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Chapter 1  

Introduction 

 

1.1 Research Background 

The tropical peatlands are characterized by areas in between the Tropics of Cancer 

and Capricorn (23.5oN and 23.5oS, respectively) which contains peat soil. Peat is a type 

of soil where the remains of organic matter accumulating under more or less 

water-saturated condition due to incomplete decomposition and anaerobic environment 

for a long period (Rydin and Jeglum 2006; Page et al. 2011; Rudiyanto et al. 2016). 

Tropical peatlands are mostly situated at low altitudes where the peat swamp forest is 

found above a thick mass of organic matter that has been contributed over thousands of 

years, forming accumulated deposits up to 20 m of peat depth (Anderson 1983). 

The largest deposit of tropical peatlands are found in Southeast Asia, followed by 

South America, Africa, the Caribbean and Central America, mainland Asia and the 

Pacific region, where favorable regional environmental and topographic circumstances 

have allowed peat to form under high precipitation-high temperature conditions 

(Andriesse 1988; Page et al. 2011). In Southeast Asia, Indonesia has obviously the 

largest portion of the tropical peatlands area and tropical peat carbon store, followed by 

Malaysia, with Brunei, Myanmar, Papua New Guinea, the Philippines, Thailand and 

Vietnam, collectively, having much smaller measures of the total estimation of both 

tropical peatlands area and tropical peat carbon store. 

Tropical peatlands acknowledged as one of key ecosystems among the high-carbon 

reservoir ecosystems due to their huge carbon and water storage, their effect on coastal 

ecosystems, and their role in preserving bio-resources and biodiversity (Osaki and Tsuji 

2016; Osaki et al. 2016b). Thus, the amount of carbon stored in tropical peatlands is 

recognized as one of the largest terrestrial carbon storage (Jauhiainen et al. 2005). In 

addition, tropical peatlands have a great contribution to the global carbon cycle, which 

is associated with the fluxes of two significant greenhouse gases (i.e., carbon dioxide 

(CO2) and methane (CH4)), and thus have a direct relationship with global climate 

change processes (Jaenicke et al. 2008, Shimada et al. 2016a). In their natural state, 

tropical peatlands are vast carbon sink and store but once the carbon input is 
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discontinued by land clearance activities (e.g., deforestation) and the peat is drained, the 

exposed air oxidizes the peat, so that the stored carbon release rapidly to the atmosphere, 

which result in continuous subsidence of the peat surface and thus contribute to climate 

change processes (Agus et al. 2011; Osaki and Tsuji 2016; Osaki et al. 2016a). 

Unfortunately, tropical peatlands are now being subjected to a rapid economic 

development without full consideration to the sustainable management principles and 

practices of tropical peatlands, which has led to large increases in carbon emission 

(Rieley et al. 2008). Tropical peatlands are mostly located at low altitudes in coastal and 

sub-coastal areas, so they tend to have a higher rate of development when compared to 

the other types of peatlands (Rieley 2007; Rieley et al. 2008). This is well advanced in 

Southeast Asia, especially in Indonesia and Malaysia archipelago, where a certain 

amount of tropical peatlands area has already been deforested, drained and converted to 

commercial plantations (often using fire, as the cheapest way of land clearance tool by 

some irresponsible groups of people). Consequently, in addition to biodiversity losses, 

there have been significant greenhouse gases emissions and large losses of carbon from 

the peat store, further contributing to climate change processes (Rieley and Page 2016). 

In Indonesia, tropical peatlands are distributed along the low altitudes in the coastal 

and sub-coastal areas of Sumatra Island, Kalimantan (Indonesian territory of Borneo 

Island) and Papua (Indonesian territory of the western part of the island of New Guinea) 

(Ritung et al. 2012). In former times, tropical peatlands were considered as a wasteland 

due to their infertility. However, along with the increasing needs as a consequence of 

the growing human population, tropical peatlands are more extensively being developed 

for various economic purposes such as for agriculture and settlement (Agus et al. 2011). 

The history of the development of tropical peatlands for various economic purposes 

(e.g., agriculture, plantation and exploitation practices for commercial logging) in 

Indonesia has been started since the pre-colonialism era, and is still continuing up until 

now (Noor 2012). The background of the development of tropical peatlands for various 

economic purposes is initially comes from the successful attempts of indigenous people 

who utilized tropical peatlands as traditional land resources for producing food crops, 

fruits, and spices to support their daily life, so that inspired the government, policy 

makers and stakeholders to open tropical peatlands extensively as an effort for 

expanding the area of agriculture and for supporting the food security program since the 

1970s (Notohadiprawiro 1998; Osaki et al. 2016a). 
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However, due to the lack of understanding of the complexities (i.e., the particular 

biological, chemical and physical attributes) of this sensitive ecosystem and the lack of 

consideration to the sustainable management principles and practices of tropical 

peatlands, not all location that were opened resulting a success, even leaving very 

serious damages to tropical peatlands ecosystem as a consequence of land degradations 

and fires (Rieley et al. 2008). Moreover, in the past two decades, the development of 

tropical peatlands utilization in Indonesia for various economic purposes have become 

greater due to the excessive land use/cover conversion to commercial plantations (i.e., 

oil palm and timber plantations), which approximately 2.0 2.5 million ha of tropical 

peatlands in Indonesia were converted for the development of oil palm plantations 

(Rieley and Page 2005; Osaki et al. 2016a).  

Concurrently, the importance of tropical peatlands as a long-term carbon sinks and 

stores, their tendency to become a short-term source of carbon emission, and their 

significant role in climate change processes, have been receiving tremendous interest 

during the past two decades (Miettinen et al. 2017). Moreover, there are considerable 

debates in the matter of whether or not tropical peatlands are globally net absorbers or 

emitters of carbon, as well as under what circumstances they may sequester or release 

carbon (Rieley et al. 2008). Consequently, these concerns should be initially responded 

to via an accurate inventory of tropical peatlands to obtain a better understanding of 

tropical peatlands management, as well as to improve the foundation of knowledge in 

tropical peatlands monitoring activity (Osaki et al. 2016a). The accurate inventory of 

tropical peatlands, i.e., developing methodologies for tropical peatlands monitoring 

activity, is very important for accurately calculating their spatial distributions, for 

correctly quantifying their carbon storage, for properly estimating the magnitude of their 

carbon emissions, for appropriately evaluating the effect of land use/cover changes on 

tropical peatlands due to the rapid economic development, and for providing 

information that aids in the sustainable management principles and practices of tropical 

peatlands, particularly in Indonesia where the largest portion of the tropical peatlands is 

located (Hirano et al. 2016; Miettinen et al. 2017). Hence, tropical peatlands monitoring 

activity has become vitally important towards the sustainable management of tropical 

peatlands (Page et al. 2002; Jaenicke et al. 2008; Wahyunto and Agus 2012). 

Nevertheless, tropical peatlands cover relatively large areas and are primarily located in 

remote areas that are difficult to access. Thus, it is obviously challenging to develop 
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methodologies for monitoring tropical peatlands, especially in Indonesia. 

Remote sensing (RS) applications can serve as an advantageous tool for monitoring 

the vast areas of tropical peatlands, as the traditional ground surveys are generally 

time-consuming, labor-intensive, and limited by accessibility. The RS applications serve 

as an advantageous tool owing to the periodic monitoring systems at wide-scale 

synoptic view, especially in remote sites (Lu 2006). Hence, RS is the most effective tool 

for tropical peatlands monitoring activity at various spatial and temporal scales, 

particularly when combined with field measurement data (Shimada et al. 2016a). 

Furthermore, the recent development of synthetic aperture radar (SAR)-based RS 

satellites has introduced an advanced prospect that enables continuous monitoring and 

cloud-free observation in humid tropical regions, particularly for tropical peatlands 

monitoring activity in Indonesia (Kuntz 2010).  

To date, the use of SAR-based RS applications for tropical peatlands monitoring 

activity has increasing expeditiously, along with the growing availability of SAR data 

sets. Several studies have investigated the potential of SAR data for tropical peatlands 

monitoring activity, e.g., Romshoo et al. (2002) applied the combination of L-band 

Japanese Earth Resources Satellite (JERS-1) SAR time-series data and optical data to 

recognize land use/cover changes on tropical peatlands in Kalimantan, Indonesia, by 

observing the backscatter coefficients in distinct land use/cover types. Page et al. (2002) 

examined the combination of C-band European Remote Sensing (ERS) SAR and 

Landsat data for estimating the total amount of carbon that had been emitted by tropical 

peatlands in Central Kalimantan, Indonesia, in the event of the 1997 El Niño Southern 

Oscillation (ENSO). Wijaya et al. (2010) evaluated the potential of X-band TerraSAR-X 

dual-polarization data and fusion images with optical data to characterize different peat 

depth categories in Central Kalimantan, Indonesia. Another report demonstrated the use 

of L-band Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR 

(PALSAR) for wide-area mapping of tropical forest and land cover, including several 

categories for tropical peatlands on Borneo Island (Hoekman and Vissers 2010). 

Jaenicke et al. (2010) applied the combination of C-band Environmental Satellite 

(ENVISAT) Advanced Synthetic Aperture Radar (ASAR) dual-polarization and L-band 

ALOS PALSAR single- and dual-polarization data for monitoring the hydrological 

effects of tropical peatlands restoration by canal blocking in the ex-Mega Rice Project 

(MRP) area, Central Kalimantan, Indonesia. Watanabe et al. (2011) used the L-band 
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ALOS PALSAR fully polarimetric data for evaluating the radar scattering mechanism 

on tropical peatlands in Central Kalimantan, Indonesia. Englhart et al. (2016) examined 

C-band Sentinel-1 dual-polarization data for producing burned area maps, including 

those in tropical peatlands areas in Central Kalimantan, Indonesia. Another study 

applied the integration of L-band ALOS PALSAR dual-polarization data, optical data, 

and digital elevation model (DEM)-derived data for tropical peatlands mapping in the 

Cuvette Centrale, Congo Basin (Dargie et al., 2017). Despite all the previous research, 

detailed information is lacking on the performances of SAR data to identify and classify 

the spatial distributions of tropical peatlands, as well as to classify their peat depth 

categories, in response to the emerging SAR-based RS applications for tropical 

peatlands monitoring activity. 

In fact, the L-band ALOS PALSAR data that operated in 1.27 GHz offer the cloud 

penetration ability and reported to be capable of passing through a certain level of 

vegetation cover to verify the underlying soil characteristics (Takada et al. 2009; 

Antropov et al. 2011). These data are provided by the Japan Aerospace Exploration 

Agency (JAXA). The L-band ALOS PALSAR dual-polarization data comprise two 

channels  horizontal transmit horizontal receive (HH) and horizontal transmit

vertical receive (HV)  of polarization, whereas the fully polarimetric data include four 

channels  HH, HV, vertical transmit-horizontal receive (VH) and vertical 

transmit-vertical receive (VV)  of polarization. These potentials make the L-band 

ALOS PALSAR dual-polarization and fully polarimetric data, as well as their data 

combinations, particularly promising for use in tropical peatlands identification and 

classification.  

In addition, the C-band Sentinel-1 data, which provided by the European Space 

Agency (ESA), are of interest owing to the fact that they are available at no cost and 

have global coverage. The Sentinel-1 mission encompasses a constellation of two 

polar-orbiting satellites (Sentinel-1A and Sentinel-1B). This data collection method 

operates at a center frequency of 5.405 GHz and includes two polarization channels  

VH and VV  with a very short repeat cycle (12 days with one satellite and 6 days with 

two) and rapid product delivery. These characteristics make C-band Sentinel-1 data 

particularly promising for use in tropical peatlands monitoring activity, specifically for 

classifying peat depth distributions. Hence, further studies are absolutely necessary 

involving the use of these potential SAR data (i.e., L-band ALOS PALSAR and C-band 
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Sentinel-1 data) to improve the foundation of knowledge regarding tropical peatlands 

monitoring activity in Indonesia, especially for use in tropical peatlands identification 

and classification, as well as in peat depth classification. 

 

1.2 Research Objectives  

The primary objectives of this study are to explore the ability of L-band ALOS 

PALSAR fully polarimetric data for tropical peatlands identification, to evaluate the 

performance of L-band ALOS PALSAR dual-polarization and fully polarimetric data 

for tropical peatlands classification, as well as to investigate the potential of C-band 

Sentinel-1 for peat depth classification, in response to the emerging SAR-based RS 

applications for tropical peatlands monitoring activity. Therefore, to obtain those 

primary objectives, the present study concentrated on the following specific objectives:  

(1) to explore the characteristic of tropical peatlands from the viewpoint of L-band 

ALOS PALSAR fully polarimetric data, 

(2) to develop methodology for tropical peatlands identification using L-band ALOS 

PALSAR fully polarimetric data, 

(3) to develop methodology for tropical peatlands classification by means of four 

combinations of L-band ALOS PALSAR data: (i) the combination of two scenes 

of dual-polarization data, (ii) the single scene of fully polarimetric data, (iii) the 

combination of two scenes of dual-polarization data and the single scene of the 

fully polarimetric data, and (iv) the combination of two scenes of 

dual-polarization data, the single scene of the fully polarimetric data, and the 

additional topographic-  

(4) to compare and investigate the performance of L-band ALOS PALSAR data for 

tropical peatlands classification when utilized as single usage (i.e., only 

dual-polarization data or only fully polarimetric data), combined (i.e., the 

combination of dual-polarization and fully polarimetric data), and integrated with 

topographic-

combination of dual-polarization and fully polarimetric data), 

(5) to compare and evaluate the performance of features derived after the 

ground-range radar cross section (sigma naught or 0) and slant-range 

perpendicular radar cross section (gamma naught or 0) of C-band Sentinel-1 data 

for discriminating peat depth classes, and 
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(6) to develop methodology for peat depth classification on oil palm plantations using 

C-band Sentinel-1 data. 

 

1.3 Outline of Dissertation  

This dissertation is organized into six chapters. The focus of this chapter (Chapter 1) 

is to describe the general background of the study, purposes and motivations that 

significantly encourage for performing this study, as well as several goals to be obtained 

by conducting the present study. 

Chapter 2 provides succinct information regarding the distribution of tropical 

peatlands of the world and in Indonesia, the development of tropical peatlands 

utilization in Indonesia, the issues of tropical peatlands utilization in Indonesia, as well 

as their current status towards the sustainable management of tropical peatlands in 

Indonesia. In additional, a brief description on the subject of the basic theory of SAR, 

an introduction to SAR system, the characteristics of SAR, SAR measures and features 

that used in the present study are explained. 

Chapter 3 principally discusses about the methodology development to identify 

tropical peatlands using L-band ALOS PALSAR fully polarimetric data. This chapter 

demonstrates the contribution of polarimetric decomposition (PD) theorems and the 

radar vegetation index (RVI) for characterizing tropical peatlands from the viewpoint of 

L-band SAR fully polarimetric data. 

Chapter 4 particularly reports the performance of L-band ALOS PALSAR 

dual-polarization data, fully polarimetric data, and their data combinations for 

classifying tropical peatlands, as well as describes the methodology development to 

classify tropical peatlands using L-band ALOS PALSAR dual-polarization and fully 

polarimetric data. Moreover, the details regarding the seasonal variation of tropical 

peatlands from the viewpoint of L-band SAR dual-polarization data is given in this 

chapter. 

Chapter 5 specifically describes about the methodology development for peat depth 

classification on oil palm plantations using C-band Sentinel-1 data. This chapter gives 

details of the evaluation of features derived after the ground-range radar cross section 

(sigma naught or 0) and slant-range perpendicular radar cross section (gamma naught 

or 0) of C-band Sentinel-1 data for discriminating peat depth classes. Additionally, the 
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analysis of the seasonal variation of peat depth classes from the viewpoint of C-band 

SAR dual-polarization data is explained in this chapter. 

Finally, in the Chapter 6, the general discussion, conclusion and recommendation are 

given. 
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Chapter 2  

Theoretical Framework 

 

2.1 The Tropical Peatlands 

Tropical peatlands are considered to be important due to their functions, products and 

values, both for the people and for the environment. The functions (i.e., direct and 

indirect functions), products and values of tropical peatlands are listed as follows 

(Maltby 1997): 

a. The direct functions of tropical peatlands 

Direct functions of tropical peatlands encompass water flow regulation (i.e., water 

storage, filtration and supply), environmental protection against natural hazards 

(e.g., erosion prevention and flood mitigation), macro-climate stabilization, 

recreational and educational facilitation, as well as other resources for supporting 

local communities (i.e., land resource for food production). 

b. The indirect functions of tropical peatlands 

Indirect functions of tropical peatlands are associated with the ecological 

functions, such as sediment retention, nutrient detention, carbon balance and 

storage, and micro-climate stabilization.  

c. The products of tropical peatlands 

Tropical peatlands products are connected to their role in water provision to other 

ecosystems and human communities, forest resources (i.e., fuel wood, timber and 

bark), resins and medicines supplies, wildlife resources, agricultural and 

horticultural resources, as well as energy resources (Page and Rieley 1998).  

d. The values of tropical peatlands 

Values of tropical peatlands are closely related to the maintenance of 

environmental quality, which are genetic reservoirs for various endemic animals 

and plants (Joosten and Clarke 2002). 

In addition to their functions, products and values, tropical peatlands have become a 

long-term provider of goods and services that supporting lives for local communities 

(e.g., provide hunting grounds and fishing areas, construction materials, food and 

medicines, as well as traditional land resource for agriculture practices) (Riley et al. 

2008).  
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2.1.1 The tropical peatlands of the world 

The total area and total carbon store of tropical peatlands worldwide are estimated at 

441,025 km2 (nearly 11% of global peatlands area) and at 88.6 Gt (Gigatonnes) (nearly 

19% of the global peat carbon store), for the total area and total carbon store, 

respectively (Page et al. 2011). Table 2.1 shows the estimation of tropical peatlands area 

in distinct regions of the world, which describes that the Southeast Asia region contains 

the largest area of tropical peatlands (56% of total tropical peatlands area), followed by 

South America (24%), Africa (13%), the Caribbean and Central America (5%), other 

Asia (1%) and the Australia and Pacific Island (less than 1%). In addition to those 

estimates, as well as presented in Table 2.1, the largest carbon store of tropical 

peatlands is also calculated in Southeast Asia (77% of total tropical peat carbon store), 

followed by South America (11%), Africa (8%), the Caribbean and Central America 

(3%) and other Asia combined with the Australia and Pacific Island (less than 1%).  

 

Table 2.1 Best estimate area and carbon store of tropical peatlands in distinct regions of the 

world (Based on Page et al. 2011). 

Region 
Best Estimate  

Area (km2) (%) 

Best Estimate  

Carbon Store (Gt) (%) 

Asia (Southeast) 247,778 (56%) 68.5 (77%) 

South America 107,486 (24%) 9.7 (11%) 

Africa 55,860 (13%) 6.9 (8%) 

Central America and Caribbean 23,374 (5%) 3.0 (3%) 

Asia (Other) 6,337 (1%) 0.4 (0%) 

Australia and Pasific Island 190 (0%) 0.0 (0%) 

Total 441,025 (100%) 88.6 (100%) 

 

Therefore, the largest area of tropical peatlands and tropical peat carbon store are 

estimated in Southeast Asia with 56% of the total tropical peatlands area and 77% of the 

total estimation of tropical peat carbon store, owing to the large extent of tropical 

peatlands and the considerable depth of peat deposit (regularly exceeding 10 m) in this 

region (Rieley and Page 2016). Within the Southeast Asia region, Indonesia is estimated 

to contain the largest tropical peatlands area (47% of total tropical peatlands area) as 

well as the biggest tropical peat carbon store (65% of total tropical peat carbon store), 

followed by Malaysia (6% of total tropical peatlands area; 10% of total tropical peat 
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carbon store) with Brunei, Myanmar, Papua New Guinea, the Philippines, Thailand and 

Vietnam, collectively, having much smaller measures of both estimates (around 3% of 

total tropical peatlands area; around 2% of total tropical peat carbon store) (Table 2.2). 

 

Table 2.2 Best estimate area and carbon store of tropical peatlands in different countries wihin 

Southeast Asia region (Based on Page et al. 2011). 

Country 

Best Estimate  

Area (km2)  

(% Global) 

Best Estimate  

Carbon Store (Gt)  

(% Global) 

Brunei 909 (0%) 0.3 (0%) 

Indonesia 206,950 (47%) 57.4 (65%) 

Malaysia 25,889 (6%) 9.1 (10%) 

Myanmar 1,228 (0%) 0.1 (0%) 

Papua New Guinea 10,986 (3%) 1.4 (2%) 

Philippines 645 (0%) 0.2 (0%) 

Thailand 638 (0%) 0.0 (0%) 

Vietnam 533 (0%) 0.0 (0%) 

Total 247,778 (56%) 68.5 (77%) 

 

2.1.2 The tropical peatlands in Indonesia 

Current inventories of tropical peatlands area, peat depth and their carbon stores are 

contaminated by uncertainties and knowledge gaps so that their accuracies are vary not 

only from region to region but also country to country (Page et al. 2007; Rieley and 

Page 2016). These issues also affecting the development of tropical peatlands inventory 

activities in Indonesia. Since the 1970s, there are several attempts made by researchers 

and organization worldwide to calculate the total area of tropical peatlands in Indonesia. 

As shown in Table 2.3, there is a wide variation (ranging from 13.5 to 26.5 million ha) 

between the estimated amounts of the total area of tropical peatlands in Indonesia. 

Ritung et al. (2012) estimated that in Indonesia there are 14.91 million ha of tropical 

peatlands that distributed widely along the low altitudes in the coastal and sub-coastal 

areas of Sumatra Island (6.44 million ha, 43% of the total tropical peatlands area in 

Indonesia), Kalimantan (4.78 million ha, 32%) and Papua (3.69 million ha, 25%). 

Moreover, the influence of tides of rivers that flowing through the tropical peatlands in 

Indonesia could significantly reaches the distance inland (Osaki et al. 2016a). Tropical 

peatlands in Indonesia are generally categorized in to four types of peat depth classes, 

i.e., shallow-peat class (0.5 to 1 m of peat depth), medium-peat class (1 to 2 m of peat 
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depth), deep-peat class (2 to 4 m of peat depth), and very deep-peat class (more than 4 

m of peat depth). Thus, based on the peat depth, about 5.24 million ha (35%) of tropical 

peatlands in Indonesia are situated in the shallow-peat class, 3.91 million ha (26%) in 

the medium-peat class, 2.76 million ha (19%) in the deep-peat class, and 2.98 million ha 

(20%) in the very deep-peat class (Ritung et al. 2012). 

 

Table 2.3 Total area of tropical peatlands in Indonesia estimated by various authors or sources 

(Modified from Najiyati et al. 2005). 

Authors or Sources  

(Publication Year) 

Total Area of Tropical Peatlands 

in Indonesia (million ha) 

Driessen (1978) 16.10 

Puslittanah (1981) 26.50 

Euroconsult (1984) 17.20 

Soekardi and Hidayat (1988) 18.40 

Deptrans (1988) 20.10 

Subagyo et al. (1990) 14.90 

Deptrans (1990) 17.80 

Nugroho et al. (1992) 13.50* 

Radjagukguk (1993) 20.10 

Dwiyono and Rachman (1996) 20.00 

Wetlands International (2002-2006) 21.00 

Page et al. (2011) 20.69 

Ritung et al. (2012) 14.91 

*exclude tropical peatlands associated with saline land and floodplain (2.46 million ha) 

 

In Sumatra Island, the Riau Province dominates the provincial level of tropical 

peatlands distribution, which consisting of around 3.86 million ha (60% of the total 

tropical peatlands area in Sumatra). In this province, tropical peatlands are mainly 

situated in the very deep-peat class (42% of the total tropical peatlands area in Riau 

Province), followed by the medium-peat class (23% of the total tropical peatlands area 

in Riau Province), the deep-peat class (22% of the total tropical peatlands area in Riau 

Province), and the shallow-peat class (13% of the total tropical peatlands area in Riau 

Province). Meanwhile, in Kalimantan, the Central Kalimantan Province dominates the 

provincial level of tropical peatlands distribution, which consisting of around 2.66 

million ha (56% of the total tropical peatlands area in Kalimantan). In this province, 

tropical peatlands are mostly situated in the very deep-peat class (36% of the total 

tropical peatlands area in Central Kalimantan Province), followed by the deep-peat class 



 

13 
 

(24% of the total tropical peatlands area in Central Kalimantan Province), the 

shallow-peat class (21% of the total tropical peatlands area in Central Kalimantan 

Province), and the medium-peat class (19% of the total tropical peatlands area in 

Central Kalimantan Province). In Papua, the Papua Province dominates the provincial 

level of tropical peatlands distribution, which consisting of around 2.64 million ha (72% 

of the total tropical peatlands area in Papua). In this province, tropical peatlands are 

largely situated in the shallow-peat class (57% of the total tropical peatlands area in 

Papua Province), followed by the medium-peat class (31% of the total tropical peatlands 

area in Papua Province), the deep-peat class (12% of the total tropical peatlands area in 

Papua Province), and no tropical peatlands are situated in the very deep-peat class. 

 

2.1.3 The development of tropical peatlands utilization in Indonesia 

Tropical peatlands in Indonesia were once considered as marginal agricultural lands, 

however, they are gradually utilized for the development of various economic purposes 

(e.g., agriculture, settlement, plantation and exploitation practices for commercial 

logging). The development of the utilization of tropical peatlands for various economic 

purposes in Indonesia could be divided into several periods. The periods of tropical 

peatlands utilization in Indonesia are briefly described as follows (Nugroho 2012; Noor 

2012): 

a. The period of pre-colonialism era to colonialism era 

The first ever recorded attempt of land clearance activity in tropical peatlands areas 

for various economic purposes in Indonesia was conducted by the Majapahit 

Empire in the 13th century. In this period, tropical peatlands areas situated in West 

Kalimantan Province, Kalimantan, were utilized for agriculture and settlement 

purposes. Furthermore, during the colonialism era, the Dutch East India Company 

was recorded in the attempt of land clearance activity in tropical peatlands areas for 

developing settlement and plantation areas in Sumatra (Lampung Province), 

Kalimantan (South Kalimantan Province), and Papua (Merauke Regency, Papua 

Province) around 1920s. 

b. The period of late 1940s to 1960s 

The first effort of land clearance activity in tropical peatlands area after the 

independence of Indonesia was recorded in 1950s. During this period, the 

government was initiated the Dredge, Drain, and Reclamation Project to build 
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canals in tropical peatlands area for developing extensive agriculture areas in South 

Kalimantan and Central Kalimantan Province, Kalimantan. Simultaneously, several 

polders were constructed in several tropical peatlands areas in Sumatra Island for 

supporting the agriculture program initiated by the government.  

c. The period of 1970s to early 1990s 

On this period, the severe condition of food security in Indonesia has motivated the 

government to establish another substantial agricultural project for increasing 

national food supplies, so that alleviating the food security problem. The Project for 

Tidal Swamp Reclamation (Proyek Pembukaan Persawahan Pasang Surut or P4S 

in Indonesian), initiated in Kalimantan (West Kalimantan, South Kalimantan and 

Central Kalimantan Province) and Sumatra (Lampung, South Sumatra, Riau, and 

Jambi Province), has converted 1.24 million ha of tropical peatlands into 

agriculture areas. 

d. The period of mid 1990s to 2000s 

The issue on food security has one more time becomes the major background to set 

up another large-scale agricultural project in Indonesia. On this period, the Mega 

Rice Project (MRP) was established with the objective to develop one million ha of 

paddy field in tropical peatlands areas in Central Kalimantan Province, Kalimantan. 

Additionally, during this period, there was an increasing trend in the development 

of oil palm plantations in tropical peatlands areas. In Sumatra, the total area of oil 

palm plantations situated in tropical peatlands areas has increased nearly four times 

(from 0.26 to 1.01 million ha) between 1990 to 2005 (Sabiham and Kartawisastra 

2012). 

e. The period of late 2000s to 2010s 

On this period, the development of oil palm plantations in tropical peatlands areas 

has continue to increase along with the increasing global demand for palm oil, 

particularly in Sumatra, Kalimantan, and Papua. The total area of oil palm 

plantations situated in tropical peatlands areas in Sumatra has increased more than 

six times (from 0.26 to 1.39 million ha) between 1990 to 2010. Meanwhile, in 

Kalimantan, the total area of oil palm plantations situated in tropical peatlands areas 

has increased tremendously to nearly sixteen times (from 0.02 to 0.31 million ha) 

between 2000 to 2010. Thus, by 2010, there were nearly 1.7 million ha of tropical 

peatlands have been exploited for the development of oil palm plantations in 
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Indonesia (Sabiham and Kartawisastra 2012). 

To conclude, the development of tropical peatlands utilization for various economic 

purposes (e.g., agriculture, settlement, plantation and exploitation practices for 

commercial logging) has been carried out in Indonesia, which providing employment, 

local income, new industries and business opportunities, as well as contributing to the 

national income, but at the expense of the ecosystem and the environment. 

 

2.1.4 The issues of tropical peatlands utilization in Indonesia 

Tropical peatlands are recognized as one of key ecosystems among the high-carbon 

reservoir ecosystems due to their huge carbon and water storage, their effect on coastal 

ecosystems, and their role in preserving bio-resources and biodiversity (Osaki and Tsuji 

2016; Osaki et al. 2016). Therefore, under their natural state, fire occurrence in tropical 

peatlands areas is extremely rare. However, tropical peatlands become highly 

susceptible to fire when damaged by land clearance activities, such as logging, drainage, 

and conversion to plantations (Jaenicke et al. 2008). Since the late 1990s, reoccurring 

large-scale fire events have significantly affected tropical peatlands in Indonesia, 

especially in Sumatra, Kalimantan, and Papua (Miettinen et al. 2016).  

 In 1997, a severe drought that was directly related to the event of El Niño Southern 

Oscillation (ENSO) attacked Southeast Asia and triggered an enormous forest fire in 

Central Kalimantan Province, Kalimantan, specifically in the area of the Mega Rice 

Project (MRP) that was initiated by the Indonesian government from 1995 to 1999. 

Page et al. (2002) estimated that about 0.73 million ha of tropical peatlands were burnt, 

and around 0.19 to 0.23 Gt of carbon released to the atmosphere through peat 

combustion, induced by the 1997 ENSO event in this area. Moreover, in 2002 and 2006, 

fire reoccurred not only in Kalimantan but also in Sumatra and burnt tropical peatlands 

areas and the overlying vegetation (Jaenicke et al. 2008). 

Recently, in 2015, Indonesia experienced a very strong ENSO, leading to rainfall 

anomalies and a more severe dry season, as well as resulting in elevated fire occurrence 

equivalent with the previous catastrophic fire event in 1997 (Englhart et al. 2016). This 

phenomenon generated a state of emergency due to poisonous smoke and the 

transboundary haze pollution across Southeast Asia, as well as suffering great financial 

costs to the government (Lohberger et al. 2017). The transboundary haze pollution 

threatened several countries in Southeast Asia, including Brunei, Indonesia (particularly 
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in Sumatra and Kalimantan), Malaysia, Singapore, southern Thailand, Vietnam, 

Cambodia and the Philippines. The daily emission from this event was extremely large, 

and estimated in surpassing the average daily emissions from the entire USA (Van Der 

Werf 2015; Huijnen et al., 2016). Thus, interactions between land clearance activities, 

which involve drainage of the surface peat, and severe drought events have caused 

massive uncontrolled and repeated fire events in tropical peatlands areas, particularly in 

Indonesia (Siegert et al. 2004). 

 

2.1.5 Towards the sustainable management of tropical peatlands in Indonesia 

The considerable significance of tropical peatlands as a long-term carbon sinks and 

stores, their susceptibility to become a short-term source of carbon emission, and their 

notable role in climate change processes, have been receiving tremendous interest 

during the past two decades (Miettinen et al. 2017). Thus, in order to increase 

regulations regarding the worldwide-criticized tropical peatlands utilization in Indonesia, 

the Indonesian government announced a series of regulations towards the sustainable 

management of tropical peatlands in Indonesia. These regulations are listed as follows 

(Carmenta et al. 2017): 

a. In 2011, Indonesia government announced a moratorium on granting new licenses 

of concession in both primary forests and tropical peatlands areas for two years. In 

that period of time, the government were working on a land use planning reforms 

that would help Indonesia successfully reaches their greenhouse gas reduction 

targets (Austin et al. 2012). 

b. In 2014, the Government Regulation 71/2014 on protection and management of 

tropical peatlands (PP71), Article 23 Clause 3(a) was announced, which describes 

an order to maintain water table depth of 40 cm within tropical peatlands areas. 

c. In 2015, the Ministry of Environment Circular Letter 

no.S.494/MENLHK-PHPL/2015 on the prohibition to open tropical peatlands was 

announced, which forbidding new permits on tropical peatlands, assisting to 

operationalize the tropical peatlands moratorium, clarifying land use plans, 

demanding companies to review their Annual Work Plans (AWP) to ensure these 

are in alignment with latest regulations, and forcing companies to guarantee future 

plans reduce impacts on forests and fires on tropical peatlands. 

d. In 2015, the Ministry of Agriculture Regulation no. 11/Permentan/OT.140/3/2015 
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on Indonesian Sustainable Palm Oil (ISPO) Certification System was also 

announced, which demanding companies to comply with zero burning, through 

mandatory ISPO certification. 

e. In 2015, Presidential Decree 8/2015 on moratorium on new grants on tropical 

peatlands and primary forests was announced. This regulation instructed the 

Ministry of Environment and Forests should extend the moratorium, which was 

first started in 2011, on issuance of concession permits on tropical peatlands and 

forests, as well as removing exemptions allowed under previous versions of the 

moratorium. 

f. In 2016, Indonesia government announced a new moratorium on expansion of oil 

palm plantations and mining operations that forbids further expansion on tropical 

peatlands associated with oil palm cultivation and mining activities. 

g. In 2016, Presidential Decree 1/2016 on peat restoration agency (Badan Restorasi 

Gambut or BRG in Indonesian) was announced, which initiated the establishment 

of a new peat restoration agency mandated to rewet 2 million ha of drained tropical 

peatlands within 5 years (by 2020). 

Concurrently, along with the immense global attentions in alleviating the issues on 

tropical peatlands utilization in Indonesia, the implementation of sustainable 

management principles and practices is absolutely necessary. Thus, as one of the initial 

steps for actualizing the sustainable management of tropical peatlands, the accurate 

inventory of tropical peatlands, i.e., developing reliable methodologies for tropical 

peatlands monitoring activity, is vitally important for enhancing the foundation of 

knowledge of tropical peatlands monitoring activity, particularly in Indonesia where the 

largest portion of the tropical peatlands is located (Page et al. 2011; Shimada et al. 

2016b). 

 

2.2 Basic Theory of Synthetic Aperture Radar (SAR) 

Remote sensing (RS) is defined as science and art of obtaining information about an 

object, area, or phenomenon through the analysis of data acquired by a device that is not 

in contact with the object, area, or phenomenon under investigation (Lillesand et al. 

2008). RS applications have already been proven as an effective alternative tool for 

monitoring various land use/cover over large areas due to its periodic monitoring system 

at a wide-scale synoptic view, and has been widely used to support worldwide 



 

18 
 

environmental and agricultural monitoring activities, as well as for tropical peatlands 

monitoring activity (Lu 2006; Shimada et al. 2016b). The significance development of 

RS satellites that based on synthetic aperture radar (SAR), one of the active RS sensor 

systems, has introduced an advanced prospect that enables continuous monitoring and 

cloud-free observation in humid tropical regions (Kuntz 2010). These advantages make 

SAR-based RS applications is significantly superior for tropical peatlands monitoring 

activity in humid tropical regions, such as in Indonesia, compared to those using the 

passive sensor-based RS applications. 

 

2.2.1 Introduction to SAR system 

Lee and Pottier (2009) describe that the imaging synthetic aperture radar (SAR) 

system is an active radar system operating in the microwave region of the 

electromagnetic spectrum (typically between P-band and Ka-band, as showed in Figure 

2.1), which generally mounted on a moving platform (e.g., airplane, UAV, space-shuttle, 

or satellite) and operates in a side-looking geometry with an illumination perpendicular 

to the flight line direction (as illustrated in Figure 2.2). This system illuminates objects 

tic signal 

backscattered from the illuminated terrain.  

 

 
Figure 2.1 The pertinent microwave region of the electromagnetic spectrum (Taken from Lee 

and Pottier 2009). 

 

Furthermore, SAR system applies signal processing to synthesize a two-dimensional 

(2-

received signals. Owing to its active RS sensor system, SAR is independent of solar 

illumination, so that allows day and night operation. Additionally, SAR system allows 
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an almost all-weather and continuous global-scale earth monitoring due to the 

utilization of the microwave spectral region on its operation. To date, SAR is a coherent 

and state-of-the-art microwave RS technique for providing large-scaled 2-D high spatial 

 

 

 

Figure 2.2 The imaging geometry of a radar system: (A) Flight direction; (B) Nadir; (C) Swath; 

(D) Range; and (E) Azimuth (Taken from CCRS 2014). 

 

2.2.2 Characteristics of SAR  

The characteristics of SAR system are often distinguished by wavelength and 

frequency. The common wavelength ranges (or bands) and their frequency used in 

SAR-based RS applications are X-band (2.4-3.75 cm of wavelength; 8-12.5 GHz of 

frequency), C-band (3.75-7.5 cm of wavelength; 4-8 GHz of frequency) and L-band 

(15-30 cm of wavelength; 1-2 GHz of frequency). Furthermore, the polarization of the 

microwave radiation is also important for characterizing SAR, and is connected with the 

orientation of the electric field. Polarization is specifically defined as the attitude of the 

electric field vector in the electromagnetic wave perpendicular to the direction of 

propagation. SAR is designed to transmit microwave radiation either horizontally or 

vertically polarized. In parallel, SAR antennas receive either the horizontally or 

vertically polarized backscattered energy, and some of them are able to receive both. 
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Thus, the combinations of SAR ability to transmit and receive microwaves are 

horizontal transmit horizontal receive (HH), horizontal transmit vertical receive (HV), 

vertical transmit-horizontal receive (VH) and vertical transmit-vertical receive (VV) 

polarization channels. Consequently, the wavelength and polarization are both influence 

collected using different polarization and wavelength combinations may yield different 

and complementary information regarding the o

2014). 

 

2.3 Backscatter coefficients 

represented by the backscatter coefficients. This measure describes as normalized 

measure of the radar return from a distributed target. There are several measures utilized 

to express radar backscatter coefficients, i.e., the slant-range radar cross section 

(beta- 0), the ground-range radar cross section (sigma- 0) and 

slant-range perpendicular radar cross section (gamma- 0).  

 

 
Figure 2.3 The viewing geometry of a radar system: (A) Incidence angle; (B) Look angle; (C) 

Slant-range distance; and (D) Ground-range distance (Taken from CCRS 2014). 

 

Beta- 0) or the radar brightness coefficient, is a dimensionless measure, and 
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-of-sight (i.e., slant 

range). Afterwards, sigma- 0) or the scattering coefficient, is the conventional 

measure of the strength of radar signals reflected by a distributed scatterer (usually 

expressed in decibel unit or dB), and is defined as the radar cross section per unit area in 

the ground-range. Subsequently, gamma- 0) is defined as the radar cross section 

per unit area of the incident wavefront (i.e., perpendicular to the slant-range), and 
0 is commonly used to minimize the 

incidence angle dependency of the radar backscatter for a distributed target (Shimada 

2010; El-Darymli et al. 2014). The geometry of slant-range and ground-range distance 

of a radar system is illustrated in Figure 2.3. 

 

2.4 Polarimetric Decomposition (PD) 

The main objective of polarimetric decomposition (PD) theorems is to provide 

Specifically, Cloude and Pottier (1996) state that many targets of interest in radar RS 

demand a multivariate statistical description owing to the combination of coherent 

speckle noise and random vector scattering effects from surface and volume. Hence, for 

those targets, it is important to generate the concept of an average or dominant 

scattering mechanism for the purposes of classification or inversion of scattering data. 

PD theorems are developed for providing such an interpretation based on sensible 

physical constraints such as the average target being invariant to changes in wave 

polarization basis. To date, there are several PD theorems for extracting information 

from polarimetric SAR data. This study is concentrated in three commonly used PD 

theorems for SAR-based RS applications, which are listed as follows: 

a. The Cloude-Pottier decomposition 

Cloude and Pottier (1997) suggest the Cloude-

decomposition) theorem, which based on the types of scattering process 

(eigenvectors) or their relative magnitudes (eigenvalues) analysis of the covariance 

matrix (C) or coherency matrix (T). This PD theorem produces three polarimetric 

indicates the degree of randomness of the scattering that ranges from 0  H  1, 

values of H equal to 0 indicates a deterministic scattering process, whereas those 

equal to 1 showed a degenerate eigenvalues spectrum with high random scattering. 
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Anisotropy (A) describes the scattering component, and considers as identification 

properties for the secondary scattering 

characteristic of the dominant scattering mechanism. 

b. The Freeman-Durden decomposition 

Freeman and Durden (1998) define the Freeman-Durden three-component 

decomposition theorem as a physical scattering model-based decomposition, and 

model the 3 x 3 covariance matrix (C3) as the contribution of three component 

scattering mechanisms, i.e., surface, double-bounce, and volume scattering 

mechanisms. Principally, surface scattering describes the scattering information 

from moderately rough surface, whereas the double-bounce scattering represents 

the reflection from tree trunk and ground. Furthermore, the volume scattering 

characterizes the random distribution of very thin, cylinder-like scatterers associate 

with the branch of canopy cover. 

c. The Yamaguchi decomposition 

Yamaguchi et al. (2005) proposes the Yamaguchi four-component decomposition 

theorem that incorporates the non-reflecting symmetry condition of co-polarization 

(combinations of polarization where the transmit and receive polarizations are the 

same) and cross-polarization (combinations of polarization where the transmit and 

receive polarizations are differ) radar channels. Thus, this PD theorem modeled the 

3 x 3 covariance matrix (C3) as the contribution of four-component scattering 

mechanisms, i.e., surface, double-bounce, volume and helix scattering mechanisms. 

The additional helix scattering is advantageous for explaining the correlation of 

both co-polarization and cross-polarization that often occurs in the scattering 

process of complex urban area but vanishes in scattering process of natural target. 

 

2.5 Radar Vegetation Index (RVI) 

Kim and Van Zyl (2004) introduce a feature for quantifying the amount of biomass 

presented in each pixel of polarimetric SAR data. This feature is specified as the radar 

vegetation index (RVI), and expressed as follows: 

 , (Eq. 2.1) 
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0
ij is the backscatter coefficient in linear units, transmitted in the i polarization 

plane, and received in the j polarization plane. This feature generally ranges between 0 

and 1 and increases with the vegetation cover. Thus, the RVI defines the vegetation 

behavior in scattering mechanisms, and is useful to examine the complexity of 

scattering mechanisms in the bare surface due to the presence of vegetation layer 

(McColl et al. 2014). 
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Chapter 3  

Tropical Peatlands Identification using ALOS PALSAR Imageries: A 

Case Study in Kahayan River Catchment Area, Central Kalimantan, 

Indonesia 

 

3.1 Introduction 

Tropical peatlands are acknowledged as one of the largest terrestrial carbon stores 

(Jauhiainen et al. 2005). The total area of tropical peatlands is estimated at only 11% of 

the global peatland area, but these peatlands store nearly 19% of the global peat carbon 

pool (Page et al. 2011). Therefore, tropical peatlands play an important role in the global 

carbon balance, and thus have a direct relationship with global climate change processes 

(Jaenicke et al. 2008). Unfortunately, tropical peatlands are now being subjected to a 

rapid economic development that harms this type of ecosystem, and alters their function 

from carbon storage to carbon emission (Rieley et al. 2008). These peatlands are mostly 

located at low altitudes in coastal and sub-coastal areas, so tropical peatlands tend to 

have a higher rate of development when compared with other types of peatlands (Rieley 

2007).  

The tropical peatlands situated in Central Kalimantan Province, Indonesia, is a 

particular concern, as they have been damaged by intensive logging, drainage, and 

conversion to plantations. They are also threatened by several issues, including the 

Mega Rice Project from 1995 to 1999 and an enormous forest fire during the 

abnormally long dry season (El Niño Southern Oscillation or ENSO) from 1997 to 1998. 

These issues have generated significant disturbances to the environment of this tropical 

peatlands ecosystem and have led to increased carbon emissions (Page et al. 2002; 

Hoekman and Vissers 2007).  

Sustainable management of tropical peatlands is necessary for the control of carbon 

emissions. One initial step for actualizing the sustainable management principles and 

practices of tropical peatlands is the establishment of a reliable monitoring technique. 

Given the vast areas of tropical peatlands, Remote Sensing (RS) can be considered as 

suitable for use, as traditional ground surveys are generally time-consuming, 

labor-intensive and limited by accessibility. Therefore, one of the most advantageous RS 



 

25 
 

tools, Synthetic Aperture Radar (SAR), could be applied in tropical peatlands 

monitoring activity by an RS application.  

The use of SAR data in tropical peatlands monitoring activity has been expanding 

rapidly and attracting much interest. Several studies have applied SAR-based RS 

applications for tropical peatlands monitoring activity (Romshoo et al. 2002; Page et al. 

2002; Hoekman and Vissers 2007; Wijaya et al. 2010; Watanabe et al. 2011). However, 

few of these studies have attempted to identify tropical peatlands using L-band SAR 

fully polarimetric data. These SAR data are operated in L-band (1.27 GHz) and 

equipped with four channels of polarization. Their advantage of cloud penetration 

makes L-band SAR fully polarimetric data very suitable for monitoring tropical 

environments. Moreover, a previous study has reported that L-band SAR fully 

polarimetric data are permitted to pass through a certain level of vegetation cover 

(Takada et al. 2009). These advantages make L-band SAR fully polarimetric data 

particularly promising for use in tropical peatlands monitoring activity.  

The present study was carried out to identify tropical peatlands using L-band ALOS 

PALSAR fully polarimetric data. Three polarimetric decomposition (PD) theorems and 

a radar vegetation index (RVI) were evaluated to examine the characteristics of tropical 

peatlands from the viewpoint of L-band SAR fully polarimetric data. Three PD 

theorems were used to examine the scattering mechanisms of tropical peatlands, while 

the RVI was used to measure the amount of vegetation cover in the scattering 

mechanisms. The integration of these two methods was applied to identify tropical 

peatlands. Furthermore, tropical peatlands identification maps were also established to 

support tropical peatlands monitoring activity, especially when using L-band SAR fully 

polarimetric data.  

 

3.2 Materials and Methods 

3.2.1 Study Area 

Two study areas, 5 x 5 km in size, were chosen in the Kahayan River catchment area, 

Central Kalimantan, Indonesia (Figure 3.1). Basically, these areas are characterized by 

flat topography with surface elevation ranging up to 55 m above sea level. The average 

temperature and humidity of these areas are 26.9oC and 83.1%, respectively, which 

represent the typical hot and humid condition of areas near the equatorial line. The 
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amounts of precipitation on these areas are ranging from 1,840 to 3,117 mm per year on 

average, with a typical tropical periodically concentrated rain. The first study area is 

located in the Pulang Pisau District, and the second study area is located in Palangka 

Raya City. The tropical peatlands in Central Kalimantan overall is mostly in a severely 

degraded condition (Jaenicke 2010), and is covered by sparse to medium vegetation in 

the form of shrubs. These two study areas were selected to represent the condition of 

tropical peatlands in Central Kalimantan. The common tropical peatlands condition in 

both study areas are provided in Appendix 1 and Appendix 2. 

 

 
Figure 3.1 Map of Indonesia showing the location of the study areas in the Kahayan River 

catchment area, Central Kalimantan Province, Indonesia. 

 

3.2.2 Data 

A set of L-band ALOS PALSAR fully polarimetric data acquired on May 24, 2009 in 

the ascending orbit was used as the primary data. The off-nadir angle of these data was 

23.1°. The fully polarimetric mode includes four channels of polarization, i.e. horizontal 

transmit horizontal receive (HH) and horizontal transmit vertical receive (HV), vertical 

transmit-horizontal receive (VH) and vertical transmit-vertical receive (VV). For 

accuracy assessment procedures, an existing land use/cover map (Figure 3.2) and an 

existing tropical peatlands identification map of the study areas (Figure 3.3), derived 

from ALOS Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) data 

acquired on January 11, 2009, were used as reference maps. In addition, data collected 

from a ground truth survey conducted on August 23-28, 2013 were used to provide 

basic information about the study areas (Appendix 3). 
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Figure 3.2 The existing land use/land cover maps of the study area 1 (left) and study area 2 

(right) derived from ALOS AVNIR-2 data. 

 

 

Figure 3.3 The existing tropical peatlands identification maps of the study area 1 (left) and 

study area 2 (right) derived from ALOS AVNIR-2 data. 
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3.2.3 Tropical peatlands identification method  

A previous study has reported that tropical peatlands, from the viewpoint of L-band 

SAR fully polarimetric data, generate surface scattering or weak backscattering, but the 

presence of sparse vegetation cover must also be considered (Watanabe et al. 2011). The 

tropical peatlands in Central Kalimantan is mostly covered by shrubs. These features 

were used as an initial approach to identify tropical peatlands by analyzing the 

scattering mechanisms and vegetation cover of the tropical peatlands using PD theorems 

integrated with RVI. The aim of PD theorems were to extract characteristics from 

polarimetric data sets (Lee and Pottier 2009), while RVI was used to generate a value 

that would represents the amount of vegetation cover in the scattering mechanisms 

(McColl et al. 2014).  

Data were analyzed using the Polarimetric SAR Data Processing and Educational 

Tool (PolSARpro), a SAR data processing and educational computer software program 

developed by the European Space Agency (ESA). Speckle noise was reduced by 

applying a Lee-refined filter with a window size of 5 x 5 pixels, followed by conversion 

to the coherency matrix (T) and covariance matrix (C) as inputs for PD theorems. Three 

well-known PD theorems  the Cloude-Pottier decomposition (Cloude and Pottier 

1996), the Freeman-Durden three-component decomposition (Freeman and Durden 

1998), and the Yamaguchi four-component decomposition (Yamaguchi et al. 2005)  

were applied to generate polarimetric features. Furthermore, spatial analysis was done 

by overlaying polarimetric features with the existing tropical peatlands identification 

map to examine the scattering mechanisms of the tropical peatlands.  

Tropical peatlands were situated by both surface and volume scattering. In this study, 

the presence of surface and volume scattering was considered as a key parameter for 

performing unsupervised classification. Polarimetric features were used as inputs for 

unsupervised classification. An entropy based classification scheme was applied for 

Cloude-Pottier decomposition (Cloude and Pottier 1997), whereas ten classes were 

derived using the Iterative Self-Organizing Data Analysis Technique (ISODATA) 

method for the other PD theorems. Afterwards, classes from each decomposition that 

exhibited similar patterns of shrub areas in the existing land use/cover map were 

comb Furthermore, the best combination of shrub class was 

selected using a confusion matrix. A total of 625 points was derived on the reference 
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map, with each point situated within a 200 x 200 meter mesh (Figure 3.4). The best 

class com

coefficient (K). The combination that achieved the most significant accuracy indicators 

on the shrub class was selected as the best combination.  

 

 

Figure 3.4 ALOS AVNIR-2 imageries of the study area 1 (left) and study area 2 (right) showing 

the spatial distribution of points used for accuracy assessment purpose. 

 

Concurrently, data were converted to backscatter coefficients ( 0) in a linear unit to 

generate the RVI. The RVI has been proposed as a parameter for quantifying the amount 

of biomass presented in each pixel (Kim and Van Zyl 2004). The equation of the RVI is 

presented in Eq. 2.1. This parameter generally ranges between 0 and 1, and increases 

with the vegetation cover. The RVI was then overlaid onto the existing tropical 

peatlands identification map and ground truth data for spatial analysis. A relationship 

was discovered between the RVI and tropical peatlands whereby particular areas of 

tropical peatlands tend to have a specific RVI value, and the average RVI of the tropical 

peatlands is lower than that of other areas. Hence, three interval classes of RVI were 

derived using the average (avg) and standard deviation (sd) values of the RVI of the 

tropical peatlands. Each interval class was integrated with the selected shrub class. The 

integration was conducted by overlaying the interval class of the RVI onto the shrub 



 

30 
 

then selected using a confusion matrix. The integration that yielded the most significant 

accuracy indicators on the peatland class was selected as the most suitable integration. 

This result was also used to select the best interval class of the RVI in the integration.  

A validation using backscatter coefficient was determined to improve the reliability 

of the selected integration. The backscatter coefficient of tropical peatlands would 

always produce a higher value in HH channel than those in VV channel (Watanabe et al. 

2011). Thus, validation using the backscatter coefficient was done to generate a ratio of 

the area that produced a higher value in HH channel than in VV channel to the area of 

the extracted peatland class. This ratio varies between 0% and 100%, and increases with 

the backscatter coefficient of HH channel. The ratio was calculated as an additional 

validation for the selected integration. 

Finally, the best method for identifying tropical peatlands was developed using the 

integration of the PD theorem and RVI. The most suitable shrub class derived from 

unsupervised classification of polarimetric features was integrated with the selected 

interval class of the RVI. This selected method was then used to generate tropical 

peatlands identification maps for both study areas. The methodological flow chart of the 

present study is provided in Appendix 4. 

 

3.3 Results and Discussion 

3.3.1 Polarimetric features analysis 

Three polarimetric features    

were generated using the Cloude-Pottier decomposition (Figure 3.5). Surface, 

double-bounce, and volume scattering parameters were derived for the Freeman-Durden 

decomposition (Figure 3.6-a and Figure 3.6-c). Four polarimetric parameters surface, 

double-bounce, volume, and helix scattering were produced by the Yamaguchi 

decomposition (Figure 3.6-b and Figure 3.6-d). These polarimetric features were then 

overlaid with the existing tropical peatlands map for spatial analysis, which revealed 

dominance of surface and volume scattering. This characteristic could also be found on 

both composite RGB images of the polarimetric features derived by Freeman-Durden 
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and Yamaguchi decomposition. The presence of sparse to medium vegetation cover 

means that tropical peatlands generate surface scattering as well as volume scattering. In 

the present study, this feature was considered a key parameter for the identification of 

tropical peatlands because the coexistence of surface and volume scattering defined the 

tropical peatlands units.  

 

 

Figure 3.5 Polarimetric features images derived by the Cloud-Pottier decomposition of study 

area 1 (upper) and study area 2 (lower). 

 

3.3.2 Shrub-class extraction 

Table 3.1 shows the combinations of shrub classes, which represent combined classes 

that exhibited similar patterns of shrub areas on the existing land use/cover map. A total 

of 12 combinations of shrub class were created for each study area. The best 

combination of shrub class was selected by an accuracy assessment using a confusion 

matrix. As shown in Figure 3.7, the accuracy indicators of all combinations of the 
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Freeman-Durden decomposition were relatively higher than those of the other 

decompositions. This characteristic was obviously evident with K, especially in study 

area 2. On the contrary, accuracy indicators were low for the Yamaguchi decomposition, 

which also yielded the lowest K for both study areas. Hence, the combination of classes 

2, 3, 4, 5, and 6 of the Freeman-Durden decomposition (coded as 1-f2) was selected as 

the best combination of shrub class for study area 1, whereas a combination of classes 2, 

3, 6, and 7 of the Freeman-Durden decomposition (coded as 2-f4) was selected for study 

area 2. The 1-f2 combination yielded a PA of 75.4%, a UA of 91.9%, an OA of 76.6%, 

and a K of 0.68, whereas the 2-f4 combination achieved a PA of 78.8%, a UA of 84.5%, 

an OA of 78.7%, and a K of 0.62. The selected combinations of shrub classes for the 

two study areas were derived by the Freeman-Durden decomposition. This 

decomposition was determined as the most suitable decomposition for extracting the 

shrub classes.  

 

 
Figure 3.6 Polarimetric features images derived by the Freeman-Durden decomposition and the 

Yamaguchi decomposition of study area 1 (upper) and study area 2 (lower). 
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On the other hand, the polarimetric features derived by other decompositions had 

several issues to be considered. These issues were believed to be the cause of the low 

level of accuracy of the Cloude-Pottier and Yamaguchi decompositions. The 

Cloude- iver 

in study area 2 (Figure 3.5-f), where it was expected to be near 0° for surface scattering. 

Furthermore, an intense noises occurred in the composite RGB image of the 

polarimetric features of the Yamaguchi decomposition (Figure 3.6-b and Figure 3.6-d). 

The additional helix scattering was believed to generate noise, making this 

decomposition unsuitable for tropical peatlands identification.  

 

Table 3.1 List of combinations of shrub classes for study area 1 and study area 2. 

PD theorems 
Study area 1 Study area 2 

Combination of classes Code Combination of classes Code 

Cloude-Pottier 

5, 6 1-h1 4, 6 2-h1 
6 1-h2 5, 6 2-h2 
  4, 5, 6 2-h3 
  6 2-h4 

Freeman-Durden 

2, 3, 4, 5 1-f1 2, 6 2-f1 
2, 3, 4, 5, 6 1-f2 2, 3, 6 2-f2 

2, 3, 4, 5, 10 1-f3 2, 6, 7 2-f3 
3, 4, 5, 6, 10 1-f4 2, 3, 6, 7 2-f4 

2, 3, 4, 5, 6, 10 1-f5   

Yamaguchi 

2, 3, 4, 5 1-y1 2, 6 2-y1 
2, 3, 4, 5, 6 1-y2 2, 3, 6 2-y2 

2, 3, 4, 5, 10 1-y3 2, 6, 7 2-y3 
3, 4, 5, 6, 10 1-y4 2, 3, 6, 7 2-y4 

2, 3, 4, 5, 6, 10 1-y5   

 

 

Figure 3.7 Accuracy indicators of combinations of shrub classes; codes with asterisk (*) mark 

represent the selected combination. 
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3.3.3 Peatland-class extraction 

Three interval classes of RVI were generated using the average (avg) and standard 

deviation (sd) values of the RVI for tropical peatlands; i.e. avg±0.5sd (coded as 

narrow-interval), avg±sd (coded as medium-interval), and avg±2sd interval (coded as 

broad-interval). These interval classes were then integrated with the selected shrub 

classes (1-f2 and 2-f4). The intersection of the interval class of the RVI and the shrub 

class was extracted as a peatland class. Table 3.2 shows the accuracy indicators of 

peatland class derived from the integrations of the selected shrub class and the interval 

class of the RVI.  

 

Table 3.2 The accuracy indicators of peatland classes derived from the integrations of selected 

shrub classes and the interval classes of the RVI. 

Shrub Class Interval class of RVI PA (%) UA (%) OA (%) K 

1-f2 

narrow-interval 31.4 86.0 53.8 0.62  

medium-interval 60.0 84.8 68.2 0.59  

broad-interval 75.8 80.9 73.6 0.49  

2-f4 

narrow-interval 29.7 77.2 58.1 0.52  

medium-interval 55.5 74.4 66.2 0.46  

broad-interval 77.6 76.0 75.2 0.49  

 

For both study areas, the highest K and UA were achieved by the narrow-interval 

integration. However, this integration also yielded the worst PA and OA. By contrast, 

relatively good results for all accuracy indicators were obtained with the broad-interval 

integration. For this reason, the broad-interval integration was selected as the best 

integration for tropical peatlands identification. Thus, integration of the shrub-class 1-f2 

and the broad interval of RVI were selected for the best integration of study area 1, 

while for study area 2, integration of shrub-class 2-f4 and the broad interval of RVI 

were selected. The best integration of study area 1 achieved a PA of 75.8%, a UA of 

80.9%, an OA of 73.6%, and a K of 0.49, while for study area 2 it obtained a PA of 

77.6%, a UA of 76.0%, an OA of 75.2%, and a K of 0.49.  

Both integrations also yielded favorable ratios of the validation using the backscatter 

coefficient. A total of 75% of the extracted peatland class of study area 1 produced a 

higher value in HH channel than in VV channel, while a total of 68% of the extracted 
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peatland class of study area 2 produced a higher value in HH channel than in VV 

channel. Thus, the selected integration for both study areas was confirmed to yield 

significant results with either the accuracy assessment using the confusion matrix or the 

validation using the backscatter coefficient.  

 

3.3.4 PD theorems and RVI integration 

The selected combination of shrub classes was used to identify tropical peatlands 

without any integration of the broad-interval class of RVI in order to understand the 

complementarity of the PD theorems and RVI in tropical peatlands identification. As 

shown in Table 3.3, lower K values were yielded for a peatland class without any 

addition of the broad-interval class of the RVI. Integration of the broad-interval class of 

RVI into the identification gave a higher K for the peatland class. The broad interval 

class of the RVI could distinguish the sparse to medium vegetation cover on tropical 

peatlands. This information was used to assist the shrub class in discriminating tropical 

peatlands. For this reason, the addition of a broad interval class of RVI yielded better 

accuracy when compared to the other interval classes of the RVI. Consequently, in the 

present study, the broad-interval class of the RVI provided better analysis for use with 

the integration of selected shrub classes derived from unsupervised classification of 

polarimetric features of the Freeman-Durden decomposition for tropical peatlands 

identification.  

 

Table 3.3 Kappa coefficient comparison. 

Combination code 
Kappa coefficient (K) 

without RVI integration with RVI integration 

1-f2 0.47 0.49 

2-f4 0.46 0.49 

 

3.3.5 Tropical peatlands identification map 

As presented on Figure 3.8, tropical peatlands identification maps were generated for 

both study areas using the developed methodology. The tropical peatlands identification 

maps show 

class indicates the area that was identified as tropical peatlands. Study area 1 had 58.7% 
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of its total area identified as tropical peatlands, while study area 2 had 54.6% of its total 

area identified as tropical peatlands. These identification maps could be useful in the 

support of tropical peatlands monitoring activity, especially with the use of L-band 

ALOS PALSAR fully polarimetric data.  

 

 

Figure 3.8 Tropical peatlands identification maps derived by using the developed methodology 

for study area 1 (left) and study area 2 (right). 

 

3.3.6 Tropical peatlands identification method 

A methodology has been developed for identification of tropical peatlands that uses 

the integration of selected shrub classes derived from unsupervised classification of 

polarimetric features of the Freeman-Durden and the broad interval class of the RVI. 

This methodology is relatively novel, in the context of tropical peatlands identification 

that relies on L-band SAR fully polarimetric data. This study resulted in several findings 

regarding the development of tropical peatlands identification using L-band SAR fully 

polarimetric data.  

First, the Freeman-Durden decomposition was determined as the most suitable PD 

theorems for tropical peatlands characterization. This decomposition yielded significant 

accuracy for shrub-class extraction. Second, the broad interval class of the RVI was the 

most suitable interval class of the RVI as it distinguished the sparse to medium 
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vegetation cover on tropical peatlands, and was able to assist in assigning the shrub 

class for distinguishing tropical peatlands. Third, a complementarity between the PD 

theorems and RVI in the tropical peatlands identification was observed. Integration of 

the broad-interval class of RVI to the identification resulted in a peatland class with 

higher accuracy, which evident by the K.  

 

3.4 Conclusion 

This study shows that L-band SAR fully polarimetric data could be advantageous for 

tropical peatlands monitoring activity as an initial response to actualize the sustainable 

management principles and practices of tropical peatlands, particularly in Indonesia 

where the largest portion of the tropical peatlands is located. Tropical peatlands 

characteristics in the scattering mechanisms were extracted using PD theorems. The 

present study showed that surface and volume scattering were dominant for the tropical 

peatlands in Central Kalimantan, Indonesia. The presence of sparse to medium 

vegetation cover meant that tropical peatlands generated both surface scattering and 

volume scattering as the scattering mechanisms. Furthermore, a relationship between 

the RVI and tropical peatlands was discovered. This particular area of tropical peatlands 

tend to have a specific value of RVI, and the average RVI of tropical peatlands is lower 

than that in other areas.  

In this study, a methodology has been developed to identify tropical peatlands using 

L-band ALOS PALSAR fully polarimetric data. The integration of the selected shrub 

classes derived from unsupervised classification of polarimetric features of the 

Freeman-Durden decomposition and the broad interval class of the RVI successfully 

identified tropical peatlands in two study areas in Central Kalimantan, Indonesia. In 

addition, tropical peatlands identification maps for both study areas were established 

using the developed methodology. These results are useful for supporting tropical 

peatlands monitoring activity, especially in tropical environments that have persistent 

cloud cover. This study could aid in improving the state of knowledge of tropical 

peatlands monitoring activity, especially involving the use of L-band SAR fully 

polarimetric data.  
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Chapter 4  

Polarimetric Synthetic Aperture Radar Application for Tropical 

Peatlands Classification: A Case Study in Siak Transect, Riau Province, 

Indonesia 

 

4.1 Introduction 

In recent years, there has been considerable interest in the potential of tropical 

peatlands as carbon storage, as well as the magnitude of their carbon emissions and their 

important role in climate change processes. These concerns should be responded to via 

an accurate inventory of tropical peatlands to obtain a better understanding of tropical 

peatlands management (Page et al. 2007). The accurate inventory of tropical peatlands, 

such as in mapping spatial distributions of tropical peatlands, is important for properly 

estimating carbon emissions, for appropriately evaluating the effect of the land 

use/cover change due to rapid economic development, and for providing information 

that aids in the sustainable management principles and practices of tropical peatlands, 

particularly in Indonesia (Page et al. 2011; Shimada et al. 2016b). However, tropical 

peatlands cover relatively large areas and are primarily located in remote areas that are 

difficult to access. Therefore, it is challenging to map their spatial distributions 

(Rudiyanto et al. 2016).  

Remote Sensing (RS) is the most effective tool for mapping spatial distributions of 

tropical peatlands at various spatial and temporal scales, especially when combined with 

ground truth data (Shimada et al. 2016b). Thus, the RS technique serves as an 

advantageous tool due to its periodic monitoring system at a wide-scale synoptic view, 

particularly in remote sites (Lu et al. 2006). Furthermore, the growing availability of the 

Synthetic Aperture Radar (SAR)-based RS satellites has introduced a new prospect that 

allows continuous monitoring and cloud-free observations in humid tropical regions 

(Kuntz 2010), that can be used for mapping spatial distributions of tropical peatlands. 

Previous studies (Antropov et al. 2012; Antropov et al. 2014) have evaluated the 

potential of L-band SAR fully polarimetric data for peatlands detection and delineation 

in the boreal regions. Another study (Wijaya et al. 2010) examined the combination of 

X-band SAR dual-polarization data and optical data for discriminating tropical 
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peatlands in Central Kalimantan, Indonesia. Watanabe et al. (2011) used the L-band 

SAR fully polarimetric data for evaluating the radar scattering mechanism on tropical 

peatlands in Central Kalimantan, Indonesia. Another report (Dargie et al. 2017) applied 

the combination of L-band SAR dual-polarization data, optical data, and digital 

elevation model (DEM)-derived data for mapping spatial distributions of tropical 

peatlands in the Cuvette Centrale, Congo Basin. However, detailed information is 

lacking on the performance of L-band SAR dual-polarization and fully polarimetric data 

for mapping spatial distributions of tropical peatlands. 

The L-band SAR dual-polarization data include two channels horizontal horizontal 

(HH) and horizontal vertical (HV) of polarization, whereas the fully polarimetric data 

comprise four channels HH, HV, vertical horizontal (VH), and vertical vertical 

(VV) of polarization. These data operated in 1.27 GHz, permitting the cloud 

penetration ability and reported to be capable of passing through a certain level of 

vegetation cover to verify the underlying soil characteristics (Takada et al. 2009; 

Antropov et al. 2011). These potentials make L-band SAR dual-polarization and fully 

polarimetric data particularly promising for use in tropical peatlands mapping activities. 

Thus, in this study, the performance of L-band Advanced Land Observing Satellite 

(ALOS) Phased Array type L-band SAR (PALSAR) dual-polarization and fully 

polarimetric data was evaluated for tropical peatlands classification. The performance of 

the data when utilized as single usage (e.g., only dual-polarization data or only fully 

polarimetric data), combined (i.e., the combination of dual-polarization and fully 

polarimetric data), and integrated with an additiona

added the topographic- -polarization and 

fully polarimetric data combination) were compared and investigated. Thus, 

polarimetric features derived after polarimetric decomposition (PD) theorems, 

backscatter coefficients measurements, and the radar vegetation index (RVI) were 

evaluated to classify tropical peatlands using the Decision Tree (DT) classifier. In 

addition, the seasonal variation of tropical peatlands from the viewpoint of L-band SAR 

dual-polarization data was analyzed to increase the state of knowledge of tropical 

peatlands for classification. The findings of this study could aid in improving the state 

of knowledge in tropical peatlands classification, especially when involving the use of 

L-band SAR dual-polarization and fully polarimetric data.  
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4.2 Materials and Methods 

4.2.1 Study area and data 

The study area, 5 km × 10 km in size, was in Siak River Transect, Riau Province, 

Indonesia (Figure 4.1), a rapidly developing region where the tropical peatlands have 

been intensively converted mostly into oil palm plantations over the last two decades 

(Sabiham and Kartawisastra 2012). Generally, this area has a flat topography with a 

surface elevation ranging from 2 to 10 m above sea level. The temperature of this area is 

26.2°C per year on average. The annual rainfall of this area varies from 2,200 to 2,600 

mm per year, with the lowest and highest monthly rainfall in July (around 110 mm per 

month) and November (around 290 mm per month), respectively. The common tropical 

peatlands condition in the study area is provided in Appendix 5. 

 

 
Figure 4.1. Map of Indonesia showing the location of the study area (hatched rectangle) situated 

in the Siak River Transect, Riau Province, Indonesia. 

 

In this study, two scenes of L-band ALOS PALSAR dual-polarization data and a 

single scene of L-band ALOS PALSAR fully polarimetric data were used as the primary 

data. The dual-polarization data were taken during the driest month of the year 

(ALPSRP236980000, coded as dry scene) and the wettest month of the year 

(ALPSRP257110000, coded as wet scene), allowing the seasonal variation analysis of 

tropical peatlands from the viewpoint of L-band SAR dual-polarization data. The single 

scene of fully polarimetric data (ALPSRP175860000) was taken during the average 

monthly rainfall.  

Moreover, Landsat 5 Thematic Mapper (TM) data were used to update the existing 
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land use/ cover map by means of visual interpretation and to select the training samples 

for classification purposes. A total of 2,400 points were derived for training (1,680 

points) the algorithm of decision tree classification and for testing (720 points) the 

accuracy of the classification results (Figure 4.2). An existing tropical peatlands 

distribution map and a topographic map provided by the Indonesian Agency for 

Agricultural Research and Development (IAARD) were used as reference maps. In 

addition, a joint ground truth survey with the IAARD was conducted on May 19 22, 

2015 to provide basic information about the study area (Appendix 6). The list of data 

used for analysis is shown in Table 4.1.  

 

 
Figure 4.2 Landsat 5 TM image of the study area showing the spatial distribution of (i) training 

and (ii) testing points. 
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Table 4.1 List of data used in this study. 

Data usage Data type Data ID  Acquisition date 

Primary 
data 

PALSAR dual-polarization 
(dry-scene)  ALPSRP236980000 July 6, 2010 

PALSAR dual-polarization 
(wet-scene)  ALPSRP257110000 November 21, 2010 

PALSAR fully polarimetric ALPSRP175860000 May 13, 2009 

Secondary 
data 

Landsat 5 TM LT5            3BKT00126059201003  February 2, 2010 

Landsat 5 TM LT51            BKT00260602010289  October 16, 2010 

ASTER GDEM ASTGTM2 (Version 2) October 17, 2011 
(Released) 

 

4.2.2 Data processing 

L-band ALOS PALSAR data were imported to the PolSARPro Software for image 

processing. Thus, these data were radiometrically calibrated and multi-looked one time 

in range and five times in azimuth direction for the dual-polarization data, and one time 

in range and seven times in azimuth direction for the fully polarimetric data. Speckle 

noise was reduced by applying a 7 × 7 Lee-refined filter, followed by conversions to the 

scattering matrix (S2) and a 2 × 2 covariance matrix (C2) for the dual-polarization data, 

and to the S2, coherency matrix (T3) and a 3 × 3 covariance matrix (C3) for the fully 

polarimetric data. These matrices were used as inputs for deriving polarimetric features. 

L-band ALOS PALSAR data were then geocoded using the Advanced Spaceborne 

Thermal Emission and Reflection radiometer (ASTER) Global Digital Elevation Model 

(GDEM) to the Universal Transverse Mercator (UTM) Zone 48 North map projection. 

The methodological flow chart of the present study is provided in Appendix 7. 

 

4.2.3 Polarimetric features for dual-polarization data 

Polarimetric features for dual-polarization data were derived after PD theorems and 

backscatter coefficients were obtained. The Cloude Pottier decomposition (Cloude and 

Pottier 1996), an eigenvalue/eigenvector-based decomposition, was performed for the 

dual-polarization data to derive three features, viz. entropy (coded as dFBD_H for the 

dry-scene data and wFBD_H for the wet-scene data), anisotropy (coded as dFBD_A for 

the dry-scene data and wFBD_A for the wet-scene data), and alpha angle (coded as 

- -scene data). Two features 
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represent the channels of polarization derived from the dual-polarization data, i.e., HH 

(coded as dFBD_HH for the dry-scene data and wFBD_HH for the wet-scene data) and 

HV (coded as dFBD_HV for the dry-scene data and wFBD_HV for the wet-scene data). 

Each scene of the dual-polarization data (wet and dry scenes) derived five polarimetric 

features. Thus, a total of 10 polarimetric features were computed using the 

dual-polarization data for the analysis carried out in this study.  

 

4.2.4 Polarimetric features for fully polarimetric data 

Polarimetric features for fully polarimetric data were derived after PD theorems, 

backscatter coefficients measurements, and the RVI were obtained. Three PD theorems 

 Cloude Pottier decomposition (Cloude and Pottier 1996), Freeman Durden 

three-component decomposition (Freeman and Burden 1998), and Yamaguchi 

four-component decomposition (Yamaguchi et al. 2005)  were applied to generate 

polarimetric features for the fully polarimetric data. Cloude Pottier decomposition was 

also performed for the fully polarimetric data and generated three features, namely, 

entropy (PLR_H), anisotropy (PLR_A), and the alpha angle (PLR_

Durden decomposition, a physical scattering model-based decomposition, models the 

covariance matrix (C3) as the contribution of three component scattering 

mechanisms surface (f_odd), double-bounce (f_double), and volume (f_volume) 

scattering mechanisms. The Yamaguchi decomposition scheme incorporates the 

non-reflection symmetry condition of co-polarization and cross-polarization radar 

channels thus the covariance matrix (C3) is modeled as four component scattering 

  surface (y_odd), double-bounce (y_double), volume 

(y_volume), and helix (y_helix) scattering mechanisms. Four features representing the 

channels of polarization were derived from the fully polarimetric data, i.e., HH (coded 

as PLR_HH), HV (coded as PLR_HV), VH (coded as PLR_VH), and VV (coded as 

PLR_VV).  

Three features representing a decomposition approach based on the Pauli matrix were 

generated (Takada et al. 2009; Clouds and Pottier 1996). These features are HH+VV, 

HH-VV, and 2HV, associated with surface scattering, double-bounce scattering, and 

volume scattering, respectively. A depolarization ratio (HV/HH) was calculated that 

indicated the level of volume scattering (Takada et al. 2009). In addition, the total 

scattering power (SPAN) in four polarizations of the fully polarimetric data was 
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generated. The SPAN is an average of HH, HV+VH, and VV, and thus has a lower 

speckle noise than those polarization channels individually (Lee and Pottier 2009). 

Concurrently, the RVI was derived for quantifying the amount of biomass presented in 

each pixel (Kim and Van Zyl 2004). The equation of the RVI is presented in Eq. 2.1.  

This feature generally ranges between 0 and 1 and increases with the vegetation cover. 

Therefore, a total of 20 polarimetric features were computed from the fully polarimetric 

data for the analysis carried out in this study. The list of polarimetric features used for 

analysis is shown in Table 4.2.  

 

Table 4.2 List of polarimetric features derived for analysis carried out in this study. 

Source Methods Feature name Code name

Fully polarimetric 
data 

Backscatter coefficients 

HH PLR_HH 

HV PLR_HV 

VH PLR_VH 

VV PLR_VV 

Cloude-Pottier decomposition 

Entropy PLR_H 

Anisotropy PLR_A 

Alpha angle  

Freeman-Durden decomposition 

Surface scattering f_odd 

Double bounce scattering f_double 

Volume scattering f_volume 

Yamaguchi decomposition 

Surface scattering y_odd 

Double bounce scattering y_double 

Volume scattering y_volume 

Helix scattering y_helix 

Total scattering power SPAN SPAN 

Backscatter coefficients measurements  
(Pauli Matrix) 

Surface scattering HH+VV 

Double bounce scattering HH-VV 

Volume scattering 2HV 

Backscatter coefficients measurements  Depolarization ratio HV/HH 

Radar Vegetation Index RVI RVI 

Dry-scene  
dual-polarization 

data 

Backscatter coefficients 
HH dFBD_HH 

HV dFBD_HV 

Cloude-Pottier decomposition 

Entropy dFBD_H 

Anisotropy dFBD_A 

Alpha angle dFBD  

Wet-scene  
dual-polarization 

data 

Backscatter coefficients 
HH wFBD_HH 

HV wFBD_HV 

Cloude-Pottier decomposition 

Entropy wFBD_H 

Anisotropy wFBD_A 

Alpha angle wFBD  
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4.2.5 Image classification  

To evaluate the performance of L-band ALOS PALSAR dual-polarization and fully 

polarimetric data in classifying tropical peatlands, polarimetric features derived by four 

combinations of data were used in this study to apply to the algorithm of decision tree 

classification: (i) the combination of the two scenes of dual-polarization data, (ii) the 

single scene of the fully polarimetric data, (iii) the combination of the two scenes of 

dual-polarization data and the single scene of the fully polarimetric data, and (iv) the 

combination of the two scenes of dual-polarization data, the single scene of the fully 

data were applied in this study to assess the capabilities of each type of data and their 

combinations in classifying tropical peatlands. Moreover, the integration of the 

Geographic Information System (GIS) data integration in the SAR-based tropical 

ta 

processing, which buffered the center line of the main river stream into three categories, 

Shimada 

et al. 2016a

estimating the peat depth as well as in discriminating spatial distributions of tropical 

peatlands.  

In this study, the Decision Tree (DT) classifier was used for classifying tropical 

peatlands. According to the concept of DT classification (Friedl and Bradley 1997), the 

DT is a procedure of classification that recursively partitions a set of data into smaller 

subdivisions based on a set of criteria determined at each branch in the tree. The DT 

classifier was characterized as strictly nonparametric and required no-assumptions 

regarding the distributions of the input data. Moreover, the design of classification is 

explicit and easy to understand. The main advantages of the DT classifier are its ability 

to handle complex relations among class properties, its computational speed, and its 

capability to handle data represented on different measurement scales (Pal and Mather 

2003). Thus, the DT is an efficient tool for land cover classification purposes (Mishra et 

al. 2011). Furthermore, the Distance Factor (DF) was used in this study to evaluate the 

effectiveness of a feature for separating the class pairs by calculating the distance 

between the different class mean values compared with the standard deviations. Hence, 
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if the distance between the different class mean values is large compared with the 

standard deviations, classes are said to be well separated following the concept of 

feature separation (Cumming and Van Zyl 1989). The expression for the DF is  

 , (Eq. 4.1) 

where  

the separation between classes i and j is represented by the value of DFij. Values of DFij 

of less than 0.8 are considered below average, between 0.8 and 1.5 average, and more 

than 2.0 close to the complete separation of class pairs (Chen et al. 2007). 

In this study, six classes were selected to represent the common land use/cover on the 

study area from the viewpoint of L-band SAR data. These classes are water, artificial, 

bareland with peat, bareland without peat, vegetation with peat, and vegetation without 

peat. Hence, to apply the concept of feature separation on the algorithm of the DT 

clas

th 

applied to the algorithm of the DT classification to classify each land use/cover class, as 

shown in Figure 4.3.  

 

 

Figure 4.3 The algorithm of the decision tree classification for tropical peatlands classification. 
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Thus, polarimetric features with a relatively high DF on each class pair were analyzed 

accuracy was assessed using the available testing points. Features that increase the 

accuracy of the classification results were then added to the algorithm and vice versa. 

The confusion matrix was used to perform the accuracy assessment on the classification 

y (PA), 

indicators were used to assess the quality of the classification results.  

 

4.3 Results and Discussion 

4.3.1  

Table 4.3 shows the separability of five class pairs by each polarimetric feature, as 

measured by the DF. An italic value indicates the low performance of a feature in 

separating class pairs, whereas a bold value illustrates the average performance. An 

underlined value indicates the excellent performance of a feature in separating class 

pairs that equates to a nearly complete separation of class pairs. The values of DF for all 

class pairs were quite varied, depending on the feature. In general, the DF derived by 

the fully polarimetric data tends to have a higher value than those derived by the 

dual-polarization data, particularly for class pairs 1 to 4. However, for the class pair 5, 

the DF derived by the fully polarimetric data was inferior to those derived by the 

dual-polarization data. In addition, the quality of DF for class pairs 4 and 5 generated by 

all polarimetric features was low. The low performance of DF occurred due to the 

highly overlapping mean and standard deviation values of land use/cover classes in the 

associated class pairs that corresponded to the stage of identifying the existence of 

tropical peatlands in a land use/cover class.  

 

4.3.2 Selected feature for classification 

4.3.2.1 Data combination (i)  

Table 4.4 shows the list of selected features for each combination of data. For 

dual-polarization data, four polarimetric features  dFBD_HV, wFBD_HV, wFBD_HH, 

and dFBD_HH  were selected in separating class pair 1. For class pair 2, two 

polarimetric features were selected, namely, wFBD_HH and dFBD_HH. A total of four 
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Table 4.3 Separability of five class pairs by each polarimetric feature. 

Source Code name 
Distance Factor (DF) of each class pair 

1 2 3 4 5 

Fully polarimetric data 

PLR_HH 0.73  2.30  0.58  0.32  0.19  

PLR_HV 1.27  1.68  0.97  0.22  0.07  
PLR_VH 1.26  1.68  0.94  0.19  0.13  

PLR_VV 0.77  2.37  0.27  0.32  0.18  

PLR_H 0.53  1.27  1.03  0.10  0.10  
PLR_A 1.79  0.47  0.58  0.03  0.11  

 0.15  1.73  0.76  0.12  0.15  
f_odd 0.10  2.47  0.22  0.01  0.06  

f_double 0.07  0.37  0.09  0.00  0.06  

f_volume 1.36  2.09  0.69  0.26  0.17  
y_odd 0.22  2.62  0.43  0.07  0.01  

y_double 0.01  0.99  0.14  0.01  0.09  
y_volume 1.38  2.09  0.74  0.23  0.15  

y_helix 0.70  1.24  0.12  0.18  0.08  
SPAN 1.02  2.96  0.02  0.16  0.20  

HH+VV 0.76  2.41  0.45  0.34  0.21  

HH-VV 0.10  0.11  0.45  0.01  0.04  
2HV 1.27  1.68  0.97  0.22  0.07  

HV/HH 0.03  0.42  0.08  0.06  0.22  
RVI 0.37  1.12  1.80  0.24  0.20  

Dry-scene  
dual-polarization data 

dFBD_HH 0.92  1.65  0.04  0.20  0.18  

dFBD_HV 1.30  1.35  0.58  0.24  0.15  
dFBD_H 0.35  0.93  0.63  0.07  0.02  

dFBD_A 0.31  0.96  0.65  0.09  0.00  
dFBD  0.23  0.85  0.62  0.08  0.00  

Wet-scene  
dual-polarization data 

wFBD_HH 0.94  1.80  0.05  0.26  0.29  

wFBD_HV 1.26  1.63  0.61  0.23  0.22  
wFBD_H 0.32  1.18  0.59  0.02  0.04  

wFBD_A 0.27  1.25  0.60  0.01  0.04  

wFBD  0.23  1.13  0.58  0.00  0.05  

 

polarimetric features were selected in separating class pair 3, i.e., dFBD_A, dFBD_H, 

wFBD_HV, and wFBD_A. In separating class pair 4, wFBD_HH and dFBD_HV were 

selected. For class pair 5, wFBD_HH and wFBD_HV were selected in the algorithm of 

the DT for tropical peatlands classification. Therefore, the polarimetric features chosen 

for dual-polarization data were mainly derived by the backscatter coefficient, whereas 

those derived by Cloude Pottier decomposition were selected only in class pair 3. This 

shows that the backscatter coefficient of the dual-polarization data was dominant among 

almost all land use/cover classes described in this study for the purpose of tropical 

peatlands classification.  
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Table 4.4 List of selected polarimetric features for each data combination. 

Class pair Combinations of data

i ii iii iv 

1 
dFBD_HV, 
wFBD_HV, 

wFBD_HH, and 
dFBD_HH 

y_volume and 
f_volume 

y_volume and 
f_volume 

y_volume and 
f_volume 

2 wFBD_HH and 
dFBD_HH 

SPAN and  
y_odd

SPAN and  
y_odd

SPAN and  
y_odd 

3 
dFBD_A,  
dFBD_H,  

wFBD_HV, and 
wFBD_A 

RVI RVI RVI 

4 wFBD_HH and 
dFBD_HV 

HH+VV,  
PLR_HH,  

PLR_VV, and 
f_volume 

HH+VV,  
PLR_HH,  
PLR_VV,  
f_volume,  

wFBD_HH and 
dFBD_HV 

HH+VV,  
PLR_HH,  
PLR_VV,  
f_volume, 

wFBD_HH, 
dFBD_HV, and 

5 wFBD_HH and 
wFBD_HV 

HH+VV,  
RVI, and  

SPAN

wFBD_HH and 
HV/HH 

wFBD_HH,  
HV/HH, and 

 

Thus, a total of five classification rules, separating five class pairs, were generated 

using training points based on the selected polarimetric features for tropical peatlands 

classification by means of data combination (i). The classification rules were developed 

using mean and standard deviation values of land use/cover classes for each selected 

polarimetric feature. These rules are listed as follows: 

(i) Rule 1 for separating classes in the class pair 1. 

 

(ii) Rule 2 for separating peat depth classes in the class pair 2.  

 

(iii) Rule 3 for separating peat depth classes in the class pair 3. 

 

  

(iv) Rule 4 for separating peat depth classes in the class pair 4. 
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(v) Rule 5 for separating peat depth classes in the class pair 5. 

  

These classification rules were then applied to the DT algorithm to obtain classification 

results of data combination (i). 

Moreover, selected features in separating class pairs 4 and 5 described important 

characteristics in identifying the existence of tropical peatlands as well as in 

understanding the seasonal variation of tropical peatlands, especially from the viewpoint 

of L-band SAR dual-polarization data. For class pair 4, in separating the classes 

- and 

wet-scene dual-polarization data were used. Nevertheless, only features derived by the 

wet-scene dual-

hese characteristics were obviously seen by the 

value of DF, as shown in Table 4.3, whereby the DF of selected features for class pair 4 

derived by dry- and wet-scene dual-polarization data was relatively high. However, for 

class pair 5, the DF of selected features derived by the wet-scene dual-polarization data 

was higher than the dry scene. Therefore, the existence of tropical peatlands in a land 

use/cover without the presence of vegetation, such as that in bareland, was not 

influenced by the seasonal condition as it generates a relatively similar response to 

backscatter coefficients derived by the wet- and dry-scene dual-polarization data. On the 

other hand, the existence of tropical peatlands in a land use/cover with the presence of 

vegetation (or below a vegetation cover) was influenced by the seasonal condition, 

whereby it was more sensitive to backscatter coefficients derived by the wet-scene 

dual-polarization data that was taken during the wet season. This finding was valuable 

in increasing the state of knowledge of tropical peatlands for classification, especially 

from the viewpoint of L-band SAR dual-polarization data.  

 

4.3.2.2 Data combination (ii) 

Regarding the fully polarimetric data, two polarimetric features were selected in 

separating class pair 1, y_volume and f_volume. To separate class pair 2, SPAN and 

y_odd were selected. On the other hand, the feature RVI was selected to separate class 

pair 3. A total of four features were selected in separating class pair 4, i.e., HH+VV, 

PLR_HH, PLR_VV, and f_volume. In separating class pair 5, three features  HH+VV, 
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RVI, and SPAN  were selected in the algorithm for tropical peatlands classification. 

Therefore, the selected polarimetric features for fully polarimetric data showed good 

complementarity between features derived by Freeman Durden decomposition, 

Yamaguchi decomposition, the RVI, the total scattering power, and the co-polarized 

backscatter coefficient measurements. However, polarimetric features derived by 

Cloude Pottier decomposition and cross-polarized backscatter coefficient 

measurements were not selected due to their low performance in separating class pairs, 

as they did not have any effect on increasing the accuracy of the classification results. 

This indicated that the fully polarimetric data had the potential to characterize land 

use/cover classes described in this study for the purpose of tropical peatlands 

classification. 

Thus, a total of five classification rules, separating five class pairs, were generated 

using training points based on the selected polarimetric features for tropical peatlands 

classification by means of data combination (ii). The classification rules were developed 

using mean and standard deviation values of land use/cover classes for each selected 

polarimetric feature. These rules are listed as follows: 

(i) Rule 1 for separating classes in the class pair 1. 

 

(ii) Rule 2 for separating peat depth classes in the class pair 2. 

 

(iii) Rule 3 for separating peat depth classes in the class pair 3. 

 

(iv) Rule 4 for separating peat depth classes in the class pair 4. 

PLR_VV) 

 

(v) Rule 5 for separating peat depth classes in the class pair 5. 

If (HH+VV

 

These classification rules were then applied to the DT algorithm to obtain classification 

results of data combination (ii). 

 

4.3.2.3 Data combination (iii) 

For the combination of dual-polarization and fully polarimetric data, the selected 
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polarimetric features in separating the first three class pairs (class pairs 1, 2, and 3) were 

the same features as those selected in the first three class pairs for the fully polarimetric 

data. Thus, two polarimetric features  y_volume and f_volume  were selected in 

separating class pair 1. For class pair 2, two polarimetric features were selected, namely, 

SPAN and y_odd. In separating class pair 3, the feature RVI was selected. However, to 

separate class pair 4, six features were selected, HH+VV, PLR_HH, PLR_VV, f_volume, 

wFBD_HH, and dFBD_HV. For class pair 5, wFBD_HH and the depolarization ratio 

were selected in the algorithm of the DT for tropical peatlands classification. Therefore, 

the selected polarimetric features for the combination of dual-polarization and fully 

polarimetric data indicated a dominance of features derived by the fully polarimetric 

data, especially those selected in the first three class pairs. Polarimetric features derived 

by the dual-polarization data were mainly selected in separating class pairs 4 and 5, 

which was the stage of identifying the existence of tropical peatlands in a land use/cover 

class. This showed that the dual-polarization data aided the fully polarimetric data in 

characterizing the existence of tropical peatlands in a land use/cover class.  

Thus, a total of five classification rules, separating five class pairs, were generated 

using training points based on the selected polarimetric features for tropical peatlands 

classification by means of data combination (iii). The classification rules were 

developed using mean and standard deviation values of land use/cover classes for each 

selected polarimetric feature. These rules are listed as follows: 

(i) Rule 1 for separating classes in the class pair 1. 

r 2. 

(ii) Rule 2 for separating peat depth classes in the class pair 2. 

 

(iii) Rule 3 for separating peat depth classes in the class pair 3. 

 

(iv) Rule 4 for separating peat depth classes in the class pair 4. 

 

 

(v) Rule 5 for separating peat depth classes in the class pair 5. 
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These classification rules were then applied to the DT algorithm to obtain classification 

results of data combination (iii). 

 

4.3.2.4 Data combination (iv) 

For the combination of dual-polarization data, fully polarimetric data, and the 

those selected in the combination of dual-polarization and fully polarimetric data for all 

ication. The integration 

GIS data integration in the SAR-based tropical peatlands classification. Therefore, in 

sized to produce better 

classification results along with the use of dual-polarization and fully polarimetric data 

in tropical peatlands classification.  

Thus, a total of five classification rules, separating five class pairs, were generated 

using training points based on the selected polarimetric features for tropical peatlands 

classification by means of data combination (iv). The classification rules were 

developed using mean and standard deviation values of land use/cover classes for each 

selected polarimetric feature. These rules are listed as follows:  

(i) Rule 1 for separating classes in the class pair 1. 

 

(ii) Rule 2 for separating peat depth classes in the class pair 2. 

 

(iii) Rule 3 for separating peat depth classes in the class pair 3. 

 

(iv) Rule 4 for separating peat depth classes in the class pair 4. 

 5.00) dB and (PLR

 

(v) Rule 5 for separating peat depth classes in the class pair 5. 

I
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These classification rules were then applied to the DT algorithm to obtain classification 

results of data combination (iv). 

 

4.3.3 Results of the image classification 

As presented in Figure 4.4, the results of tropical peatlands classification from four 

combinations of data were generated by means of the DT classifier. The classification 

results showed six land use/cover classes, i.e., water, artificial, bareland with peat, 

identified with the existence of tropical peatla

having no tropical peatlands. The classification results of data combinations (i), (ii), (iii), 

and (iv) had 53.6%, 40.4%, 50.9%, and 32.3% of the total area identified as having 

tropical peatlands, respectively. The results of tropical peatlands classification derived 

by the dual-polarization data generated the biggest area identified as having tropical 

peatlands, whereas those derived by the combination of dual-polarization data, fully 

area identified as having tropical peatlands. Thus, in this study, the dual-polarization 

data tended to generate more tropical peatlands area, whereas the fully polarimetric data 

was added to the algorithm of DT classification to ignore the existence of tropical 

peatlands in less than 2 km from the river stream, so that it influenced the classification 

results of data combination (iv) producing the smallest area of tropical peatlands.  

 

4.3.4 Accuracies of the image classification 

Table 4.5 shows the accuracy indicators of tropical peatlands classification results 

from four combinations of data by means of the DT classifier. Accuracy indicators were 

low for the classification results derived by the dual-polarization data, which also 

yielded the lowest OA and K of 55.0% and 0.39, respectively. In contrast, the accuracy 

indicators for the classification results generated by the fully polarimetric data produced 

better accuracy indicators than those produced by the dual-polarization data; the fully 

polarimetric data gave accuracies of 65.0% and 0.51 for OA and K, respectively.  
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Figure 4.4 Result of tropical peatlands classification for each combination of data: (a) data 

combination i, (b) data combination ii, (c) data combination iii, and (d) data combination iv. 
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Table 4.5 Accuracy indicators for tropical peatlands classification for each combination of data. 

Class name 

Combinations of data 

i ii iii iv 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Water 100.0  100.0  100.0  100.0  100.0  100.0  100.0  100.0  

Artificial 44.4 55.2 66.7  85.7  66.7  85.7  66.7  85.7  

Bareland with peat 46.4 41.6 75.4  64.2  71.0  71.0  66.7  93.9  

Bareland without peat 52.6 36.0 62.8  77.8  71.8  74.7  93.6  76.8  

Vegetation with peat 56.7 52.5 57.1  60.1  57.1  64.3  52.9  83.0  

Vegetation without peat 53.3 67.3 66.3  61.1  75.6  66.2  92.6  67.9  

OA (%) 55.0 65.0  69.0  76.0  

Kappa coefficient 0.39 0.51  0.57  0.66  

 

Significant increases in OA and K were obtained by the classification results derived 

by the combination of dual-polarization and fully polarimetric data; this combination 

yielded an OA of 69.0% and a K of 0.57. Thus, accuracy indicators were increased by 

applying the combination of dual-polarization and fully polarimetric data to the 

algorithm of DT classification for the SAR-based tropical peatlands classification. This 

combination showed that the complementarity of dual-polarization and fully 

polarimetric data produced higher accuracy than the single usage of each type of data 

for the purpose of tropical peatlands classification by means of the DT classifier. In 

rive

combination of dual-polarization data, fully polarimetric data, and the additional feature 

 

The integration of GIS data in the SAR-based tropical peatlands classification was 

found to be effective in improving the classification accuracy, whereas the feature 

calculate

the polarimetric features derived by dual-polarization and fully polarimetric data in 

classifying tropical peatlands and increased the accuracy indicators of the classification 

revealed to represent the actual distance of tropical peatlands to exist as measured from 

classification 

accuracy when integrated with the polarimetric features derived by the combination of 
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dual-polarization and fully polarimetric data by means of the DT classifier. The 

accuracy indicators derived by the combination of dual-polarization data, fully 

10% for OA and 15% for K over the best obtained OA and K derived by the SAR-based 

tropical peatlands classification using the DT classifier.  

 

4.4 Conclusion  

This study evaluated the performances of L-band ALOS PALSAR dual-polarization 

and fully polarimetric data for tropical peatlands classification in response to the scheme 

of the sustainable management of tropical peatlands, especially in the activity of 

mapping spatial distributions of tropical peatlands in Indonesia. There were several 

findings regarding the development of tropical peatlands classification using L-band 

SAR dual-polarization and fully polarimetric data. First, tropical peatlands is a complex 

ecosystem to be mapped, especially from the viewpoint of L-band SAR 

dual-polarization and fully polarimetric data, as they generated highly overlapping 

means and standard deviations values with no tropical peatlands areas. Thus, in this 

study, a strict algorithm was successfully applied by means of the DT classifier to 

classify tropical peatlands involving the use of L-band ALOS PALSAR 

dual-polarization and fully polarimetric data. Second, the seasonal variation of tropical 

peatlands was found, in which the existence of tropical peatlands in a land use/cover 

without the presence of vegetation was not influenced by the seasonal condition. In 

contrast, the existence of tropical peatlands in a land use/cover with the presence of 

vegetation (or below a vegetation cover) was influenced by the seasonal condition. 

Third, the classification results of the dual-polarization data were inferior to the fully 

polarimetric data, indicating that the fully polarimetric data were more suitable for 

classifying tropical peatlands. Fourth, the integration of GIS data in the SAR-based 

tropical peatlands classification was found to be effective in improving the classification 

classification accuracy when integrated with the polarimetric features derived by the 

combination of dual-polarization and fully polarimetric data by means of the DT 

classifier. The results and findings presented in this study could aid in improving the 

state of knowledge in tropical peatlands classification, especially when involving the 

use of L-band SAR dual-polarization and fully polarimetric data.  
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Chapter 5  

C-band Dual-polarization Synthetic Aperture Radar Application for 

Peat Depth Classification: A Case Study in Siak Regency, Riau 

Province, Indonesia 

 

5.1 Introduction 

The importance of tropical peatlands as a long-term carbon sinks and stores, as well 

as their tendency to become a short-term source of carbon emissions, has been receiving 

tremendous interest during the past two decades (Osaki et al. 2016; Miettinen et al. 

2017). Thus, there is an urgent need to quantify the current carbon status of tropical 

peatlands to understand their role in relation to the global carbon cycle (Hirano et al. 

2016). It is also important to obtain information about peat depth distribution to be able 

to accurately estimate carbon stock within tropical peatlands, further aiding in 

understanding the role of tropical peatlands in global environmental change processes 

(Shimada et al. 2016a). In general, the distribution of peat depth can be obtained by 

doing manual sampling using a peat auger, an example of in situ measurements (Agus et 

al. 2011). Nevertheless, this method presents a considerable challenge because 

conducting extensive in situ measurements at regional, national and global scales is not 

realistic (Jaenicke et al. 2008). Knowledge of peat depth can sometimes be correlated 

with properties that are discernible by using a Remote Sensing (RS) application 

(Lawson et al. 2015). However, little is known regarding the performance of RS 

applications for classifying peat depth distributions, especially in the tropics.  

RS applications can serve as advantageous tools for tropical peatlands monitoring 

activities, such as peat depth classification, due to periodic monitoring at various spatial 

and temporal scales, particularly when combined with field measurement data (Shimada 

et al. 2016a). Furthermore, the recent development of synthetic aperture radar 

(SAR)-based RS satellites has introduced a new prospect that allows continuous 

monitoring and cloud-free observations in humid tropical regions (Kuntz 2010). 

Recently, the use of SAR-based RS applications for peatlands monitoring activities has 

been increasing rapidly, along with the growing availability of SAR data sets. A 

previous study evaluated the potential of X-band SAR dual-polarization data and fusion 
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images with optical data to characterize different peat depths categories in Central 

Kalimantan, Indonesia (Wijaya et al. 2010). Another report demonstrated the use of 

L-band Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR 

(PALSAR) for wide-area mapping of tropical forest and land cover, including several 

categories for tropical peatlands on Borneo Island (Hoekman et al. 2010). Other reports 

have evaluated the performance of L-band ALOS PALSAR for peatlands detection and 

delineation in the boreal regions (Antropov et al. 2012; Antropov et al. 2014). A 

previous report also applied the L-band ALOS PALSAR to examine a radar scattering 

mechanism on tropical peatlands in Central Kalimantan, Indonesia (Watanabe et al. 

2011). Another study examined the combination of L-band ALOS PALSAR data, 

optical data and digital elevation model (DEM)-derived data for mapping the extent of 

tropical peatlands in Cuvette Centrale, Congo Basin (Dargie et al. 2017). Despite all the 

previous research, detailed information is lacking on the potential C-band SAR 

dual-polarization data have for classifying peat depth distribution within the tropical 

peatlands.  

The C-band Sentinel-1 data provided by the European Space Agency (ESA) are of 

interest because they are freely available and have global coverage. The Sentinel-1 

mission encompasses a constellation of two polar-orbiting satellites (Sentinel-1A and 

Sentinel-1B). This data collection method operates at a center frequency of 5.405 GHz 

and includes two polarization channels  vertical transmit-horizontal receive (VH) and 

vertical transmit-vertical receive (VV)  with a very short repeat cycle (12 days with 

one satellite and 6 days with two) and rapid product delivery. These characteristics 

make C-band Sentinel-1 data particularly promising for use in tropical peatlands 

monitoring activity, particularly for classifying peat depth distributions. Therefore, in 

this study, the potential of C-band Sentinel-1 data was evaluated for peat depth 

classification on oil palm plantations in Siak Regency, Riau Province, Indonesia. 

Particularly, features derived after the ground-range radar cross section (sigma-naught 
0) and slant-range perpendicular radar cross section (gamma- 0) for both 

polarization channels of C-band Sentinel-1 data were compared and evaluated, monthly 

during 2015, for discriminating peat depth classes using the Decision Tree (DT) 

classifier. In addition, the seasonal variation of peat depth classes, from the viewpoint of 

C-band SAR dual-polarization data, was analyzed for better understanding of the 

relationship between peat depth classification and seasonal effects. The results and 
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findings of this study could aid in increasing the foundation of knowledge regarding 

peat depth classification, involving the use of C-band SAR dual-polarization data, to 

improve the sustainable management of tropical peatlands.  

 

5.2 Materials 

5.2.1 Study area 

In Indonesia, there are 14.91 million ha of tropical peatlands that distributed along the 

low altitudes in the coastal and sub-coastal areas of Sumatra (6.44 million ha, 43%), 

Kalimantan (4.78 million ha, 32%) and Papua (3.69 million ha, 25%) (Ritung et al. 

2012). Riau Province in Sumatra dominates the provincial level of tropical peatlands 

distribution, consisting of around 3.86 million ha (26%). This study considers the area 

of Siak Regency, a rapidly developing region in the central part of Riau Province, where 

the tropical peatlands have been intensively converted into mostly oil palm and timber 

plantations over the last two decades (Sabiham and Kartawisastra 2012; Irawan and 

Tacconi 2016).  

In general, this area has a flat topography and low altitude ranging from 2 to 10 m 

above sea level. The average temperature of this area is around 26.2oC per year, with an 

annual rainfall that varies from 2,200 to 2,600 mm per year. However, in 2015, this area 

was affected by a very strong El Niño, leading to rainfall anomalies and a more severe 

dry season (Englhart et al. 2016).  

 

 
Figure 5.1 Map of Indonesia showing the location of the study areas in Siak regency, Riau 

Province, Indonesia. 
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Four study areas, 1 × 1 km in size, were selected to represent the condition of tropical 

peatlands in Siak Regency, Riau Province, Indonesia (Figure 5.1). These study areas are 

situated in large-scale oil palm plantations with similar types of growing stages. 

Furthermore, to represent peat depth categories, each study area is located on distinct 

types of peat depth classes as categorized by the Indonesian Agency for Agricultural 

Research and Development (IAARD) (Ritung et al. 2012). Thus, study area 1 is situated 

in a shallow-peat class (0.5 to 1 m of peat depth), study area 2 is situated in a 

medium-peat class (1 to 2 m of peat depth), study area 3 is situated in a deep-peat class 

(2 to 4 m of peat depth), and study area 4 is situated in a very deep-peat class (more than 

4 m of peat depth).  

 

5.2.2 Data 

In this study, there were 12 scenes of C-band Sentinel-1 data, acquired between 

January and December 2015, served as 12-months observations. Thus, each scene, with 

a specific acquisition date, was used to represent a monthly observation to provide 

monthly analyses. These scenes were used as the primary data. The C-band Sentinel-1 

data were collected using the settings of level-1 Ground Range Detected (GRD) and the 

acquisition mode of Interferometric Wide (IW) swath (Dimov et al. 2016). Moreover, 

Tropical Rainfall Measuring Mission (TRMM) 3B43 version 7 data were used to 

calculate the amount of monthly rainfall in the study areas (Huffman et al. 2010). 

Landsat 8 Operational Land Imager (OLI) data and high-resolution satellite images on 

Google Earth were used to obtain basic information of the study areas by means of 

visual interpretation and to select training and testing points for DT classification.  

Thus, a total of 600 points (150 points for each study area) were derived for training 

the algorithm (400 points) and testing the accuracy of the classification results (200 

points) (Figure 5.2). Each point was located within a 100 × 100 m mesh, with manual 

adjustments made to avoid points situated on plantation roads. These points represented 

the detected pixels in the C-band SAR dual-polarization imagery. In addition, an 

existing peat depth and distribution map, provided by the IAARD, was used as 

reference map. The list of data used for analyses is shown in Table 5.1.  
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Figure 5.2 Landsat 8 OLI imageries of the study area 1 (upper left), study area 2 (upper right), 

study area 3 (lower left), and study area 4 (lower right), showing the spatial distribution of 

training and testing points. 

 

5.3 Methodology 

5.3.1 Image processing steps 

The C-band Sentinel-1 data were imported into the European Space Agency (ESA) 

Sentinel Application Platform (SNAP) software for image processing (Luis et al. 2017). 

First, the data were radiometrically calibrated and converted from digital pixel values to 

radiometrically-calibrated backscatter by means of a calibration vector provided in the 
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Table 5.1 List of data used for analyses carried out in this study. 

Data usage Source Acquisition date 

Primary data 
C-band Sentinel-1 data 

(Sentinel-1A satellite, dual-polarization) 

Jan. 3, 2015 
Feb. 19, 2015 
Mar. 4, 2015 
Apr. 21, 2015 
May 15, 2015 
Jun. 8, 2015 
Jul. 26, 2015 

Aug. 18, 2015 
Sep. 11, 2015 
Oct. 6, 2015 

Nov. 11, 2015 
Dec. 29, 2015 

Secondary data 

TRMM 3B43 version 7 
(Monthly 0.25 x 0.25 degree, 

 mm/hour of rainfall rate) 

Monthly data between 
January to December 2015 

Landsat 8 OLI 
Jul. 10, 2015 
Jul. 26, 2015 
Aug. 2, 2015 

High-resolution satellite images accessed 
on Google Earth 

Jul. 25, 2014 
Jul. 5, 2015 

Aug. 26, 2016 

 

data product. In this study, the C-band Sentinel-1 data were converted to ground-range 

radar cross section (sigma- 0) and slant-range perpendicular radar cross 

section (gamma- 0) values, in decibel units (dB), for both channels of 
0 0 are measures used to express radar 

0 is defined as the radar cross section per unit area 

in the ground- 0 is defined as radar cross section per unit area of the 

incident wavefront (perpendicular to the slant-range), to minimize the incidence angle 

dependency of the radar backscatter for a distributed target (Shimada 2010; El-Darymli 

et al. 2014). Furthermore, the data were terrain corrected using Shuttle Radar 

Topography Mission (SRTM) DEM 3 arc-seconds (Farr et al. 2007) and geocoded to the 

Universal Transverse Mercator (UTM) zone 48 North map projection with pixel spacing 

of 10×10 m. Speckle noise was reduced by applying a 7×7 window size Lee filter (Lee 

and Pottier 2009). In addition, to provide rainfall information for the study areas, the 

precipitation layers of TRMM 3B43 version 7 data acquired between January and 

December 2015 were extracted. Rainfall rate conversions from mm/hour to mm/month 

were calculated. The data were then subset into the boundaries of the study areas so that 

monthly rainfall information could be generated for the analyses carried out in this study. 

The methodological flow chart of the present study is provided in Appendix 8. 
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5.3.2 Feature description 
0 0 images, for both polarization channels, derived using the 

C-band Sentinel-1 data, were considered as features. To allow for monthly analysis, 
0 0 image for a particular polarization channel on a specific acquisition date 

0 image for the VH polarization channel acquired 

on January 3, 2015 was considered as one feature and coded as sVH0 0 image for 

the VV polarization channel acquired on November 11, 2015 was considered as one 

feature and coded as gVV11). Thus, a total of 48 features were derived, using the 

C-band Sentinel-1 data, for the analyses carried out in this study. The list of features 

used for analyses is shown in Table 5.2.  

 

Table 5.2 List of features used for analyses, derived using sigma naught ( 0) and gamma naught 
0) images, for both polarization channels. 

Polarization 

channel 
Acquisition date 

Sigma-naught  

code name 

Gamma-naught  

code name 

VH 

Jan. 3, 2015 sVH01 gVH01 

Feb. 19, 2015 sVH02 gVH02 

Mar. 4, 2015 sVH03 gVH03 

Apr. 21, 2015 sVH04 gVH04 

May 15, 2015 sVH05 gVH05 

Jun. 8, 2015 sVH06 gVH06 

Jul. 26, 2015 sVH07 gVH07 

Aug. 18, 2015 sVH08 gVH08 

Sep. 11, 2015 sVH09 gVH09 

Oct. 6, 2015 sVH10 gVH10 

Nov. 11, 2015 sVH11 gVH11 

Dec. 29, 2015 sVH12 gVH12 

VV 

Jan. 3, 2015 sVV01 gVV01 

Feb. 19, 2015 sVV02 gVV02 

Mar. 4, 2015 sVV03 gVV03 

Apr. 21, 2015 sVV04 gVV04 

May 15, 2015 sVV05 gVV05 

Jun. 8, 2015 sVV06 gVV06 

Jul. 26, 2015 sVV07 gVV07 

Aug. 18, 2015 sVV08 gVV08 

Sep. 11, 2015 sVV09 gVV09 

Oct. 6, 2015 sVV10 gVV10 

Nov. 11, 2015 sVV11 gVV11 

Dec. 29, 2015 sVV12 gVV12 
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5.3.3 Decision tree (DT) classification 

To classify the peat depth classes using C-band Sentinel-1 data, DT classifier was 

used due to its ability to handle complex relations among class properties, its 

computational efficiency and its conceptual simplicity (Friedl and Bradley 1997). DT is 

a classification procedure that recursively separates a set of data into smaller 

subcategories based on a set of rules determined at each branch in the tree. DT classifier 

requires no assumptions regarding the distributions of input data, making it suitable for 

classifying SAR data (Simard et al. 2000). Furthermore, DT algorithm diagrams are 

explicit and easy to understand, particularly when evaluating feature contributions and 

relations in a classification procedure (Simard et al. 2002).  

 

5.3.4 Distance factor (DF) extraction 

In this study, the Distance Factor (DF) was generated to assess the effectiveness of a 

feature for separating classes, particularly on DT classification. The DF measures the 

distance between the different class mean values compared to the standard deviations. 

Thus, if a DF is large, classes are said to be well-separated, according to the concept of 

feature separation (Cumming and Van Zyl 1989). The equation of the DF is defined in 

Eq. 4.1. The performance of the separation between classes i and j is represented by the 

value DFij. A higher DFij means that a feature has better performance separating the 

associate class pairs (Chen et al. 2007). Thus, in this study, features that yielded the 

highest DF value on each class pair for each polarization channel were analyzed and 

applied to the DT algorithm.  

In the present study, to apply the concept of feature separation on the DT algorithm, 

three combinations of class pairs were specified (i.e., (A -

- - -

- - -

applied to the DT algorithm to identify each peat depth class. In addition, the selected 

features for each class pair were analyzed to understand the effect seasonal variation has 

upon peat depth classifications. Hence, the monthly rainfall information, derived from 

the TRMM 3B43 version 7 data, was used for seasonal analysis purposes.  

 

5.3.5 Accuracy assessment 

An accuracy assessment was performed for the classification results using a 
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confusion matrix generated by testing points (Congalton 1991). Thus, accuracy 

Accuracy (

coefficient (K)). The PA and UA represent the measures of omission and commission 

error for each class, respectively. The OA was computed by creating a ratio of the total 

number of correct pixels to the total number of pixels in the confusion matrix, which 

correspond to the correctly classified areas of the classified image. Last, the K describes 

the degree of matching between the reference data set and the classification.  

 

5.4 Results and discussion 

5.4.1 Comparison of sigma-naught and gamma naught features 

Table 5.3 0 0 features, for 

both polarization channels. The values in bold indicate the highest DF values in each 

category. Generally, the DF values of class pair (A) were varied, depending on the 
0

VH 0
VV in June) 

0
VH 0

VV features, 

respectively. On the other hand, 0
VH 0

VV in June) 
0

VH 0
VV features, 

respectively.  
0 0 

features, for both 0 features yielded much 

higher DF values for class pair (A), for both polarization channels, than those produced 
0 0 features, the highest DF values of class pair (A) increased 

as much as 11.5% and 13.3% for VH and VV polarizations, respectively. Hence, in this 
0 features were used for developing a methodology for classifying peat depth 

due to the features having better performance in discriminating peat depth classes.  

 

5.4.2 Selected features for the classification 

Table 5.4 0 features, for both 

polarization channels. The values in bold indicate the highest DF values in each 

category. The highest values were selected to be analyzed and applied to the DT 
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Table 5.3 The distance factor (DF) values for class pair (A), derived using sigma naught ( 0) 
0) features, for both polarization channels. 

Feature Class pair (A) 
Polarization channel Acquisition date Sigma naught  Gamma naught 

VH 

Jan. 3, 2015 0.18  0.12  
Feb. 19, 2015 0.51  0.44  
Mar. 4, 2015 0.44  0.50  
Apr. 21, 2015 0.05  0.01  
May 15, 2015 0.10  0.04  
Jun. 8, 2015 0.52  0.58  
Jul. 26, 2015 0.41  0.35  

Aug. 18, 2015 0.15  0.08  
Sep. 11, 2015 0.22  0.15  
Oct. 6, 2015 0.11  0.17  

Nov. 11, 2015 0.06  0.13  
Dec. 29, 2015 0.04  0.09  

VV 

Jan. 3, 2015 0.06  0.12  
Feb. 19, 2015 0.40  0.33  
Mar. 4, 2015 0.41  0.46  
Apr. 21, 2015 0.19  0.25  
May 15, 2015 0.03  0.02  
Jun. 8, 2015 0.45  0.51  
Jul. 26, 2015 0.04  0.11  

Aug. 18, 2015 0.31  0.24  
Sep. 11, 2015 0.32  0.25  
Oct. 6, 2015 0.32  0.37  

Nov. 11, 2015 0.09  0.15  
Dec. 29, 2015 0.00  0.07  

 

algorithm. In general, the DF values for all class pairs varied, depending on the features 

used to derive them. For class pair (A), as 0
VH in June) 

0
VV in June) features yielded the highest DF values for VH and VV 

polarization, respectively. On the other hand, fo 0
VH in 

0
VV in April) features produced the highest DF values for VH and 

VV polarization, respectively. Furthermore, for class p 0
VH in June) 

0
VV in September) features generated the highest DF values for VH and 

VV polarization, respectively. These features were selected and applied to the DT 

algorithm for classifying peat depth classes.  

In addition, by examining the highest DF v 0 
0

VH features produced much 
0

VV 0
VH features 

yielded a better performance in discriminating peat depth classes. However, 
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Table 5.4 The distance factor (DF) values for all class pairs, derived using gamma- 0) 

features, for both polarization channels. 

Feature Class pair 

Polarization channel Code name (A) (B) (C) 

VH 

gVH01 0.12  0.23  0.18  
gVH02 0.44  0.22  0.31  
gVH03 0.50  0.75  0.08  
gVH04 0.01  0.28  0.59  
gVH05 0.04  0.60  0.15  
gVH06 0.58  0.05  0.60  
gVH07 0.35  0.34  0.43  
gVH08 0.08  0.48  0.20  
gVH09 0.15  0.40  0.18  
gVH10 0.17  0.27  0.07  
gVH11 0.13  0.07  0.41  
gVH12 0.09  0.13  0.57  

VV 

gVV01 0.12  0.34  0.28  
gVV02 0.33  0.48  0.44  
gVV03 0.46  0.62  0.55  
gVV04 0.25  0.71  0.04  
gVV05 0.02  0.65  0.42  
gVV06 0.51  0.38  0.05  
gVV07 0.11  0.38  0.29  
gVV08 0.24  0.50  0.51  
gVV09 0.25  0.48  0.56  
gVV10 0.37  0.30  0.48  
gVV11 0.15  0.36  0.12  
gVV12 0.07  0.28  0.07  

 
0 features that obtained the highest DF values for both polarization 

channels were applied to the DT algorithm. Moreover, among all the class pairs, class 

pair (B) yielded the highest DF values for both polarization channels, indicating that the 

mean and standard deviation values of the shallow- and medium-peat classes 

represented in class pair (B) overlapped less, obtaining a higher DF values than those 

derived in the other class pairs.  

 

5.4.3 Seasonal variation of the selected features 

To understand the effect of seasonal variation on the selected features for peat depth 

classification, monthly rainfall information derived from the TRMM 3B43 version 7 

data was used for seasonal analysis purposes. In 2015, a year with a very strong El Niño, 

the annual rainfall was as low as 1,992 mm, with an average monthly rainfall of 166 

mm. For the seasonal analyses carried out in this study, months with below average 
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rainfall were said to be 

(149 mm/month), February (141 mm/month), May (146 mm/month), June (119 

mm/month), July (46mm/month), September (52mm/month), and October 

(78mm/month), whereas the much rain months are March (269 mm/month), August 

(222 mm/month), November (330 mm/month), and December (254 mm/month).  
0 0), features acquired in June yielded the 

highest DF value for both polarization channels. Thus, for the initial separation of peat 

depth classes represented in class pair (A), features derived in the less rain months were 

prominent. In contrast, for class pair (B), features acquired in March and April produced 

the highest DF value for VH and VV polarization, respectively. Hence, for more 

detailed separation of peat depth classes, (i.e., separating the shallow- and medium-peat 

classes) features derived in the much rain months were suitable. On the other hand, for 

class pair (C), features acquired in June and September generated the highest DF value 

for VH and VV polarization, respectively. Therefore, features derived in the less rain 

months were suitable for separating the deep- and very deep-peat classes. In this study, 

it was discovered that seasonal variation influenced feature selection for peat depth 

classification, particularly when analyzing C-band SAR dual-polarization data.  

 

5.4.4 Results of the classification 
0

VV in June) and 
0

VV in June), for separating classes in the class pair (A). Subsequently, the 
0

VH 0
VV in April) were selected for discriminating peat 

0
VH in June) and gVV09 

0
VV in September) were selected for separating peat depth classes in the class pair (C). 

Thus, a total of three classification rules, separating three class pairs, were generated 

using training points based on the selected features for peat depth classification. The 

classification rules were developed using mean and standard deviation values of peat 

depth classes for each selected feature. These rules are listed as follows:  

(i) Rule 1 for separating classes in the class pair (A). 
0

VH in Ju 0
VV 

Then Class pair (B). 

(ii) Rule 2 for separating peat depth classes in the class pair (B). 
0

VH in Mar 0
VV 
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dB, Then Shallow peat. 

(iii) Rule 3 for separating peat depth classes in the class pair (C). 
0

VH in Ju 0
VV 

 

These classification rules were then applied to the DT algorithm to obtain 

classification results. The classification rules and DT algorithm diagram developed in 

this study are shown in Figure 5.3. Afterwards, as shown in Figure 5.4, results of the 

peat depth classification of all study areas were successfully generated by means of DT 

classification. These results presented four peat depth classes (i.e., shallow peat (0.5 to 1 

m of peat depth), medium peat (1 to 2 m of peat depth), deep peat (2 to 4 m of peat 

depth), and very-deep peat (more than 4 m of peat depth).  

 

 

Figure 5.3 The classification rules and the decision tree (DT) algorithm diagram developed in 

this study. 

 

In addition, Table 5.5 shows the pixel percentage of each peat depth class calculated 

in each study area. Thus, by comparing the actual peat depth condition of each study 

area and the pixel percentage of peat depth classes computed on the associated study 

area, it was found that the developed methodology was always successful in matching 

the actual peat depth condition with the highest pixel percentage of peat depth classes 

produced. Hence, in study area 1, an area situated in shallow peat, the highest pixel 

percentage (56.37%) was yielded for the shallow-peat class. Subsequently, in study area 

2, an area situated in medium peat, the highest pixel percentage (43.17%) was produced 

for the medium-peat class. Next, in study area 3, an area situated in deep peat, the 

highest pixel percentage (48.42%) was generated for the deep-peat class. Last, in study  
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Figure 5.4 The result of the peat depth classification of (a) study area 1, (b) study area 2, (c) 

study area 3, and (d) study area 4. 

 

area 4, an area situated in very deep peat, the highest pixel percentage (70.76%) was 

yielded for the very deep-peat class. Furthermore, the best performance of the 

developed methodology was found in very deep-peat areas, represented in study area 4, 

as the methodology generated much higher pixel percentages of peat depth classes that 

matched with actual peat depth conditions, compared to those derived in other study 

areas. 
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Table 5.5 The pixel percentage of each peat depth class calculated in each study area. The 

values in bold indicate the highest pixel percentage of peat depth classes produced on each 

study area. 

Study area 
Pixel percentage (%) 

Shallow peat Medium peat Deep peat Very-deep peat 

1 56.37  18.45  14.81 10.37 

2 11.74  43.17  31.81 13.28 

3 2.82  18.42  48.42 30.34 

4 1.84  13.44  13.96 70.76 

 

5.4.5 Accuracies of the classification 

Table 5.6 shows the confusion matrix and accuracy indicators for peat depth 

classifications by means of DT classification. The accuracy assessment was conducted 

by using the testing points situated in the study areas, evaluating the performance of the 

developed peat depth classifications method. Thus, the very deep-peat class obtained the 

best accuracy, with 76% and 67.86%, PA and UA, respectively, followed by the 

shallow-peat class that yielded a PA of 64% and UA of 80%. Subsequently, the 

deep-peat class produced a PA of 58% and UA of 59.18%, whereas the medium-peat 

class yielded the lowest PA and UA, of 54% and 49.09%, respectively. This result 

showed that the C-band SAR dual-polarization data have potential for classifying peat 

depth classes, particularly on oil palm plantations, due to its ability to produce the best 

accuracy for the very deep-peat class that is difficult to be distinguished among peat 

depth classes (Shimada et al. 2016a). In addition, the developed methodology gave 

accuracies of 63% and 0.51, for OA and K, respectively. This value of K was considered 

as a moderate agreement of a classification result (Viera and Garret 2005). Furthermore, 

the accuracy assessment result agreed with the analysis result for the pixel percentage of 

peat depth classes generated on each study area as presented in Sub-subsection 5.4.4, 

whereby the developed methodology consistently gave the best performance for the 

very deep-peat areas.  

 

5.5 Conclusion  

This study evaluated the potential of C-band Sentinel-1 data for peat depth 

classification on oil palm plantations, by using a SAR-based RS application, in response 

to the emerging tropical peatlands monitoring activities. Several findings were obtained  
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Table 5.6 The confusion matrix and accuracy indicators for peat depth classifications using the 

decision tree (DT) classification. 

Reference 

Total 
PA 

(%) 

UA 

(%) Class 
Shallow 

peat 

Medium 

peat 

Deep  

peat 

Very-deep 

peat 

Shallow peat 32 7 1 0 40 64.00 80.00 

Medium peat 11 27 11 6 55 54.00 49.09 

Deep peat 3 11 29 6 49 58.00 59.18 

Very-deep peat 4 5 9 38 56 76.00 67.86 

Total 50 50 50 50 200   

OA (%) 63.00    

Kappa 

coefficient 
0.51    

 

relating to the development of peat depth classification using C-band SAR 

dual- 0 features yielded better 

performance in discriminating peat depth classes. By comparing the highest DF values 

of class pair (A) 0 0 features, for both polarization channels, it was 
0 features yielded much higher DF values for class pair (A), for both 

0 0 features, 

the DF values of class pair (A) increased as much as 11.5% and 13.3% for VH and VV 

polarizations, respectively. Second, it was discovered that seasonal variation was 
0

VH 0
VV, in the 

much rain months, were selected for separating the shallow- and medium-peat classes in 
0

VH 0
VV, in the less rain months, were selected for 

discriminating the deep- and very deep-peat classes in class pair (C). Third, the 

developed methodology gave the best accuracy for the very deep-peat class, with 76% 

by the shallow-peat class that yielded a PA of 64% and UA of 80%. Subsequently, the 

deep-peat class produced a PA of 58% and UA of 59.18%, whereas the medium-peat 

class yielded the lowest PA and UA, of 54% and 49.09%, respectively. Moreover, it was 

discovered that the developed methodology was always successful in matching the 

actual peat depth condition with the highest pixel percentage of peat depth classes 
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generated. Furthermore, accuracy assessment results agreed with the analysis results for 

the pixel percentage of peat depth classes produced in each study area, whereby the 

developed methodology was consistent in providing the best performance for very 

deep-peat areas. The results and findings in this study show that the C-band Sentinel-1 

data are suitable for classifying peat depth classes, particularly on oil palm plantations, 

and might serve as an efficient tool in peat depth classification used for sustainable 

management of tropical peatlands. 
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Chapter 6  

General Discussion and Recommendation 

 

6.1 Discussion and conclusion 

The present study has investigated the performances of SAR-based RS applications 

for tropical peatlands monitoring activity as an initial response to actualize the 

sustainable management principles and practices of tropical peatlands, particularly in 

Indonesia where the largest portion of the tropical peatlands is located. This study was 

addressed to provide a comprehensive understanding in connection with the utilization 

of potential SAR data (i.e., L-band ALOS PALSAR and C-band Sentinel-1 data) to 

improve the foundation of knowledge regarding tropical peatlands monitoring activity 

in Indonesia, especially for use in tropical peatlands identification and classification, as 

well as in peat depth classification. Thus, the primary objectives of the present study are 

listed as follows: 

1. to explore the ability of L-band ALOS PALSAR fully polarimetric data for tropical 

peatlands identification,  

2. to evaluate the performance of L-band ALOS PALSAR dual-polarization and fully 

polarimetric data for tropical peatlands classification, and  

3. to investigate the potential of C-band Sentinel-1 data for peat depth classification,  

in response to the emerging SAR-based RS applications for tropical peatlands 

monitoring activity. 

To obtain the first primary objective, the first topic of this study (as discussed in 

Chapter 3) has been focused on two specific objectives. The first specific objective, 

associated with the first topic of this study, was to explore the characteristic of tropical 

peatlands from the viewpoint of L-band ALOS PALSAR fully polarimetric data. The 

present study showed that the surface and volume scattering were dominant for 

characterizing tropical peatlands, particularly those situated in Central Kalimantan, 

Indonesia. Hence, the presence of sparse to medium vegetation cover indicates that 

tropical peatlands generated both surface scattering and volume scattering as the 

dominant scattering mechanisms. Moreover, a relationship between the radar vegetation 

index (RVI) and tropical peatlands was discovered. These particular areas of tropical 

peatlands tend to have a specific value of the RVI, and the average RVI of tropical 
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peatlands is lower than that in other areas.  

Afterwards, the second specific objective, associated with the first topic of this study, 

was to develop methodology for tropical peatlands identification using L-band ALOS 

PALSAR fully polarimetric data. In this study, a methodology has been developed to 

identify tropical peatlands using L-band ALOS PALSAR fully polarimetric data. 

Overall, the combination of classes derived from the unsupervised classification of 

polarimetric features of Freeman-Durden decomposition, integrated with the broad 

interval class of RVI that represents the amount of vegetation cover in the scattering 

mechanisms, successfully identified tropical peatlands. Subsequently, the tropical 

peatlands identified in the 

77.6% and 76.0% for PA and UA, respectively. In addition, tropical peatlands 

identification maps for both study areas were established using the developed 

methodology. These results indicate that L-band SAR fully polarimetric data is 

advantageous for monitoring tropical peatlands, particularly in humid tropical regions 

such as in Indonesia. 

To obtain the second primary objective, the second topic of this study (as reported in 

Chapter 4) has been concentrated on two specific objectives. The first specific objective, 

associated with the second topic of this study, was to develop methodology for tropical 

peatlands classification by means of four combinations of L-band ALOS PALSAR data: 

(i) the combination of two scenes of dual-polarization data, (ii) the single scene of fully 

polarimetric data, (iii) the combination of two scenes of dual-polarization data and the 

single scene of the fully polarimetric data, and (iv) the combination of two scenes of 

dual-polarization data, the single scene of the fully polarimetric data, and the 

additional topographic- Thus, for the combination of 

two scenes of dual-polarization data, the polarimetric features chosen for these data 

were mainly derived by backscatter coefficients, whereas those derived by Cloude

This shows that backscatter coefficients of the dual-polarization data were dominant 

among almost all land use/cover classes described in this study for the purpose of 

tropical peatlands classification. For the single scene of fully polarimetric data, a good 

complementarity was shown between polarimetric features derived by Freeman Durden 
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decomposition, Yamaguchi decomposition, the RVI, the total scattering power, and the 

co-polarized backscatter coefficient measurements. However, polarimetric features 

derived by Cloude Pottier decomposition and cross-polarized backscatter coefficient 

measurements were not selected due to their low performances in separating class pairs, 

as well as they did not have any effect on increasing the accuracy of the classification 

results. This indicated that the fully polarimetric data had the potential to characterize 

land use/cover classes described in this study for the purpose of tropical peatlands 

classification. For the combination of two scenes of dual-polarization data and the 

single scene of the fully polarimetric data, the selected polarimetric features for the 

combination of dual-polarization and fully polarimetric data indicated a dominance of 

features derived by the fully polarimetric data, especially those selected in the first three 

class pairs. Polarimetric features derived by the dual-polarization data were mainly 

identifying the existence of tropical peatlands in a land use/cover class. This showed 

that the dual-polarization data aided the fully polarimetric data in characterizing the 

existence of tropical peatlands in a land use/cover class. Lastly, for the combination of 

two scenes of dual-polarization data, the single scene of the fully polarimetric data, and 

the additional topographic-  

features were identical to those selected in the combination of dual-polarization and 

separating class pairs 4 and 5. In this study

was meant to evaluate the effectiveness of GIS data integration in the SAR-based 

hypothesized to produce better classification results along with the use of 

dual-polarization and fully polarimetric data in tropical peatlands classification.  

Subsequently, the second specific objective, associated with the second topic of this 

study, was to compare and investigate the performance of L-band ALOS PALSAR data 

for tropical peatlands classification when utilized as single usage, combined, and 

integrated with topographic-derived feature. The present study showed that the 

classification results of the dual-polarization data were inferior to that using the fully 
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polarimetric data, indicating that the fully polarimetric data were more suitable for 

classifying tropical peatlands. Furthermore, polarimetric features generated by the 

combination of dual-polarization and fully polarimetric data yielded an overall accuracy 

(OA) of 69% and a kappa coefficient (K) of 0.57. Thus, accuracy indicators were 

increased by applying the combination of dual-polarization and fully polarimetric data 

to the algorithm of decision tree classification for the SAR-based tropical peatlands 

classification. However, the best accuracy was obtained by means of integrating the 

feature 

accuracy indicators derived by the combination of dual-polarization data, fully 

 

K of 76.0% and 0.66, respectively. To conclude, the accuracy indicators derived by the 

combination of dual-polarization data, fully polarimetric data, and the additional feature 

0% for OA and 15% for K over the best 

obtained OA and K derived by the SAR-based tropical peatlands classification using the 

decision tree classifier. These results indicated that the methodology in this study might 

serve as an efficient tool in tropical peatlands classification, especially when involving 

the use of L-band SAR dual-polarization and fully polarimetric data.  

To obtain the third primary objective, the third topic of this study (as described in 

Chapter 5) has been determined on two specific objectives. The first specific objective, 

associated with the third topic of this study, was to compare and evaluate the 

performance of features derived after the ground-range radar cross section (sigma 
0) and slant-range perpendicular radar cross 0) 

of C-band Sentinel-1 data for discriminating peat depth classes. The present study 
0 features yielded better performance in discriminating peat depth 

classes. By comparing the highest DF values of class pair ( -

- - 0 0 features, 
0 features yielded much higher DF 

values for class pair (A), for both polarization channels, 0 
0 features, the DF values of class pair (A) increased 

as much as 11.5% and 13.3% for VH and VV polarizations, respectively. Thus, in this 
0 features were used for developing a methodology for classifying peat depth 

due to the features having better performance in discriminating peat depth classes.  

Thereafter, the second specific objective, associated with the third topic of this study, 
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was to develop methodology for peat depth classification on oil palm plantations using 

C-band Sentinel-1 data. In this study, the selected features for peat depth classification 
0

VH 0
VV in June), for separating classes in the 

0
VH 0

VV in April) 

-

- 0
VH 0

VV in 

September) were selected for separating peat depth classes in the class pair (C) 

- -

best accuracy for the very deep-peat class, with 76% and 67.86%, PA and UA, 

respectively, followed by the shallow-peat class that yielded a PA of 64% and UA of 

80%. Subsequently, the deep-peat class produced a PA of 58% and UA of 59.18%, 

whereas the medium-peat class yielded the lowest PA and UA, of 54% and 49.09%, 

respectively. This study showed that the C-band SAR dual-polarization data have 

potential for classifying peat depth classes, particularly on oil palm plantations, and 

might serve as an efficient tool in peat depth classification used for sustainable 

management of tropical peatlands.  

To conclude, the present study has been evaluated potentials of SAR-based RS 

applications for tropical peatlands monitoring activity in Indonesia, and has been 

successfully developed methodologies to identify and to classify tropical peatlands, as 

well as to classify their peat depth categories. In general, the results and findings of this 

study could aid in increasing the foundation of knowledge regarding the tropical 

peatlands monitoring activity, involving the use of both L- and C-band SAR data, as an 

initial response to actualize the sustainable management principles and practices of 

tropical peatlands in Indonesia. Finally, this study might serve as a contribution to the 

development of the emerging SAR-based RS applications for monitoring environmental 

issues in agriculture, especially in the studies of tropical peatlands monitoring activity in 

Indonesia.  

 

6.2 Recommendation  

This study provided a comprehensive understanding in connection with the utilization 

of L- and C-band SAR data to improve the foundation of knowledge regarding tropical 

peatlands monitoring activity in Indonesia, especially for use in tropical peatlands 

identification and classification, as well as in peat depth classification. This study has 
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successfully demonstrated the ability of L-band ALOS PALSAR fully polarimetric data 

for tropical peatlands identification in humid tropical regions, such as in Indonesia. It is 

therefore recommended to apply L-band SAR fully polarimetric data for characterizing 

and for discriminating tropical peatlands in tropical environments that have persistent 

cloud cover. Furthermore, this study shows that the integration of GIS data (e.g., 

topographic-derived feature) in the SAR-based RS application for tropical peatlands 

classification was found to be effective in improving the classification accuracy. Thus, it 

is also recommended to utilize the combination of multi-polarization SAR data and GIS 

data for obtaining a reliable monitoring technique in tropical peatlands classification. In 

addition, this study has obtained a positive result in verifying the potential of C-band 

Sentinel-1 data for peat depth classification in oil palm plantations in Indonesia, 
0 features were used for developing methodology for classifying peat 

0 features having a better performance in discriminating peat depth 
0 features. Hence, it is recommended to apply the 

0 features for discriminating peat depth classes in oil palm plantations by means of 

C-band SAR dual-polarization data. Lastly, along with the growing interests of 

SAR-based RS applications for tropical peatlands monitoring activity, further study 

regarding the complementarity between multi-frequency SAR data for tropical 

peatlands monitoring activity is recommended to further improve the foundation of 

knowledge regarding SAR-based RS applications towards the implementation of 

sustainable management principles and practices of tropical peatlands. 
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Appendix 1 The common tropical peatlands condition in the study area 1 presented in 
Chapter 3. 

 
 

 



 

90 
 

Appendix 2 The common tropical peatlands condition in the study area 2 presented in 
Chapter 3. 
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Appendix 3 Photographs of the ground truth survey s activity for the study presented in 
Chapter 3, include (a) peat depth measurement, (b) current land 
use/cover observation, (c) peat maturity measurement, (d) soil moisture 
measurement, (e) observation and documentation on surrounding 
environment, and (f) sample points collection. 
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(c)     (d) 
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Appendix 4 The methodological flow chart of the study presented in Chapter 3. 
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Appendix 5 The common tropical peatlands condition in the study area presented in 
Chapter 4. 
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Appendix 6 Photographs of the joint ground truth survey s activity for the study 
presented in Chapter 4, include, (a) coordination with local government, 
(b) coordination with IAARD, (c) current land use/cover observation, (d) 
peat maturity measurement, (e) observation and documentation on 
surrounding environment, and (f) peat drilling with soil auger. 

  
(a)      (b) 

  
(c)      (d) 

  

(e)      (f)  
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Appendix 7 The methodological flow chart of the study presented in Chapter 4. 
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Appendix 8 The methodological flow chart of the study presented in Chapter 5. 
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Summary 

 

Tropical peatlands acknowledged as one of key ecosystems among the high-carbon 

reservoir ecosystems due to their huge carbon and water storage, their effect on coastal 

ecosystems, and their role in preserving bio-resources and biodiversity. Furthermore, 

tropical peatlands play an important role in the global carbon balance, and thus have a 

direct relationship with global climate change processes. Unfortunately, tropical 

peatlands are now being subjected to a rapid economic development without full 

consideration to the sustainable management principles and practices of tropical 

peatlands, which has led to large increases in carbon emission.  

Concurrently, the importance of tropical peatlands as a long-term carbon sinks and 

stores, their tendency to become a short-term source of carbon emission, and their 

significant role in climate change processes, have been receiving tremendous interest 

during the past two decades. These concerns should be initially responded to via an 

accurate inventory of tropical peatlands to obtain a better understanding of the 

sustainable management principles and practices of tropical peatlands, as well as to 

improve the foundation of knowledge in tropical peatlands monitoring activity. 

Nevertheless, tropical peatlands cover relatively large areas and are primarily located in 

remote areas that are difficult to access. Thus, it is obviously challenging to develop 

reliable methodologies for monitoring the vast areas of tropical peatlands, especially in 

Indonesia where the largest portion of the tropical peatlands is located. 

Remote sensing (RS) application is recognized as one of the most suitable tool to 

monitor the vast areas of tropical peatlands, as in situ measurements are generally 

time-consuming, labor-intensive and limited by accessibility. Furthermore, the recent 

development of synthetic aperture radar (SAR)-based RS satellites has introduced an 

advanced prospect that enables continuous monitoring and cloud-free observation in 

humid tropical regions, particularly for tropical peatlands monitoring activity in 

Indonesia. The primary objectives of this study are to explore the ability of L-band 

Advanced Land Observing Satellite (ALOS) Phased Array type L-band SAR (PALSAR) 

fully polarimetric data for tropical peatlands identification, to evaluate the performance 

of L-band ALOS PALSAR dual-polarization and fully polarimetric data for tropical 

peatlands classification, as well as to investigate the potential of C-band 

dual-polarization Sentinel-1 data for peat depth classification, in response to the 
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emerging SAR-based RS applications for tropical peatlands monitoring activity. 

The first topic of this study was carried out to investigate the use of L-band ALOS 

PALSAR fully polarimetric data for identifying tropical peatlands in two study areas 

situated in Kahayan River catchment area, Central Kalimantan Province, Indonesia. 

Specifically, three polarimetric decomposition (PD) theorems and the radar vegetation 

index (RVI) were evaluated for their capability to identify tropical peatlands 

characteristics from the viewpoint of L-band SAR fully polarimetric data. This study 

has suggested that SAR-based RS application serves as an efficient tool in tropical 

peatlands identification, such that the combination of classes derived from unsupervised 

classification of polarimetric features of Freeman-Durden tree-component 

decomposition integrated with the broad-interval (calculated by mean and standard 

deviation values) class of RVI value that generated from L-band ALOS PALSAR fully 

polarimetric data was successfully identified the existence of tropical peatlands. Thus, 

accuracies of 77.6% and 76.0% for PA and UA, respectively.

The second topic of the present study evaluated the performance of L-band ALOS 

PALSAR dual-polarization data, fully polarimetric data, and their data combinations for 

tropical peatlands classification in Siak River transect, Riau Province, Indonesia. Thus, 

polarimetric features derived after PD theorems, backscatter coefficients measurements, 

and the RVI were evaluated to classify tropical peatlands using the decision tree (DT) 

classifier. This study has found that the classification results of the dual-polarization 

data were inferior to the fully polarimetric data, indicating that the fully polarimetric 

data were more suitable for classifying tropical peatlands. Furthermore, the integration 

of topographic-derived data in the SAR-based tropical peatlands classification was 

found to be effective in improving the classification accuracy, whereby in this study, the 

overall accuracy (OA) and 15% for Kappa coefficient (K) when integrated with the 

polarimetric features derived by the combination of dual-polarization and fully 

polarimetric data by means of the DT classifier. Additionally, the seasonal variation of 

tropical peatlands was discovered, in which the existence of tropical peatlands in a land 

use/cover without the presence of vegetation was not influenced by the seasonal 

condition. In contrast, the existence of tropical peatlands in a land use/cover with the 
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presence of vegetation was influenced by the seasonal condition.  

The third topic of this study examined the potential of C-band dual-polarization 

Sentinel-1 data for peat depth classification on oil palm plantations in Siak Regency, 

Riau Province, Indonesia. Particularly, the ground-rang 0) and 

slant- 0) for both polarization channels  

vertical transmit-horizontal receive (VH) and vertical transmit-vertical receive (VV)  

of Sentinel-1 data were compared and evaluated, on monthly basis, during 2015, for 

discriminating peat depth classes using the DT classifier. This study has suggested that 
0 features yielded better performance in discriminating peat depth classes. By applying 
0 features, the distance factor (DF) values of the initial class pair increased as much as 

11.5% and 13.3% for VH and VV polarizations, respectively. Furthermore, the 

classification results gave the best accuracy for the very deep-peat class, with 76% and 

67.86%, of PA and UA, respectively, followed by the shallow-peat class that yielded a 

PA of 64% and UA of 80%. Subsequently, the deep-peat class produced a PA of 58% 

and UA of 59.18%, whereas the medium-peat class yielded the lowest PA and UA, of 

54% and 49.09%, respectively. In addition, the seasonal variation of rainfall intensity 

was discovered to be influencing feature selection for peat depth classification. Thus, 
0 features derived in the much rain months was selected for 

separating the shallow- and medium-peat classes, whereas those derived in the less rain 

months was selected for discriminating the deep- and very deep-peat classes.  

To conclude, the present study has been successfully developed methodologies for 

tropical peatlands identification by means of L-band SAR fully polarimetric data, for 

tropical peatlands classification by using L-band SAR dual-polarization and fully 

polarimetric data, as well as for peat depth classification on oil palm plantations by 

utilizing C-band SAR dual-polarization data. In general, the results and findings of this 

study could aid in increasing the foundation of knowledge regarding the tropical 

peatlands monitoring activity, involving the use of both L- and C-band SAR data, as an 

initial response to actualize the sustainable management principles and practices of 

tropical peatlands in Indonesia. Finally, this study might serve as a contribution to the 

development of the emerging SAR-based RS applications for monitoring environmental 

issues in agriculture, especially in the studies of tropical peatlands monitoring activity. 

Keywords: ALOS PALSAR, Sentinel-1, dual-polarization, fully polarimetric, 

polarimetric decomposition, radar vegetation index, decision tree classification 
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Japanese Summary 
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