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CHAPTER ONE
INTRODUCTION
Breeding of wheat for improved adaptability and stability of yield under adverse
environmental conditions is hindered by narrow genetic diversity in wheat landraces.
Therefore, to keep pace with the high global dependence on wheat-rated diets and the
attendant growing demand for wheat (FAO, 2017, 2018; Reeves, 2016; Shiferaw et al.,
2013), mining of useful genes from wheat’s wild relatives, through distant hybridization,
to broaden diversity in wheat germplasm, would continue to play a significant role in
improved cultivar development. As these wild relatives are resistant to various biotic and
abiotic stresses (Gong et al., 2017; Sha et al., 2017; Stoyanov, 2014; Zhang et al., 2017),
their chromosome segments in the genetic background of wheat would aid to combat the
current trend in global climatic change which results in reduced yield of crops (Lesk et
al., 2016; Tack et al., 2015; Zhang et al., 2017; Zhao et al., 2017). This breeding
approach is, however, largely hindered by linkage drag (Zhang et al., 2017) and low rate
of success in distant hybridization. With the current status of genome sequencing
technology and improved interspecific hybridization techniques, these hindrances can
effectively be managed. While in vitro culture techniques, example embryo rescue
(Cisneros and Tel-Zur, 2010) and induction of homoeologous chromosome recombination
(Liu et al., 2014) have been employed to achieve successful distant hybridization and
useful gene recombination, integration of appropriate molecular markers into breeding
programs to conduct marker-assisted backcrossing and selection can immensely assist in
selecting against deleterious genes. However, although the genomes of important
cultivated Triticeae species have been extensively analyzed, the current status of genomic

resources of wheat’s wild relatives is inadequate, culminating in a poor understanding of



their genomics (Ceoloni ef al., 2015; Rey et al., 2015). This has resulted in
underutilization of the readily available wild genetic resources, as the success of wheat—
alien introgression breeding relies on the availability of appropriate cytological and/or
DNA markers to identify the alien chromatins in wheat genetic background. This research,
therefore, sought to address this gap by developing and validating genome-wide markers
of two distant relatives of wheat, Leymus racemosus and L. mollis, to further wheat—
Leymus introgression breeding. Also, although the application of in situ hybridization
(ISH) techniques for alien identification have aided production and characterization of
wheat—alien chromosome introgression lines (CILs) (Ali et al., 2016; Bao et al., 2012;
Ceoloni et al., 2017; Kishii, 2011; Kishii ez al., 2010; Kishii et al., 2004), some plant
species, L. mollis for instance, lack variable cytological markers to enable the
differentiation of their chromosomes in wheat genetic background (Kishii et al., 1999;
Kishii ez al., 2002).

Wheat breeders, in various attempts to deal with the aforesaid, have had to resort
to applying available expressed sequence tags (ESTs) from a few perennial grasses and
heterologous markers from annual cereals, example barley, to aid their work (Hagras et
al.,2005; Wang et al., 2017). The outcomes from these alternatives are hardly satisfactory
because of increased species divergence arising from mutations and other genetic events
during speciation. For instance, low transferability and polymorphism was reported when
EST-derived markers were applied to identify Lophopyrum elongatum specific loci in
wheat background (Mullan ef al., 2005). Thus, to effectively harness useful genes from
these wild genetic resources, their genomic information base should be continually
enriched to at least include data on outstanding species that can serve as representatives

for their evolutionary close relatives. Efforts to achieve this have generated enormous



molecular cytogenetic data, EST-SSR markers, EST linkage maps and other useful
information (Bushman ef al., 2008; Larson et al., 2012; Pang et al., 2014; Rey and Prieto,
2017; Wang et al., 2017; Yang et al., 2017). However, before this study, genome-wide
molecular markers of Leymus species were lacking. This made it difficult to take the
advantage of marker-assisted selection to speed up the development of wheat—Leymus
ClLs.

Furthermore, following the overwhelming role of wild species as potential
sources of essential alleles for the improvement of their cultivated relatives, especially
common wheat, analysis of genomic and evolutionary relationship among these species
and their cultivated relatives has received enormous attention and continues to be a key
research interest (Badaeva, 2002; Badaeva et al., 2004; Badaeva et al., 2018; Friebe et
al., 1996; Molnar-Lang et al., 2015). This analysis has mostly been conducted using
cytogenetic approaches that rely on meiotic chromosome pairing in hybrids of wide
crosses. Chromosome pairing is affected by diverse factors; hence, the reliability of failed
chromosome pairing as an indicator of genome dissimilarity has been questioned (Baum
et al., 1987; Farooq et al., 1990; Seberg and Petersen, 1998). Chromosome banding and
molecular cytogenetic techniques have also helped to generate useful information on
genome differences and phylogenetic relationships among important Triticeae species
(Badaeva, 2002; Badaeva et al., 2004; Badaeva et al., 2018; Coriton et al., 2009; Molnar
et al., 2015). Other studies have explained the origin and differentiation of Aegilops
species and Aegilops-Triticum relationships (Goryunova ef al., 2010; Goryunova et al.,
2004; Mizuno et al., 2010; Wang et al., 2011). However, the inclusion of Ae. speltoides
in section Sitopsis, exact progenitors of some Aegilops species and the B genome donor

of hexaploid wheat and other polyploid Triticum species are still in dispute (Badaeva et



al.,2004; Badaeva et al., 1998;J. Dvorak, 1998 ; Feldman and Levy, 2015; Goryunova
et al., 2008; Goryunova et al., 2004; Resta et al., 1996). Therefore, to validate the results
so far obtained and fill remaining gaps where possible, molecular data, especially those
with a wide genomic coverage, are indispensable.
Given the background enumerated above, this research was designed to achieve
the following objectives:
1. To develop and validate L. racemosus genome-wide polymorphic markers
2. To analyze the transferability of L. racemosus markers to related species whose
genomes have not been sequenced
3. To device and validate a molecular marker-based strategy to produce and characterize
wheat—L. mollis chromosome addition lines (CALs), without necessarily applying
ISH for alien identification
4. To assess the applicability of DArTseq genotyping in characterizing wheat—alien CILs
and analyzing genomic relationships among Triticeae species
As contained in the results and discussion chapters of this thesis, the four
objectives were successfully attained, birthing three research articles published in BMC

Genetics and Scientific Reports.



CHAPTER TWO
LITERATURE REVIEW

2.1 Introgression breeding of wheat

Selection pressure during domestication and subsequent breeding for superior yield
characteristics unfortunately narrowed diversity in cultivated wheat germplasm,
necessitating introgression of useful genes from wheat’s primary, secondary and tertiary
gene pools to broaden its genetic diversity and improve adaptability. Essentially,
introgression breeding is achieved by artificially crossing two distant species and
doubling the chromosomes of the hybrid to produce amphidiploids, and subsequent
production of stable genomes carrying whole or segments of alien chromosomes (Liu e?
al., 2014). Because of genetic incompatibility, in most cases, embryo rescue is applied to
raise hybrids of distant crosses and where spontaneous chromosome doubling does not
occur, fertility is achieved by artificially doubling chromosomes by colchicine or any
other suitable treatment. Noteworthy is that apart from Triticale, which has been
developed and commercialized mostly as a forage crop (Ayalew et al., 2018; McGoverin
et al., 2011), amphiploids are not released as wheat cultivars. They are rather used as
intermediary materials to generate wheat—alien chromosome introgression lines: addition,
substitution, translocation and recombination lines (Liu ef al., 2014; Molnar-Lang et al.,
2015).

The most common strategy adopted to harness genes from the direct progenitors
of bread wheat is using synthetic hexaploid wheats (SHWs), which are artificially
resynthesized hexaploid wheat lines through hybridization of tetraploid wheat (7riticum
turgidum L., AB genome) and Aegilops tauschii Coss., the D genome donor. These lines,

which combine diverse genes from the AB and D genomes were massively produced by



the International Center for Wheat and Maize Improvement (CIMMYT) between 1988
and 2010 (Borner et al., 2015). Gene introgression through SHWs have resulted in the
identification of many useful genes and development of wheat lines with resistance to
leaf, stem and stripe rusts, cereal cyst and root lesion nematodes, Fusarium crown rot,
yellow leaf spot, Septoria tritici blotch (STB), and Septoria nodorum blotch (SNB)
(Borner et al., 2015; Mulki et al., 2013; Ogbonnaya et al., 2013; Olson et al., 2013).
Boron (B) toxicity has also been successfully managed with SHWs. Sixteen SHW lines
derived from a susceptible tetraploid parent were reported to be tolerant to B toxicity
(Ilyas et al., 2015). Also, genomic regions believed to contain novel genetic loci for
tolerance to B toxicity were identified in SHWs, using genome-wide scan and DArT
markers (Emebiri & Ogbonnaya, 2015).

Wild Aegilops and Triticum species, including bread wheat’s direct progenitors
and non-progenitors, have also been directly exploited to enhance improved performance
of elite cultivars (Fedak, 2015; Zhang et al., 2015). Being the closest genus to Triticum,
genes from Aegilops species have extensively been introgressed into wheat to breed for
resistance to biotic and abiotic stresses in cultivars of wheat. Notable among these stresses
are cereal cyst nematode, root-knot nematode, Hessian fly, greenbug, powdery mildew,
rusts, drought, cold, heat and salinity (Schneider et al., 2008; Sharma and Gill, 1983;
Stoyanov, 2014; Zhang et al., 2015). Similarly, wild Triticum species have enormously
assisted the development of wheat lines with proven resistance to different rust diseases
(Chhuneja et al., 2008; Kolmer ef al., 2010; Kuraparthy et al., 2007; Singh et al., 2007),
Fusarium head blight (Cai ef al., 2005; Fedak, 2015), Karnal bunt (Vasu et al., 2000) and
powdery mildew (Chhuneja et al., 2012; Hua et al., 2009; Mohler et al., 2011; Mohler et

al., 2013). Improved storage proteins, cold hardiness and resistance to Hessian fly have



also been recorded through wild Triticum species introgression (Fedak, 2015).

Leymus species (Hochst.) and other distant relatives of wheat in the tribe
Triticeae have proven to be potential gene sources for improvement of bread wheat (Ali
et al., 2016; Anamthawat-Jonsson, 2001; Anamthawat-Jonsson et al., 2009; Chen et al.,
2005; Hajjar and Hodgkin, 2007; King et al., 2013; Kishii et al., 2010; Kishii et al., 2004;
Niu et al., 2011; Olson et al., 2013; Pradhan and Prasad, 2015; Rahmatov et al., 2016;
Zhang et al., 2017). Tetraploid Leymus species, including L. racemosus and L. mollis
analyzed in this study, are believed to have two distinct basic genomes, Ns and Xm (2n =
4x =28, NsNsXmXm), from Psathyrostachys and an unknown source, respectively, (Fan
et al., 2009), but more recent analyses suggest that the two genomes are from
Psathyrostachys, presenting them as segmental polyploids (2n = 4x = 28, Ns1Ns;Ns2Ns»)
(Anamthawat-Jonsson, 2014; Fan ef al., 2014). Leymus species are known for their high
potentials for improving bread wheat’s resistance to important abiotic and biotic stresses
(Chen et al., 2005; McGuire, 1981; Qi et al., 2008; Xiao et al., 2012; Yang et al., 2015).
The recognition of the potentials of Leymus species as valuable gene sources for the
improvement of wheat dates back to the 1960s when Tsitsin (1965) reported the
production of different combinations of wheat—Leymus amphidiploids. Subsequent
studies in this direction have demonstrated high cytogenetic stability in wheat—L. mollis
octoploids and varying segregation and transmission rates of alien (L. mollis)
chromosomes in different backcross generations of wheat—L. mollis backcross
populations (Fu et al., 1993; Fu et al., 1996; Fu et al., 1997; Wang et al., 2013). The
segregation rates are usually narrower in BCiF; as compared to F», while alien
transmission rates are higher in disomic lines, especially disomic substitution lines, than

monosomic lines (Fu ef al., 1996; Fu et al., 1997). Different types (whole-arm or



Robertsonian, intercalary and distal) of wheat—Leymus translocation lines have also been
developed (Bao et al., 2012; Chen et al., 2005; Kishii, 2011; Li ef al., 2015; Pang et al.,
2014). Li et al. (2015) recorded average translocation frequency of 7.55% for L. mollis
chromosomes, while Kishii (Kishii, 2011) found that the translocation frequencies of L.
racemosus chromosomes ranged between 0 and 8%, with higher translocation frequencies
in the short arms. Already, wheat lines with introgressed chromosome segments of
Leymus species have reportedly shown resistance to stripe rust, Fusarium head blight and
heat stress (Bao et al., 2012; Chen et al., 2005; Mohammed et al., 2014; Yang et al., 2014;
Yang et al., 2015; Yang et al., 2017). Particularly, L. racemosus is reported to exhibit
biological nitrogen inhibition (BNI) activity, a trait with both agronomic and
environmental consequences, and one of its chromosomes, LrN, known to control this
activity has been introgressed into wheat to enhance this activity in wheat genome (Kishii
et al.,2004; Subbarao et al., 2007; Subbarao et al., 2013; Subbarao et al., 2007; Subbarao
etal., 2015).

2.2 Wheat-alien characterization methods

The successful production of wheat—alien introgression lines is highly dependent on the
availability of appropriate cytological and/or DNA markers to identify the alien
chromatins in wheat genetic background. Phenotypic markers can also be relied upon to
identify lines with different alien chromosomes, but better results can be assured with
molecular approaches. Cytogenetic techniques of alien identification progressed from
mitotic chromosome count through banding techniques to ISH: fluorescence in situ
hybridization (FISH) and genomic in situ hybridization (GISH) (Rey et al., 2015).
Currently, molecular cytogenetic techniques, such as ISH and flow sorting, and

conventional DNA and genome sequence-based markers are extensively applied to



identify and characterize alien chromosomes in wheat—alien lines (Ali et al., 2016; Edet
etal.,2018; Sheikh et al., 2018; Tiwari et al., 2014; Yang et al., 2017; Zhang et al., 2017).
However, the genomic resources of distant wild relatives of wheat are still far from being
adequate, which hinders maximal utilization of available wild genetic resources for wheat
improvement (Rey ef al., 2015). Since sequencing of the genomes of most wild relatives
of wheat is unlikely, as they are not regarded as crops, efforts to transfer markers across
related species is being exploited to aid characterization of chromatins from species

whose genomes have not been sequenced.

2.3 Analysis of genomes of Triticeae species

Attempts to shed light on the evolutionary relationships among various species in tribe
Triticeae started many decades ago, and currently still occupy a substantial space in
Triticeae research (Badaeva et al., 2018; Kihara, 1930). The popular ‘genome analyzer’
system developed by early researchers relied on meiotic chromosome pairing in hybrids
of distant crosses (Dewey, 1984; Love, 1984). This foundational strategy accelerated
analysis of genomes of Triticeae species but has been criticized for some reasons. Key
among the points of disagreement is that chromosome pairing is controlled by diverse
genetic factors and therefore, is not a reliable basis to judge similarity or dissimilarity of
genomes (Farooq et al., 1990; Moore, 2009; Seberg and Petersen, 1998). Nevertheless,
this methodology alongside C-banding and ISH have been applied to reveal the genomic
relationships between important species, generating tons of interesting and informative
data (Badaeva, 2002; Badaeva et al., 2004; Badaeva et al., 2018; Coriton et al., 2009;
Molnar et al., 2015). Other molecular approaches, including isozyme analysis, variations

in low-molecular-weight glutenin subunit and DNA marker systems have provided some



explanations on Aegilops-Triticum relationships, the origin and differentiation of Aegilops
species, and intra- and inter-specific variations in the D and U genome clusters of
Aegilops species (Goryunova et al., 2010; Goryunova et al., 2004; Mizuno et al., 2010;
Wang et al., 2011). Also, a combination of morphology, organelle and nuclear genes
reportedly gave insights into the phylogenetic relationships among diploid taxa in
Triticeae (Seberg and Petersen, 2007). Nevertheless, diploid progenitors of Ae. crassa,
Ae. vavilovii, Ae. juvenalis, Ae. columnaris and Ae. triaristata, and the exact progenitor
of the B genome of hexaploid wheat and other polyploid Triticum species are still in
dispute (Badaeva et al., 2004; Badaeva et al., 1998; Dvorak, 1998 ; Feldman and Levy,
2015; Goryunova et al., 2004; Resta et al., 1996). Also, there are opposing opinions
regarding the donors of A genomes of polyploid species in the Emmer (AB group) and
Timopheevi (AG group) lineages of wheat (Chantret et al., 2005; Dorofeev et al., 1979;
Giorgi et al., 2003; Golovnina et al., 2009; Gornicki et al., 2014; Kilian et al., 2007,
Migushova and Konarev, 1975). In the classification of Aegilops species, the justification
for including Ae. speltoides in section Sitopsis is still under discussion (Giorgi et al.,

2003; Goryunova et al., 2008; Kilian et al., 2011; van Slageren, 1994).
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CHAPTER THREE
MATERIALS AND METHODS

3.1 Plant materials

Twenty-two wheat-L. racemosus CILs (Table 1), two cultivars of bread wheat, seven
Triticum species other than bread wheat, 23 Aegilops species, eight distant relatives of
wheat (Table 2) and 13 uncharacterized backcross populations of wheat-L. mollis
chromosome introgression lines (Table 3) were studied. The wheat-L. racemosus
chromosome addition lines (CALs) and wheat-L. mollis backcross populations were
obtained from the gene bank of Tottori Alien Chromosome Bank of Wheat (TACBOW),
a subsidiary of the National BioResource Project (NBRP)-KOMUGI, Japan

(https://shigen.nig.ac.jp/wheat/komugi/), while the translocation and recombination lines

were provided by Dr. M. Kishii of the International Maize and Wheat Improvement
Center (CIMMYT), Mexico. The Triticeae species were obtained from NBRP-KOMUGI
gene bank through Prof. H. Tsujimoto of Arid Land Research Center (ALRC), Tottori
University, Japan and Dr. S. Nasuda of the Laboratory of Plant Genetics, Graduate School
of Agriculture, Kyoto University, Japan. DNA samples of all the Aegilops and Triticum
species, except 7. aestivum, were provided by Dr. S. Nasuda. Apart from the Leymus and
Elymus species maintained as perennial plants in ALRC, other experimental plants—
excluding samples provided by Dr. S. Nasuda—were raised and maintained in trays until
leaf samples were ready for DNA extraction. Between 2—4 weeks after sowing, leaf
samples were collected, frozen in liquid nitrogen and stored at —80°C until needed for
DNA extraction. DNA samples were isolated and purified using the cetyl trimethyl
ammonium bromide method. DNA quality check, quantification and concentration

adjustment were done with NanoDrop2000C Spectrophotometer.
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Table 3 Uncharacterized wheat—L. mollis backcross populations

Sample ID 2n Tentative description
CS-LmA 42 —44  LmA addition
CS-LmC 42 —44  LmC addition
CS-LmE 42 —44  LmE addition
CS-LmF 42 —44  LmF addition
CS-LmG 42 —44  LmG addition
CS-LmH 42 —44  LmH addition
CS-Lml 42 —44  Lml addition
CS-LmlJ 42— 44  Lml addition
CS-LmK 42— 44  LmK addition
CS-LmL 42 —44  LmL addition
CS-LmM 42 —44  LmM addition
CS-LmN 42 —44  LmN addition

Lm BC2-1(2n=50)xCS  42-50 Mixed Lm chromosomes

CS, Chinese Spring; Lm, L. mollis; A—N, Arbitrary tags of L. mollis chromosomes
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3.2 Designing of primers and development of markers from L. racemosus
sequence information

Leymus racemosus genome scaffolds polymorphisms against wheat reference genome

(vl.1) (IWGSC, 2014) were evaluated by BLASTN, and primers sensitive to relatively

large (>3-nt) gaps and mismatches were designed by Primer3 software (version 4.0).

More primers designed from L. racemosus RNA-seq by collaborators were obtained and

screened alongside those designed from genomic sequence.

Utilizing genomic DNA samples from bread wheat and L. racemosus, 294
randomly selected primer sets—150 from genomic sequence and 144 from RNA-seq.
Each 20 pL reaction volume contained 10 pLL KAPA Taq Extra HotStart ReadyMix with
dye (KapaBiosystems), 1 uL (10 uM) each of forward and reverse primers, 2 pL (50 ng)
DNA template and 6 pL. PCR grade water. With BIORAD T100 Thermal Cycler, the
samples, in a 96-well plate, were subjected to touchdown PCR: 95°C initialization for 3
minutes, 5 cycles of 95°C denaturation for 30 s, 65°C to 61°C (-1°C/cycle) annealing for
30 s and 72°C extension for 30 s; 30 cycles of 95°C denaturation (30 s), 60°C annealing
(30 s) and 72°C extension (30 s) and final extension at 72°C for 10 seconds. Because the
average melting temperature (Tm) of primers designed from DNA sequence was about
8°C higher than the average Tm of primers designed from RNA-seq, the annealing range
of 65-60°C in the cycling program was substituted with 57-52°C for the primers designed
from the RNA-seq. All PCR products were electrophoresed for 30 minutes on 1.5%
agarose S gel in Tris-acetate-EDTA (1X TAE) buffer, stained in ethidium bromide
solution for 10 minutes and photographed with AE-6932GXCF transilluminator.

Leymus racemosus polymorphic markers were applied to genotype nine wheat—

L. racemosus chromosome addition lines and markers specific to L. racemosus
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chromosomes I, J and N were deployed to genotype two each of I-, J- and N-translocation
lines. Markers specific to chromosome N were further used to genotype seven N-
recombination lines. Bands of dominant PCR markers were scored in a binary fashion,
“1” and “0” for presence and absence, respectively, while the few codominant markers
were differentiated using 1 to designate band size in wheat and 2 for band size in an
introgression line or another Triticeae species, depending on the case. The scores were
analyzed using simple proportion to determine the percentage of screened primers
amplified in L. racemosus genome as well as the proportion of the amplified Leymus
markers polymorphic in wheat. Also, the frequency of amplification of alien
chromosomes in the CILs was computed, in order to determine the proportion of the
developed markers in each alien chromosome. Markers specifically amplified by each of
the 19 chromosome addition lines were designated chromosome-specific and L.
racemosus chromosomes I-, J- and N-specific markers specifically located on any of the
translocation lines were accordingly considered to be arm-specific. Arm-specific markers
of chromosome N specifically amplified by the seven N-recombination lines were applied

to map the positions of the recombinant fragments.

33 Sequencing and analysis of some PCR products

Sanger sequencing was applied to determine the nucleotide sequence of PCR products
generated by one of the markers which amplified all the L. racemosus chromosomes
added to wheat. All the PCR products were purified with AxyPrep PCR cleanup Kkit,
according to the PCR cleanup spin protocol (AXYGEN Biosciences). The purified
products were premixed following Macrogen’s recommendation (Macrogen, Japan) and

same delivered to the company for sequencing. Each genotype sequence was searched

17



against nucleotide sequences in NCBI and Ensembl Plants databases using BLASTN.
Also, the DNA scaffold from which the marker was developed was searched in like
manner. Polymorphisms between the chromosomes were determined by aligning all the

sequences using JustBio multiple alignment tool (http://www.justbio.com/hosted-

tools.html).

34 Analysis of transferability of L. racemosus markers to related species

All the markers amplified in L. racemosus were applied to genotype 12 species
in the tribe Triticeae, including L. racemosus as a positive control. This enabled the
assessment of the proportion of L. racemosus markers that could be utilized to analyze
related genomes, with emphasis on determining polymorphism between bread wheat
genome and genomes of the other species. For all the amplified markers, the rates of
polymorphisms between wheat and the other species were computed. This gave a basis
to decide the suitability of L. racemosus markers for genotyping of wheat lines carrying
chromosomes from these species. The co-amplified markers were used to reconstruct the
phylogenetic relationship among the species, to further aid the estimation of the reliability
of'the markers. In addition, the markers amplified in each species were applied to compare

the proportions of polymorphic markers from DNA and RNA sequence information.

3.5 Molecular marker-assisted selection of wheat lines carrying L. mollis
chromosomes

Leymus racemosus PCR markers transferred to L. mollis genome were used to genotype

wheat—L. mollis backcross populations to enable faster identification and selection of

alien carriers. Non-carrier segregants and duplicated carriers were discarded, and the
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remaining plants were advanced to BC3F4 under a temperature-controlled (22°C day/18°C
night) greenhouse. In each generation, disomic plants were distinguished using progeny
test. In this test, it was assumed that monosomic addition lines produce non-carrier (2n =
42, AABBDD), monosomic addition (2n =43, AABBDD + 1’ [Ns]), and disomic addition
(2n =44, AABBDD + 1" [Ns]) segregants, whereas genetically stable disomic plants do
not segregate: they produce only disomic addition lines (2n = 44, AABBDD + 1" [Ns]).
This is because, in meiosis, the monosomic addition lines are expected to produce two
different gametes: ABD and ABDNs, while the disomic addition lines should produce one

gamete, ABDNSs.

3.6 Identification of L. mollis chromosomes in wheat—L. mollis lines by GISH

The cytological status of each line selected by molecular markers was confirmed by GISH.
Leymus mollis genomic DNA was labeled with fluorescein-12-dUTP (Thermo Scientific)
using Random Primers DNA labeling system (Invitrogen). With the labeled L. mollis
genomic DNA as probe, GISH was performed for the 10 CALs following a protocol
described for Triticeae species (Brammer et al., 2013), with slight modifications: steps 3—
9 of'slide pre-hybridization were skipped and the probe was denatured at 100°C for 5 min
instead of 75°C for 10 min. After hybridization, the slides were viewed and photographed

with an Olympus BX61 automated fluorescence microscope (Olympus).

3.7 Genotyping-by-sequencing
To increase the number of Leymus chromosome-specific markers in the wheat—L.
racemosus and wheat—L. mollis addition lines and further confirm the PCR-based results,

DArTseq was applied to genotype the 32 CILs and the parents. Also, DNA samples from
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the 34 Triticeae species used for genomic relationships analysis (Table 3) were genotyped
by DArTseq. DNA samples, 1 ug each, were sent to Diversity Arrays Technology Pty Ltd,

Australia (http://www.diversityarrays.com/) for sequencing and marker identification. All

the genomic representations were sequenced on HiSeq 2500 and the wheat—Leymus
genomes were aligned to wheat ChineseSpring04 reference genome and
wheat ConsensusMap version 4. The 34 Triticeae samples, sent to the Company at a
different time, were also sequenced on HiSeq 2500 but aligned to
wheat ChineseSpringl0 reference genome and the same consensus map
(wheat_ConsensusMap_version_4).

DArTseq is one of the cheap and easy but efficient genotyping-by-sequencing
platforms which allow genome-wide marker discovery through restriction enzyme-
mediated genome complexity reduction and sequencing of the restriction fragments
(Andrews et al., 2016; Davey et al., 2011; Melville et al., 2017). It utilizes Next-
Generation-Sequencing platforms to sequence the most informative representations of
genomic DNA samples to aid marker discovery. In comparison to the array version of
DATrT, DArTseq results in higher marker densities (Kilian ez al., 2012). The high marker
number generated by this system gives it an edge over previous molecular marker
procedures applied for diversity studies and genomic analysis of Triticeae species
(Goryunova et al., 2010; Goryunova et al., 2004; Mizuno et al., 2010; Wang et al., 2011).
It, therefore, serves as a cheap alternative to genome analysis by whole genome
sequencing, where the sequence information of genomes intended to be analyzed are not
available. Two types of data are generated by DArTseq: SNP and SilicoDArT. SNP
markers are nucleotide polymorphisms present in the restriction fragments, while

SilicoDArT markers represent presence/absence variation (PAV) of the restriction
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fragments. Therefore, codominant SNP markers are scored “0” (reference allele
homozygote), “1” (SNP allele homozygote) and “2” (heterozygote: presence of both
reference and SNP alleles), while dominant SilicoDArT markers are scored in a binary
fashion, with “1” representing presence of the restriction fragment with the marker
sequence and “0” designating its absence. The choice of which data to use depends on the
research objective. It should be noted that for the wheat—Leymus CILs, a score of “0” in
the SNP data means that the genomic representation lacks the Leymus allele of the marker
(presence of wheat allele only); “1” refers to the absence of the wheat allele (presence of
Leymus allele only), while “2” represents the presence of the two alleles.

Since the wheat—L. racemosus CALs had been previously characterized by FISH
(M. Kishii et al., 2004), SNP markers with call rate of 85% and above were used to
analyze the lines, while only SNP markers with call rate of 100% (definite scores across
all the samples: bread wheat, L. mollis and wheat—L. mollis genomes) were used for the
analysis of wheat—L. mollis CALs. Also, a few SNP markers with alternative scores (1 or
2) in wheat and L. racemosus genomes were included in the analysis of the wheat—L.
racemosus CALs, but such markers were excluded in the analysis of the wheat—L. mollis
CALs. Genetic mapping-related statistics were not considered because the objective was
to identify polymorphic markers to differentiate between the wheat, Leymus and wheat—
Leymus genomes. The data were analyzed for polymorphism between the wheat and
Leymus genomes, and polymorphic markers were used to identify Leymus segments in
the wheat—Leymus lines. Possible substitutions of wheat chromosomes in the wheat—L.
mollis lines were analyzed by filtering the SNP markers specific to the L. mollis segment
(markers with score of “1”) in each line. Noteworthy is that wheat DArTseq platform

grouped all the markers (including Leymus-specific) into the 21 chromosomes of wheat,
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hence the presence of L. mollis chromosome in a wheat—L. mollis line would be indicated
by a score of “1” if the wheat homoeolog is substituted, or 2 if the homoeolog is not
substituted. The former case indicates a substitution line, while the latter indicates an
addition line. In the unlikely case of zero genotyping error and complete absence of
segment deletion, the genomes of all the wheat—Leymus CALs would be scored “2”, since
they have both wheat and Leymus segments.

Based on the correspondence between the SNP alleles and reference alleles in
each CS chromosome provided by DArTseq, the Leymus chromosome-specific SNP
markers were used to determine the homoeologous groups (HGs) of Leymus
chromosomes in the lines. Genomic relationship between the genomes of the two Leymus
species was roughly estimated by marker polymorphism between the genomes, whereas
markers consistently called (call rate of 100%) among the two genomes, wheat—L. mollis
and wheat—L. racemosus addition lines were used to estimate the relationship between
the chromosomes of the two Leymus species. This latter set of markers was used for

cluster analysis (http://genomes.urv.cat/UPGMA/) to reveal the associations among the

chromosomes of the two Leymus species.

Frequently called SNP markers (>90% call rate) were used for phylogenetic tree
reconstruction and differentiation of the genomes of polyploid species of Aegilops,
whereas SilicoDArT markers (>70% call rate) were used for the determination of putative
progenitors of the polyploid Aegilops and Triticum species. This reduction in call rate was
made to accommodate more markers, ensure wider genomic coverage and reduce bias.
To estimate the phylogenetic relationships among the 11 diploid and 12 polyploid
Aegilops species, the raw genotypic data of the two sets (diploid and polyploid) were

subjected to cluster analysis. Pearson’s correlation coefficient (r) was used as similarity
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index, and the genetic distances among the species were estimated by transforming the r

values to distance values, using d = 100(1 — r) (http://genomes.urv.cat/UPGMA/).

Species-specific SilicoDArT markers of the polyploid species of Aegilops were used to
differentiate their genomes, while species-specific SilicoDArT markers of diploid species
of Aegilops were used to estimate the diploid-polyploid evolutionary relationships among
all the Aegilops species. Diploid Triticum and Aegilops species whose total SilicoDArT
markers showed at least 10% homoeology to the total SilicoDArT markers in any of the
three genomes of hexaploid wheat were selected as analyzers to determine the putative
progenitors of the corresponding genomes of each polyploid Triticum species. Species-
specific SilicoDArT markers of these selected diploid species were used as analyzers to
determine the putative progenitors of each polyploid 7Triticum species. In determining the
progenitors of all the polyploid species (4degilops and Triticum), the proportions of the
species-specific markers of the diploid analyzers retained in the genomes of the polyploid
species were used as a basis to draw conclusions on genomic proximity and evolutionary
relationships among the species. Species-specific markers of Ae. speltoides and Ae.
searsii were further used to examine the relationship between the seven B/G-genome
chromosomes of each of the polyploid Triticum species and the chromosomes of the
diploid species. The two diploid species were chosen based on the proximity of their

genomes to the B/G genomes of the polyploid species.

3.8 Preliminary phenotypic evaluation of wheat—L. mollis lines
The 10 wheat—L. mollis CALs alongside the background wheat cultivar (CS) were laid
out in a completely randomized design (CRD) with six replicates in a greenhouse. Seeds

of all the genotypes were sown in petri dishes under the same condition, and uniform
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seedlings of each genotype were transplanted to plastic pots, one plant in each pot. DNA
samples of seedlings from monosomic lines were genotyped by PCR to ensure that only
alien carriers were transplanted. All the plants grew under a temperature-controlled (22°C
day/18°C night) condition. Adequate cultural practices necessary for optimum crop
performance were observed. Data were taken on number of days to heading and
physiological maturity, plant height, spike length, number of spikes per plant, grain yield
per spike and grain yield per plant. Two-tailed t-test was applied to compare the mean
values of traits between CS and each CAL. At this preliminary stage, differences among
the CALs were not considered, as all the lines are intended to be collectively evaluated
under different stress conditions for further selection and production of translocation and

recombination lines with desired segments of L. mollis chromosomes.
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CHAPTER FOUR
RESULTS

4.1 Leymus racemosus polymorphic markers

From a total of 294 primer sets screened by PCR, 164 sets (~56%) amplified L. racemosus
genome. Out of the amplified markers, 110 (~67%) were polymorphic in wheat—absence
or difference in size of bands in wheat (Fig. 1a; Table 4). Six of the polymorphic markers
showed size polymorphism (codominant), while 104 markers were dominant
(presence/absence polymorphism). Also, out of 11,570 SNP markers filtered based on
high call rate, 8,522 (~74%) were polymorphic in wheat (absence of SNP alleles in
wheat)—8,430 SNPs were absent in the wheat cultivar (CS) analyzed in this study, while
92 were present but showed presence of both reference and SNP alleles in L. racemosus
(Fig. 1c; Table 4). These 92 markers form part of the polymorphisms observed between
the CS in TACBOW gene bank and the reference CS genome on DArT platform. Taken
together, a total of 8,632 polymorphic markers were developed from L. racemosus

genome.

4.2 Markers in wheat—L. racemosus CALSs

About 65% of the polymorphic PCR markers amplified L. racemosus chromosomes in
nine wheat—L. racemosus chromosome addition lines, while approximately 43% of the
SNP markers identified the nine alien chromosomes (Table 4; Fig. 1b and d). Only SNP
data from DArTseq was used in this analysis, as SilicoDArT data was less informative in
analyzing the required polymorphism. This is because SilicoDArT data is binary
(dominant), making it impossible to identify codominant polymorphisms (in this case,

presence of both reference and SNP alleles), which was mostly utilized to genotype the
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chromosome introgression lines, since they have genome representations of wheat (alien
chromosome recipient) and L. racemosus (alien chromosome donor). A total of 3,551
chromosome-specific markers were developed for the nine L. racemosus chromosomes
in wheat genetic background, ranging from two in LrE to 533 in LrL (Table 4). The large
number of markers on each chromosome, except LrE, enabled reliable differentiation of

the nine wheat—L. racemosus CALs.

4.3 Confirmation of homoeologous groups of L. racemosus chromosomes in CS
background
To confirm the validity of the chromosome-specific SNP markers, correspondence of L.
racemosus chromosome-specific markers with the homoeologous groups of CS
chromosomes was exploited to determine the most probable homoeologous group (HG)
of each L. racemosus chromosome in the chromosome addition lines (Table 5). The
results revealed that the alien chromosomes spread between HG2 and 7: LrA and L in
HG2, LrH and N in HG3, LrF, I, K and J in HG 4, 5, 6 and 7, respectively. While this
result confirmed the HGs of seven of the chromosomes, it also clarified the HGs of LrJ
and LrN, which had not been clearly determined in previous studies (Kishii et al., 2004;

Larson et al., 2012)

4.4 Detailed characterization of L. racemosus chromosomes I, J, N and their
respective translocations
As shown in Table 5, I-, J- and N-specific markers were successfully allocated to their

respective arms using their respective translocation lines.
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Fig. 1 Analysis of markers in L. racemosus, bread wheat and nine wheat—L. racemosus
CALs. a Amplification of 164 pre-screened L. racemosus PCR-based markers in L.
racemosus and bread wheat genomes. b Amplification of 110 polymorphic L. racemosus
PCR-based markers in nine wheat-L. racemosus CALs, with L. racemosus genome as a
positive control. ¢ Differentiation of L. racemosus and bread wheat genomes using 11,570
SNP markers. d Proportion of SNP markers in the genomes of nine wheat-L. racemosus
CALs
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A detailed analysis of the homology between each of the three chromosomes and their
respective translocated arms gave a clearer picture of the structures of the translocation
lines.

For chromosome I, the markers were adequately allocated to the short (IS) and
long (IL) arm translocations, revealing the proportions of chromosome I markers that
differentiated each of the translocated arms and eight markers located on a segment of
chromosome I that may not have been transmitted during the production of the
translocation lines (Fig. 2a). However, a few markers specific to the translocation lines
but absent in I-addition line were observed. If no genotyping error is assumed, these
markers would represent polymorphisms that may have arisen from the interactions
between the translocated arms and CS genome.

Most J-chromosome markers were found to be present only in the JS
translocation, about half of which were co-located on the JL translocation (Fig. 2b). This
result obviously indicates that what was hitherto regarded as JL translocation may be a
truncated segment of JS translocation. The 10 unique markers (Fig. 2b) each present in
the two translocation lines may have resulted from changes in each genetic background
or small chromosomal rearrangements during the various production processes. As
observed in chromosome I, 14 markers identified a segment of chromosome J which may
not have been transmitted to the translocation lines.

Chromosome N and its translocated arms presented a similar scenario as
chromosome I. The markers in both the NS and NL arm translocations were clearly shown
(Fig. 2¢). However, 27 markers were found to be specific to NL and nine were specific to
NS translocation lines (Fig. 2¢), indicating unique polymorphisms which may have been

acquired from interactions between the background and the translocated arms as observed
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for chromosomes I and J. Also, the 13 markers in the whole N-addition line, which are
absent in the translocated arms, suggest that the NS and NL translocations lost the region

of chromosome N identified by these markers (Fig. 2c¢).

4.5 Analysis of recombination positions of wheat-LrN recombination lines

The chromosome N arm-specific markers were used to determine locations of the
recombinant fragments on LrN and the corresponding CS chromosomes, revealing the
probable fraction of CS chromosome replaced in each recombination line (Tables 6, 7;
Fig. 3). N recombinant fragments 2, 3, 5 and 6 were mapped on the short arm, while the
recombinant fragments 4 and 7 were found in the long arm of each of the lines. Although
the two markers that specified recombinant fragment 1 were traced to NL, the number
seems too small to confirm the location of this fragment. Recombination lines 6 and 7
were observed to have the largest fragments, with all the markers in the short arm
translocation represented in recombination line 6, and all except two markers in long arm
translocation represented in recombination line 7 (Table 7; Fig. 3). Other lines were found
to have relatively small fragments which can best be described as different sizes of bins
represented in recombination lines 6 or 7. With the two markers recorded for
recombination line 1, it would appear as though there was no recombination event,
although low recombination rates between wheat chromosomes and aliens is not unusual

(Lukaszewski, 1999).
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Fig. 2 Venn diagrams showing homology and polymorphism between chromosomes I, J,
N and their respective translocation lines. a homology and polymorphism between I and
its translocated arms. b homology and polymorphism between J and its translocated arms.
¢ homology and polymorphism between N and its translocated arms
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Table 6 Determination of arm-specific markers of chromosomes Lrl, LrJ and LrN based
on markers specific to their translocated arms

Genotype Description ~ Chromosome Arm-specific markers
ID constitution PCR DArTseq Total
(2n)

I short I short arm 42 1 80 81
translocation

I long I long arm 42 0 404 404
translocation

J short J short arm 42 5 231 236
translocation

J long J long arm 42 0 2 2
translocation

N short N short arm 42 2 162 164
translocation

N long N long arm 42 3 255 258
translocation
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Table 7 Determination of arm locations of N-recombinant fragments using arm-specific
markers

Genotype Arm location of amplified markers Fragment
PCR DArTseq location
Short Long Short Long

N recombination No. 1 0 0 0 2 Not certain
N recombination No. 2 2 0 160 0 Short arm
N recombination No. 3 0 0 67 0 Short arm
N recombination No. 4 0 1 0 48 Long arm
N recombination No. 5 2 0 158 0 Short arm
N recombination No. 6 2 0 162 0 Short arm
N recombination No. 7 0 3 0 248 Long arm
N short arm translocation 2 - 162 - -

N long arm translocation - 3 - 255 -
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108 SNP markers ordered by physical position on chromosome

CS segment

Fig. 3 Graphical genotyping of N-recombination lines using 108 chromosome N-specific
SNP markers corresponding to wheat chromosome 3B. Lr, L. racemosus, N, N-addition
line, NL, N long arm translocation line, NS, N short arm translocation line, NR1-NR7, N
recombination lines 1-7, CS, Chinese Spring
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4.6 Universal markers of L. racemosus chromosomes

Two of the polymorphic markers, 2/ 546518 and 333 546518 (developed from the same
DNA sequence scaffold) identified all the L. racemosus chromosomes in wheat (Fig. 4a).
On sequencing PCR products generated with one of these markers, and conducting
BLASTN search, it was observed that 26% of the sequence of the PCR product of L.
racemosus and 16% of that of wheat-LrN aligned to a section of CACTA-family
transposon in Lolium perenne (perennial rye-grass), an important and highly researched
commercial pasture crop of the grass family, Poaceae. Sequences of other CILs showed
no significant alignment to the transposon sequence. This may be an indication of the

presence of CACTA-family transposon in Leymus species.

4.7 Unique SNP markers in wheat—L. racemosus CALSs

DArTseq data further revealed additional 1,468 unique SNP markers in the nine wheat—
L. racemosus addition lines, absent in both parents. One hundred and ninety-seven of
these markers were common to the lines, while 1,271 were line-specific, with a range of
38-355 specific markers on each line (Table 8). Like the L. racemosus chromosome-
specific markers, the additional line-specific markers also facilitated differentiation of the
nine addition lines. These additional SNP markers account for polymorphisms acquired
from the interactions between the added chromosomes and the background (CS genome),

and their effects may be of agronomic significance.

4.8 Transferability of L. racemosus markers to related species
The result of marker transferability analysis, utilizing 164 pre-screened L. racemosus

PCR-based markers, showed that 75% of the markers were transferable, particularly
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revealing higher amplification frequencies in three other important perennial Triticeae
species (L. mollis, Psathyrostachys huashanica and Elymus ciliaris) in comparison to
wheat and other species studied (Fig. 5a—d; Table 9). More importantly, the amplified
markers in each of these species were found to be reasonably polymorphic in wheat,
obviously indicating their suitability in genotyping wheat—alien CILs carrying
chromosomes from these species.

Interestingly, the two universal markers which identified all L. racemosus
chromosomes in wheat genetic background were found to be Leymus-specific, as they
amplified only the two Leymus species out of the 12 Triticeae species analyzed, revealing
size polymorphism between the two Leymus genomes (Fig. 5b). These markers can,
therefore, be applied to separate Leymus genomes from genomes of other species in the
same tribe, and their (Leymus) chromosomes, if introgressed into wheat, can easily be
sorted out in one PCR. Informative co-amplification between the two Leymus species and
Psathyrostachys huashanica was also observed (Fig. 5c¢), and a phylogenetic analysis
using 123 markers co-amplified among the 12 Triticeae species (Fig. 6) showed an
expected close evolutionary relationship between the three species, which agrees with
reports suggesting that Leymus species are segmental polyploids with variant N-genomes
from genus Psathyrostachys (Anamthawat-Jonsson, 2001, 2014; Fan et al., 2014). Also,
one highly conserved marker sequence amplified all the species, showing size

polymorphism among them (Fig. 5d).
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Fig. 4 Representative gels of PCR amplification of wheat, L. racemosus and wheat—L.
racemosus CALs. a Amplification of nine L. racemosus chromosomes in wheat
background by a universal marker (27 s46518). b—j Amplification of the nine
chromosomes by their respective PCR-based chromosome-specific markers. CS, Chinese
Spring; Lr, L. racemosus; A—N, Nine wheat—L. racemosus CALs
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Table 8 Additional 1,468 unique genotype-based SNP markers in nine wheat—L.
racemosus chromosome CALs

Genotype ID Alien Common SNP  Line-specific
chromosome ID markers on each SNP markers
chromosome
TACBOW 0001 LrA 99 355
TACBOW 0003 LrE 79 38
TACBOW 0004 LrF 70 173
TACBOW 0005 LrH 86 109
TACBOW 0006 Lrl 74 46
TACBOW 0007 LrJ 68 130
TACBOW 0008 LrK 61 186
TACBOW 0009 LrL 92 124
TACBOW 0010 LrN 81 110
KT020-003 (CS) - 0 0
TACBOW 0112 (Lr) - 0 0
Total 197 1271

TACBOW: Tottori Alien Chromosome Bank of Wheat (Japan); CS: Chinese Spring; Lr:
L. racemosus;197 represents the total number of SNP markers common to the nine CALs,
without repetition
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Fig. S Representative gels of PCR amplification of 12 Triticeae species. a Amplification
of L. racemosus by its genome-specific marker b Amplification of Leymus species by a
Leymus-specific marker. ¢ Specific amplification of Leymus species and Psathyrostachys
huashanica (a species of Leymus N-genome progenitor genus). d Amplification of all the
species by a conserved marker sequence, showing size polymorphism between the species.
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] — Triticum urartu
1% ————— Secale cereale
Aegilops speltoides
- 41 Dasypyrum villosum

Triticum aestivum

80

19— Aegilops tauschii

Hordeum vulgare

99— Hordeum bulbosum

Elymus ciliaris

Psathyrostachys huashanica

97 Leym Uus racemosus

11— Leymus mollis

Fig. 6 Phylogenetic tree constructed from the co-amplification of 123 PCR-based L.
racemosus markers using UPGMA as clustering method
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4.9 Comparison of the proportions of polymorphic markers from L.
racemosus genomic sequence and RNA-seq

In a bid to compare the performance of markers developed from DNA and RNA-seq, the
proportions of polymorphic markers from the two sources were compared. As expected,
markers from genomic sequence were more polymorphic than those from RNA-seq,
indicating that the polymorphisms between hexaploid wheat and the other species studied
may be more traceable to the variations in the repetitive sequences of the genomes (Table
9). However, the appreciable polymorphisms recorded from the RNA-seq markers, which

account for variations in the genic regions, make the two approaches equally informative.

4.10  Molecular marker-assisted production of 10 wheat—L. mollis CALSs

With the aid of the integrative approach enumerated in chapter three, 10 distinct wheat-L.
mollis CALs were developed and characterized (Fig. 7; Table 10). Alien carriers in
backcross populations generated from a wheat—L. mollis octoploid plant (2n = 8x = 56,
AABBDDNSs|Nsy) were unmistakably identified using polymorphic PCR markers, and
the L. mollis chromosomes were differentiated with chromosome-specific markers.
Progeny test aided recognition of six disomic and four monosomic lines as the populations
were advanced to BCsF4 (Fig. 7). Interestingly, the Leymus-specific marker which
identified all the L. racemosus chromosomes also identified all the L. mollis chromosomes
analyzed (Figs. 4a, 5b and 8), making it a universal marker for the chromosomes of the
two Leymus species. From 95 PCR markers transferred from L. racemosus to L. mollis
and 15,426 SNP markers in the genomes of L. mollis and CS, 14,577 polymorphic L.
mollis markers were developed—47 PCR-based and 14,530 SNP markers (Table 10). The

PCR markers indicated 49% marker polymorphism between L. mollis and CS (Table 9),
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whereas the SNP markers revealed a higher polymorphism (~94%) (Offiong U. Edet et
al., 2018); online Supplementary Table S1). Chromosomes of L. mollis in the wheat
background were efficiently identified by 27 PCR markers and 6,317 SNP markers, and
a total of 5,957 L. mollis chromosome-specific markers, ranging from 185 in LmL to 796
in Lml (Table 10), enabled unambiguous differentiation of the 10 lines. The number of
SNP markers with a genotypic score of “1” (representing only the L. mollis allele) in each
line ranged between 3 (0.05%) and 15 (0.2%), which lie within genotyping error range.
All the lines retained almost 100% of the reference (wheat) alleles in addition to the SNP
alleles, showing that none of the CS chromosomes was substituted. Therefore, all the

introgressions were confirmed to be addition lines.

4.11 HGs of L. mollis chromosomes added to CS

As done for L. racemosus chromosomes, the HGs of all the L. mollis chromosomes were
determined from the correspondence of L. mollis chromosome-specific SNP markers to
the HGs of CS. The 10 L. mollis chromosomes fitted well into seven HGs, with six
chromosomes falling into three HGs (Table 11). The chromosomes in the same HGs

belong to different sub-genomes, granted that L. mollis is a tetraploid species.
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Fig. 8 Gel picture showing amplification of 10 L. mollis chromosomes in wheat
background by a Leymus chromosomes’ universal marker. CS, Chinese Spring; Lr, L.
racemosus; Lm, L. mollis; A— N, wheat-L. mollis arbitrary tags of L. mollis chromosomes
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4.12 Unique SNP markers in wheat-L. mollis CALs

As observed in wheat-L. racemosus CALs, 527 unique SNP markers absent in CS and L.
mollis were found in the 10 wheat-L. mollis CALs (Table 12). Out of these markers, 470
markers (~89%) were specific to different lines, which, once again enabled a confirmatory
differentiation of the lines and also points to the likelihood of genetic modification in the

CALs, which may be responsible for generating additional polymorphisms.

4.13 Confirmation of the cytological status of each L. mollis chromosome in the
wheat-L. mollis CALs by GISH
Since the marker-assisted selection procedure adopted here, especially in differentiating
monosomic and disomic lines, is currently not a common practice, the presence and status
(monosomic or disomic) of aliens in the 10 CALs were validated by GISH. As shown in
Fig. 9, GISH results perfectly agreed with the marker-based results for all the CALs. The
lines designated as disomic (LmA, LmC, LmD, LmG, LmH and Lml) or monosomic
(LmB, LmF, LmL and LmN) by marker-based analysis were validated by GISH analysis,
proving the possibility of producing wheat-alien CALs without applying in situ

hybridization for alien identification.
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Table 12 Additional 527 unique SNP markers in 10 wheat-L. mollis CALs

Alien ID Common Line-specific
SNPs on each SNPs
chromosome

LmA 70 40
LmB 57 44
LmC 73 59
LmD 55 40
LmF 49 37
LmG 80 70
LmH 64 52
Lml 82 69
LmL 40 23
LmN 45 36

KT020-003 (CS) - -
TACBOW 0113 (Lm) - -
Total 527 470
TACBOW, Tottori Alien Chromosome Bank of Wheat; CS, Chinese Spring; Lm, L.
mollis
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4.14  Relationship between L. mollis and L. racemosus genomes

Out of 8,653 SNP markers consistently scored in the two Leymus genomes, 75% were
monomorphic, indicating a close genomic relationship between the species. Also, a
cluster analysis using 579 SNP markers shared among the wheat-L. mollis CALs and
wheat-L. racemosus CALs revealed an interesting relationship between the chromosomes
of the two species (Fig. 10). Seven chromosomes each of L. mollis and L. racemosus in
six HGs clustered in pairs: L. mollis chromosome H (LmH) and L. racemosus
chromosome N (LrN); L. mollis chromosome F (LmF) and L. racemosus chromosome H
(LrH); L. mollis chromosome C (LmC) and L. racemosus chromosome J (Lt)); L. mollis
chromosome D (LmD) and L. racemosus chromosome K (LrK); L. mollis chromosome
N (LmN) and L. racemosus chromosome F (LrF); L. mollis chromosome I (LmlI) and L.
racemosus chromosome I (Lrl); L. mollis chromosome A (LmA) and L. racemosus
chromosome A (LrA) (Fig. 10). In HG3, L. mollis chromosomes LmF and LmH
associated with L. racemosus chromosomes LrH and LrN, respectively. Apart from LmL
in HG1, whose homoeolog in L. racemosus was not produced, every other HG included
at least two chromosomes, one from each Leymus species. In each HG, the genomic
distance between homoeologous chromosomes of the two species was narrower than that
within the same species (Table 13). In HG3 for instance, the distance indices between
chromosomes LmF and LrH (18) and LmH and LrN (16) were clearly lower than those
between LmF and LmH (90) and LrH and LrN (88). Using the genetic association among
the chromosomes (Fig. 10; Table 13), the chromosomes were tentatively named (Table
14). For each of the species, the chromosomes were numbered according to their HGs
and each chromosome of a homoeologous pair was arbitrarily assigned to a different sub-

genome, designated as Ns; or Nsa. Superscripts “m” (L. mollis) and “t” (L. racemosus)
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were used to differentiate chromosomes of the two species. All non-homoeologous
chromosomes in each species were assumed to be in the same sub-genome, as

homoeology between two chromosomes should not exist in one sub-genome.

4.15  Phenotypic variation between CS and wheat—L. mollis CALs

From the preliminary phenotypic evaluation conducted in this study, all the addition lines
were significantly different from CS in at least one of the seven traits measured (Fig. 11),
indicating the effects of L. mollis chromosomes in the lines. Number of days to heading
(DH) was significantly reduced in six of the lines, significantly increased in one, while
three lines were not significantly different from CS (Fig. 11a). Five of the six lines with
significantly reduced DH also reached physiological maturity significantly earlier than
CS, while the other five lines were not significantly different from CS (Fig. 11b). Plant
height was significantly reduced in five lines, significantly increased in one line, while
four lines were not different from CS (Fig. 11c¢). All the lines were significantly different
from CS in at least one yield component (Fig. 11d—g). Although spikes were significantly
longer in some of the lines (Fig. 11d), number of spikes per plant, grain yield per spike
and grain yield per plant were significantly lower in all the lines, except LmG and Lml,
which were not significantly different from CS in number of spikes per plant and grain

yield per spike, respectively.
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Fig. 10 Relationship between L. mollis and L. racemosus chromosomes. LmA-N, L.
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bootstrap values; clustering method: Unweighted pair group method with arithmetic mean

(UPGMA) (http://genomes.urv.cat/UPGMA/)
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4.16  Diploid analyzers of polyploid Aegilops and Triticum species

In the preceding result sections, the application of DArTseq genotyping enabled clear
differentiation of wheat and Leymus genomes in the CILs. It was also possible to identify
markers in the sub-genomes of wheat and the corresponding alleles in Leymus species
(Tables 5 and 11). A similar strategy was therefore applied to select appropriate markers
in the diploid genomes for the analysis of genomic relationships among the Aegilops and
Triticum species reported here.

To determine the putative progenitors of each of the polyploid species of
Aegilops, SilicoDArT markers in the diploid genomes of all the Aegilops species were
used as genome analyzers (Table 15). For each of the diploid species, species-specific
markers were selected by filtering markers present in one species but absent in all the
others. This made dominant SilicoDArT markers preferred in this analysis, as codominant
SNP markers do not give information on PAVs. The progenitors of the polyploid species
were estimated based on the proportions of diploid markers that are retained in each
polyploid genome (diploid-polyploid monomorphism). Because the number of the
species-specific markers is affected by genetic similarity among the diploid species,
especially the Sitopsis species, the genomes of the polyploid species of Aegilops were
first analyzed with all the markers in each diploid genome of Aegilops species (Fig. 12a)
before being analyzed with diploid species-specific markers (Fig. 12b). This allowed the
determination of the suitability of the species-specific markers in estimating the
progenitors of the polyploid species. The use of species-specific markers as analyzers
reduced the background noise produced by monomorphic markers among the diploid
species (Fig. 12b)

Having confirmed the adequacy of the species-specific markers of the analyzers,
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polyploid genomes of Triticum species were analyzed with only species-specific diploid
analyzers (Table 16). Therefore, the conclusions made regarding the putative progenitors
of the polyploid species (Aegilops and Triticum) are based on the species-specific markers
of the analyzers. To select analyzers for the polyploid genomes of Triticum species, the
genomes of 16 bread wheat-related diploid species were screened to determine the
proportions of homoeology of their SilicoDArT markers to the total SilicoDArT markers
in each of the three genomes of bread wheat. This homoeology was estimated based on
the number of markers of the diploid species assigned to each genome of bread wheat
(Table 16). Making the estimation was possible because DArTseq platform optimized for
bread wheat was used in this study. A diploid species with at least 10% homoeology to
any of the three genomes of hexaploid wheat was selected as an analyzer for the
corresponding genomes of each of the six polyploid Triticum species. With this criterion,
a total of 13 analyzers were selected. Species-specific markers of the 13 selected diploid
analyzers were then filtered for the analysis of the putative progenitors of the genomes of

the polyploid species (Table 16).
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Table 15 SilicoDArT markers of diploid analyzers of polyploid Aegilops species

Species Total No. of markers Species-specific markers (%)
Ae. mutica 12238 837 (6.84)
Ae. speltoides 9330 699 (7.49)
Ae. longissima 18321 761 (4.15)
Ae. sharonensis 18205 723 (3.97)
Ae. bicornis 16465 598 (3.63)
Ae. searsii 15402 1633 (10.60)
Ae. tauschii 20288 7420 (36.57)
Ae. caudata 19086 6514 (34.13)
Ae. comosa 17377 3941 (22.68)
Ae. uniaristata 16719 4003 (23.94)
Ae. umbellulata 19523 6627 (33.94)
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4.17  Genomic differentiation and evolutionary relationships among polyploid
and diploid species of Aegilops
Before applying the genome analyzers to determine the progenitors of the polyploid
species, a total of 28,264 polyploid species-specific SilicoDArT markers, ranging from
187 in Ae. juvenalis to 4,759 in Ae. cylindrica (Table 17), were used to confirm genomic
difference among the 12 polyploid species of Aegilops. The polyploid species-specific
markers were selected in the same manner as the diploid species-specific markers. The
relatively low numbers of specific markers in the genomes of Ae. crassa and Ae. juvenalis
is obviously because large proportions of their genomes (D and U genomes) are shared
by the other species (Table 17). With the possibility of genomic adjustments during
polyploidization (Feldman and Levy, 2015; Feldman and Levy, 2012) and the assumption
that the original progenitors of the polyploid species may be different from the accessions
of the diploid species used in this study, only diploid analyzers with considerably higher
proportions of monomorphism with the polyploid species were taken as the putative
progenitors of the polyploid species. This analysis confirmed the putative diploid
progenitors of Ae. ventricosa (D'NY), Ae. cylindrica (C°D®), Ae. kotschyi (SKUY), Ae.
biuncialis (UPMP), de. triuncialis (U'C"), Ae. ovata (UM®), and Ae. variabilis (SPUP) (van
Slageren, 1994) (Fig. 12). Noteworthy is that the proportions of the markers of three
Sitopsis species (de. bicornis, Ae. longissima, and Ae. sharonensis) retained in the
genomes of the two polyploid species with S-related genomes (4e. kotschyi and Ae.
variabilis) were not reasonably different. This made it difficult to decide which of the
Sitopsis species donated the S-related genomes to Ae. kotschyi and Ae. variabilis,
although Ae. bicornis and Ae. longissima, respectively, seemed to be the most likely

candidates. This observation confirms the likelihood of a common ancestry of the Sitopsis
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species (Kilian ef al., 2011). Therefore, the original progenitor of the S-related genomes
of the polyploid species may have been an ancient relative of the Sitopsis species, which
is probably extinct. Although polyploid species-specific markers (Table 17) were used to
differentiate Ae. kotschyi (SKU¥) from Ae. variabilis (SPUP) and Ae. biuncialis (UPMP)
from Ae. ovata (U8M#), these pairs of species have identical genomic constitutions (same
progenitors; Fig. 12), and therefore may be considered as variants/subspecies of the same
species in each case.

The unidentified diploid progenitors of five polyploid Aegilops species (Ae.
triaristata [U"X", U"X"N"], de. crassa [DX, D'D2X ), de. juvenalis [X'D'U], Ae.
vavilovii [ X*D"*S"?], and Ae. columnaris [U°X°]) (Badaeva et al., 2004; Badaeva et al.,
1998; Dvorak, 1998 ; Goryunova et al., 2004; Resta et al., 1996) are most likely to be
traced to Ae. speltoides or Ae. mutica. The competing proportions of monomorphic
markers between each of the diploid species (4e. speltoides and Ae. mutica) and the
genomes of the five polyploid species (Fig. 12) strongly suggest that the unidentified
genomes may have been donated by an ancient species closely related to these two diploid
species or their direct ancestor(s). Based on these results, modifications in the genomic
representations of Ae. crassa, Ae. juvenalis, Ae. vavilovii, Ae. columnaris, and Ae.
triaristata were proposed (Table 18). In this proposal, the genomes of Ae. speltoides and
Ae. mutica are jointly represented as T°. This does not suggest that the two diploid species
are genomically the same but reflects the difficulty encountered in clearly determining
which of the two species may have donated the controversial genome to the five polyploid
species. Following the diploid-polyploid relationship analysis, the genome of tetraploid
Ae. crassa is considered as being constituted of Ae. tauschii and T° genomes (DT?), while

the genome of hexaploid Ae. crassa is designated as D'D*T® (tetraploid Ae. crassa x Ae.
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tauschii). Aegilops vavilovii is assumed to have evolved from the hybridization of
tetraploid Ae. crassa and Ae. searsii, granted that Ae. crassa and Ae. vavilovii have similar
morphological traits and are reported to be sympatric (Cabi et al., 2010). The analysis
also shows that Ae. juvenalis has T°, D and U genomes; hexaploid Ae. triaristata lacks
Ae. comosa genome but has the genomes of Ae. umbellulata, Ae. uniaristata and T°, and

Ae. columnaris is composed of Ae. umbellulata and T* genomes.

4.18 Cluster analysis of diploid and polyploid Aegilops species

A phylogenetic tree (Fig. 13a) constructed with 15,512 frequently called SNP markers
separated the diploid Aegilops species into already established botanical sections (van
Slageren, 1994), except that Ae. speltoides did not cluster with other species in the section
Sitopsis, an observation which has been reported by other researchers (D. Giorgi et al.,
2003; Goryunova et al., 2008; O. Seberg & Petersen, 2007). Aegilops umbellulata (section
Aegilops) seemed more distant from the others, whereas Ae. speltoides (section Sitopsis)
appeared closer to Ae. mutica (section Amblyopyrum), and relatively distant from other
species of section Sitopsis. Among Sitopsis species, Ae. longissima and Ae. sharonensis
appeared genomically more proximal to each other than to others. The polyploid species
of Aegilops formed two clusters based on the putative common diploid progenitors, Ae.
tauschii (D cluster) and Ae. umbellulata (U cluster) (Fig. 13b). Aegilops juvenalis, bearing
both D and U genomes, clustered closely with Ae. crassa and Ae. vavilovii in the D cluster,
indicating a possible evolutionary link between its (4e. juvenalis) genome and the two
species in the D cluster. This again suggests the likelihood of the presence of a diploid

genome, perhaps T°, common to Ae. juvenalis, Ae. crassa and Ae. vavilovii (Fig. 12).
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Table 17 Species-specific SilicoDArT markers of 12 polyploid species of Aegilops

Species Ploidy Genome No. of markers
Ae. crassa 6x Derlperzxer 684
Ae. vavilovii 6x Dvaxvagva 2153
Ae. ventricosa 4x DYNY 3027
Ae. cylindrica 4x CD 4759
Ae. juvenalis 6x XIDIU/ 187
Ae. kotschyi 4x Skuk 2271
Ae. biuncialis 4x UbmP 2601
Ae. triuncialis 4x ctut 2051
Ae. ovata L. 4x UsMe 3163
Ae. triaristata 6x UrX"N" 2215
Ae. columnaris 4x Uelxe? 2470
Ae. variabilis 4x SpPUP 2683
Total - - 28264

References of genomic formulas: (Badaeva et al., 2004; Badaeva et al., 1998; Badaeva et
al.,2018;J. Dvorak, 1998 ; Goryunova et al., 2004; Resta et al., 1996); (B. Kilian et al.,
2011)
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Table 18 Proposed modifications in the genomic representations of five polyploid
species of Aegilops

Species Ploidy Reported genomic Proposed genomic
formula formula

Ae. crassa 4x, 6x DerXer, DI per2xer DT, D'D*T®

Ae. vavilovii 6x DYaxvasve DTsS®

Ae. Juvenalis 6x Xipiys UDT?®

Ae. triaristata 4x, 6x u"xn, U"X"™N" UN, UNT?®

Ae. columnaris 4x yelxe? uTs

T#, joint representation of Ae. speltoides and Ae. mutica; references of genomic formulas:
(Badaeva et al., 2004; Badaeva et al., 1998; Badaeva et al., 2018; J. Dvorak, 1998 ;

Goryunova et al., 2004; Resta et al., 1996)

67



89

"umoIq ur pafjaqef e (110¢ “Te 19
uel[ry ‘g ‘¢00¢ e 12 eAounkion ‘zo0g ‘eAdepeq) sprojdAjod oy Jo s1oisnjo urew om) pue sprodip oy Jo suor}oas oy, ‘soroads projdAjod

q 'saroads projdi( & ‘szaaew NS Z1S‘ST Jo Suisn saroads sdoji3ap 3uowe sdiysuone[dr A1euonnjoAd dy) JO UOnONNSuodRy €] “Siq

sueuwnjod ay BlRISLIEIUN "By O
eleisiiel oy e ES0lU0O Oy S wniAdowo)’ -
EI1BAO "3y O s
1 elepnes ay
ALY == wniAdoipunfo
sisuauo.eys ay ]
1Ayasioy ay o —|
el | ewjssibuoj ay 001 =
SIIQELIBA "3y 1 001 001
001
SIUI09Iq "By
syelaunLy "ay o FEITENE e
o 1IS1B3S "3y O 1
HIAOJIABA "3y —I © ¥ SISdojs %
BSseId "3y !
Hyasney ‘ay o
P nyasney sy BIBIGaLIaA
sijeuaanf -ay
€ sapjoyads ‘ay sisdolis L
s ’ ¢ 6
eaupullfa ay & — ennul oy @ wniAdoAjquy
2 q ol _
esooLIuaA By © o ] elejnjfoquin ay sdojibay




4.19 Genomic and evolutionary relationships in the Aegilops-Triticum species
Species-specific SilicoDArT markers of 13 bread wheat-related diploid species (Table
16) were used to determine the elementary donors of the A, B and D genomes in six
polyploid Triticum species. As described for the estimation of the progenitors of the
polyploid species of Aegilops, the proportions of species-specific markers of the diploid
species’ markers shared with the genomes of the polyploid species enabled the
determination of the progenitors of the genomes of the polyploid Triticum species (Figs.
14-17).

The genome of 7. urartu was the closest to the A genomes of all the polyploid species
analyzed (Fig. 14), suggesting that 7. urartu is the most likely donor of the A genome in
each of them. The considerable similarity between the A genome of each of the polyploids
and 7. boeoticum—another A genome species—suggests a common ancestry of 7.
boeoticum and T. urartu. Similarly, Ae. searsii seemed to be the most closely related to
the B/G genomes of the polyploid species (Fig. 15). However, the proportion of Ae.
speltoides markers assigned to the reference B genome was higher than those of every
other diploid species analyzed (Table 16). This strongly suggests an evolutionary link
between the genome of Ae. speltoides and the B/G genomes of the polyploids. This is
further supported by an almost equal similarity of the genomes of the diploid species to
the G genome of 7. araraticum (Fig. 15). Using the species-specific markers of Ae.
speltoides and Ae. searsii as analyzers, it was observed that chromosome 4B/G of each
of the polyploids chromosome showed almost equal similarity to chromosome 4S of the
diploid species chromosome (Fig. 16). But chromosomes 28S, 3S and 7S of Ae. speltoides
appeared more closely related to the corresponding chromosomes of 7. araraticum than

those of Ae. searsii were. These observations give the impression that the B/G genomes
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of polyploid Triticum species are likely to be recombinant genomes with varying
contributions from Ae. speltoides and Ae. searsii. Analysis of the D genomes of the three
hexaploid species unambiguously traced them to Ae. fauschii as the sole donor (Fig. 17).

A further analysis using 66, 434 SNP markers consistently called in the six polyploid
genomes indicated 72% similarity (monomorphism) across their A genomes, B/G
genomes and the combined AB/AG genomes. However, higher similarity was observed
among the AB genomes: hexaploids, 94%:; tetraploids, 90%; hexaploid and tetraploid
genomes combined, 84%. The slight differences in the proportions of monomorphic
markers in the different groups of the AB genomes suggest that the AB genomes of the
hexaploid species originated from the same tetraploid species, whereas those of the
tetraploid species may have evolved from different accessions of the elementary A and B
genome progenitors (7. urartu and Ae. speltoides/Ae. searsii, respectively). The lower
similarity (84% as compared to 94%) across the hexaploid and tetraploid AB genomes
may reflect further modification of AB genomes in hexaploid species resulting from their

interaction with the D genome.
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Fig. 16 Comparison of the B/G genome chromosomes of polyploid 7riticum species and the chromosomes of Ae. speltoides and Ae. searsii.

The B/G chromosomes are numbered 1B — 7B for convenience. This does not change the genomic representation of 7. araraticum: AAGG.
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CHAPTER FIVE
DISCUSSION
5.1 Fast-tracking introgression breeding and wheat-alien characterization with
appropriate molecular markers
Utilizing introgressive hybridization to mitigate the age-long wheat genetic erosion had
since been identified and is currently inevitable, but the achievements are still not
satisfactory mostly because of poor understanding of the genomics of important wild
relatives of wheat (Alix, 2017; Hajjar and Hodgkin, 2007). To create the necessary
platform for successful breeding of wheat through the intermediary of its tertiary gene
pool, mobilization of research resources towards genome analysis and development of
molecular markers from notable Triticeae perennial species must be intensified. The
availability of such markers would help to hasten introgression breeding and boost yields
to match the projected high global increase in wheat demand in 2050 (Reeves, 2016).
Typically, production of wheat-alien CILs requires a minimum of eight years of laborious
cytogenetic and/or phenotypic screening after successful production of F; hybrid plants
from an intergeneric hybridization. Absence of known chromosome markers, as the case
of L. mollis, can further frustrate reliable characterization of alien chromosomes by ISH,
justifying the need to develop alternative strategies to achieve wide and easy utilization
of extant genes in the genomes of wheat’s wild relatives for its (wheat) improvement.
Based on the results herein, the incorporation of marker-assisted selection can
significantly reduce the duration and physical efforts needed for this process. In the case
of'the 10 wheat-L. mollis CALs reported here, the entire processes of marker development,
genotyping, selection and confirmation of the status of each alien chromosome in all the

lines were completed within three years, a significant time gain of not less than five years.
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The marker-based approach of identifying disomic lines is simple, fast and highly
efficient, as it did not conflict with GISH results. The use of molecular markers from the
genomes of important wild relatives to track their chromatins in wheat can therefore be
said to be one of the most promising methods to facilitate speedy expansion of diversity
in wheat germplasm (Gong et al., 2017; J. Zhang et al., 2017). This would, undoubtedly,
incentivize plant breeders to develop wheat cultivars with improved and wider
adaptability in order to keep pace with the projected global increase in wheat demand.

From the stand point of the results obtained in this study, especially the clear
identification of all the recombinant segments of L. racemosus chromosome N, it is
evident that adequate molecular markers from the genomes of potential gene donors
would not only accelerate introgression breeding, but can reliably be deployed to tackle
linkage drag, where necessary. The massive chromosome-specific markers developed for
each of the chromosome addition lines (except LrE) are, therefore, expected to aid
breeders in conducting more stringent screening and selection in their efforts to develop
cultivars with only necessary chromosome segments to satisty specific breeding goals
within a reasonable time frame. At the moment, the few chromosome-specific markers
developed for LrE is attributed to high homology between wheat genome and the
chromosome, having observed about 30% monomorphic markers between L. racemosus
and 7. aestivum genomes. However, the possibility of some form of genetic instability,
cytochimerism or alien loss for instance, is not completely ruled out. However, since the
original stocks of all the addition lines in the TACBOW gene bank, which had earlier
been characterized (Kishii ez al., 1999; Kishii et al., 2004) were studied, it is obvious that
alien chromosome loss is not responsible for the strange result obtained for LrE.

The difference between the number of markers developed for each Leymus
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species and the number of markers that identified their chromosomes in wheat
background account for the difference between the whole sets (14 each) of chromosomes
in their genomes and the number of the chromosomes of each of them that were studied
in the nineteen genotypes (nine wheat-L. racemosus and 10 wheat-L. mollis CALSs).
Another factor likely to contribute to this difference is the possibility of losing some
segments of the chromosomes during production of the lines. However, these excess
markers are advantageous, as they can be used to select lines with other Leymus

chromosomes yet to be introgressed in wheat.

5.2 Overcoming undesired duplication of alien chromosomes in different lines

In addition to the time gain recorded in the production of the 10 wheat—L. mollis CALs,
spurious duplication of different segments of the same chromosome was completely
avoided. Chromosome-specific markers and the additional unique SNP markers found in
the CALs clearly differentiated the 10 lines. The duplicates initially selected by
chromosome counting were clarified by molecular markers. Identical PCR amplifications
and DArTseq genotypic data revealed lines carrying the same L. mollis chromosomes.
This would not be possible with GISH because GISH uses genomic DNA as probe, which
can only identify the alien chromosomes but cannot show differences between them. Also,
the unique CALs-specific polymorphisms revealed by DArTseq analysis, absent in either
of the parents, would not be captured by ISH techniques, as hybridization probes are
usually designed to track alien segments, not polymorphisms which may arise from
genome interactions. Furthermore, using phenotypic data to identify plants that carry
different segments of the same chromosome is difficult, and such genotypes may be

mistaken as carriers of different chromosomes. This can be effectively managed with
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appropriate molecular markers. However, although this study has proven the possibility
of producing wheat-alien CALs without alien identification by ISH, total replacement of
hybridization procedures with molecular markers is not advocated. Rather, the integration
of efficient DNA markers with ISH strategies in wheat—alien breeding programs to

accelerate the process and improve outcomes is recommended.

5.3 Ease of determining HGs of alien chromosomes

Previous reports have shown that determining HGs of alien chromosomes in wheat with
other methods is not only tasking but can result in the assignment of different HGs to the
same chromosome (Kishii et al., 2004; Larson ef al., 2012). To determine the HGs of
alien chromosomes, their ability to substitute wheat chromosomes in interspecific or
intergeneric hybrids and functionally compensate the substituted chromosomes in
substitution lines is usually applied (Badaeva et al., 1991; Calderon et al., 2012; Molnar-
Lang et al., 2014; Morris and Sears, 1967). This approach is relatively difficult, and its
accuracy relies, to a large extent, on the morphological similarities between the alien
carrier and corresponding wild type, which is under environmental influence. The clarity
of the HGs of Leymus chromosomes determined in this study confirms that all the CALs
carry distinct alien chromosomes and serves as a guide for producing other wheat—Leymus
lines carrying the remaining chromosomes, highlighting the accuracy and reliability of
the procedure reported here. The simple approach of applying chromosome-specific SNP
markers to determine the HG of each Leymus chromosome is consistent, as it agrees
perfectly with the grouping of the chromosomes revealed by the genetic relationship
analysis using shared SNP markers which are completely different from the chromosome-

specific markers. Interestingly, the chromosome-specific markers’ approach of
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determining HGs of alien chromosomes clarified the HGs of chromosomes LrJ (HG 7)
and LrN (HG 3), which were previously not reported with certainty (Kishii et al., 2004;
Larson et al., 2012). Classitying alien chromosomes into their correct HGs is essential as
it can contribute to an in-depth understanding of the interaction of each chromosome with
the background of its carrier (Garg et al., 2007; Zhang et al., 2005). The failure to
determine the HG of LrE chromosome, as was the case with earlier reports cited here, is

another indication that the line may be genetically unstable.

5.4 Possibility of genome or alien modification in wheat—alien translocations

Characterization of the wheat—alien CILs by molecular markers brought to light detailed
chromosome segments rearrangements, some of which can be likened to “zebra”
chromosome (Zhang et al., 2005; Zhang et al., 2008). These interactions between alien
chromosomes and carrier genomes need to be properly dissected. Analysis of the
chromosome addition and translocation lines in this study indicated the possibility of
genetic modification of either the introgressed chromosomes, background (wheat
genome) or both. These modifications, capable of generating additional polymorphisms,
may result from small chromosomal rearrangements, activation of transposable elements
or any other interactive genetic event between alien materials with the genome of wheat
(Garget al.,2007; Zhang et al., 2005). Also, by graphically genotyping the recombination
lines, different patterns of recombination events in each line were uncovered. This
observation indicates that the interaction of the same L. racemosus chromosome (LrN)
produced different genotypes, which are likely to result in diversity in agronomic traits.
Of more importance is the potential effect of these interactions on the overall performance

of the genotypes (Gorafi et al., 2016), necessitating detailed studies to clarify the
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underlying mechanism of such genetic events and their agronomic implications. Such
studies would be greatly enhanced by the availability of adequate molecular markers to

track aliens and unique polymorphisms which may result from genome interactions.

5.5 Association of universal markers of Leymus chromosomes with CACTA-
family transposon
The universal markers developed in this study are particularly valuable since they can be
applied to easily track the transmission of alien chromosomes over generations, given the
possibility of alien chromosome elimination in the course of cultivar multiplication and
maintenance (Gernand et al., 2005; Ishii et al., 2010; Sanei ef al., 2011). Following the
alignment of the sequence of one of these markers to CACTA-family transposon in L.
perenne, it may be safe to speculate that this marker sequence is part of a possible
CACTA-family transposon in Leymus. CACTA-family transposons, one of the most
abundant superfamilies of class II transposons exclusively found in plants, have been
reported to play significant roles in genome variation in Triticeae and other plants
(Fedoroftf, 2013; Langdon et al., 2003; Miura et al., 2004; Sergeeva et al., 2010; Wicker
et al.,2003).
5.6 Leymus racemosus chromosome N-specific markers and biological
nitrification inhibition (BNI) activity
Biological nitrification inhibition (BNI) activity in L. racemosus, a highly desirable trait
with agronomic and environmental consequences, had previously been reported to be
chiefly controlled by chromosome LrN (Subbarao et al., 2007). The N-specific markers
are, therefore, particularly of high value, as they can easily be applied to identify

genotypes with BNI activity, avoiding the cumbersome and expensive process of root

80



exudates analysis, requiring expertise which an ordinary plant breeder may not possess.
Intriguingly, only DNA sequences of the PCR products of L. racemosus and wheat—LrN
generated with one of the universal markers aligned to the CACTA-family transposon in
L. perenne, one of the forage grasses reported to have endogenous BNI activity (Subbarao
et al., 2007). However, whether BNI activity is linked with actions of mobile genetic

elements, transposons in this case, could not be ascertained in this study.

5.7 Transferability of markers between L. racemosus and related species

Sequencing of all the potential gene sources for wheat breeding does seem feasible, since
many of the species are wild and do not have direct benefits. Hence, transferability of
markers between useful species of this gene pool, as a compensational approach of
analysis, is highly desired (Almeida et al., 2014; da Silva et al., 2017; Xiao et al., 2016;
Zeng et al., 2016). This study has proven that markers from L. racemosus can be
successfully transferred to L. mollis, P. huashanica and E. ciliaris, three other important
species in the tribe Triticeae. Also, the transferred markers were found to be reasonably
polymorphic in wheat, suggesting their suitability for characterizing wheat genotypes
with alien chromosomes from the three genomes. The genera of these species, because of
their status as profitable forage grasses and gene mines for hexaploid breeding, have
received fair research attention (Anamthawat-Jonsson, 2001, 2014; Anamthawat-Jonsson
and Bodvarsdottir, 2001; Baum et al., 2016; Wang et al., 2006; Wu et al., 2003; Yang et
al., 2017). However, their genomes have not yet been sequenced, leaving breeders with
the option of transferring markers from evolutionary closely related species to analyze
their genomes and wheat genotypes carrying their chromatins. This has already been

demonstrated for L. mollis in this study.
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5.8 High similarity between L. mollis and L. racemosus genomes

The high proportion of monomorphic markers in the two genomes of Leymus species
strongly indicates high genomic similarity between the genomes, and the association of
their chromosomes suggests that the genomic distance between the sub-genomes of the
two species is narrower than the distance between the sub-genomes within each of the
species. This gives the impression that the two Leymus species may have evolved from
independent hybridization events of the same diploid species with partially differentiated
genomes, for instance, Ns; and Ns2. However, a convincing conclusion could not be
drawn on the evolutionary relationship between the two Leymus species or their sub-
genomes, as this would require the application of the genomic resources of their diploid
progenitors as analyzers of the polyploid genomes. Diploid analyzers would also enable
reliable discrimination of the sub-genomes and help to clarify the sources of the
elementary genomes of the Leymus species. Worthy of note is that the chromosomes of
hybrids from Leymus species form complete meiotic pairs (Dewey, 1970; Dewey, 1972;
Dewey, 1984; Kishii et al., 2003), which is a rare phenomenon in interspecific hybrids.
This and the high transferability of DNA markers between L. racemosus and L. mollis
suggest that the genomic resources of any of the two species should be interchangeably
deployed to analyze their genomes. But the chromosomes of L. mollis could not be
characterized with L. racemosus cytological markers, so the genomic difference between
these species still needs to be clarified. The tentative nomenclature for Leymus
chromosomes proposed here can easily accommodate all the chromosomes of Leymus
species, irrespective of ploidy level. Considering the consistency of HGs determined

independently using the chromosome-specific and common SNP markers, we are certain
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about the HGs of the L. mollis chromosomes, but the accuracy of the assignment of the

chromosomes to the sub-genomes needs to be confirmed using diploid analyzers.

5.9 Potential of L. mollis chromosomes in developing improved wheat lines

The preliminary phenotypic results obtained in this study have shown that L. mollis
chromosome segments can be used to develop early maturing cultivars which can be
cultivated in areas with short periods of favorable wheat growing conditions. However,
the exact segment of the chromosome(s) should be identified and used to produce
translocation or recombination lines, to reduce the effects of deleterious genes which may
have caused the reduction in the yield components observed in the addition lines. Since
all the genotypes were evaluated under normal growth conditions, it cannot be concluded
that the relative superior yield components of CS will be sustained under stress conditions.
Therefore, all the genotypes should be evaluated under different simulated and/or actual
stress conditions to explore the possibility of selecting lines with the sturdy traits of
Leymus species (Bao et al., 2012; McGuire, 1981; Xiao et al., 2012; Yang et al., 2015;

Zhang et al., 2017).

5.10 Successful reconstruction of the phylogeny of Aegilops species and marker
polymorphisms among polyploid species of Aegilops

The clustering patterns of Aegilops species were largely consistent with the established

classifications (Dvorak and Zhang, 1992; Golovnina et al., 2007; Golovnina et al., 2009).

Diploid species separated on the basis of their known botanical sections in the genus,

while polyploid species were delineated following the presence of common diploid

progenitor genomes (D and U genomes) among them (Badaeva, 2002; Goryunova et al.,
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2004; van Slageren, 1994). However, consistent with previous reports (Giorgi et al., 2003;
Goryunova et al., 2008; Seberg and Petersen, 2007), Ae. speltoides appeared distant from
other species in the section Sitopsis; hence, its inclusion in the section needs to be
reconsidered.

Markers specific to each of the 12 polyploid species clearly showed considerable
polymorphisms among the genomes, including the genomes of species which arose from
the same diploid progenitors. This suggests that genetic modifications, such as
chromosomal alterations (Badaeva et al., 2004), may have occurred during independent
evolution events of those species with identical progenitors. Without these specific
markers, it would be difficult to genomically differentiate Ae. kotschyi (SKU¥) from Ae.
variabilis (SPUP) and Ae. biuncialis (UPMP) from Ae. ovata (UM®) because, from the
stand point of this study and previous studies (Kilian et al., 2011; van Slageren, 1994),
the species in each pair evolved from the same progenitors. Although each of the species
in these two sets is recognized as independent, based on differences in cytoplasm
progenitors and/or nuclear genome variation (Goryunova et al., 2017; Kilian et al., 2011),
this classification does not seem to be justified. Therefore, it may be appropriate to regard

each pair as variants/subspecies of the same species.

5.11 Clarification of the speculated unidentified diploid progenitors of five
polyploid Aegilops species

The reported unidentified diploid genomes initially represented as modified M (Ae.

comosa) genome and later changed to unknown (X) in the genomes of Ae. triaristata, Ae.

crassa, Ae. juvenalis, Ae. vavilovii, and Ae. columnaris (Badaeva et al., 2004; Badaeva et

al., 1998; Dvorak, 1998 ; Goryunova ef al., 2004; Resta et al., 1996; van Slageren, 1994)
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is traceable to Ae. mutica or Ae. speltoides. The small proportions (<10%) of Ae. comosa-
specific markers shared with the five polyploid species is insufficient to infer the
existence of remnants of 4e. comosa genome in the polyploid genomes. Assuming Ae.
comosa was originally involved in the evolution of the polyploids, species-specific
elements from other progenitors may have spread and eventually masked Ae. comosa-
specific elements (Anamthawat-Jonsson, 2014). The results obtained from this study
suggest that ancient or ancestral forms of Ae. speltoides or Ae. mutica, which are probably
extinct, donated the unidentified genomes to the five polyploid species. It can also be said,
following the results, that all the polyploid species originally had a genome of such an
ancient species. This observation agrees with the hypothesis that Ae. mutica (syn.
Amblyopyrum muticum) and Ae. speltoides, both allogamous species with ancestral traits,
diverged earlier than other Adegilops species and may therefore be the ancestors of the
other Aegilops species (Feldman and Levy, 2015). Therefore, each diploid Aegilops
species may have retained a substantial portion of the common ancestral genome (A4e.
speltoides/Ae. mutica or their ancestor). The difference in the representation of the
common progenitor in each of the polyploid species may have resulted from the peculiar
evolutionary event(s) of each species. Polyploids that arose from the hybridization of the
common diploid ancestor with other diploid species should have larger portions of the
genome of the common ancestor than those that did not directly evolve from the common

ancestor.

5.12  Clarification of the complex nature of B genomes of Aegilops—Triticum
polyploids

While validating the putative diploid progenitors of the A and D genomes of polyploid
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Triticum species—T. urartu and Ae. tauschii, respectively—(Daud and Gustafson, 1996;
Lelley et al., 2000; Ling ef al., 2013; Luo et al., 2017; Odintsova et al., 2008), this study
has provided information that may help to explain the complex nature of the B/G genomes.
The genomes of both Ae. speltoides and Ae. searsii were found to be similar to the B/G
genomes of the polyploid species analyzed, especially 7. araraticum, a relatively less
advanced tetraploid species (Miyashita et al., 1994; Tsunewaki et al., 1993); thus, the B/G
genomes of polyploid Triticum species may have evolved from an ancestral genome that
later differentiated into those of Ae. spelfoides and Ae. searsii. Alternatively, the B/G
genome may have arisen from the hybridization of Ae. speltoides and Ae. searsii before
the emergence of the AB/AG genome at different times. The above considerations support
earlier postulations that the B genome is the most modified of the three genomes of
hexaploid wheat, whereas the A and D genomes still retain substantial genomic similarity
to their respective progenitors, 7. urartu and Ae. tauschii (Feldman and Levy, 2015). The
previously suggested origin of the A genome of 7. araraticum from T. boeoticum
(Dorofeev et al., 1979; Migushova and Konarev, 1975) is probably invalid. The results
from this study agree with the hypothesis that both Emmer and Timopheevi lineages of
polyploid wheats have the same sources of elementary A and B/G genomes (Chantret et
al., 2005; Giorgi et al., 2003; Golovnina et al., 2009; Gornicki et al., 2014; Kilian et al.,
2007). However, a common ancestry of the A-genome species cannot be ruled out and the
A genomes of polyploid Triticum species may have evolved from a common ancestor of
T urartu and T. boeoticum before the differentiation of the two species. Although no
karyotypic differences have been detected between these diploid A-genome species
(Giorgi and Bozzini, 1969; Golovnina et al., 2009), low fertility of interspecific Fi hybrid

plants of these two species has been reported (Fricano et al., 2014). The latter study,
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consistent with the results reported here, suggests that the two species are genomically
different. More importantly, this study, in agreement with previous similar studies
(Miyashita et al., 1994; Tsunewaki et al., 1993), indicates that the A and G genomes of T.
araraticum (Timopheevi lineage) are less modified than the A and B genomes of the

Emmer lineage.

87



CHAPTER SIX
CONCLUSION

The molecular markers developed in this study are expected to play valuable roles in
hexaploid wheat breeding, especially in developing wheat—alien CILs. Their application
to characterize 32 wheat-Leymus CILs reported herein validates their usefulness.
Specifically, the universal and LrN-specific markers are of great breeding importance.
The universal markers can readily be applied to monitor and confirm alien presence and
transmission, and the LrN-specific markers can find application in mapping of
chromosome segments associated with biological nitrification inhibition (BNI) activity.
The additional SNP markers found in the nineteen CALs would be useful in identifying
and analyzing unique polymorphisms which may result from alien interaction with the
background, while the Leymus markers not mapped on any of the nineteen chromosomes
would aid production of other wheat-Leymus CILs carrying other chromosomes of the
two Leymus species. Also, the remarkable transferability of the PCR-based markers to
three other notable perennial Triticeae species is an added advantage, as they can be used
to characterize wheat—alien CILs bearing chromosomes from these genomes. This has
already been proven by the results obtained in this study for the 10 wheat—L. mollis CALs.

This study has proven that wheat—alien addition lines can be rapidly developed
and reliably characterized using DNA markers for effective selection of carriers and
recognition of disomic and monosomic lines. This approach requires the development of
chromosome-specific DNA markers from the genomes of potential gene donors or closely
related sequenced genomes. The integration of DArTseq genotyping allows confirmation
of the PCR results, development of more chromosome-specific markers, and further

characterization of the lines. Allocation of all the markers on the DArTseq platform to
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wheat chromosomes enables effective analysis of wheat—alien complexes. The
application of genotyping-by-sequencing approaches, including DArTseq, in the analysis
of germplasm of wheat and other plants has gained reasonable popularity (Andrews et al.,
2016; Baloch et al., 2017; Davey et al., 2011; Li et al., 2015). However, this is not the
case with the characterization of wheat—alien introgression lines involving distant
relatives of wheat, possibly because it may be thought that wide genetic distance and
differences in the ploidy levels of bread wheat and these relatives would not allow
identification of homoeology between their genomes. The results of this study have
shown clearly that alien segment-specific markers can easily be isolated and the
correspondence of alien chromosome-specific SNP markers with bread wheat reference
alleles can be used to determine the HGs of the alien chromosomes. This study has
demonstrated that DArTseq SNP markers can be integrated with PCR markers to produce
and characterize wheat—alien addition lines without necessarily applying ISH for alien
chromosome identification. Given its reliability and savings in time and efforts, this
simple methodology is recommended to accelerate introgression breeding of wheat.

It has also been shown that DArTseq genotyping can be applied to conduct a
large-scale analysis of evolutionary relationships among plant genomes because shared
and species-specific markers can be easily identified. It also ensures a wide genomic
coverage and is not subject to the criticism associated with the factors that affect meiotic
chromosome pairing in hybrids of distant crosses, which forms the main anchor of
cytogenetic systems of genome analysis (Baum et al., 1987; Dewey, 1984; Farooq et al.,
1990; Kihara, 1930; Love, 1984; Moore, 2009; Seberg and Petersen, 1998). Also, the
number of informative markers generated by DArTseq outstrips what is possible with

conventional DNA marker procedures (Goryunova et al., 2010; Goryunova et al., 2004;
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Mizuno et al., 2010; Wang et al., 2011), making it more robust and reliable. Genotyping
of all the available accessions of species in tribe Triticeae using this platform would
clarify the genomic relationships between the cultivated and wild species. This
information would make the use of the available gene pools for breeding much more
precise and would also help to clarify Triticeae taxonomy. As polyploidy and interspecific
hybridization are key events in the evolution of higher plants (Alix, 2017), this genome
analysis approach would be useful in other groups of plant species, especially polyploids
whose phylogeny are still unclear. This method is, therefore, recommended as an efficient
and cost-effective alternative to whole genome sequence-based analysis, as the genomes

of most important wild species are yet to be sequenced.
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SUMMARY

Over time, wild relatives of wheat have played important roles in enhancing improved
yield and adaptability of wheat. Regardless of their value as potential gene sources for
wheat breeding, the current status of their genomic resources is not enough to aid proper
understanding of their genome structures and support maximal utilization of their genes
to broaden genetic diversity in wheat germplasm. This inadequate genomic information
base needs to be continually enriched to enhance aggressive utilization of wild genetic
resources to manage biotic and abiotic stresses which pose threats to the general
performance of elite cultivars of wheat.

The species in the genus Leymus are known to be resistant to salinity and
economically important diseases of wheat. Additionally, Leymus racemosus is
particularly reported to exhibit biological nitrogen inhibition (BNI) activity, a valuable
trait of agronomic and environmental importance. To optimally harness these genes for
the improvement of wheat, there should be efficient cytological and molecular markers
to unmistakably map the alien chromatins in the genetic background of wheat. Before this
study, variable cytological markers enabled molecular cytogenetic characterization of L.
racemosus chromosomes in wheat, but there were no DNA markers to conduct detailed
characterization of wheat—L. racemosus translocation and recombination lines. Worse still,
the lack of L. mollis cytological and DNA markers greatly delayed the production of
wheat—L. mollis chromosome addition lines (CALs). Earlier attempts to apply L.
racemosus cytological markers to characterize the chromosomes of L. mollis in wheat
failed to produce satisfactory hybridization signals, even though chromosomes of hybrids
of the two Leymus species are known to form complete meiotic pairs. This necessitated

the development of an alternative strategy to characterize wheat—L. mollis lines without
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necessarily applying in situ hybridization for alien identification.

Furthermore, although there is an appreciable volume of data aiming at
elucidating the phylogeny of Triticeae species, there are still some controversies
surrounding the genomic relationships among Aegilops and Triticum species. Among
such controversial discussions are the opposing views regarding the primary donor(s) of
B/G genomes of polyploid Triticum species, including bread wheat, and the speculated
unidentified diploid genomes believed to have participated in the evolution of Ae. crassa,
Ae. vavilovii, Ae. juvenalis, Ae. columnaris and Ae. triaristata. Resolving these issues
using the ‘genome analyzer’ method, which relies on meiotic chromosome pairing in
hybrids of distant crosses, although quite informative, had since come under heavy
criticism. Therefore, the application of molecular methods to accumulate useful data that
would aid to clarify the evolutionary relationships among these species remains the focus
of contemporary studies. Such markers have helped to provide some explanations on
Aegilops-Triticum relationships, the origin and differentiation of Aegilops species, and
intra- and inter-specific variations in the D and U genome clusters of Aegilops species.
However, the numbers of markers in most of the cases are hardly enough to satisfactorily
assure genomic coverage and convincing conclusions.

Consequently, this study was basically designed to develop and validate DNA
markers from the genomes of L. racemosus and L. mollis, develop a molecular marker-
based strategy for production of wheat—L. mollis CALs and assess the suitability of
DArTseq genotyping, an efficient genotyping-by-sequencing platform, in wheat—alien
characterization and analysis of the genomes of selected species in tribe Triticeae.

Using genome sequence information of L. racemosus and DArTseq genotyping,

thousands of polymorphic markers were developed from the genomes of L. racemosus
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and L. mollis. Unique SNP markers, absent in the genomes of the parents, were also
identified in the genomes of 19 wheat-Leymus CALs. Polymorphic L. racemosus PCR
markers were successfully transferred to other distant relatives of wheat, indicating their
suitability for mapping alien chromatins from other wild relatives of wheat. A good
number of L. racemosus markers were applied to characterize 22 wheat—L. racemosus
chromosome introgression lines, while the PCR markers transferred to L. mollis genome,
in combination with L. mollis genome-based SNP markers, aided selection and
characterization of 10 new wheat—L. mollis CALs. Genomic in situ hybridization
confirmed the presence of the alien chromosomes in the 10 CALs. This study has
therefore demonstrated that wheat—L. mollis CALs can be speedily produced without
completely relying on in situ hybridization for alien identification. DArTseq genotyping
particularly aided identification of the homoeologous groups of all the Leymus
chromosomes introgressed into wheat, and comparison of the chromosomes of L.
racemosus and L. mollis. The similarity between the two species and the association of
their chromosomes were applied to propose, for the first time, a nomenclature system for
Leymus chromosomes.

Similarly, with DArTseq analysis, the genomes of 34 species in tribe Triticeae
were clearly differentiated, and the phylogenetic relationships among the diploid and
polyploid Aegilops and Triticum species were estimated. The SNP markers among
Aegilops species enabled reliable reconstruction of their phylogeny: diploid species
clustered according to known botanical sections, while the polyploid species formed two
main clusters following the presence of two common diploid genomes, Ae. tauschii or Ae.
umbellulata. Also, using species-specific SilicoDArT markers in diploid species as

‘analyzers’, the putative diploid progenitors of the polyploid species were elucidated.
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While confirming the genomic constitutions of seven polyploid species of Aegilops, this
analysis traced the so-called unidentified diploid progenitors of five polyploid Aegilops
species to two genomically proximal diploid species, Ae. speltoides and Ae. mutica. The
analysis also enhanced a satisfactory determination of the primary donors of A, B/G and
D genomes in polyploid 7riticum species and provided information that helped to clarify
the complex and controversial nature of the B/G genomes of polyploid 7riticum species.
The findings suggest that the B/G genomes either evolved from the hybridization of Ae.
speltoides and Ae. searsii or from a common ancestral species which later differentiated
into the present day Ae. speltoides and Ae. searsii. On the other hand, the A and D
genomes substantially matched the genomes of 7. urartu and Ae. tauschii, respectively.
However, the significant homology between the A genomes of the polyploid species and
the genome of 7. boeoticum, another A genome species, is an indication of the likelihood
of common ancestry of the two A genome species. Therefore, like the B/G genomes, the
A genomes of polyploid Triticum species may have arisen from an ancestral species that
later differentiated into 7. urartu and T. boeoticum after the evolution of the A genomes
of the polyploid species. The A genomes of all the polyploid Triticum species were also
proven to derive from the same primary A genome species, most likely 7 wrartu,
invalidating earlier claims that the A genomes of polyploid wheats in Emmer and
Timopheevi lineages were donated by different A genome species, 7. urartu and T.
boeoticum, respectively.

This study has shown the efficacy of applying genome-wide markers for speedy
introgression breeding of wheat and analysis of evolutionary relationships among plant
species. To improve speed and ease determination of homoeologous groups of alien

chromosomes in similar studies, DArTseq genotyping is highly recommended.
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