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1.  Introduction 
 

1.1 General background 

 

past 20 years, desert regions have been expanding by an area of approximately 50,000 

to 70,000 square kilometers per year due to the global warming. The expansion of desert 

areas causes frequent occurrences of sandstorms. Sandstorms affect an increasingly 

wide area every year, affecting several billion people and causing up to 42 billion 

dollars of economic damage. In recent years, sand drift is occurring more and more 

often in China(Kara Jean Hill 2011). Afflicted regions are distributed over a wide area, 

and the extent of damage has been increasing as well. According to statistics, the 

frequency of occurrence of strong sand drifts was 5 times in the 1950s, 8 times in the 

1960s, 13 times in the 1970s, 14 times in the 1980s, and 23 times in the 1990s. These 

statistics clearly demonstrate that the frequency has been increasing(Kara Jean Hill

2011). 

In order to mitigate damage caused by sand drift, it is first necessary to identify the 

factors that cause this phenomenon. Scientists are hopeful that it will be possible to 

apply the results of this research and develop technologies for suppressing sand drifts. 

However, since experiments conducted outdoors are hampered by adverse measurement 

conditions due to irregular changes in the wind direction, it is difficult for researchers to 

analyze how sand drift occurs. On the other hand, conducting experiments in wind 

tunnels allows researchers to analyze the sand drift phenomenon more easily. However, 

it is difficult to recreate conditions similar to natural environments using wind tunnels. 

Generation of boundary layers is one example. 

In order to obtain a thick boundary layer in a wind tunnel environment, a long settling 

chamber in the direction of the flow is needed, which makes it necessary to have large 

scale facilities as well. Therefore, researchers have investigated various methods for 

achieving flows with properties that approximate those of atmospheric turbulent 

boundary layers within relatively short distances (Erie, 1978). In general, in order to 

form boundary layers in short settling chambers, boundary layers are formed by using 
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screens that are made of horizontal rods with spacings that are varied in the height 

direction (Kajiyama, 1993). Since this method requires large cross-sectional areas 

(horizontal width × vertical width), this method is not suitable for small-scale wind 

tunnels. In other methods, the boundary layer is considered as a shear field that is 

flowing along the wall surface. In these methods, methods for generation of a boundary 

layer are treated as methods for generating shear flows. Shear flows are generally 

formed by using meshes with apertures that are varied in the mainstream direction and 

direction perpendicular to the flow, wire nets that are bent into appropriate shapes, and 

honeycomb meshes of different lengths. However, it is difficult to create strong 

turbulent components such as those found in turbulent boundary layers at the same time 

(Erie, 1978). 

  
1.2 Objective 

 

The goal of this research is to create thick turbulent boundary layers in settling 

chambers that are as short as possible using simple small-scale wind tunnels. We 

attempted to design and develop a low-cost small-scale simple wind tunnel in which the 

stability of the horizontal profile of the wind velocity is maintained while forming a 

boundary layer that is relatively thick by using the two types of turbulence generators 

discussed by Counihan (1969) and Standen (1972) and the empirical formulas published 

by Irwin (1981). 
 
 
 
 
 
 
 
 
 
 



3 
 

2. Effect of blown sand mechanism on wind 

tunnel design 
 

2.1 Effect of blown sand on wind tunnel design 

 

When the soil-corrosive particles are removed from the ground under the action of 

wind, the transport will be carried out through three kinds of movement forms, such as, 

which mainly depend on the size of the particles, as shown in Fig. 2.1. "Saltation" 

means a continuous jump on the ground by a medium sized particle (particle size range 

0.05~0.5 mm). They are very easy to ascend from the ground, but cannot be suspended; 

the jump height is generally less than lm Qi and Wang, 1996 . "Surface creep" refers to 

the large particles (particle size generally under the l~2mm) in the air or other particles 

driven, along the surface of the rolling or sliding. "Suspension" refers to the very fine 

particles (diameter less than 0.1 mm) in a suspended state and with the airflow 

movement. A sandstorm is a long-range movement of a large number of suspended 

particles. In general, each of these three forms of motion occurs at the same time in each 

wind erosion phenomenon, and the transition is the most important form of movement 

of particles. This is because: (1) most of the soil particles move in the saltation mode. 

Studies have shown that 55~70 % soil particles move in saltation, 3~38% moves in 

suspension, and only 7~25% move in surface creep (Qi and Wang, 1996). The field 

observation of Wu Zheng and Ling (1965) also shows that, with the increase of wind 

speed, the proportion of the saltation in the pneumatic conveying sand increases slightly, 

but the change is not big, and the average accounts for about 3/4 (Wu and Ling, 1965). 

(2) A large number of surface creep and suspension cannot occur without the saltation. 

As for the suspended transport of sand grains, according to the study of Bagnold, the 

amount of sediment transported in suspended state is less than 5% of the total sediment 

transport (Qi and Wang, 1996). The transport form of the sand grains determines the 

structure of the wind-blown sand flow, which is the vertical distribution of the sand 

particle in the sand layer. Wang (1994) and Dong (1995) have summed up many studies, 

the results show that 90% of the sand grains on the surface of the soil are transported in 
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the height range from the ground to the CM, while the flow rate within the 0-5cm height 

is 60-80% (Qi and Wang, 1996). Butterfield (1999) used the High Resolution Optical 

Sensor and found that the sediment transport in the height range of the near surface 

19mm accounted for about 80% of the total sediment load (Butterfield, 1999). Thus, the 

sand movement is a kind of sand transport phenomenon which is close to the ground 30 

cm height range. The sand movement within 30 cm near the surface ground is important 

during the sand transport phenomenon. This altitude range provides an important 

reference for the altitude design of the experimental section of the blown sand wind 

tunnel. 

 

  

   

  

  

 

 

  

 

 

 

  

> 500 µm

70~500 µm

< 70 µm

Wind

Fig. 2.1. An illustration of creep, saltation and suspension of soil particles (cited from 

Shao, 2008). 
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2.2 Starting process of soil particles and determination of wind speed 

threshold parameters 

 

The starting process of soil-corrosive particles is the first step in the process of wind 

erosion, and the determination of wind speed parameters is one of the important 

contents of wind erosion research. Experimental observation shows that only when the 

wind speed exceeds a certain critical value, soil particles can be induced to rise from the 

surface and form wind erosion. The observation also shows that there are two different 

threshold wind speed (Foucaut and Stanislas, 1996): (1) The starting wind speed of the 

fluid, which is the minimum wind speed that the soil particles start to move with the 

direct action of the grainy wind; (2) The impact of the starting wind speed, also known 

as dynamic valve value. It is the minimum wind speed at which the soil particles start to 

move when there is an auxiliary effect from the upper direction to jump particle impact. 

The physical meaning of the critical value of the fluid starting wind speed and the 

impact starting velocity is explained in the view of the wind tunnel experiment as 

follows (Dong and Li, 1995). When the sand in the wind tunnel to start the experiment, 

always first with a basically sand-free air blowing through the sand, when the air 

velocity gradually increased to a certain value, the bed of sand on the surface began to 

move and produce sand flow, the wind speed is the sand of the fluid starting wind speed. 

Once the sand flows is formed, and then gradually reduce the wind speed to the starting 

velocity of the fluid, the sand flow does not stop until the wind speed drops to a certain 

value below the starting speed of the fluid, the sand flow is completely suspended, the 

wind speed is the impact of the sand. The threshold of the soil erosive particles is a 

characterization of soil wind erosion resistance, which is related to grain size, surface 

properties and water content. It can be seen that wind speed is an important parameter in 

wind tunnel experiment, the design of wind tunnel should be able to measure the wind 

speed of the experimental section, and the speed of air can be controlled and adjustable. 
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2.3 Design requirements of wind erosion wind tunnel by simulating 

atmospheric boundary layer 

 
The wind velocity profile is an extremely important boundary condition to 

be satisfied in the simulation of atmospheric boundary layer, because the 
shape of wind velocity profile determines the interaction between wind and 
surface interface. Observation of the near-earth surface air velocity profile is 
necessary for wind tunnel experiment to simulate wind-blown wind tunnel. 
Wind tunnel simulation of wind-erosion problem is the most critical of wind 
speed profile simulation. A large number of studies have been reported 
(Gillette, 1978) for the study of wind velocity profiles in the near-surface 
atmospheric boundary layer. It is generally believed that the average wind 
velocity profile of the atmospheric boundary layer can be expressed either by 
a power-finger law or by logarithmic law. 
The expression of a power-finger law is (Tan et al., 2013): 
 

 

 

The expression of the logarithm law is White (1996). In neutral stratified 
atmosphere, the wind profile above uniform surface obeys the law of wall 
represented by the equation (Tan et al., 2013): 
 

 

 

where  is the wind velocity at height z,  is the friction velocity,  is von Karman 

constant (0.4) and  is aerodynamic roughness length. When wind encounters and 

flows over a roughness length. When wind encounters and flows over a rough surface, 

the wind profile may be displaced upward by an addition of a displacement height term 

(d) in the Eq.(1) ,and thus the wind profile equation changes into: 
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Gillies et al. (2007) showed that for surfaces with small roughness elements, d=0 when 

d « 2 m. Therefore, in this study, a value for d was not used in the calculation of .The 

expression of the logarithm law is White (1996). 

The power-exponent law is often used to express the wind velocity distribution of the 

large-scale atmospheric boundary layer, while the logarithm law is often used to express 

the wind velocity distribution of the atmospheric boundary layer in the near-surface 

layer (White, 1996). Theoretically, the wind tunnel simulation of the near-earth 

surface atmospheric boundary layer, as long as wind tunnel wind speed and surface 

roughness condition of wind tunnel are identical with the field wind speed and surface 

condition to be simulated. The development of logarithmic wind velocity profile 

through certain wind distance will be formed naturally. However, in practice, the wind 

distance required to obtain a well-developed wind speed profile in a wind tunnel is quite 

long. It means that the length of the inlet sampling area in the wind tunnel experimental 

section is quite long, which is not feasible in most practical situations. Cermak(1981) 

shows that the natural development thickness of the 0.5m boundary layer requires at 

least the development length of the 15m (Cermak, 1981). The movable wind-erosion 

wind tunnel with such a long experimental section is not acceptable in terms of cost, use 

and convenience of operation. Therefore, the design of movable wind-erosion wind 

tunnel must consider the method of artificially thickened boundary layer, so that it can 

correctly simulate the wind velocity profile of the atmospheric boundary layer near the 

surface of the bottom surface in the wind tunnel of the short experimental section. This 

is a key technical problem to be solved in the design of blown sand wind tunnel. 
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2.4 Technical development of wind field simulation of atmospheric 

boundary layer in wind tunnel 

 

Wind erosion occurs only when a threshold value of the wind velocity is reached 

and this threshold depends on the soil surface features. The numerous studies have been 

done to examine the soil moisture effect on wind erosion since Chepil (1956), and it is a 

well-known fact that the threshold wind speed increases with soil moisture (Belly, 1964, 

Bisal and Hsieh. 1966, McKenna-Neuman and Nickling, 1989, Selah and Fryrear, 1995, 

Fe´can et al., 1999).  

The method, passive simulation of wind tunnel flow field, was proposed in 1960. 

The most proposed method that using the interaction of rough plate, roughness element 

and baffler is the passive simulation of wind tunnel flow field. Cook found that the 

formation of turbulent boundary layer depends on the size, shape and spacing of 

roughness elements, when he used a grid and surface roughness elements to simulate the 

wind field. Counihan et al. firstly used wide in lower but narrow in upper wedge and 

rough hexahedral roughness elements to simulate neutral atmospheric boundary layer in 

wind tunnel systematically (Counihan, 1972). Irwin changed the wedge to a triangular 

shape, and suggested that non-triangular wedge has no apparent advantage compared 

with the triangular wedge (Irwin, 1981). Sill studied the relationship between the 

roughness elements size and arrangement pattern of cube and the roughness (Sill, 1988). 
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2.5 Introduction to wind field simulation of atmospheric boundary 

layer in wind tunnel 

 

Wind field simulation of atmospheric boundary layer can be performed by two 

ways: one is natural simulation method, the other is artificial simulation method. In the 

natural simulation, simulated atmospheric boundary layer is uniformly and naturally 

formed on rough walls and it required a long test section, wha

more than 20 m. In addition, it also needs some artificial turbulence devices. Therefore, 

it is rarely used currently. 

This paper mainly introduces the artificial simulation method. It is a kind of 

mainstream atmospheric boundary layer simulation method, which is popular all the 

world. So far, there are majority ways, such as curved networks, stick fence, curve 

section honeycomb and wedge roughness elements. There are two methods of artificial 

simulation according to the absence or presence of energy injection into wind tunnel test 

section: passive and active simulation. 

(1) Passive simulation method 

For passive simulation, grid, wedge, roughness elements, baffler and other devices 

are used for blocking the movement of the flow field in the wind tunnel, generating a 

gradient flow field in the height direction and forming a shear layer, finally, it forms 

turbulent swirl and a shear boundary layer. Besides, passive simulation apparatus does 

not require energy input. Because it can get energy from obstructing and interfering 

wind tunnel flow field that a portion of the kinetic energy of liquid in the wind tunnel 

was converted into the turbulent energy and achieving the simulation of atmospheric 

boundary layer. 

The earliest passive simulation method is to use grid plate device system. It 

generates vortex from combination of some plates with different widths and space, 

which will be put on the wind field upstream to disturb magnetic wind. By adjusting the 

widths and space of the plates, it will form some turbulence with different intensities 

and integral scales. Besides, there is also a similar method, rod grid method, in which 

plates are replaced by round sticks. Oven and Cockrell formed linear distribution wind 

speed section and exponential distribution wind speed section, respectively, by rod grid 
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method. However, this method currently is rarely used. 

So far, the most common method is wedge roughness elements passive simulation 

system. In this system, wedge and roughness elements are used to block the air 

movement in the flow field, but wedge has a greater impact. Wedge determines the 

general cross-sectional shape of the wind, especially for upper wind field, whereas it is 

difficult for roughness element, because it is limited by its height, its influence range is 

focused to a certain height. But, because the wind speed at the bottom of the 

atmospheric boundary layer is much bigger, thus, the bottom turbulence intensity is also 

considerable. Besides, most buildings located in the lower height part of the 

atmospheric boundary layer. Therefore, it is also important to use roughness elements 

rationally. 

It is difficult to form a thick boundary layer for only roughness elements, so the 

effect of wedge on controlling the wind profile is very important. Further, the variation 

pattern of wedge along the height direction determines the characteristic scale of 

separation on the wedge surface, which control the upper turbulivity and turbulent 

integration scale. In comparison, the area of wedge windward plate determines the 

cross-section blocking rate of wind field, and then it directly determines the 

cross-sectional shape of the wind speed. 

(2) Active simulation method 

In active simulation method, appropriate frequency of mechanical energy is 

injected a flow field, to enhance the turbulent kinetic energy with low-frequency 

component, thereby improving the simulation of the power spectrum and the integration 

length and independently changing the average wind profile and turbulivity within a 

certain range. The turbulence boundary layer simulated in wind tunnel is mainly 

generated by the vortex generator. By comparing the wind speed spectrum and the target 

spectrum, the random signal of vortex generator can be reversely adjusted, so as to 

gradually approach to get the wind characteristic of the target atmospheric boundary 

layer. In a simple active simulation, a stationary vortex generator will undergo random 

vibration, then the mechanical energy is injected into the flow field to increase the 

turbulent energy, different turbulence integration scales can be obtained by controlling 

the waveform of vibration. State University used vibrating wing-grid for active 
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simulation, that is, by setting two rows of controllable vibrating wing-grids to randomly 

vibrate in a cycle, the cross-sections and dimensions of the turbulent boundary layer 

downstream can satisfy the contracting ratio wind tunnel experiment. The active control 

of the wind tunnel, multi-fan tunnel, is equipped with a fan array of frequency control 

technique, this method is the best wind tunnel solution to simulate the characteristic of 

atmospheric boundary layer wind field. This technique was developed in Japan as a 

-jet 

wind tunnel (Cermak and Cochran, 1992), in the prototype, it consists of a 8*8 array of 

 mm and the jet velocity is 

controlled by a valve, the experimental section is only about 0.2 m * 0.2 m * 2.86 m. 

Figure 2.2 shows a multi-fan wind tunnel designed by, Japan, the jet device is composed 

of 9-row and 11-column array, i.e. a total of 99 fans, the test section size reaches 2.6 m * 

1.8 m * 15.5 m. The rotational speed of each fan can be controlled independently by a 

computer for random fluctuation, a hot-wire anemometer can be used to measure the 

fluctuation velocity and its power spectrum downstream. After feedback and repeatedly 

and reversely adjusting for approximation, finally it can obtain a atmospheric boundary 

layer flow field that coincides with the characteristics of the target. This technology can 

simulate almost a wind velocity time series that is entirely consistent with the target 

wind field.  
 

 

 

Fig 2.2 Multi-fan device in Miyazaki University 
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3. On the boundary layer formation of a small 

simple type wind tunnel 

 

3.1  Wind tunnel structure 

 

Figure 3.1 shows a diagram and a photograph of the wind tunnel used in this research. 

The wind tunnel that was used is a single-circuit open-return wind tunnel and is 

composed of a fan, settling chamber, and test section. The length of the wind tunnel is 

8.25 m, and its cross section is 0.8 m × 0.5 m. The length of the settling chamber is 3.6 

m, and the length of the test section is 1.8 m. 

Considering the fact that sand drift in the natural environment is most vigorous at 

heights below 0.3 m (Abulaiti and Kimura, 2011), the height of the wind tunnel was 

chosen to be 0.5 m in order to keep the wind tunnel small. The width of the wind tunnel 

was set to be less than 1 m in order to keep the wind tunnel small, assuming that a wind 

layer that is affected by friction is formed in an area 0.2 m from the inner side of both 

walls Yoshino et al. 1985 . The overall length of the wind tunnel and the lengths of the 

settling chamber and test section were chosen based on the outdoor wind tunnel of Tan 

and Zhang (2013) as a reference. 

The exterior wall has a thickness of 0.8 cm and is made of acrylic. Acrylic was 

selected because it improves visibility of the condition of the sand drift as well as the 

process of the experiment. The thickness was chosen to be 0.8 cm because this thickness 

mitigates the degradation of the acrylic in our experience. The ceiling was designed to 

be removable so that it would be easy to set up the experiment. 

The maximum output of the fan that was used in this experiment was 1.5 kW (Figure 

3.2). The fan is equipped with an inverter (Figure 3.3), making it possible to change the 

wind velocity to according to the required wind velocity in the test section. The 

frequency can be adjusted from 0 Hz to 60 Hz, and the wind velocity of the wind 

created by the fan can be adjusted from 0 m/s to 12 m/s.  

A hexagonal-type honeycomb (Figure 3.4) was placed at the exit of the fan. The 

purpose of the honeycomb is to straighten the flow of the turbulent air that is sent from  
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the fan to flow in a constant direction. Increasing the length of the honeycomb results in 

more straightening of the air flow, but this also causes larger losses in the wind velocity. 

Decreasing the diameter of the honeycomb cells also results in deceased turbulence 

intensity. The honeycomb that was used in this research was made of aluminum and had 

a thickness of 0.2 cm, length of 8 cm, and diameter of 2 cm, which were chosen based 

on the results in Mehta (1977). 
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3.2 Wind velocity measurement method 
 

In this research, experiments were performed with 

the mainstream wind velocity maintained at a 

constant value of 8 m/s. The wind velocity was 

measured using a pitot tube (Figure 3.5) anemometer 

that was fixed to a stand. Moving observations of the 

wind velocity in the vertical direction and horizontal 

direction were taken on the upwind side of test 

section. The measurement axis for the vertical 

direction was chosen to be at the center of the 

upwind side of the test section. The measurement 

was performed in the height range of 0.4 cm - 50 cm 

(2 cm measurement interval). The measurement axis 

for the horizontal direction was chosen to be at the 

upwind side of the test section as well. The 

measurement was performed at a height of 4 cm and 

in the range of 0.4 cm - 78 cm from the wall (2 cm 

measurement interval). The measurement interval 

was chosen to be 2 cm based on the sensor 

specifications. The data was recorded at an interval 

of 1 second. 30 seconds of data were averaged and 

used for the analysis (Figure 3.6). 

In order to measure the wind velocity profile in 

the vertical and horizontal directions for the case in 

which the ground is covered in sand, the 

measurement was taken with a wooden board with 

sand stuck onto it placed on the floor. 

 

  

Fig 3.5 Picture of pitot tube 

Fig 3.6 Picture taken from wind 
tunnel observation site 
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3.3  Boundary layer formation method and design of turbulence 
generator 

 

3.3.1 Boundary layer formation method 

Methods for reproducing boundary layers in wind tunnels can be categorized into two 

types:  Methods in which the boundary layer is formed naturally, and  methods in 

which the boundary layer is formed artificially. In methods in which the boundary layer 

is formed naturally, the boundary layer is formed naturally by walls of the same 

roughness. In order to form a boundary layer of thickness 0.5 - 1.0 m, a settling chamber 

of length 20 - 30 m is required. Considering the installation costs, such a settling 

chamber would be too long, making this method unrealistic. 

In methods in which the boundary layer is formed artificially, the boundary layer is 

formed by placing turbulence generators in the settling chamber. In this experiment, we 

chose to design and deploy turbulence generators in order to adjust the boundary layer. 

In this method, the turbulence generators receive the wind that is sent from the fan and 

artificially generate an exponential wind velocity profile along the height profile of the 

turbulence generators (Figure 3.7). In this case, a logarithmic distribution of the wind 

velocity is generated in the vertical direction, even when the settling chamber is short. 

The turbulence generators that were used in this experiment include both spires, 

which are pyramid-shaped columns, and roughness blocks arranged along the floor. 

 

 
Fig 3.7 Schematic diagram of the turbulence generator installation method 

 

  

h
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3.3.2  Design of spires and roughness blocks 

The sizes of the spires and the roughness blocks must be determined based on the size 

of the wind tunnel. According to the research results presented in Irwin (1981), the 

height and width of the spires can be calculated using the following equations. 
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Here, h represents the height of the spires (m),  represents the thickness of the 

boundary layer (set to be 0.3 m in this research), b represents the width of the spires (m), 

a represents the exponent (set to the value for a sandy surface, or 0.1, in this research), 

and H represents the height of the wind tunnel (0.5 m). Based on the calculation results, 

the value of h is 0.23 m, and the value of b is 0.024 m (Figure 3.8a). In the research 

results presented in Irwin (1981), the spacing of the spires was set to be half of their 

height. However, in this research, the spacing of the spires was set to be 0.125 m, and 6 

spires were installed (Figure 3.8b).  

 
Figure 3.8  Schematic of spire (a) and pictures of installation (b) 

In this experiment, the boundary layer was generated artificially in order to avoid 

using a long settling chamber that would have been required in order to form the 

Front Side Base

(a)

0.125m 1m  

(b) 
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boundary layer naturally. However, if the length of the settling chamber is made short, it 

is difficult to make the profile of the wind velocity constant in the horizontal direction. 

Therefore, in this research, cubic roughness blocks were placed downwind from the 

spires to adjust the wind velocity profile. The length of the sides of the roughness blocks 

can be calculated using the following equation (Irwin, 1981). 
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Here, k represents the length of the sides of the roughness blocks (m), and D represents 

the spacing between the blocks (in this research, set to a value of 0.05 m). Based on the 

results of the calculation, the length of the sides of the roughness blocks k was set to 

0.01 m. 

By using both spires and roughness blocks, it is possible to create a wind velocity 

profile in the vertical direction (or in other words, to generate a boundary layer) and it is 

possible to create a constant wind velocity profile in the horizontal direction. In this way, 

wind tunnels can be improved so that it is possible to perform sand drift experiments 

even with short settling chambers. An image of the installation of the spires and 

roughness blocks downwind is shown in Figure 3.9.  

 

 
 
  

0.78m

1m

0.05m
0.05m

Fig 2.9  Schematic of installation of spire and roughness block 
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3.4  Results and discussion 
 

Figure 3.10a shows the results of a measurement of the wind velocity in the vertical 

direction for the condition in which turbulence generators (in other words, spires and 

roughness blocks) were not used. The boundary layer thickness is determined from a 

logarithmic approximation using the observation points from the ground to the point 

where the wind velocity ceases to increase with height. As a result, the thickness of the 

boundary layer was determined to be 14 cm, which is fairly thin. Examining the wind 

velocity profile in the horizontal direction (Figure 3.10b) reveals that the wind velocity 

in the area that is between 20 cm and 60 cm is not affected by the wall. In addition, the 

standard deviation of the wind velocity profile in the horizontal direction (between 20 

cm and 60 cm) is 0.12 m/s, which indicates that the turbulence was relatively large. 

Next, Figure 3.11a shows the results of the measurement of the vertical profile of the 

wind velocity for the condition in which only the spires were used. The thickness of the 

boundary layer increased by 4 cm, which is a small amount (18 cm). The deviation from 

the line showing the logarithm approximation decreased greatly compared to the case in 

which spires were not used. In the horizontal direction (Figure 3.11b), using the spires 

caused the standard deviation of the wind velocity profile in the horizontal direction to 

increase (0.17 m/s). These results imply that using spires alone enables the wind 

velocity profile in the vertical direction to be adjusted somewhat, but also disturbs the 

wind velocity profile in the horizontal direction. 

Next, Figure 3.12a shows the results of the measurement of the vertical profile of the 

wind velocity for the condition in which both the spires and the roughness blocks were 

used. The spacing of the roughness blocks in Figure 3 was 5 cm. This value is the initial 

value for the spacing, but it is also possible to adjust this value based on the results. As 

a result, the thickness of the boundary layer increased by 20 cm (38 cm). By using the 

roughness blocks, it is possible to generate a boundary layer that can withstand the sand 

drift experiments. In the horizontal direction, the standard deviation of the wind velocity 

profile in the horizontal direction was not very different from the case in which only 

spires were used (0.19 m/s) (Figure 3.12b). However, the wind velocity profile differs 

from the profile shown in Figure 5b in that the wind velocity profile in the horizontal 

direction has been made uniform at intervals of approximately 5 cm due to the effect of 

setting the spacing between the blocks to 5 cm. Comparing the roughness lengths  
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Fig  3.10 Wind velocity distribution in the vertical direction when only the honeycomb is 

installed (a) and wind speed distribution in the horizontal direction (b) 

 

Fig  3.11 Distribution of wind velocity in the vertical direction when spire is installed (a) and   

 wind speed distribution in the horizontal direction (b) 

 
Fig  3.12 Distribution of wind velocity in the vertical direction when spire and roughness 

block are used together (a) and wind speed distribution in the horizontal direction (b) 
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between the case in which roughness blocks were used and the case in which roughness 

blocks were not used (Figure 3.13), it can be seen that the roughness length (y-intercept) 

at the downwind side of the test section was slightly larger when roughness blocks were 

used, although the difference was not very large. Considering the fact that the roughness 

length of flat bare land in the natural environment is 1 order of magnitude larger (0.01 

cm: Kondo, 1994), this difference is small. 

Since the change in the wind velocity profile in the horizontal direction is still large, 

we investigated and proposed a method for improving the arrangement of the roughness 

blocks. This method involves combining spires with roughness blocks arranged in two 

different arrangement densities in order to adjust the wind velocity profile of the 

0.0001

0.001

0.01

0.1

1

10

100

0 2 4 6 8 10
Wind speed(m/s)

Speyer Only

Speyer and ordinary Roughness 
block placement
Speyer and improved 
Roughness  block placement

 

5cm 

5cm 

2.25cm 

90cm 30cm 

Fig 3.13 Comparison of wind speed distribution and roughness length in the vertical 

direction with and without roughness block 

Fig 3.14  Appearance of roughness block devised newly 
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boundary layer in the vertical direction while adjusting the wind velocity profile in the 

horizontal direction with the roughness blocks. 

The idea proposed for the roughness block arrangement densities is shown in Figure 

3.14. In the arrangement density proposed in this research (Figure 3.14), the 

arrangement density in the length direction was increased in order to make the sizes of 

the turbulence vortices smaller and to make the wind velocity profile in the horizontal 

direction approximately uniform. The results show that although the thickness of the 

boundary layer did not change (38 cm) (Figure 3.15a), the standard deviation of the 

horizontal wind velocity profile became 0.08 m/s (Figure 3.15b), which implies that the 

horizontal wind velocity profile was made approximately uniform. It is anticipated that 

fine-tuning the spacing of the roughness blocks will result in further improvement of the 

horizontal wind velocity profile. However, since the accuracy of the profile that was 

obtained in this experiment was already sufficient (much smaller than the measurement 

precision of the pitot tube (0.25 m/s)), no further investigation was conducted as part of 

this research. 

 
 
 
 
 
 
 
 

Fig 3.15 Wind velocity distribution in the vertical direction when roughness block 

arrangement density is changed (a) and Wind speed distribution in the horizontal 

direction (b) 
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3.5  Conclusion 
 

In this research, a method for generating a boundary layer in a small-scale simple 

wind tunnel using both spires and roughness blocks was proposed. In addition, a method 

for adjusting the wind velocity profile in the horizontal direction to make it uniform as 

well as forming a boundary layer was also proposed. The method resulted in a boundary 

layer with a thickness of 38 cm in a settling distance of 3.6 m. In addition, it was 

possible to make the wind velocity profile approximately uniform in the horizontal 

direction by adjusting the arrangement of the roughness blocks. By using spires and 

roughness blocks together in this way, it is possible to design low-cost small-scale 

simple wind tunnels with short settling distances. In this research, the dimensions of the 

wind tunnel were designed beforehand based on estimates for the thickness of the 

boundary layer required for measurements. The thickness of the boundary layer was 

further adjusted after completion of the wind tunnel. 

In the future, we plan to use this wind tunnel for environmental experiments such as 

studying wind ripples, sand saltation, mechanisms of yellow dust generation, and 

countermeasures for yellow dust.   
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4 A method to make a boundary layer with 

roughness length  
 

4.1 Introduction  

 

In order to observe sand drift phenomena using wind tunnels, it is important to ensure 

that experiments are not affected by measurement conditions such as irregular changes 

in the wind direction and wind velocity (Arien, 1978). Furthermore, it is important to be 

able to recreate conditions that are similar to the conditions of the natural environment 

while being able to freely set the experiment parameters. In particular, two conditions 

that are necessary for wind tunnel experiments include the boundary layer and 

roughness length, which affect the vertical distribution of the amount of sand drift, and a 

stable wind velocity profile in the test section.  

Liu and Kimura (2016) used devices for controlling the turbulence of the wind spires 

and roughness blocks) and proposed a method for achieving a flow that has properties 

that are similar to the atmospheric boundary layer within relatively short settling 

distances. As a result, the researchers were able to obtain a boundary layer of a 

thickness of 38 cm within a short settling distance of 3.6 m. Furthermore, by adjusting 

the arrangement of the roughness blocks, the researchers were able to make the wind 

velocity in the test section approximately uniform in the horizontal direction. However, 

the roughness length in the test section was 0.001 cm, which is small. This value is one 

order of magnitude smaller than the roughness length of flat bare land in the natural 

environment (for example, 0.01 cm; Kondo, 1994). 

In order to use spires and roughness blocks to achieve this roughness length, it is 

necessary to adjust the resistance to the wind in the settling chamber. In general, the 

roughness length can be adjusted by changing the sizes of the roughness blocks, the 

horizontal and vertical spacing of the roughness blocks, and the number of columns

Sill,1988 Yi and Tian,2013 . However, previous research does not provide any 

methods or procedures for simultaneously achieving roughness lengths that are close to 

the value found in a natural environment, wind velocity profiles that are constant in the 
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horizontal direction, and stable wind velocities within the test chamber while 

maintaining the thickness of the boundary layer at a stable value. The goal of this 

research is to propose a method/procedure for satisfying these conditions 

simultaneously using turbulence control devices (spires and roughness blocks) based on 

the simple small-scale wind tunnel described in Liu and Kimura (2016). 
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4.2 Overview of simple wind turbine and wind velocity measurement 
method 

 

The wind tunnel used in this experiment is a single-circuit open-return wind tunnel 

and is capable of generating a boundary layer (Liu and Kimura, 2016). The wind sent 

from the fan (maximum output 1.5 kW) passes through the honeycomb that has been 

installed to straighten the flow. After a turbulent flow is formed in the settling chamber 

of nominal dimensions 3.6 m × 0.8 m × 0.5 m, a boundary layer with a thickness of 0.38 

m can be formed in the test section of dimensions 1.8 m × 0.8 m × 0.5 m. A diagram and 

a photograph of the wind tunnel are shown in Figure 3.1.  The fan is equipped with an 

inverter, so the wind velocity produced by the fan can be freely set according to the 

requirements of the measurement (0 m/s 12 m/s). 

For measuring the wind velocity, the mainstream wind velocity was set to a constant 

value of 8 m/s, identical to the method in Liu and Kimura (2016). Moving observations 

of the wind velocity in the vertical direction and horizontal direction were taken on the 

upwind side of test section using a pitot tube flow velocity/flow rate micro differential 

pressure gauge (MK Scientific, Inc.: DT-8920) that was fixed to a stand. The 

measurement axes in the vertical direction and the horizontal direction were aligned 

along the height (0.5 m) and width (0.78 m) of the wind tunnel. Measurements were 

taken at measurement intervals of 0.02 m. The measurement axis for the vertical 

direction was chosen to be at the center of the upwind side of the test section. The wind 

velocity profile in the horizontal direction was measured at a height of 4 cm from the 

floor of the test section. The data was recorded at an interval of 1 second. 1 minute of 

data was averaged and used for the analysis. In order to measure the wind velocity 

profile in the vertical and horizontal directions for the case in which the ground is 

covered in sand, the measurement was taken with a wooden board with sand stuck onto 

it (fixed to the surface of the wooden board with adhesive) placed on the floor from the 

settling chamber to the test section. 
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4.3 Proposal for method which simultaneously achieves roughness 

length, boundary layer thickness, uniform wind velocity profile in 

the horizontal direction, and test section with stable wind velocity 

 

4.3.1 Roughness length adjustment method                      

According to the results presented by Sill (1988), there are two methods for 

increasing the roughness length using only roughness blocks:  Increasing the 

number of vertical columns without changing the size of the roughness blocks and the 

spacings of the roughness blocks in the horizontal and vertical directions (horizontal and 

vertical lengths with respect to the wind direction on the surface on which the roughness 

blocks are laid: Refer to Figure 4.2), and  changing the size of the roughness blocks 

and the spacings of the roughness blocks in the horizontal and vertical directions 

without changing the number of columns. In method , it is possible to adjust the 

roughness length to a certain extent just by increasing the number of columns. However, 

increasing the number of columns makes it necessary to increase the length of the 

settling chamber (Yi and Tian, 2013). Therefore, this method is not a realistic option for 

designing a wind tunnel with a short settling chamber, which is the goal of this research. 

In method , the effect of the roughness blocks extends to an area that is only 5 times 

the height of the roughness blocks (Sill, 1988). In other words, since the roughness 

blocks mainly adjust the lower layers of the boundary layer, in order to adjust the upper 

layers of the boundary layer, it is necessary to set the sizes of the roughness blocks to be 

complex. For example, using roughness blocks of different heights at the same time 

enables the vertical profile of the wind velocity to be adjusted. However, one 

shortcoming of this method is that it requires a large amount of trial and error and much 

time. 

Liu and Kimura (2016) proposed a method for generating boundary layers that are 

required for performing sand drift experiments using spires and roughness blocks 

together. The functions of the spires and roughness blocks are shown in Table 4.1. The 

results show that the spires and roughness blocks provide resistance to the wind sent 

from the fan, and are helpful in generating boundary layers that are relatively thick. 

However, the wind velocity profile in the vertical direction is affected by the spires 
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more than the roughness blocks (Table 4.1). Therefore, we focused on the 

wind-receiving area of the spire, and hypothesized that minute changes in the 

wind-receiving area can have an effect on the wind velocity profile in the vertical 

direction and on the upper layers of the boundary layer in particular. In this research, we 

propose a method for generating boundary layers that accompany roughness lengths that 

are similar to those found in natural environments by adjusting the shape of the spires. 
  

Table 4.1  Role of spiers and roughness blocks 

Role of speyer Role of roughness block 

Adjustment of boundary layer 

thickness 

(Particularly in the upper part) 

Adjustment of boundary layer thickness 

(Particularly in the lower part) 

Vertical wind speed distribution 
Fine adjustment of wind speed distribution in the vertical 

direction 

 
Horizontal wind speed equality 
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4.3.2 Adjustment of spire shape 

The height (0.23 m) and width (bottom side of the triangle of the bottom face: 0.024 

m) of the spire were chosen based on the research presented by Liu and Kimura (2016) 

and Irwin (1981). In order to increase the wind-receiving area of the spires without 

changing their height or width, we considered increasing the width of the top end of the 

spires. This change caused the shape of the wind receiving face of the spires to change 

from a triangle shape to a trapezoidal shape (hereafter, we refer to these spires as 

trapezoidal spires). The width of the top end of the trapezoidal spires was chosen to be 

0.003 m, based on the results presented by Ham and Bogusz (1998) (Figure 4.1a). 

Similar to Liu and Kimura (2016), 6 spires were lined up horizontally with a spacing of 

0.125 m (Figure 4.1b). In order to increase the resistance to the wind, the material used 

for the spires was changed from wood to acrylic board with a thickness of 0.05 m. The 

roughness blocks (height 0.1 m, width 0.09 m) were arranged with a spacing of 5 cm in 

an area of length 0.55 m and width 0.6 m, similar to the arrangement used by Liu and 

Kimura (2016). Furthermore, additional roughness blocks were paced downwind with 

an increased density with a spacing of 2.5 cm in an area of length 0.25 m and width 0.5 

m (indicated by numbers in Figure 4.2). 

In this research, we hypothesized that trapezoidal spires and roughness blocks can be 

used together to generate boundary layers that are relatively thick and have roughness 

lengths that are similar to those of the natural environment while maintaining the 

uniformity of the wind velocity profile in the horizontal direction and maintaining the 

stability of the wind direction and wind velocity in the test section. Figure 4.2 shows a 

photo of how the trapezoidal spires and roughness blocks are installed.  
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Fig 4.2 Overview of installation of trapezoid spears and roughness blocks in the 

rectification field 

Fig 4.1 Trapezoid spire specification (a) and installation overview (b) 

 

Front Side Bottom

(a) (b)

 

0.7m 

0.125m 

0.8m 

0.25m 
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4.4 Results and discussion 
 

4.4.1 Generation of a boundary layer with roughness length that is similar to 

that of the natural environment 

Figure 4.3a shows the results of a measurement of the wind velocity profile (in the 

vertical direction) for the condition in which both trapezoidal spires and roughness 

blocks were used. The thickness of the boundary layer was 0.34 m. This result is almost 

identical to the result of Liu and Kimura (2016). However, the roughness length 

increased by one order of magnitude and became approximately 0.01 cm. Making the 
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Figure 4.3  Vertical wind speed distribution (a) and horizontal wind speed distribution
(b) when trapezoid spear and roughness block are used in 
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wind-receiving face of the spires trapezoidal in shape enabled us to generate a boundary 

layer that was relatively thick and increase the roughness length at the same time. 

However, the variation in the wind velocity profile in the horizontal direction (taken at a 

height of 4 cm and width of 20 cm to 60 cm away from the wall) was large. The 

standard deviation of the difference of the wind velocity was 0.15 m/s (Figure 4.3b). 

Compared to the results presented by Liu and Kimura (2016), the variation increased by 

a factor of 2.  

Therefore, in order to make the wind velocity profile in the horizontal direction more 

uniform, we tried changing the arrangement of the roughness blocks downwind. Since 

changing the arrangement of the blocks would require a large amount of time for 

measurement, wind velocity data was taken only in the range from 20 cm to 60 cm 

away from the wall for measuring the wind velocity profile in the horizontal direction. 

The difference in the wind velocity profiles in the horizontal direction caused by the 

difference in the arrangement of the blocks is shown in Figure 4.4. In case a, 20 

roughness blocks were added with a spacing of 2.5 cm over an area of vertical width 0.1 

m and horizontal width 0.5 m. As a result, the standard deviation of the difference in the 

wind velocity in the horizontal direction became 0.33 m/s. In case b, 40 roughness 

blocks were added with a spacing of 2.5 cm over an area of vertical width 0.2 m and 

horizontal width 0.2 m on the side of the left wall, and over an area of vertical width 0.2 

m and horizontal width 0.3 on the side of the right wall (the resulting standard deviation 

was 0.27 m/s). In case c, 46 roughness blocks were added with a spacing of 2.5 cm over 

an area of vertical width 0.2 m and horizontal width 0.6 m (the resulting standard 

deviation was 0.28 m/s). In case d, 102 roughness blocks were added with a spacing of 

2.5 cm over an area of vertical width 0.35 m and horizontal width 0.6 m (the resulting 

standard deviation was 0.26 m/s). 

Examining the results shown in Figure 4.4 shows that the wind velocity profiles in 

cases a, c, and d have only a narrow range in which the wind velocity is uniform. On the 

other hand, although the value of the standard deviation of the difference in wind 

velocity shown in case b is no different (compared to the other cases), the range in 

which the wind velocity is uniform is large. However, the value of the standard 

deviation of the difference of the wind velocity did not improve compared to its value  
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Fig 4.5 New arrangement of trapezoid spire 
 
before the arrangement of the roughness blocks was changed (0.15 m/s). In other words, 

these results indicate that changing the arrangement of the roughness blocks does not 

have a large impact on the uniformity of the wind velocity profile in the horizontal 

direction. 

Therefore, we shifted focus to the spires again. We hypothesized that it is possible to 

decrease the turbulence intensity without affecting the shape of the boundary layer, or in 

other words to make the wind velocity profile in the horizontal direction become 

uniform, by decreasing the area of the wind tunnel cross-section that captures the wind 

without changing the slope angle of the spires (angle between the diagonal side and 

bottom side). In order to validate this hypothesis, we decreased the number of spires 

from 6 to 5 without changing the spacing (Figure 4.5). The roughness blocks were 

arranged in the same way as was done by Liu and Kimura (2016). The wind velocity 

profile in the vertical direction is shown in Figure 4.6a. The thickness of the boundary 

layer was 38 cm. Although the standard deviation of the difference of the wind velocity 

in the horizontal direction decreased to 0.09 m/s (Figure 4.6b), the range in which the 

wind velocity is approximately constant is biased to one side (26 cm - 68 cm), and the    
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wind velocity still has large variation especially in the range from 16 cm - 20 cm. We 

tried to identify the cause of the variation in the range from 16 cm - 20 cm. In this 

research, we designed the trapezoidal spires to have a top end width of 0.003 m. 

However, the acrylic boards were thick (0.005 m) and difficult to machine with high 

precision, so we were unable to make their widths strictly uniform (Figure 4.6). In other 

words, we believe that the reason for the variation in the wind velocity profile in the 

horizontal direction is the fact that the slope angles of the spires are not uniform. 
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Fig 4.6 Vertical vertical wind speed distribution (a) and horizontal wind speed
distribution (b) when newly devised speyer is placed. 
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Therefore, in order to make the widths of the top ends uniform, we changed the 

thickness of the acrylic boards to 0.003 m, and redesigned the widths of the top ends to 

be 0.005 m. Since the 0.003 m acrylic boards are thin, there is a chance that vibrations 

will occur during experiments with high winds. In order to overcome this issue, we 

installed triangular struts of height 0.15 m to the spires (Figure 4.7). 5 spires were lined 

up horizontally at a spacing of 0.125 m (Figure 4.8). The roughness blocks were 

arranged in the same way as was done by Liu and Kimura (2017). As a result, the 

boundary layer thickness was unchanged at 38 cm. However, the standard deviation of 

the difference of the wind velocity in the horizontal direction became 0.1 m/s, which is 

smaller, and the range in which the wind velocity was uniform was not biased (Figure 

4.9). In the end, we were able to generate a boundary layer with a roughness length that 

is close to that found in the natural environment while simultaneously creating a wind 

velocity profile that is uniform in the horizontal direction without changing the 

arrangement or density of the roughness blocks and by adjusting only the spires. 

 

  
Fig 4.7  New trapezoid spire specification

Front Side Bottom
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Fig 4.8 Pictures of the turbulence generator installation method

 

Fig 4.9  Vertical wind speed distribution (a) and horizontal wind speed distribution (b) 
when new trapezoid spire and roughness block are used together. 
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4.4.2 Generation of a stable test section 

In the measurements and analyses above, the wind velocity was only measured at the 

entrance of the test section. However, when conducting sand drift experiments in the 

future, the experiments will be conducted using the entire test section. In this case, it is 

necessary to control the vertical profiles of the wind velocity at the entrance and exit of 

the test section to be approximately uniform. Figure 4.10 shows a comparison of the 

results of measurements of the vertical distribution of the wind velocity in the test 

section at a spacing of 0.6 m taken at 4 locations. Although the boundary layer width at 

the upwind side of the test section was 0.38 m, the boundary layer widths that were 

measured at the 3 locations on the downwind side were all 0.36 m. The results for the 

wind velocity profiles in the vertical direction were almost identical. In other words, 

these results imply that the effect of the adjustments made by the spires and roughness 

blocks on the test section was small. 

 

 

Fig 4.10  Comparison of wind velocity distribution in the vertical direction 
measured at 4 locations from the upper wind end to the lower wind 
end of the observatory 
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4.5  Conclusion 
 

In this research, we proposed a method/procedure for simultaneously generating 

boundary layers that are relatively thick and have roughness lengths that are similar to 

those found in the natural environment, creating wind velocity profiles that are uniform 

in the horizontal direction, and creating wind velocities that are stable in the test section 

by using turbulence control devices (spires and roughness blocks) based on the simple 

small-scale wind tunnel described in Liu and Kimura (2016). The results show that it is 

possible to achieve these goals without changing the arrangement or density of the 

roughness blocks and by adjusting the shape and number of trapezoidal spires. 

Specifically, first we set the height sand bottom end widths of the trapezoidal spires 

and roughness blocks using the empirical formulas determined by Irwin (1981). Next, 

we modified the heights of the trapezoidal spires and widths of the bottom ends in order 

to adjust the upper layers of the boundary layer. We obtained the desired boundary layer 

width and roughness length. For adjusting the lower layers of the boundary layer, we 

modified the arrangement density of the roughness blocks and the number of trapezoidal 

spires to obtain a wind velocity profile that is uniform in the horizontal direction. 

In the future, we plan to use this method for adjusting wind flow in simple wind 

tunnels proposed in this research to achieve conditions that are necessary for conducting 

sand drift experiments. We anticipate that this will help researchers conducting research 

for understanding the mechanisms of sand drift occurrence and developing mechanisms 

for suppressing sand drift. 
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5 Wind speed characteristics and blown sand 

flux of gravel surface 
 

5.1 Introduction  

 

The variation of wind speed with the height is called the wind speed protile. Even in 

similar wind speed conditions, the wind speed vertical gradient changes depending on 

the state of the ground surface. Under smooth ground surface conditions, the change in 

the wind speed with height follows logarithmic law, but if the ground surface has gravel, 

the logarithmic law within a specific height is destroyed. Therefore, the influence of the 

roughness of ground surface on the boundary layer has become a big problem. In recent 

years, studies investigating the hydrodynamic characteristics of blown sand in the 

ground boundary layer using large gravel or mixed type gravel are increasing. However, 

sufficient knowledge about the characteristics of wind speed protile and the blown sand 

flux due to the arrangement density of gravel has not yet been obtained. In particular, an 

experimental method to quantitatively evaluate the distribution of blown sand flux, 

using a wind tunnel that implements a flow having characteristics close to the 

atmospheric boundary layer, is desired. Currently, most of the methods for measuring 

blown sand flux use trap-type sand trapping devices. However, due to reasons such as 1) 

difference in the individual trapping efficiencies, 2) time taken to trap a certain amount 

of sand is very long, 3) possibility of obtaining only the time average data of the blown 

sand flux and so on, elucidation of the phenomenon has been hindered.  

Liu and Kimura (2017) generated a 0.36m boundary layer with a short rectification 

distance of 3.6m, using a compact wind tunnel and a turbulence generator (spires and 

roughness blocks). Moreover, the result that the wind speed distribution in the vertical 

and the horizontal directions are almost the same, has also been obtained within the 

1.8m observatory. In this study, by introducing the compact and simple wind tunnel 

device and a piezoelectric blown sand meter that uses a piezoelectric transducer capable 

of measuring the time variation of blown sand flux, we compare the influence of the 

variation of gravel coverage rate on the aerodynamic characteristics and blown sand 
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flux. In addition, we examine the characteristics of blown sand flux distribution 

measured using the piezoelectric blown sand meter. 

 



43 
 

5.2 Outline of the experimental apparatus 
 

The blow-down type wind tunnel used in this experiment consists of a blower, a 

rectifying space, and an observation space. The total length is 8.25 m and the 

cross-section is 0.8 m*0.5 m (Figure 3.1). The ceiling and the sides of the rectification 

space (length: 3.6 m) and the observation space (length: 1.8 m) are made of acrylic with 

a thickness of 0.08 m. Since an inverter (maximum output: 1.5 kW) is installed, the 

wind speed can be arbitrarily adjusted within the range of 0 to 12 m/s. Creating a 

boundary layer with a thickness of 0.36m using spires and roughness blocks in 

combination (roughness length: 0.01 cm), the wind speed distribution in the horizontal 

direction can be made uniform with an error of 0.1 m/s. The piezoelectric blown-sand 

meter uses the piezoelectric transducer used in high-precision ultrasonic sensors and 

measures the number of sand particles from the voltage signal generated by the sand 

particles colliding on the piezoelectric transducer. Since a cone-type resonator with a 

diameter of 0.65 m is mounted on the sensor portion of the piezoelectric transducer, 

under the conditions with a wind speed of 6 to 11 m/s, the number of blown sand grains 

can be measured with high accuracy. 
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5.3 Experimental method 
 
5.3.1 Measurement of wind speed characteristics 

When measuring wind speed protile, to prevent the failure of the anemometer (pitot 

tube type) due to the generation of blown sand, sand-affixed to a wooden board for 

observation was placed on the floor space from the rectification space to the observation 

space (4.5 m). The median particle size of sand was 350 µm. The particle size of the 

gravel used for observation (produced in the Tenryu river basin) was 0.005 to 0.01 m. The 

gravel coverage rate was set to six patterns, 5%, 10%, 15%, 20%, 25% and 30%. Further, 

in order to measure the amount of sand deposited, the gravel of each coverage rate was 

fixed to a sand-affixed wooden board (0.9 m*0.4 m) and the measurement was carried 

out. 

Wind speed was set to three patterns, 6 m/s, 8 m/s and 10 m/s with 6 m/s, the 

generation speed of blown sand, as the base. For the measurement of wind speed, a Pitot 

tube type anemometer (Pitot tube type wind speed/wind flux differential pressure gauge 

DT-8920) was used, which was fixed on a stand that can be fine tuned. The 

measurement axis of the wind speed distribution in the vertical direction was set to the 

center of the leeward side of the observation space. The measurement was carried out 

along the vertical measurement axis in the height range of 0.004 m to 0.46 m (space 

0.02 m). The recording time interval of wind speed data was set to 1 s and the average 

of the instantaneous wind speed data for 60 s was taken as the average wind speed of 

the location.  

The wind speed distribution in the vertical direction, when no blown sand is generated, 

is given by the following equation (1). 

 

                           (10) 

 
Here,  is the wind speed at a height z above the sand surface,  is the friction 

velocity and is the roughness length. 
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5.3.2 Measurement of blown-sand flux 

In order to provide a sufficient amount of sand for the observation of blown sand flux, 

dunes of sand of about 0.1 m in thickness were spread from the rectification space to the 

observation space (Height of the wind tunnel cross-section was about 46 cm). Under the 

five patterns of wind speed conditions (6,7,8,9 and10 m/s), gravels with seven patterns 

of coverage rates (0,5,10,15,20,25 and 30%) were spread on the wooden board where 

the sand dune had been affixed and the observation was carried out in the observation 

space.  

Ten pieces of piezoelectric blown sand meters were installed on the leeward side the 

observation space. The blown sand flux was measured at 10 locations from the sand 

surface to a height of 0.2 m (interval 0.02 m). 

The number of blown sand particles n measured by the piezoelectric blown sand meter 

was converted to blown sand flux , using the following equation (Udo, 2008). 
 

 

 
Here, d is the median particle size of sand,  is the density of sand (2.65 x 

kg/ ),  is the diameter of the sensor portion of the blown sand meter (0.012 

m) and  is the measurement time (1 s). 
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5.4 Results and discussion 
 
5.4.1 Wind speed distribution 

As an example, the observation results of the vertical distribution of wind speed for 

the (7 patterns) gravel coverage rate due to the three patterns of wind speed conditions 

(6, 8, and 10 m/s) are shown in Figure 5.1. The horizontal axis and the vertical axis 

represent the wind speed and the logarithm of height respectively and a boundary layer 

of about 0.34 m was present.  

The friction velocity was calculated using the logarithmic law of wind speed. At any 

wind speed, the friction speed increased with the increasing coverage rate when the 

gravel coverage rate was in the range of 0% to 15%. On the other hand, when the 

coverage rate was 20% or more, the friction speed became smaller than in the case of 

0% to 15%.  

Focusing on the roughness length, when the gravel coverage rate was in the range of 

0% to 15%, the roughness length increased with an increase in the coverage rate (Figure 

5.2, Table 5.1). However, when the density of gravel became 20% or more, the 

roughness length decreased and approached a value close to a roughness length of 0%. 

Together with the results of friction speed, it can be considered that when the gravel 

density became 20% or more, the ground surface became aerodynamically smooth and 

the resistance to wind decreased. 
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Fig 5.1  Observation results of the vertical distribution of wind speed 
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Table 5.1 Standard deviation of average roughness length 

Cover %  cm  

0 0.007±0.004 

5 0.013 ±0.004 

10 0.017 ±0.005 

15 0.021±0.009 

20 0.005±0.001 

25 0.007±0.0001 

30 0.009±0.0008 

 

 
Fig 5.2 Standard deviation of average roughness length 
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5.4.2 Blown sand flux 
We examined the variation in the blown sand flux due to the five patterns of wind 

speed (6, 7, 8, 9, and 10 m/s), for the seven patterns of gravel coverage rates (Figure 

5.3). The horizontal axis shows the height and the vertical axis shows the blown sand 

flux converted from the number of blown sand particles, n, measured by the piezoelectric 

blown sand meter. 

When the wind speed was 6 m/s, a sand trapping effect was seen within a height of 8 cm 

for a gravel coverage rate of 5% or more and when the coverage rate became 15% or 

more, it was completely trapped. 

When the wind speed reached 7 m/s, the trapping effect existed up to a gravel 

coverage rate of 10% at a height of less than 4 cm, but, when the height was 6 cm or 

more, the effect disappeared. Conversely, at a height of 6cm or more, due to the bound 

effect of sand particles (Kenneth and Haim, 2009), the blown sand flux increased more 

than when the coverage rate was 0%. When the coverage rate was 15% or more, the 

trapping effect was sustained.  

When the wind speed reached 8 m/s, the overall trapping effect started to fade. Within 

a height of 4 cm, as the coverage rate increased, the trapping effect was more. At 8 cm 

or more, the blown sand flux approached the value at 0% for any coverage rate. 

It can be understood that when the wind speed was 9 m/s, the trend was almost 

similar to the case of 8 m/s, but when the wind speed reached 10 m/s, the effect of 

blown sand supplementation by the gravel coverage almost disappeared. 

Further, it is understood that when the wind speed was 8 m/s or more, the blown sand 

flux at a height of 8 cm extremely increased when the gravel coverage rate was 20% or 

more. Figure 5.4 shows the height distribution of the blown sand flux with respect to the 

change in wind speed for each gravel coverage rate.  At any gravel coverage rate, the 

blown sand flux increased with an increase in wind speed. From the figure, it can be 

seen that when the gravel coverage rate was 20% or more and the wind speed was 8 m/s 

or more, the blown sand flux at a height of 8 cm extremely increased. 

Figure 6 shows the comparison between the roughness length and the blown sand 

flux at a height of 8 cm for each coverage rate. Since the gravel coverage rate increased 

from 0% to 5% due to the bound effect of the blown sand, the blown sand flux increased. 

However, in the coverage rate range of 5% to 15%, when the wind speed became 8 m/s 
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or more, the blown sand flux decreased with an increase in the roughness length. On the 

other hand, when the coverage rate reached 20% and the roughness length approached a 

value close to that at 0%, the blown sand flux started increasing again and within a 

range of up to 30%, there was no remarkable variation in the blown sand flux. Therefore, 

it is implied that when the gravel coverage rate becomes 20% or more, although the 

total blown sand flux at a height less than 8cm decreases, due to aerodynamic 

smoothening, the blown sand flux at a height of 8cm alone remarkably increases. 
 

Fig 5.3 Blown sand flux due at wind speeds of 6 m / s and 7 m / s.  
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  Fig 5.3 Blown sand flux at wind speeds of 8 m / s, 9 m / s, 10m / s. 
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   Fig 5.4 Blown sand flux with change in wind speed for each gravel coverage rate. 
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Fig 5.4 Blown sand flux with change in wind speed for each gravel coverage rate. 
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Fig 5.4 Blown sand flux with change in wind speed for each gravel coverage rate. 

Fig 5.5 Comparison between the roughness length and the blown sand flux at a 

height of 8 cm for each coverage rate. 
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5.5  Conclusion 
 

The occurrence of yellow sand in East Asia is said to be caused by saltation 

bombardment due to the particles having a particle size of 70 

surface of the source of yellow sand is diverse and most of the Gobi desert in Mongolia 

is gravel. Despite the fact that the Gobi desert is the main source of yellow sand, there 

are only a few studies on how the gravel coverage influences the occurrence of blown 

sand and yellow sand, especially aerodynamically. In this study, we have examined the 

influence of gravel coverage rate on the vertical distribution of wind speed, roughness 

length and blown sand flux using a compact and simple wind tunnel and a piezoelectric 

blown sand meter and obtained the following results.  

 Logarithmic law has been established for the vertical distribution of wind speed 

for the floor space with gravel of particle size (0.005 to 0.01 m).  

 When the gravel coverage rate was in the range of 0% to 15%, the roughness 

length increased with an increase in the coverage rate. However, when it became 

20% or more, the roughness length decreased to a value close to that at 0%.  

 When the wind speed was weak (6 to 7 m/s), there was a trapping effect of 

blown sand at a gravel coverage rate of 15% or more.  

 The range of influence is limited. Small gravel (particle size 0.005 to 0.01 m; 

corresponding to the size of gravel in the Gobi desert) used in this study can 

influence only the sand blown up to a height of 5 cm. 

 Although an increase in the roughness length due to gravel coverage rate has the 

effect of decreasing the blown sand flux at a height of 8 cm, when the coverage 

rate became 20% or more, the ground surface became aerodynamically smooth 

and the blown sand flux at a height of 8cm began to increase again. 

Thus, it can be considered that depending on the gravel coverage rate, the source of 

yellow sand containing gravel has a complex influence on the occurrence of blown sand 

and yellow sand. For example, it is interesting to know the influence of the blown sand 

flux at the height of 8 cm obtained in this study on the occurrence of yellow sand. In the 

future, in addition to verifying the results of this study by measuring the gravel coverage 

rate, blown sand flux and dust density in the source of yellow sand containing gravel, 

we wish to use these for the measures against the source of dust. 
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6. Conclusions and future requirements 

 

Asian dust storms are natural phenomena that can cause severe ecological and 

environmental problems, affecting agriculture, human and animal health, land 

degradation, and desertification. The main source for these severe dust events in arid 

and semiarid regions of northeast Asia are Taklimakan Desert, Loess Plateau region, and 

Gobi Desert of China and Mongolia, respectively. Crucial needs for dust restraint 

countermeasures and an early warning system, which may be combined with weather 

forecasts of wind speed, would be helpful in preventing serious damage. However, for 

development of countermeasures and warning system, the relationship between dust 

outbreaks and surface condition has not been clarified yet. Especially, the effects of 

stone on the size distribution of saltating sand particles under natural conditions are 

poorly understood.  

The important findings and conclusions of this study are listed below. 

    
Chapter 3  On the boundary layer formation of a small simple type wind tunnel 

 

By the combination use of Spire and Roughness block, a method for generating a 

boundary layer in a small wind tunnel was proposed. In the present study, it is not only 

adjusted to the air velocity distribution in the vertical direction or produced a boundary 

layer, but also proposed a method of adjusting the air velocity distribution uniformly in 

the horizontal direction. As a result, the boundary layer is obtained a thickness of 38 cm 

by 3.6 m rectifying distance. In addition, by devising the arrangement of roughness 

block, it has become possible to equalize the air velocity distribution substantially in the 

horizontal direction. In the future, elucidation of sand particle motion like a saltation 

and Asian dust emission mechanisms is expected using simple wind tunnel developed in 

this study. 
 
Chapter 4  A method to make a boundary layer with roughness length 

 
Based on the results of Liu and Kimura (2016), we examined to generate the 
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boundary layer, roughness length close to the natural field, uniform distribution of wind 

speed toward the horizontal direction, and stable observation field of the simple type 

wind tunnel. Without changing the arrange of roughness block, we proposed to adjust 

only the shape and number of speyer. As a result, boundary layer and roughness length 

became 36 cm and 0.01 cm which was close to the natural condition. Additionally, it 

was possible to make the uniform wind speed toward the horizontal direction, and stable 

observation field regarding the wind speed distribution. 

  
Chapter 5  Wind speed characteristics and blown sand flux of gravel surface 

 

We investigated the influence of the variation in gravel coverage rate on the 

roughness length and the blown sand flux using a compact and simple wind tunnel 

together with a turbulence generator. Consequently, when the gravel coverage rate was 

in the range of 5% to 15%, the roughness length increased with an increase in the 

coverage rate. However, when the coverage rate reached 20% or more, the value of the 

roughness length became close to that of a floor surface of only sand. Regarding the 

blown sand flux, when the wind speed was 7 m/s or less, there was a trapping effect on 

the blown sand at a gravel coverage rate of 15% or more. However, when the wind 

speed reached 8 m/s or more, the effect of coverage rate faded and when the wind speed 

reached 10 m/s, the effect of gravel coverage supplementing the blown sand 

disappeared. The increase in roughness length due to the increase in the gravel coverage 

rate (5% to 15%) corresponded to a decrease in the blown sand flux within a height of 8 

cm. However, the decrease in roughness length due to the increase in gravel coverage 

rate (20% to 30%) corresponded to an increase in the blown sand flux at a height of 8 

cm. Therefore, it is suggested that when the gravel density becomes 20% or more, 

although the total blown sand flux at a height less than 8 cm decreases, the blown sand 

flux at a height of 8 cm alone remarkably increases due to aerodynamic smoothening  
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Abstract 

Currently, deserts 

desert regions have been expanding by an area of approximately 50,000 to 70,000 

square kilometers per year due to the warming climate. The expansion of desert areas 

causes frequent occurrences of sandstorms. Sandstorms affect an increasingly wide area 

every year, affecting several billion people and causing up to 42 billion dollars of 

economic damage. In recent years, sand drift is occurring more and more often in China. 

Afflicted regions are distributed over a wide area, and the extent of damage has been 

increasing as well. According to statistics, the frequency of occurrence of strong sand 

drifts was 5 times in the 1950s, 8 times in the 1960s, 13 times in the 1970s, 14 times in 

the 1980s, and 23 times in the 1990s. These statistics clearly demonstrate that the 

frequency has been increasing. 

In order to mitigate damage caused by sand drift, it is first necessary to identify the 

factors that cause this phenomenon. Scientists are hopeful that it will be possible to 

apply the results of this research and develop technologies for suppressing sand drifts. 

However, since experiments conducted outdoors are hampered by adverse measurement 

conditions due to irregular changes in the wind direction, it is difficult for researchers to 

analyze how sand drift occurs. On the other hand, conducting experiments in wind 

tunnels allows researchers to analyze the sand drift phenomenon more easily. However, 

it is difficult to recreate conditions similar to natural environments using wind tunnels. 

Generation of boundary layers is one example. 

The goal of this research is to create thick turbulent boundary layers in settling 

chambers that are as short as possible using simple small-scale wind tunnels. We 

attempted to design and develop a low-cost small-scale simple wind tunnel in which the 

stability of the horizontal profile of the wind velocity is maintained while forming a 

boundary layer that is relatively thick by using the two types of turbulence generators 

discussed by Counihan (1969) and Standen (1972) and the empirical formulas published 

by Irwin (1981). 

Firstly, by the combination use of Speyer and Roughness block, a method for 

generating a boundary layer in a small wind tunnel was proposed. In the present study, it 
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is not only adjusted to the air velocity distribution in the vertical direction or produced a 

boundary layer, but also proposed a method of adjusting the air velocity distribution 

uniformly in the horizontal direction. As a result, the boundary layer is obtained a 

thickness of 38 cm by 3.6 m rectifying distance. In addition, by devising the 

arrangement of Roughness block, it has become possible to equalize the air velocity 

distribution substantially in the horizontal direction. In the future, elucidation of sand 

particle motion like a saltation and Asian dust emission mechanisms is expected using 

simple wind tunnel developed in this study. 

Secondly, based on the results of Liu and Kimura (2016), we examined to generate 

the boundary layer, roughness length close to the natural field, uniform distribution of 

wind speed toward the horizontal direction, and stable observation field of the simple 

type wind tunnel. Without changing the arrange of roughness block, we proposed to 

adjust only the shape and number of speyer. As a result, boundary layer and roughness 

length became 36 cm and 0.01 cm which was close to the natural condition. 

Additionally, it was possible to make the uniform wind speed toward the horizontal 

direction, and stable observation field regarding the wind speed distribution. 

Thirdly, we investigated the influence of the variation in gravel coverage rate on the 

roughness length and the blown sand volume using a compact and simple wind tunnel 

together with a turbulence generator. Consequently, when the gravel coverage rate was 

in the range of 5% to 15%, the roughness length increased with an increase in the 

coverage rate. However, when the coverage rate reached 20% or more, the value of the 

roughness length became close to that of a floor surface of only sand. Regarding the 

blown sand volume, when the wind speed was 7m/s or less, there was a trapping effect 

on the blown sand at a gravel coverage rate of 15% or more. However, when the wind 

speed reached 8m/s or more, the effect of coverage rate faded and when the wind speed 

reached 10m/s, the effect of gravel coverage supplementing the blown sand disappeared. 

The increase in roughness length due to the increase in the gravel coverage rate (5% to 

15%) corresponded to a decrease in the blown sand volume within a height of 8cm. 

However, the decrease in roughness length due to the increase in gravel coverage rate 

(20% to 30%) corresponded to an increase in the blown sand volume at a height of 8cm. 

Therefore, it is suggested that when the gravel density becomes 20% or more, although 
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the total blown sand volume at a height less than 8cm decreases, the blown sand volume 

at a height of 8cm alone remarkably increases due to aerodynamic smoothening. 
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Abstract in Japanese 
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