessment in Thai national 
parks and other similar locations. Moreover, the map can be used to develop basic 
guidelines for relevant local officials and decision makers, to enable appropriate fire 
management for high-risk areas in order to protect recreational areas from wildfire 
damage and support the sustainable operation of national parks.  
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CHAPTER 7 		
General Discussions and Conclusions  

 
7.1 Discussion and Conclusions 

The goals of the study were to assess wildfire risk in Sri Lanna national park using 
remote sensing and GIS techniques based on several factors associated with wildfire, 
and then to exploit the assessed wildfire risk to evaluate the wildfire risk at recreational 
sites. The research sought to combine the factors influencing risk in relation to wildfire 
in order to model and map wildfire risk at recreational sites. This new approach to 
establishing a wildfire risk model based on the utilization of remote sensing and GIS 
data was subsequently used for mapping and assessment of recreational sites with 
respect to wildfire risk. The factors selected for the proposed wildfire risk model are 
widely recognized as factors in wildfire occurrence, namely, leaf fuel loads, soil 
moisture, slope, aspect, elevation, distance from roads and proximity to settlements. 
Data on some of these factors were obtained from Landsat 8 OLI/TIRS and MODIS 
images (leaf fuel loads and soil moisture), and these data were integrated with GIS data 
(slope, aspect, elevation, distance from roads and proximity to settlements) to establish 
a wildfire risk model for mapping wildfire-prone areas in Sri Lanna national park. This 
study introduces soil moisture as a factor in a wildfire risk model, and proposes the 
dNBR to rate wildfire sensitivity for subclasses of each factor. This chapter therefore 
provides a summary of the main research findings and provides overall conclusions. 

The goals of the research were formulated into five objectives as follows: 
(6) To estimate the spatial distribution of the leaf fuel load, as one of the 

selected factors influencing wildfire, by generating a predictive model of 
leaf fuel load using remotely sensed data based on VIs derived from a 
Landsat 8 OLI. 

(7) To predict the spatial distribution of soil moisture, as one of the selected 
factors responsible for wildfire occurrence, by establishing a predictive 
model of soil moisture using remote sensing based on VIs computed from 
Landsat 8 OLI/TIRS and MODIS data. 

(8) To evaluate the use of soil moisture data for wildfire risk assessment. 
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(9) To map wildfire risk zones based on the integration of several factors 
contributing to wildfire, including leaf fuel loads, soil moisture, slope, 
aspect, elevation, distance from roads and proximity to settlements. 

(10) To assess wildfire risk at recreational sites using GIS. 
In addressing these objectives, the research concentrated particularly on the 

following hypotheses:  
Regarding the first objective, to study the leaf fuel load estimation based on VIs, we 

hypothesized that:
 

Regarding the second objective, to estimate the soil moisture based on VIs, we 
hypothesized that:

In the first objective (chapter 4), we combined field data with remote sensing data 
from the Landsat 8 OLI to generate an empirical model of leaf fuel load based on a 
regression approach for mapping the spatial distribution of the leaf fuel load. Firstly, 
the capabilities of seven VIs extracted from Landsat 8 OLI data were compared with 
regard to estimating leaf biomass, which is a parameter used in the leaf fuel load 
prediction model. The model contributes to the assessment of wildfire risk by 
identifying the spatial distribution of the leaf fuel load to assess wildfire-prone areas 
across different landscapes. Significant relationships between the calculated standard 
leaf biomass in the field and the seven VIs showed that the NDVI had the strongest 
relationship with leaf biomass and could be used to estimate amount of leaf biomass. 
This is because the NDVI is a greenness index, mainly used to evaluate the density of 
vegetation. Hence, it can determine and quantify the density of biomass. The NDVI 
images for normal and dry seasons, (i.e., the seasonal NDVIs) were used to estimate 
the quantities of seasonal leaf biomass and to detect the missing leaf biomass or the 
leaf fuel load on the ground surface. Significant correlations were found between the 
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predicted and calculated leaf fuel loads of the dipterocarp and deciduous forests 
nts > 0.80). This result supports our hypothesis , that 

the predicted leaf fuel load generated from models can be used as a substitute for the 
leaf fuel load in forest areas. Moreover, the model for leaf fuel load prediction, based on 
the seasonal NDVI images, achieved accuracies of 80.43% (dipterocarp) and 71.36% 
(deciduous), using statistical inferences between the predicted and field-derived data. 
Therefore, the predicted leaf fuel load derived from the developed model could be used 
as a substitute for estimating the actual leaf fuel load in forested areas, especially in 
dipterocarp and deciduous forests. It can be stated that a seasonal NDVI can show the 
changes in the quantity of leaf biomass in different seasons, and that this is associated 
with the leaf fuel load prediction. Therefore, in chapter 4, a major finding is that the 
different amounts of leaf biomass in the normal and dry seasons (estimated by a 
seasonal NDVI) can be used to assess leaf fuel load in the dry season. A seasonal NDVI 
for both seasons can be appropriately used to estimate the different quantities of leaf 
biomass, thus establishing the missing leaf biomass that represents the quantity of 
dead leaves on the ground surface. In other words, the fuel load, derived from changes 
in leaf biomass, can be estimated based on differences between seasonal NDVIs. 

In the second and third objectives (chapter 5), we analyzed remote sensing data from 
Landsat 8 OLI/TIRS and MODIS to establish an empirical model for soil moisture 
estimation based on field data with remote sensing data, using a regression approach. 
This research proposed a possible adaptation and application of NDWI and LST for 
constructing a TVDI based on the similar design of the triangular NDVI-LST space. 
The efficiencies of NDVI-LST and NDWI-LST were compared with regard to calculating 
the TVDI. The results revealed that scatter plots of NDWI-LST exhibit the typical 
triangular shape of the theoretical TVDI, and offer a more accurate measure of TVDI 
than NDVI-LST. A relationship between NDWI and LST values is shown under the 
same theoretical TDVI line as the relationship between NDVI and LST. In addition, 
values predicted by NDWI-LST are more accurately aligned with the TVDI line (with a 
strong adjusted R2 = 0.84 at p-value < 0.01). Linear regression analysis, carried out to 
extract the maximum and minimum LSTs (LSTmax and LSTmin), indicate that LSTmax 
and LSTmin defined by the NDWI better fulfill the collinearity requirement than those 
defined by the NDVI. The reason for the better correlation between the NDWI and LST 
is that the NDWI values exhibited a quicker response to drought conditions compared 
to the NDVI values. This is because the NDWI is constructed from the SWIR, which is 
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more sensitive to moisture than other spectra. As a result, the NDWI shows a better 
correlation with LST and follows more closely the conceptual TVDI model. This result 
supports our hypothesis , that the relationship between the NDWI and LST can be 
used to improve the calculation of the TVDI. This modified index, called TVDINDWI-LST, 
was applied together with the NDDI to establish a regression model for soil moisture 
estimates. The soil moisture model fulfills statistical requirements by achieving 76.65% 
consistency between the actual soil moisture and estimated soil moisture generated by 
our model. The soil moisture estimated from the model shows a significant positive 
correlation with the estima -
value < 0.01). The statistical tests also support our hypothesis , that the estimated 
soil moisture is directly related to FMC, and hence, soil moisture should be considered 
as another indicator for monitoring wildfire-prone areas. Therefore, in chapter 5, the 
main finding is that the NDWI-LST relationship is better suited to calculating the 
TVDI, and that the NDWI-LST can be used instead of NDVI LST when the NDVI LST 
relationship is insufficient. Another finding is that the combination of the modified 
TVDINDWI LST and the NDDI has an improved ability to accurately estimate soil 
moisture. Moreover, the study suggests that including soil moisture as a wildfire factor 
can improve wildfire risk assessment by acting as a proxy for fuel moisture. 

In the fourth and fifth objectives (chapter 6), we clearly brought out the spatial 
distribution of wildfire risk by integrating remote sensing and GIS techniques for 
modeling and mapping wildfire risks, to evaluate the potential for fires at recreational 
sites. The factors selected for a wildfire risk model were computed from both remote 
sensing and GIS data, and were utilized to generate a GIS wildfire risk model. Firstly, 
the dNBR was used to rate wildfire sensitivity for subclasses of each factor, and it was 
found that each subclass rated by the dNBR could be given a score for wildfire 
sensitivity. This is because those factors assigned a wildfire-sensitivity score by the 
dNBR followed the same trends as those in the physical theory of wildfire behavior and 
interactions in the fire environment. All factors with differently rated subclasses were 
then weighted using pairwise comparison to prioritize their importance with respect to 
wildfire occurrence. The results revealed that leaf fuel load was the most important 
factor for wildfires because it contributes to both stages of a wildfire occurrence (ignition 
and spread/intensity). All weighted factors were later integrated to establish a GIS 
wildfire risk model. The model correctly classified 74.67% of wildfire instances, 
confirming that these factors provide a reliable wildfire risk model for mapping wildfire-
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prone areas. The mapping showed three different categories of wildfire risk: 35.60% of 
the study area was predicted to be a high wildfire risk zone, and 42.25% and 22.15% 
were categorized as moderate and low risk respectively. A map of wildfire risk zones 
was overlaid with recreation sites in Sri Lanna national park, revealing that six of 22 
recreational sites were at high risk from wildfires. Therefore, in chapter 6 the major 
findings are that a dNBR can be applied to factors to evaluate the levels of wildfire 
sensitivity, and that seven selected factors can be reliably used to assess the spatial 
distribution of wildfire risk. Finally, the results of this study can provide a valuable 
contribution towards reducing wildfire in recreational areas. The application of both 
remote sensing and GIS techniques in tandem could enhance the effectiveness of 
wildfire risk assessment and may offer the possibility of short-term estimations, which 
could be useful in updating decisions on fire pre-suppression and suppression activities. 

 

7.2 Recommendations 

In establishing a leaf fuel load model, analysis of a seasonal NDVI can be useful in 
the short term, for predicting the annual leaf fuel load during the fire season. Therefore, 
because fuel load is associated with changes in total biomass, a seasonal NDVI can 
estimate the change in seasonal leaf biomass between the normal and dry seasons, 
contributing to the determination of the leaf fuel load on the ground surface. However, fire 
behavior analysis not only estimates fuel load but also uses fuel moisture simulations to 
minimize the hazards of fire. Therefore, any further study should analyze potential VIs for 
fuel moisture. Future studies should also address soil moisture as one of the factors used for 
enhancing estimates of FMC, since soil moisture is shown to be correlated with FMC. 

However, the results of this study show that remote sensing and GIS techniques that 
make use of spatial data integrated with an appropriate algorithm or model can provide 
information sets that can be used to produce wildfire risk maps. The subjective weight 
of each factor was developed only for dipterocarp and deciduous forests. Hence, we 
cannot use the same weighting values for other regions, because the forest types and 
wildfire characteristics are different in each region. Therefore, to apply this method 
more generally, the factors affecting the wildfire must be weighted appropriately for 
each region. Finally, future studies on wildfire risk could be assessed using higher-
resolution remote sensing data, and other significant factors driving wildfire 
occurrence, such as fuel moisture, could be added in order to increase the precision of 
the wildfire risk assessment. 
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Appendix  
 

Appendix 1 Characteristic of the study area in dry season 
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Appendix 2 Examples of sample plots (a) dipterocarp and (b) deciduous plots. 
 

 
(a) Dipterocarp plots 

 

 
(b) Deciduous plots 

 
 
Appendix 3 Equipments for field survey 
 

 
 

Equipments for field survey 
included; 
 

- Handheld GPS 
(Oregon550TC, 
GARMIN, USA)  

- Haga altimeter 
- Clinometer  
- Diameter tape  
- Compass 
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Appendix 4 Leaf biomass measured from the study area 
 

 
Measurement of tree stem circumference at 1.3 m height from ground surface or at 

breast height 
 

 
Measurement of tree height using haga altimeter and clinometer 
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Appendix 5 Leaf fuel loads collected from the study area 

 
All of leaf litter in 1-m2 subplot were collected and weighted. Then, some of leaf litter 
were put into a sealed envelope for laboratory analysis (dried-oven) to calculate leaf 

fuel moisture, which was later used to calculate leaf fuel load. 
 
 

Appendix 6 Laboratory analysis for field leaf fuel calculation 

 
A small sample of the leaf litter from each subplot was weighted on the scale before 

drying in an oven to determine FMC used for the leaf fuel load calculation 
 
 

 
These samples of leaf litter were dried at 80°C for 48 h. After drying, the samples 

were weighed again to calculate FMC used for the leaf fuel load calculation 
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Appendix 7 Characteristic of soil in the study area during dry season  
 

 
Examples of soil in sampling plots. The soil samples were taken at a standard depth 

of 10 cm. Each soil sample was placed in a plastic container and sealed tightly for 
further laboratory analysis. 

 
 
Appendix 7 Laboratory analysis for soil moisture calculation 

 
The soil samples were weighted using a standard laboratory scale and then placed 
them in a drying oven at 105 °C for 48 hours. After drying, the dried soil samples 

were weighed again to calculate the percentage of gravimetric soil moisture 
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Summary 

 
 

Forest areas are often seen as recreational assets. Therefore, many countries, 
including Thailand, have made considerable efforts to protect forests, using several forms 
of conservation and protection such as national parks. National parks in Thailand are 
protected forest areas that contain natural resources, biodiversity and appealing scenery 
and landscapes, thus attracting tourism. Recreation and tourism clearly play an 
important role in the life of the national park, since most visitors cite scenery and 
landscape as their main reasons for visiting a national park. Recreational areas in the 
national park represent a wide variety of natural places and landscapes that enable 
activities such as camping, boating, walking, climbing and wildlife viewing. Recently, 
such recreational areas have been increasingly threatened and damaged by wildfires, 
resulting in a decline in tourism-related activities. Therefore, assessment of potential 
wildfire risk can prevent and minimize fire damage at recreational sites, contributing to 
the sustainability of national parks. The purpose of this study is firstly to assess wildfire 
risk and its corresponding risk levels by integrating the techniques of remote sensing and 
GIS, based on several factors associated with wildfire, and then to exploit the assessed 
wildfire risk to evaluate the wildfire risk at recreational sites. Data on various factors 
were analyzed from Landsat 8 OLI/TIRS and MODIS images (leaf fuel load and soil 
moisture), and were integrated with GIS data (slope, aspect, elevation, distance from 
roads and proximity to settlements) by using a GIS algorithm to establish a wildfire risk 
model for mapping wildfire-prone areas in Sri Lanna national park. 

The study was conducted in Sri Lanna national park during the dry season of 2015, and 
focused on the dipterocarp and deciduous forests in which wildfire mostly occurs. The 
studies combined quantitative and qualitative methods, including remote sensing and GIS 
techniques, statistical analysis and field survey data to achieve the objectives of the study. 
The focus of  is on providing the background, objectives and outline of the 
dissertation.  

 focuses on the theoretical and conceptual framework used throughout the 
whole dissertation. Suitable definitions of national parks and recreational areas, 
characteristics of wildfire, assessment of wildfire risk and general concepts of remote 
sensing and GIS are given. With regard to the characteristics of wildfire, seven factors 
selected in the study for modeling and mapping wildfire risks are described. These factors 
are widely recognized as influencing wildfire occurrence, especially the leaf fuel load, slope, 
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aspect, elevation, distance from roads and proximity to settlements. Leaf fuel loads and soil 
moisture factors were analyzed from remote sensing data and other five factors were 
obtained from GIS data.  Finally, we present the structured methodology and overall 
conceptual framework of the research. 

In , the background of the study area of Sri Lanna national park is described, 
including physical conditions (such as geographical location, topographical characteristics 
and geological and soil characteristics), meteorological conditions, resources base and 
tourism/recreation in the park. The study reveals that some of the recreational areas in Sri 
Lanna national park have been damaged by wildfires, as their sites are mainly covered by 
the dipterocarp and deciduous forests in which wildfire mostly occurs. 

The aim of  is to map the spatial distribution of the leaf fuel load which is one 
of selected factors in the study. Field data were combined with remote sensing data from 
Landsat 8 OLI to generate an empirical model of leaf fuel load based on a regression 
approach for mapping the spatial distribution of leaf fuel load. Firstly, the capabilities of 
seven VIs extracted from Landsat 8 OLI data were compared with regard to estimating 
leaf biomass, which is a parameter used in the leaf fuel load prediction model. The model 
contributes to the assessment of wildfire risk by identifying the spatial distribution of leaf 
fuel load for later use in the assessment of wildfire-prone areas. This study found that the 
NDVI had the strongest relationship with field leaf biomass and was appropriate for use 
in estimating the amount of leaf biomass. This relationship leads to the major finding that 
a seasonal NDVI for the normal and dry seasons can estimate the difference in the 
quantities of leaf biomass, thus establishing the missing leaf biomass that represents the 
quantity of dead leaves on the ground surface. In other words, the fuel load, derived from 
changes in leaf biomass, can be estimated based on differences between seasonal NDVIs.  

In , the spatial distribution of soil moisture, which is one of wildfire risk factors 
in the study, was estimated, and the relationship between the estimated soil moisture and 
leaf fuel moisture in the field investigated, in order to examine the use of soil moisture data 
for wildfire risk assessment. Firstly, TVDI and NDDI were derived from Landsat 8 
OLI/TIRS and MODIS data to establish an empirical model for soil moisture estimation 
based on field data and remote sensing data, using a regression approach. A possible 
adaptation and application of NDWI and LST was proposed for constructing a TVDI based 
on the similar design of the triangular NDVI-LST space. The findings were that a 
relationship defined by the NDWI-LST better fulfills the collinearity requirement of the 
theoretical TVDI than a relationship defined by the NDVI-LST. TVDI values predicted by 
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the NDWI-LST are more accurate than those predicted by the NDVI-LST. A modified 
index, called TVDINDWI-LST, was applied with the NDDI to establish a regression model for 
soil moisture estimates. The major finding was that using both TVDINDWI-LST and NDDI 
together can improve the accuracy of soil moisture estimates. Lastly, the estimated soil 
moisture was found to have a positive correlation with leaf fuel moisture, suggesting that 
including soil moisture as a wildfire factor could improve wildfire risk assessment, since it 
acts as a proxy for fuel moisture. 

In , the spatial distribution of wildfire risk is mapped by integrating remote 
sensing and GIS techniques for modeling and mapping wildfire risks, and the potential for 
fires at recreational sites is evaluated. At first, leaf fuel load and soil moisture as analyzed 
from chapter 4 and 5, respectively were rated with other factors (slope, aspect, elevation, 
distance from roads and proximity to settlements) to classify levels of wildfire sensitivity. 
A dNBR was used to rate wildfire sensitivity for subclasses of seven factors. Subsequently, 
all factors with differently rated subclasses were weighted using pairwise comparison to 
prioritize their importance with respect to wildfire occurrence. All weighted factors were 
later integrated to establish a GIS wildfire risk model. The main findings were that each 
subclass rated by the dNBR could be given a score for wildfire sensitivity. Leaf fuel load, 
weighted using a pairwise comparison matrix, is considered to be the most important factor 
for wildfires. In addition, the seven selected factors can be reliably used to assess the spatial 
distribution of wildfire risk because the model derived from these factors correctly 
classified 74.67% of wildfire instances. Finally, a map of wildfire risk zones produced from 
the model was overlaid with recreation sites in Sri Lanna national park, revealing that six 
of 22 recreational sites were at high risk from wildfires. 

In the final chapter, the conclusions and main research findings of each chapter as 
described above are summarized. The implication of this research is that the developed 
approach can detect wildfire risk in large-scale areas and assess the corresponding risk 
levels of different areas. The informative and visual analytical techniques of remote 
sensing and GIS can be applied to enhance assessment of wildfire risk and to evaluate risk 
at recreational sites in national parks. The approach forms an effective method which can 
be used to develop decision-support systems for local officials, planners or decision-makers 
concerned with wildfire.   

Key words: Wildfire Risk Assessment, Vegetation Index, Remote Sensing, GIS, National 
Park, Recreation Area, Northern Thailand 



118 

Japanese Summary 

 

GIS

Landsat 8 OLI/TIRS MODIS GIS

 

2015

GIS 1

 

2

GIS

7

 

3

 



119 

4

Landsat 8 OLI

Landsat 7 Vis

7 Vis NDVI

NDVI

NDVI

 

5

Landsat 8 OLI/TIRS MODIS TVDI NDDI

NDWI-LST

TDVI NDVI-LST

TVDINDWI-LST, NDDI

 

 6 GIS

4 5

GIS

dNBR 7

74.67

22

 

GIS

 

GIS

 


