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  Chapter 1
Introduction 

 

 

1.1 Research Background 

Agricultural activities are beneficial and important sector for almost every country. The countries in the 

tropical region are most benefited the climate condition to do agricultural activities in all year round. The 

majority of ASEAN (Association of Southeast Asian Nations) countries depend to the agriculture sector for 

ral citizen. 

According to Food and Agriculture Organization (FAO) data of 2010 the rice or paddy is the main commodity 

for mostly ASEAN countries. Maize and cassava are also well known commodity in ASEAN countries. It is 

followed by other economically valuable commodity such as oil palm, sugarcane, or vegetables and tropical 

fruits, such as mango, coconut, pineapple and banana.  

Based on the Statistic of Indonesia for 2010-2014 (Badan Pusat Statistik, 2015), the agriculture, forestry and 

fishing sectors give valuable contribution to the national Gross Domestic Product with 13.38 percent 

contribution. It is below the manufacturing sector and above the mining and quarrying sector. The agriculture 

sector consists of food crops, horticultural crops, and plantation crops, livestock, and agriculture services, gives 

75 percentage distributions amongst agriculture, forestry, and fishing sectors.  

The topographic with many active volcanoes provides fertile soil that is suitable for cultivating agriculture 

crops (Wahyunto et al. 2012). One of central agricultural activities areas in Indonesia is located in Java Island. 

The population density in Java is high with around more than 800 people per kilometer square (Verburg et al. 

1999). There are five provinces in Java including the capital of Indonesia, DKI Jakarta. The population 

distributes in the supported cities (suburban) around DKI Jakarta, such as Tangerang (Banten Province), Bekasi, 

Depok, and Bogor (West Java province). According to commuter statistic from the Statistical Indonesia agency, 

more than 2 million people commute within, into or out the capital city for various activities purpose (Badan 

Pusat Statistik, 2014).  

The urbanization is high in other cities in Java such as Bandung (West Java Province), Semarang (Central 

Java Province), Surabaya, and Yogyakarta (Special Region of Yogyakarta Province) as the central provincial 

government as well as center for trade and manufacturing (Firman 2016). As these cities growth and focus on 

the industry, the smaller cities became the support system to provide commodity, including agriculture product, 

for distributed and traded in the big city. It is common to have the farmers in the smaller city deal directly to 

suppliers from big city (Van der Wouden 1997 in Firman 2016). Although all provinces have their own 

agricultural areas, more intensive agricultural fields are concentrated in rural area of Central Java and East Java 
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provinces. The frequent eruptions of Merapi Volcano has been influenced the soil condition near the slope of 

Merapi Volcano in Central Java. There were four volcano eruptions within two decades. The frequent eruptions 

increased the amount of soil nutrition which is beneficial for agricultural activities (Wahyunto et al. 2012). 

Majority of people living near the slope of Merapi Volcano are working as smallholder farmer. They afford and 

manage agriculture in the small fields. Generally, the agricultural fields in Central Java are small in scale with 

size around 0.3 Ha per household (Agis and Manikmas 2003). In addition, the agricultural fields are often 

located near slope of Merapi Volcano and often in irregular shape to fit the hilly topography.  

Besides the irregular shape of agricultural fields, the intercropping systems which follow the seasonal pattern 

are also widely adapted by the Javanese farmers. This practice is beneficial to increase yield and to obstruct the 

pest invasion. The common practice of intercropping system are rice planting which cultivated with other 

subsidiary crops such as maize in dry season or intercropping between maize and other horticultural crop types.  

Due to the unsystematic and complex agriculture areas in Java, it is challenging to do detail mapping in the 

agricultural area. According to Geospatial Information Agency of Indonesia, the national standard for 

topographic mapping with scale 1:10000 differentiate the agricultural area into three general categories, 

irrigation paddy field, rain-fed paddy and crop field (Badan Standardisasi Nasional 1999). Nowadays, the 

specific land use and land cover mapping of agriculture become important as basis of decision maker to support 

the sustainability of agriculture. As the most populated island, population in Java is continuing to grow. The 

increase population gives pressure to the agricultural land due to the need for infrastructure (Widiatmaka et al. 

2016). The statistic of agriculture commodity is heavily obtained by direct survey to the field which is time 

consuming. In brief, mapping agriculture area in Indonesia face several challenges such as the complexity of 

the agricultural fields, the unsystematic planting system, extensive labor needs for survey, and the land cover 

and land use change. The additional monitoring, such as using geo-spatial technology whether GIS or remote 

sensing, is essential to enhance the information about agricultural croplands in shorter time process. In addition, 

the remote sensing technology with good temporal data acquisition will be significant for updating the 

agriculture map. 

There are two kinds of remote sensing to monitor the agriculture area the optical and microwave (radar) 

remote sensing. However, the cloud that often covers tropical area becomes one of limitation for optical remote 

sensing system (Inoue et al. 2002). The microwave remote sensing such as Synthetic Aperture Radar (SAR) is 

good option to overcome limitation of optical remote sensing for discriminating the agriculture area in tropical 

country. There are a lot of satellites which mounted with different wavelength band SAR system sort from the 

shorter to longest wavelength such as X-band (2.5-4 cm), C-band (3.75-7.5 cm), and L-band (23-30 cm).The 

X-band carried by the satellite TerraSAR-X or Radarsat-2. The Sentinel-1 satellite mounted with C-band SAR. 

Meanwhile the L-band wavelength is carried by the ALOS/PALSAR and ALOS2/PALSAR2.  
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Previous studies performed agriculture or land cover analysis by using SAR data. For example, the dual 

polarization of ALOS PALSAR data was used for paddy field identification in China (Zhang et al. 2011). The 

paddy field identification by using the ALOS PALSAR data in the tropical area such as Indonesia has also been 

conducted (Shofiyati, et al. 2011). Another study used multi-temporal of ALOS PALSAR data for determining 

area that potential for crop extension (Milisavljevic et al. 2012). The (McNairn et al. 2009) presented that full 

polarization data of ALOS PALSAR gave promising result for crop classification. The polarimetric data of 

ALOS PALSAR was used to differentiate hay pasture, soybean, corn and cereal. The sensor combination 

between ALOS PALSAR, TerraSAR-X, and ENVISAT is also used for monitoring sugarcane crops (Baghdadi 

et al. 2008).  

The previous studies presented that the importance and the ability of SAR data in agricultural monitoring 

and identification. However, the studies about classifying the complex agricultural in tropical area are still 

limited. In addition, the land covers and land use mapping in agricultural area especially in Indonesia, is time 

consuming. The SAR data, further, could be integrated with the cloud based systems such as Google Earth 

Engine (GEE) to maximize the efficiency and reduce the time for mapping process. Therefore, in this study, 

three types of SAR satellites, namely ALOS/PALSAR, ALOS2/PALSAR2, and Sentinel-1, were utilized for 

discriminating the agriculture croplands area in tropical area. The ALOS/PALSAR and ALOS2/PALSAR2 

were Japanese radar system with L-band SAR satellite. ALOS-2/PALSAR-2 has revisit time around 14 days. It 

is higher than previous ALOS/PALSAR with 46 days of revisit time. In order to get detail capability 

knowledge about the ALOS/PALSAR and ALOS2/PALSAR2, two different study sites and two types of 

dataset were prepared. Besides the L-band wavelength SAR satellites, the Sentinel-1 with C-band wavelength 

with 12 days revisit time was also utilized and will especially be integrated with the cloud based system. 

These SAR data will be further used to analyze the effectiveness of SAR data in classifying the complex 

agricultural croplands as well as for updating the land use and land cover mapping process by implementing 

the cloud based system, such as GEE.  

 

1.2 Research Objectives 

The primary objective of this research is to understand the ability of remote sensing in classifying the 

complex agricultural croplands, especially the active remote sensing. The active remote sensing depends on the 

wavelength used by the synthetic aperture radar satellites, such as L-band or C-band. The agricultural croplands 

properties such as structure and condition influence the backscatter value of the synthetic aperture radar. 

Furthermore, the backscatter value can be modified by using polarimetric decomposition or performed 

arithmetic conditions to obtain the best backscatter value for identifying and classifying the complex 

agricultural croplands area. Therefore, the objectives of the research were formulated as follows:  

(1) to examine the characteristic of complex agriculture cropland that can be identified by using active 
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remote sensing data,  

(2) to explore the ability of ALOS/PALSAR full polarization mode and the most effective of backscatter 

value parameter for identifying complex agricultural croplands,  

(3) to perform classifying and mapping of Sentinel-1 by using the cloud based system of GEE  

(4) to investigate the multi-temporal of ALOS-2/PALSAR-2 for identifying and classifying the agricultural 

croplands, 

(5) to analyze the influence of sample points selection based on the backscatter value characteristic for 

classification process 

 

1.3 Outline of Dissertation 

This dissertation composed in six chapters. The first chapter is dedicated to describe the introduction of this 

study which separated into three sections, namely the background, the objectives of this study and the last is the 

outline of dissertation. 

The second chapter mainly explains about the characteristic of agricultural system in Indonesia as well as the 

basic theory of remote sensing focus in the Synthetic Aperture Radar. 

The third chapter discussed about the ALOS/PALSAR data implementation in classifying agricultural 

croplands in study area in Central Java. This chapter emphasized the possible methods to achieve good 

classification result of full polarimetric for classifying agricultural croplands.  

The fourth chapter, the multi-temporal of C-band SAR satellite named Sentinel-1 was performed in the 

GEE to develop methodology for faster identifying and classifying in agricultural croplands.  

In the fifth chapter, the second generation of ALOS/PALSAR name ALOS2/PALSAR2 was obtained for 

classifying more complex agricultural cropland than study area in the third chapter. There are four satellite 

imageries used such as three dual-polarization satellite image and one full polarization of ALOS2/PALSAR2. 

This chapter use different method for collecting sample points in order to achieve the third objective of this 

study. 

The last chapter is general discussion and recommendation all of the third to the fifth chapters. 

  



5 
 

  Chapter 2
Theoretical Framework 

 

 

2.1 Agricultural system in Indonesia 

According to the Center for Agricultural Data and Information system of Indonesia in 2014, the agriculture 

area in Indonesia can be divided into six types based on the agricultural type and the cultivation process. The six 

types of agriculture area in Indonesia are paddy field, irrigated paddy field, non-irrigated paddy field, dry field, 

shifting cultivation land and also temporarily unused land. From the statistical survey obtained by the Statistics 

Indonesia between 2014 until 2016 and the preliminary value for 2017, the agricultural area utilization in 

Indonesia can be seen in Table 2-1. 

 

Table 2-1 Agricultural area in Indonesia in 2014-2017  

In Hectare value 

No. Land type 
Year 

2014      2015      2016      *2017  

1 Paddy field: 8,111,593 8,092,907 8,187,734 8,162,608 

 Irrigated paddy field 4,763,341 4,755,054 4,782,642 4,745,027 

 Non-irrigated paddy field 3,348,252 3,337,853 3,405,092 3,417,581 

2 Dry field 12,033,776 11,861,676 11,539,826 11,730,930 

3 Shifting cultivation 5,036,409 5,190,378 5,074,223 5,222,066 

4 Temporarily unused land 11,713,317 12,340,270 11,941,741 12,016,778 

 Total 36,895,095 37,485,231 36,473,524 37,132,382 

 

Agriculture in Indonesia is mainly located in Java Island. The large agricultural area distribution in Java is 

influenced by several factors such as climate condition and soil type. The different climate condition and soil 

type also led to the cropping system to maximize the agricultural production. The combination of climate, soil 

type, and also topographic condition increased the agriculture monitoring difficulties due to the random pattern 

of cropping system.  

 

2.1.1 Climate condition 

Climate in Indonesia is mostly classified as Af climate based on Köppen-Geiger classification or tropical 

rainforest climate that identified with average temperatures above 18oC and average rainfall more than 60 mm. 

The monsoon climate, classified as Am based on Köppen-Geiger classification, can also be found in the central 

and eastern part of Java island, and small area in Sulawesi Island. This type of climate is identified to have less 
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pronounced dry seasons and extraordinary rainfall to complement the dry season. The southern part of 

Indonesia such as West Nusa Tenggara and East Nusa Tenggara have tropical savanna climate (Aw) based on 

Köppen-Geiger classification which have long dry season. Due to the climate condition, most of the agriculture 

in Indonesia is largely located in Java Island. 

The agricultural is highly related to the rainy or wet season for determining the suitable planting season. The 

rainfall in Indonesia is influenced by the austral-Asian monsoon (Naylor et al. 2002) and El Nino-Southern 

Oscillation (Hamada et al. 2002). The dry season in Java starts between April to September and the rainy 

season starts in October to March. However, the western and central and eastern part of java has different 

climate system. The central and eastern part of Java is drier than the western part of Java since it has the 

monsoon climate. Due to the different climate condition, the agricultural activities were varies follow the 

climate condition 

 

2.1.2 Soil type 

Java Island has various mountainous topographic conditions with many active volcanoes that provide levels 

of elevation and fertile soil which are suitable for cultivating various crops. Based on the soil exploratory map 

from Ministry of Agriculture Government of Indonesia, the soil types in Java consist of inceptisols, ultisols, 

andisols, mollisols, and vertisols (Sarwani et al. 2015). In Central Java, the soil types consist of vertisols, 

andisols, and inceptisols. The agriculture in Central Java is affected by the existence of Merapi volcano. The 

Merapi volcano is one of the most active volcanoes in Indonesia which has erupted many times (1872, 1883, 

1906, 1930, 1954, 1957, 1992, and 1998), and the last eruption occurred on 10 November 2010. The soil 

around Merapi volcano is dominated by andisols and alfisols which are formed from volcanic material and rich 

in organic material (Wahyunto et al. 2012). Thus the agricultural fields in Java are widely distributed near the 

mountainous area due to its high amount of fertile soil (Lavigne et al. 2008). 

 

2.1.3 Cropping system 

Agricultural fields in Java are generally small in scale and irregular shape to fit the hilly topography. The 

cropping system in Central Java is also depended on the weather and climate condition that affected the water 

supply. Therefore, the cultivation is rotated. In addition, the intercropping systems that follow seasonal patterns 

are also widely implemented by Javanese farmers to increase yield and obstruct pest invasions. 

Farmers in Central Java have their own traditional calendar for calculating the season and forecasting time to 

start cultivating their crops called as Pranatamangsa which means the arrangement of seasons (Daldjoeni, 1984). 

The calendar has the same length with the Gregorian calendar and is calculated based on the cosmology, animal 

behavior and the phenology of plant. Thus each month can be different in length. The pranatamangsa divides 

year into four seasons, mangsa rendheng (wet season), mangsa labuh (beginning of rainy season), mangsa 
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mareng (ending of rainy season), and mangsa katiga (dry season). Nowadays, the pranatamangsa is not suitable 

for predicting the cultivation time due to the unpredictable seasonal change. Thus based on those 

pranatamangsa, the new cropping system was developed. In Central Java, there are three cropping times, called 

as cropping time I (MT-I) in rainy season between November to February for paddy cultivation, cropping time 

II (MT-II) in dry season between March to June, and the last is cropping time III (MT-III) in the second dry 

season for vegetables and horticultures.  

 
Fig. 2-1 The different cultivation stage of (a) paddy fields image taken from drone, (b) the various 

horticultural crops image taken from drone, (c) different stage of paddy fields, (d) the maize and chayote 

are planted side by side 

 
In order to understand the cropping system in recent years, the field survey was done in the 2017 in Central 

Java. The paddy fields planted in different stage which indicated the different planting time of paddy fields. 

One of the examples of different cultivation stage of paddy fields which can be easily identified shows in Fig. 

2-1. This picture was taken by drone in March 2017 on Central Java agricultural area. The large and complex 

agricultural fields in Java were also influenced by the uneven condition of the irrigation system.   

Besides paddy fields, there are other plant varieties that often found in Central Java area such as maize, soy 

bean, peanuts, cassava, and sweet potato. The horticulture types are also widely planted in this area, some of 
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which are: shallots, potato, and chili. The intercropping systems can be found in the upland fields where rice is 

cultivated along with other subsidiary crops such as maize. In Fig. 2-1shows the different cultivation stage of 

paddy fields as well as typical various horticultural crops in Central Java. 

 

2.1.4 Mapping agricultural in Indonesia 

Indonesia is known as archipelago country with thousands of islands. The large area of Indonesia was 

separated by the sea. This condition leads to the difficulty of detail mapping process. The land use and land 

cover mapping with high precision is important to gain knowledge about valuable socio-economic sectors. It 

is beneficial for the government and stockholders to implement right policy for increasing the economic in 

one area. The topography map is also known as RBI (Rupa Bumi Indonesia) map.  

 

Table 2-2 The availability of topography map in Indonesia until 2017  

No. 
Topography 

scale map 

National 

coverage 

(MSN*) 

Map availability in MSN 
Not yet 

available 

Availability up to 

2017 in percentage 
Up to 

2015 

Up to 

2016 

Up to 

2017 

1 1 :1,000 -      

2 1 : 5,000 377824 590 3922 3922 373902 1.04 

3 1 : 10,   000       91547      1074      1074     4107  90473 1.17 

4 1 : 25,000 130  20      3894      4781     1478  8239 36.72 

5 1 : 50,000   38  99      3201      3506      3506     393 89.92 

6 1 : 100,000 1   259    26    26    26      1233 2.07 

7 1 : 250,   000     309     309     309     309   0    0.0010  

8 1 : 500,0  00     103     103     103     103 0 100.00 

9 1 : 1,000,000 37 37 37 37 0 100.00 

MSN*: map sheet number, source: (Abidin & BIG Staff, 2018) 

 

Based on the presentation of (Abidin and BIG Staff, 2018), the demand of map with higher precision and 

detail is increasing. However the availability of map especially large scale is still low. The Table 2-2 shows 

the availability of topography map as well as the number of map needed up until 2017. The large scale map 

with scale such as below 1:25,000 is lack of updating even though it is important for the land use and land 

cover planning. The remote sensing and other technology such as drone were also utilized for updating the 

topographic map as well as to enhance the spatial information as well as for mapping. The mapping of 

agricultural croplands area has unique difficulties. The cropping pattern was dynamic. Therefore, the high 

precision mapping for agricultural cropland is hard to achieve. However, the temporal monitoring can be 

fulfilled by the remote sensing which later can be used as based for further mapping and field survey. 
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2.2 Basic theory of Synthetic Aperture Radar 

The remote sensing system offers promising technology to provide wide range of imageries dataset for 

agricultural monitoring. Remote sensing is defined as the science and art of obtaining information about an 

object, area, or phenomenon through the analysis of data acquired by a device that is not in contact with the 

object, area, or phenomenon under investigation (Lillesand et al. 2008). Therefore, the remote sensing 

technology is often used to gather and to obtain information from limited access to the area or in particular 

range of time. The type of data or information from the remote sensing technology is highly correlated with the 

sensor and the electromagnetic wavelength that mounted to the satellite. According to the sensor, remote 

sensing technology can be divided into two, passive remote sensing and the active remote sensing. The sensor 

of passive remote sensing works as our eyes see object, the sunlight contains electromagnetic waves which 

received and absorbed by the object in the earth, and the residual of electromagnetic waves reflected back and 

captured by the sensor. Therefore, the objects will give different spectral characteristic which is beneficial for 

monitoring purposes. The passive remote sensing is often limited by the atmospheric condition such as clouds 

which cover the monitoring area. 

The active remote sensing system acquired data by transmitting the electromagnetic energy to the earth 

surface. It receives the scatter from the objects which often called as backscatter. The active remote sensing 

used the radar (radio detection in ranging). Radar wavelength is called as the microwave bands and in range 

between around 1 mm to 1 m. Based on the Fig. 2-2 (Berens, 2006), the microwave bands are almost 100% can 

penetrate the atmospheric condition. Therefore, these wavelengths are used for radar imaging. The term on 

radar imaging refers to the image acquisition by using radar that mounted to the aircraft or spacecraft.  

 

Fig. 2-2 Electromagnetic waves spectrum and relation between wavelength and the atmospheric 

transmission percentage 

 

 



10 
 

The early radar imaging is named as the Side Looking Aperture Radar (SLAR) or Real Aperture Radar 

(RAR). The continuously moving beam from the antenna used for scanning the scene along the flight path or 

along orbit (Bamler, 2000). Radar imaging acquisition is based on the time and distance calculation between 

object and the antenna. There are two kinds of resolution for radar imaging, the range resolution which is 

related to the scanning system in speed of light and azimuth resolution that related to the flight path direction. 

The SLAR 

resolution of the order of a few meters, the antenna length should be several kilometers which is unrealistic 

(Bamler, 2000). Due to the long antenna that could not be mounted in satellite, the SAR system was invented to 

make good resolution imaging radar with short antenna feasible.  

In SAR system, when spacecraft with SAR antenna moves along its path, the radar transmits pulses in 

repetition in certain frequency and receives the pulses from earth object (Patel et al. 2010). Thus, the antenna 

receives the pulses coherently (Bamler, 2000) and the object can be scanned several times during the 

acquisition process. The SAR system configuration that emulates the SLAR system with the short antenna can 

be seen in Fig. 2-3 based on (Richards, 2009).  

 

Fig. 2-3 The Synthetic Aperture Radar concept (Richards, 2009)  

 

The microwave bands that usually used for SAR system are X, C, L, and P band. The ALOS PALSAR uses 

the L-band wavelength (~23 cm), Radarsat and ENVISAT use the C-band (5.6 cm) and X-band (3 cm) used by 

TerraSAR-X. Besides the wavelength, there are four common modes in SAR acquisition such as scan, stripmap, 

spotlight and inverse SAR (Patel et al., 2010). The characteristic of SAR is defined by using the orientation of 

transmitted and received pulses. The orientation of SAR is divided into horizontal (H) and vertical (V) 

directions. The combination between transmit and receive microwaves made four variations such as HH, HV, 
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VH, and VV which called as polarization. The first letter indicates the transmitted orientation and the second 

letter indicates the received orientation.  

One of SAR system is ALOS PALSAR, a Japanese satellite which launched in 2006. The ALOS satellite 

stands for Advanced Land Observing Satellite (ALOS), meanwhile the PALSAR or Phased Array type L-band 

Synthetic Aperture Radar is one of three sensors and the only one sensor with microwave which carried by 

ALOS. There are several acquisition modes from ALOS PALSAR, fine beam mode, scanSAR, and the 

polarimetric mode. The fine beam mode can be divided into two according to the polarizations, the fine beam 

single (FBS) and fine beam dual (FBD). The FBS consists of HH or VV polarizations meanwhile the FBD 

consists of HH, HV or VV, VH polarizations. The ScanSAR mode is observing wide area with HH or VV 

polarizations. 

The polarimetric mode consists of four polarizations data, the HH, HV, VH, and VV polarizations and often 

said as quad-polarizations (Quad-pol) data or full polarizations data. The ALOS-PALSAR ended its services on 

May 2011 after five years of exploration. The next generation of ALOS-PALSAR is ALOS-2/PALSAR-2 

which was launched on May 2014. It has higher spatial resolution as well as higher temporal 

resolution.ALOS-2/PALSAR-2 has revisit time around 14 days. It is higher than previous ALOS/PALSAR 

with 46 days of revisit time. Besides the L-band wavelength, the other C-band wavelength named Sentinel-1 is 

used in this study. The Sentinel-1 SAR has higher temporal resolution than ALOS/PALSAR and 

ALOS2/PALSAR2 with 12 days repeat times. Similar to the ALOS/PALSAR, the Sentinel-1 provides the HH, 

HV, VH and VV polarization. The dual polarization of VH and VV will be used in this study. 
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  Chapter 3
Application of ALOS PALSAR data for agriculture croplands classification in 

Central Java, Indonesia 

 

 

3.1 Introduction 

A tropical climate is beneficial for agriculture since it provides adequate sunlight and rainfall throughout 

the year. Indonesia, as one of the developing countries in Southeast Asia with a tropical environment, still 

depends on agriculture as a source of national income. The Indonesian statistics from 2010 2014 (Badan 

Pusat Statistik, 2015) indicate that the agri

domestic product. These sectors are beneficial in terms of providing food resources and a large number of 

donesia, Java Island. 

Agriculture is also concentrated in Java due to its environmental conditions (Wahyunto et al. 2012) and 

demand for food consumption (Lavigne et al. 2008). 

 Java has various mountainous topographic conditions, including many active volcanoes that provide levels 

of elevation and fertile soil that are suitable for cultivating different crops. The decreasing flat area availability 

leads the agricultural fields to be small in scale and irregular shape to fit the hilly topography part. 

Intercropping systems are common in the upland fields, where cassava is cultivated along with other 

subsidiary crops; such as chili and vegetables.  The topographic conditions and the intercropping system 

increase the complexity of the agricultural croplands in Java. These complex agricultural croplands in Java 

therefore require statistical as well as spatial analysis, when attempting to understand and monitor agricultural 

conditions.  

Remote sensing technology can provide both spatial and statistical information regarding agricultural 

activities. Researchers endeavored to use remote sensing technology to monitor and map agricultural 

croplands in different areas, both spatially and temporally. These previous studies included optical sensor 

remote sensing for mapping and monitoring of paddy fields (Dong et al. 2015), crop identification (Serra and 

Pons 2008, Peña-Barragán et al. 2011), crop area estimation (Gallego et al. 2014), and vegetation index 

calculation for crop conditions (Yang et al. 2011). Optical remote sensing has also been widely used in Java 

for paddy monitoring (Uchida 2010, Xiao et al. 2005), monitoring of farmland loss (Partoyo and Shrestha 

2013), and mapping of vegetable fields (Wikantika et al. 2002). Optical remote sensing has been confirmed as 

suitable for agricultural monitoring applications. However, the cloud cover in tropical areas limits the use of 

optical remote sensing. The synthetic aperture radar (SAR) system represents a reliable way to overcome this 

cloud problem.  

Radar-based remote sensing, or SAR, is an active sensor system that transmits and receives microwaves 



13 
 

from an object, and is therefore independent of weather conditions. Previous studies have shown that the SAR 

system has potential for use with agricultural targets (Ferrazzoli 2002, Frate et al. 2003) in particular, the 

advantages of L-band are highly rated for crop and tree classification and crop mapping (Lee et al. 2001, Tian 

et al. 2010). ALOS PALSAR, as a SAR satellite with L-band wavelength, has also been used for crop 

classification, paddy identification, and crop extent estimation purposes (Zhang et al. 2011, Milisavljevic et al. 

2012, Haldar et al. 2012) and is viewed as being capable of delivering sufficient and promising results in 

agricultural applications. However, the use of ALOS PALSAR has seldom been attempted in Java, where the 

land use/land cover is extremely complicated, or its use has been limited to the identification of paddy field 

areas (Shofiyati et al. 2011). Thus, ALOS PALSAR data are still interesting and have potential for use in 

agricultural croplands discrimination in Java. In this study, ALOS PALSAR data was applied to classify the 

land use/land cover in complex agricultural croplands in Central Java, Indonesia. 

 

3.2 Study area and Data 

3.2.1 Study area 

The study area is located on an agriculture area in Central Java province, Indonesia, conterminous between 

the Klaten and Boyolali districts (Fig. 3-1). The area is around 50 km2 within the geographic coordinates of 

7o32 - 7o o - 110o

on the eastern slopes of the Merapi, which is one of the most active volcanos in Indonesia. 

The agriculture croplands in this area contain different sizes of field with various types of crops that make 

for quite a heterogeneous agricultural landscape. Four land cover classes are defined according to the 

condition of this study area, namely settlement, dry fields, mixed garden crops, and paddy fields. The 

settlement consists of land covered by small houses with yards, home gardens, or other artificial facilities. The 

dry fields are an agricultural area which is mostly located on the upper part of a slope with elevation around 

500 to 600 meters. Some dry fields have also been identified inside the paddy field area. 

The dry fields consist of various crop fields, such as maize, papaya, cassava, tobacco, and vegetables. 

Meanwhile mixed garden crops can be found in the northern and southern parts of the study area and at the 

same elevation as the dry fields. The cool temperature is the reason farmers mostly grow vegetables and 

tuberous roots (cassava) in this area. The main difference between mixed garden crops and dry fields is that the 

former are surrounded by dense perennial crops; while the latter are wide open without a canopy from other 

trees. The paddy fields are widely distributed in the lower part of the mountain slope with an elevation lower 

than 350 meters. 
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Fig. 3-1 Study area with the boundary of ALOS PALSAR data, and preview of WorldView-1 image 

 

3.2.2 Data 

PALSAR is an active microwave sensor system which is mounted on the ALOS satellite (DAICHI) operated 

by the Japan Aerospace Exploration Agency (JAXA). The sensor uses L-band wavelength with 1.27 GHz 

frequency and 23.6 cm wavelength, which gives PALSAR the ability to penetrate deeper into vegetated areas 

(Sandwell et al. 2008). We used ALOS PALSAR, full polarization mode taken on 9 April 2010 with a 21.5o 

nadir angle (level 1.1). The full polarization mode has four polarizations: HH, HV, VH, and VV. The two 

letters in each abbreviation indicate transmission direction and receive direction in the horizontal (H) and 

vertical (V), respectively.  

Besides ALOS PALSAR data, Worldview-1 satellite data with very high spatial resolution (0.5 m) was also 

used for the collection of training samples as well as the accuracy assessment. Worldview-1 image was 

acquired on 24 July 2010 and has minimal cloud cover and shadows. In addition, a field survey was conducted 

in August 2015 as complementary data collection for land use/cover conditions. 

 

3.3 Methodology 

3.3.1 Backscatter conversion process conversion  

In general, the data processing consists of two main processes, backscatter intensity conversion and 

polarimetric decomposition. First, the Single Look Complex (SLC) of the full polarization mode data has to be 

converted into backscatter intensity in decibel unit (dB). The conversion process is done by using open-source 

software, Next ESA (European Space Agency) SAR Toolbox (NEST). This conversion is divided into four 

phases, namely multi-look, filtering, backscatter intensity conversion, and geocoding.  

The multi-look factor for the range and azimuth of full polarization mode is 1 x 7 (Santoro et al. 2009). The 

speckle noise in data was reduced by using the Lee filter with a window size of 5. Then, the conversion of DN 
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into backscatter intensity is done based on the following formula (Shimada et al. 2009): 

                     32CFlog10 22
10

0 QI                  (Eq. 3-1) 
o is the backscatter intensity in decibel unit, I and Q is the real and imaginary part of SLC, CF is the 

factor calibration is -83, the conversion factor A is 32.0 for the ALOS PALSAR 1.1 product.  

The process of geocoding and topographic correction are performed using the digital elevation model (DEM) 

from ASTER GDEM with the Universal Transverse Mercator (UTM) zone 49 south projection, and WGS 

1984 as datum projection and nearest neighbor interpolation. 

Four basic operations of arithmetic such as add, subtract, multiply, and divide were employed to extract new 

parameters, after obtaining the backscatter intensity. This method was often applied to the SAR data for land 

use and land cover classification (Lonnqvist et al. 2010, Mishra et al. 2011, Zhang et al. 2011). The backscatter 

intensity is largely depends on the material and structure of the targets. Therefore, additional parameters that 

extracted from arithmetic operations are important to increase the probability of useful parameters for 

discriminating the agricultural fields.  

In addition to the arithmetic operations, we also calculated the Normalized Difference Polarization Index 

(NDPI) for the backscatter intensity, which is written as follows (Mishra and Singh, 2011): 

                             (Eq. 3-2)           

o is the backscatter intensity of VV and HH polarizations in linear units. The NDPI parameter is 

useful for interpreting the surface object roughness. In this study, there are two kinds of modified NDPI 

formulas, NDPI_H, which uses horizontal transmission (HH-HV/HH+HV), and NDPI_V, which uses vertical 

transmission (VV-VH/VV+VH), both in linear units.  

 

3.3.2 Polarimetric decomposition  

The polarimetric scattering mechanisms are also useful for discriminating objects besides the backscatter 

intensity (Adams et al. 2013). The polarimetric scattering mechanisms can be modeled by using polarimetric 

decomposition. In this study, incoherent decompositions, which are based on coherency and covariance matrix 

modeling such as Freeman and Durden polarimetric decomposition (Freeman and Durden 1998) and 

Yamaguchi 4 component polarimetric decomposition (Yamaguchi et al. 2005), were used.  

Freeman and Durden decomposition (FD) is a model for fitting simple backscatter mechanisms of 

polarimetric SAR data by using three scattering components: volume scattering, odd bounce scattering, and 

double bounce scattering. This polarimetric decomposition has been proved to match very well with datasets 

obtained in tropical rain forest sites that contain a variety of land cover types (Freeman and Durden 1998). The 

FD is devised for modeling the scattering mechanism without ground truth; however, this decomposition will 

be used for maximum likelihood classification based on known points as ground truth.  
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The Yamaguchi 4 components (Y4) have four types of scattering: odd scattering, volume scattering, double 

bounce scattering, and helix scattering (Yamaguchi et al. 2005). In the study area, various artificial objects are 

mixed with the agricultural croplands, thus Y4 is used to examine whether this polarimetric decomposition is 

able to differentiate the agricultural croplands from the settlement area.  

The FD and Y4 are generated by using POLSARPro (Polarimetric SAR Data Processing and Educational 

Tool) software with processing as follows: multi-look with 1:7 for range and azimuth, filter process by using 

Lee Sigma filter with window size of 5; and polarimetric decomposition generation with matrix coherence as 

the input. The geocode process uses open source software, ASF Mapready version 3.1 with similar parameters 

set in the backscatter geocode process. 

 

3.3.3 Maximum likelihood classification 

Maximum likelihood classification (MLC), a supervised classification method, was applied for 

discriminating four land cover classes. Those classes consist of settlement, paddy field, dry fields, and mixed 

garden crops. Supervised classification requires training samples for each category. In this study, the training 

samples were derived from visual interpretation of the Worldview-1 image. The training samples consist of 25 

polygons (1036 pixels) for the settlement class, 18 polygons (355 pixels) for the paddy class, 37 polygons (954 

pixels) for the dry fields class, and 25 polygons (985 pixels) for the mixed garden crops class. Accuracy 

assessment is employed with 784 points which are derived from 250m mesh grid on the WorldView-1 image. 

 

3.4 Results and discussion 

3.4.1 Backscatter intensity classification 

Thirty-three new parameters were extracted from the combination of four polarizations, consist of 12 

parameters from the add and subtract operation, 6 parameters from the multiply operation, 12 parameters from 

the divide operation, and 3 parameters of NDPI, NDPI_V, and NDPI _H. The thirty-three parameters and the 

four backscatter intensity (HH, HV, VH, VV) can be combined to generate around 77 data. However, 

generating 77 data are time-consuming process and ineffective method. Therefore, the four backscatter 

intensities (HH, HV, VH, VV) classification was performed to obtain brief information as well as to be the 

standard of the classification results.  

The HH, HV, VH, VV classification (Fig. 3-2(a)) yielded 67.09% overall accuracy (OA) and kappa 

coefficient (KC) 0.523. The misclassifications were found between the dry field class and the paddy or mixed 

garden crops class, and between the settlement class and the mixed garden crops class. Regarding these 

findings, the separability index will be applied to obtain the useful parameters for separating the classes.  
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Fig. 3-2 Classification result of (a) HH, HV, VH, VV, (b) VH,VV,HH+HV, (c) Freeman and Durden 

decomposition, (d) Yamaguchi 4 component decomposition, and (e) the integration of 

HH,HV,VH,VV,FD,HH+HV 

 

The separability index (SI) is the ratio of the subtraction of average pixel value to total standard deviations, 

between class A and class B in absolute value (Wu et al. 2011). In this study, the SI is calculated based on pixels 

value within the polygons of training samples. The SI value should be above 0.8 to be categorized as a useful 

parameter for separating the two classes (Wu et al. 2011). There are four kinds of separability indices tested in 

this study, namely dry field and settlement (D-S), dry field and paddy field (D-P), dry field and mixed garden 

crops (D-M), and settlement and mixed garden crops (S-M). Fig. 3-3 shows the trend of SI from ten selected 

parameters with the highest average of four SI value.  

Overall, the separability index of S-M is below 0.8 and is the lowest average compared to the other SI value. 

It implies that the settlement class and the mixed garden crops class have similar backscattering characteristics. 

However the NDPI_V and VV-VH parameters presented the possibility of separating settlement and mixed 

garden crops with SI value for S-M 0.75 and 0.73 respectively; but could not separate the dry field and paddy. 

Ten selected parameters and HH, HV, VH, VV were combined to generate twenty data combinations. The 

combinations consist of three and five layers compositions. The three layers composition data produced from 

two backscatter intensity and one parameter. Meanwhile, the five layers composition data produced from four 

backscatter intensity and one parameter. 
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Table 3-1 Combinations of backscatter intensity 

No. 
Polarization 

compositions 

OA 

(%) 
KC No. 

Polarization 

compositions 

OA 

(%) 
KC 

1 HH,HV,VH+VV 60.84 0.441 11 
HH,HV,VH,VV, 
HH*HV 

66.45 0.508 

2 
HH,HV,VH,VV, 
VH+VV 

64.67 0.469 12 HH,HV,VV-VH 66.58 0.514 

3 HV,VV,HH*VH 65.18 0.495 13 
HH,HV,VH,VV, 
HV*VH 

66.58 0.512 

4 HHVH,HV+VV 65.18 0.495 14 HH,HV,VH,VV 67.09 0.523 

5 
HH,HV,VH,VV, 
NDPI_V 

65.43 0.503 15 HH,VV,HV+VH 67.35 0.527 

6 HH,HV,NDPI_V 65.56 0.502 16 
HH,HV,VH,VV, 
HH+HV 

67.35 0.524 

7 HV,VV,HH+VH 66.07 0.508 17 HH,VV,HV*VH 67.47 0.528 

8 
HH,HV,VH,VV, 
HH*VH 

66.07 0.5 18 
HH,HV,VH,VV, 
HH+VH 

67.86 0.531 

9 
HH,HV,VH,VV, 
HV+VH 

66.2 0.507 19 
VH,VV, 
HH*HV 

68.11 0.537 

10 
HH,HV,VH,VV, 
VV-VH 

66.45 0.518 20 VH,VV,HH+HV 68.62 0.546 

OA: Overall accuracy; KC: Kappa Coefficient    

 

Table 3-1 shows the configuration of 20 combinations along with the OA and kappa coefficient achieved 

from the MLC process. The HH+HV parameter has the lowest standard deviation for separability index of D-S, 

D-P, and D-M (0.060) compared to other parameters. The low standard deviation means that the data are 

Fig. 3-3 Separability index value of D-S, D-P, D-M, S-M, from 10 selected parameters 
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reliable. Therefore, in the Table 3-1, the combination with HH+HV parameter consistently presented higher 

accuracy than the classification result of HH, HV, VH and VV. The VH, VV, and HH+HV combination 

emphasized that HH+HV is useful parameter for separating the D-S, D-P, and D-M, and important for 

increasing the classification accuracy. Classification results of VH, VV, and HH+HV can be seen in Fig. 

3-2(b). 

 

3.4.2 Polarimetric decomposition classification 

The classification based on Freeman and Durden ((Fig. 3-2 (c)) and Yamaguchi 4-component polarimetric 

decomposition ((Fig. 3-2 (d)) delivered better OA and KC than the full polarization backscatter classification. 

The FD yielded overall accuracy and kappa coefficient 68.49% and 0.533, meanwhile the Yamaguchi 

4-component yielded 67.47% and 0.533. The additional helix of the Y4 was not able to distinguish the 

settlement area or building objects from the agricultural classes (paddy, dry fields, mixed garden crops) very 

well. The perennial crops border or inside the settlement area are considered to influence the ability of helix 

components. However, if the helix component is excluded from the classification, the result is insignificantly 

improved (67.86% and 0.538).  

 

Fig. 3-4 Separability index value of D-S, D-P, D-M, and S-M from Freeman & Durden decomposition 

and Yamaguchi-4 component decomposition 

 

By using the SI method, the double bounce scattering mechanism of FD is identified as having the capability 

to discriminate between the settlement and mixed garden crops, but being incapable of separating the dry fields 

from the other classes (Fig. 3-4). The double bounce scattering of the settlement area is related to the scatter 

interaction between the ground and the walls of the houses or the interaction on the roof. Meanwhile, the double 

bounce of the mixed garden crops areas is related to the scattering interaction between trees and short-crop 
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vegetation. The main difference is the double bounce scattering of the settlement area is more stable than the 

double bounce scattering of the mixed garden crops area. In contrast, volume scattering is an important 

component for discriminating the types of agricultural fields. This is because the morphology of vegetation of 

paddy, dry fields, and mixed garden crops reflects different canopy layer scatter mechanisms. In this study, the 

mixed garden crops class has the most volume scattering and the paddy field class has the least volume 

scattering. 

 

3.4.3 Integrated classification of backscatter and polarimetric decomposition 

From the previous results, the backscatter intensities and polarimetric decomposition were found to be useful 

for discriminating agricultural objects. In this study, we explored backscatter intensity and polarimetric 

decomposition integration for agricultural croplands classification as well, because this kind of integration has 

rarely been performed. Five integrations between backscatter intensity and polarimetric decomposition were 

generated and classified (Fig. 3-2(e)). The overall accuracy and kappa coefficient for these data integrations can 

be seen in Fig. 3-5. 

 

The integration between HH+HV and FD consisted only of 4 layers and yielded slightly higher accuracy 

than the HH, HV, VH,VV classification, which is also consisted of four bands. The MLC calculated the mean 

and standard deviation from the training samples and applied the probability density function before assigning a 

class to each pixel (Mishra et al. 2011).  The integration of VH, VV, HH+HV, and FD also show higher 

accuracy (73.21%) compared to the VH, VV and HH+HV with 68.62% accuracy. Therefore, the integration of 

HH+HV and FD gave better distribution for classification than only backscatter intensity. 

Fig. 3-5 The integration of backscatter and polarimetric decomposition classification results:  (a) 

HH+HV,FD, (b) HH,HV,VH,VV,FD,Y4, (c) VH,VV,HH+HV,FD, (d) HH,HV,VH,VV,FD, (e) 

HH,HV,VH,VV, HH+HV, FD 
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Table 3-2 Accuracy assessment of HH, HV, VH, VV, HH+HV, and Freeman & Durden decomposition 

Class Produ   

Settlement 78.87 70.61 

Paddy 91.46 70.75 

Dry field 58.49 60.78 

Mixed garden crops 70.99 83.93 

Overall Accuracy and Kappa coefficient : 74.11% and  0.625 

 

 

Fig. 3-6 Comparison of agricultural croplands classification by using (a) VH,VV,HH+HV, 

(b) FD polarimetric decomposition and (c) the integration of HH,HV,VH,VV, HH+HV and FD. 

 

Moreover, by applying the HH, HV, VH, VV, HH+HV, and FD; the OA and KC of the classification result 

(Fig. 3-5 (e)) was significantly increased (74.11%, 0.6247). The Table 3-2 shows the accuracy assessment of 

the integration classification result. This finding proved that discriminating complex agricultural croplands can 



22 
 

be done by using full polarization mode of ALOS PALSAR.The good classification results of integrating the 

backscatter intensity (HH, HV, VH, VV), HH+HV, and FD can be explained by two factors. First, the 

polarimetric decomposition components were able to complement the interpretation of natural scattering 

characteristic that the backscatter intensity could not provide. Second, the HH+HV parameter made a valuable 

contribution to generating a good backscatter intensity distribution of the maximum likelihood classifier for 

separating the four classes.  

Fig. 3-6 presents a comparison of agricultural area classification by using (a) VH, VV, and the HH+HV, (b) 

FD polarimetric decomposition, and (c) the integration of HH, HV, HV, VV, HH+HV and FD. The Fig. 3-6 (a) 

shows that the backscatter intensities are sensitive to the water condition in the agriculture area, therefore the 

dry field area is classified as paddy field, due to low backscatter intensity in dry field area. The backscatter 

intensity is unable to separate the mixed garden crops with settlement area. In contrast, the polarimetric 

decomposition (Fig. 3-6 (b)) and the integration between HH, HV, VH, VV, HH+HV, and polarimetric 

decomposition (Fig. 3-6 (c)) is able to separate paddy and dry field and also the settlement and mixed garden 

crops. 

 

3.5 Conclusions 

Full polarization mode (HH, HV, VH, and VV) of ALOS PALSAR was examined for classification of 

agricultural croplands, and it was confirmed empirically as being beneficial for discriminating complex 

agricultural croplands such as in Central Java, Indonesia. Full polarization mode was also very useful for 

generating parameters and for generating polarimetric decompositions. Calculation of the separability index 

allowed evaluation of the HH+HV as the most useful and suitable parameter in this study. The Freeman and 

Durden polarimetric decomposition model was identified to give higher accuracy in discriminating agricultural 

croplands when compared with the Yamaguchi 4 components.  

Overall, the integration between backscatter intensities (HH, HV, VH, VV, and HH+HV) and the three 

components of the Freeman and Durden decomposition significantly improved the overall accuracy and kappa 

coefficient (74.11% and 0.6247, respectively). This fact implies that the integration of the backscatter intensity 

and polarimetric decomposition methods was able to compensate for the weakness of each component in 

discriminating complex agricultural croplands. This study introduces a preliminary method for discriminating 

agricultural croplands using ALOS PALSAR data. We believe that the methodology of PALSAR data 

integration established in this study can be also applied using ALOS PALSAR-2 data. 
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  Chapter 4
Application of Sentinel-1 data for classifying croplands using Google Earth 

Engine 

 

 

4.1 Introduction 

The agricultural sector is important for the Indonesian economy. According to the Indonesian statistics, the 

ic product in 2017. Many 

people living in rural areas depend on agricultural activities for their main source of income. One of the 

prominent agricultural areas on Java Island is found in the upper Solo basin of the Central Java Province. This 

area has rich and fertile soil with enough water discharge to make agricultural activities viable. However, the 

dense populations of Java and its uneven road structure force the agricultural fields to be small in size and 

complex in shape. The agricultural parcels size in Indonesia is around 0.3 Ha per household (Agus and 

Manikmas 2003). Most of the farmers in this area manage and cultivate croplands depending on the 

meteorological and topographic conditions. It is common to have paddy fields in flat areas and upland fields in 

hilly areas. Paddy is the main crop for this agricultural sector as it is consumed by the majority of Indonesian 

people and requires an abundant amount of water in the early stage of cultivation, which is complemented by 

the heavy rainfalls. Beyond rainfall, the water for paddy cultivation is also sourced through irrigation. The 

different cropping patterns in these agricultural fields throughout the year.  

The Indonesian government has monitored agricultural croplands using direct field survey and remote 

sensing technology. A direct field survey is time consuming and requires surveyors. Satellite remote sensing 

consists of optical sensor data and synthetic aperture radar (SAR) data and provides wide range spatial and 

temporal data. Optical remote sensing is susceptible to the atmospheric conditions, especially during the 

tropical monsoon season. The SAR satellite offers active remote sensing is capable to penetrate the atmospheric 

conditions and provides cloud cover free data.  

Recently, satellite remote sensing data has drastically improved in terms of temporal and spatial resolution 

used to produce the large satellite images. Developing countries or communities with limited budgets could 

have difficulty accessing these satellite images. However, the advanced technology of cloud-based computing 

provides an efficient and low cost alternative for processing these images. The Google Earth Engine (GEE) is 

one of the cloud-based geospatial platforms that provides numerous collections of geospatial datasets and 

algorithms to process the satellite images. It offers flexibility to the users for conducting research related to 

satellite images and geospatial data. Users are able to process these datasets as long as an internet connection is 

available. In recent years, GEE has been used for many remote sensing applications, such as land cover change 
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(Sidhu et al. 2018), cropland mapping (Xiong et al. 2017), and crop classification analysis using huge amounts 

of multi-temporal data, (Shelestov et al. 2017) because of its simplicity and user friendly interface. 

There are several types of SAR wavelengths used in microwave remote sensing, such as X-band (2.5 4 cm), 

C-band (4 8 cm), and L-band (15 30 cm). Besides penetration through cloud, the SAR images could detect the 

moisture condition as well as the canopy or surface structure. Therefore, SAR data is advantageous for 

monitoring agriculture even in tropical areas (Nelson et al. 2014). One of the SAR satellite images provided by 

GEE is the C-band SAR of Sentinel-1. The C-band wavelength is shorter than the L-band wavelength, and the 

C-band wavelength could not penetrate deeper than the L-band wavelength. Sentinel-1 data has been applied in 

several studies for hydrological dynamic in wetland area (Cazals et al. 2016) as well as for agricultural 

applications, such as mapping rice planted areas (Clauss et al. 2017; Tian et al. 2018), temporal behavior of 

crops (Veloso et al. 2017), and rice growth monitoring (Torbick et al. 2017).  

The L-band SAR, ALOS/PALSAR, is often used for agricultural cropland classification, such as paddy field 

identification (Zhang et al. 2011), and the classification of abandoned paddy fields (Yusoff et al. 2016). The 

L-band SAR, ALOS/PALSAR-2, is used for classifying agricultural croplands (Mirelva & Nagasawa, 2018). 

However, the L-band SAR has a longer revisit time than the C-band SAR. This creates the need to consider the 

cropping patterns before selecting the satellite images to fit the cropping pattern of 

agricultural fields. Sentinel-1 offers high temporal images that are useful for understanding the cropping pattern, 

especially in complex agriculture croplands with uncertain cropping patterns. 

Recently, Ghazaryan et al. (2018) reported the effectiveness of Sentinel-1 and GEE for identifying the cereal 

cropping system in one of regions in continental Europe. However, few studies have used Sentinel-1 and GEE 

in the Asian region, specifically the areas with a tropical monsoon climate. In the present study, the 

combination of Sentinel-1 data and GEE was implemented to identify small, mixed agricultural crop fields in 

the tropical Asian region. The complex agricultural cropland in the Central Java Province (an area of 

approximately 112 km2) was selected because of its irregular cropping patterns, various types of cropland, and 

the other surrounding land covers, such as woodland and settlement. This study aimed to understand the 

characteristics of Sentinel-1 when classifying two cropping patterns of paddy fields and other land use or land 

cover types, as well as the classification performed in GEE. 

 

4.2 Materials and methods 

4.2.1 Study Area 

The study area is located on the southeastern slopes of the Merapi volcano in the Klaten Regency of Central 

-

- ppears as a red 

square on the map and the Pleiades image, taken in 2015, was used for information on the land use and the 
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land cover in the study area as can be seen in Fig. 4-1. The altitude varies from 200-600 meters above sea 

level. 

 

 

 

The Merapi volcano is one of the most active volcanoes on the island of Java. Therefore, the soil 

is nutrient-rich which is beneficial for agricultural activities. Most people who live in this area work 

as farmers or sharecroppers and depend on agricultural production for their livelihood. In general, 

land usage can be divided into northern and southern sections. The northern area has a higher 

altitude and is mainly covered by settlement, woodland, and upland fields. The southern area is 

relatively flat and is generally covered by settlement and agricultural fields, such as paddy and 

tobacco fields.  

 

4.2.2 Datasets 

The study materials consisted of 56 satellite images of dual polarization of C-band SAR Sentinel-1 taken in 

2017, the 49 satellite optical images of Sentinel-2 collected in 2017 and the Pleiades image taken on August 26, 

2015. Only the Sentinel-1 and Sentinel-2 were acquired from the GEE data collection. Sentinel-1 has two 

polarization types, VH and VV polarization. VH polarization transmits microwaves in a vertical direction and 

receives scatter from the surface in a horizontal direction. VV polarization transmits and receives the 

microwaves in a vertical direction. The Sentinel-1 and Sentinel-2 have a 10 meter resolution and the Pleiades 

image has 0.6 meter resolution. Table 4-1 shows the availability of acquisition dates for both Sentinel-1 and 

Sentinel-2. 

 

Fig. 4-1 Study area coverage with Pleiades image taken on 2015 
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Table 4-1 Sentinel-1 and Sentinel-2 acquisition date 

 Date of acquisition  Date of acquisition 

Month Sentinel-1 Sentinel-2 Month Sentinel-1 Sentinel-2 

January 3, 27 9, 19, 29 July 2, 6, 14, 18, 26, 30 13, 18, 28 

February 8, 20, 24 8, 18, 28 August 7, 11, 19, 23, 31 2, 7, 12, 17, 22, 27 

March 4, 8, 16, 20, 28 10, 20 September 4,12, 16, 24, 28 1, 6, 11, 16, 21 

April 1, 9, 13, 21, 25 9, 19, 29 October 6, 10, 18, 22, 30 1, 6, 11, 21, 26, 31 

May 3, 7, 15, 19, 27, 31 9, 19, 29 November 3, 11, 15, 23, 27 5, 10, 15, 20, 25, 30 

June 8, 12, 20, 24 8, 18, 28 December 5, 9, 17, 21, 29 5,10, 15,20, 25, 30 

 

4.2.3 Methodology 

The methodology can be separated into two parts, pre-processing and the classification process. The 

Sentinel-1 was downloaded and processed in GEE, except for the speckle noise filtering process which was 

processed in Sentinel Application Platform (SNAP) software (SNAP software). The classification process was 

done in GEE by using the random forest classifier. The methodology details are described in the following 

sections and the framework of methodology can be found in Fig. 4-2. 

 

 
Fig. 4-2 Overall framework for cropland classifying in GEE 

 

4.2.3.1 Data pre-processing 

GEE data collections provide satellite remote sensing data, including Sentinel data. The Sentinel-1 data 

used SAR system which capable to penetrate cloud coverage.  In addition, it has high temporal data which is 

useful to be used for monitoring agricultural condition in Indonesia. In GEE, to get one year of data, the 

Sentinel-1 was filtered by setting a boundary area similar to the study area and the date range from January 1 

to December 31, 2017. The Sentinel-1 data from GEE data collection was already pre-processed using the 
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Sentinel-1 Toolbox, a software for SAR satellite data processing from ESA (European Space Agency). The 

pre-processing steps are thermal noise removal, radiometric calibration, and terrain correction by using SRTM 

30 or ASTER DEM. The ASTER DEM is used for the area located above 60 degrees of latitude, or when the 

SRTM is unavailable. Thus the SRTM was used in this study. However, the speckle noise reduction process 

was not yet performed because GEE has no algorithm to execute this process. The speckle noise reduction is 

important because the radar data is often affected by the coherent summation of the signals that scattered from 

ground (Saxena & Rathore 2013). Therefore, the speckle noise reduction in Sentinel-1 was processed outside 

the GEE environment by using the SNAP software.  

 In order to reduce the speckle noise using SNAP software, the data collection of Sentinel-1 was clipped 

with a 5 window size was used to reduce the speckle noise in the study area. After the speckle noise reduction, 

the VH and VV polarizations images were stacked and re-uploaded to the GEE as an asset for the further 

process. Besides the Sentinel-1 data, the subtraction between VH and VV polarization (VH-VV) for each 

image were also calculated. The speckle noise process was applied to the subtraction of VH and VV 

polarization with similar steps.  

Sentinel-2 images are often affected by clouds; therefore, the cloud removal process for Sentinel-2 was 

processed in GEE. In general, the cloud removal process consists of cloud and shadow removal. Cirrus clouds 

were removed by subtracting the bands in each image with the cirrus band or the tenth band of Sentinel-2. The 

cloud area with a greater thickness than cirrus was selected with the rule condition if the reflectance value in 

red band, green band, and blue band are greater than 1700. Meanwhile, the shadow was removed based on the 

calculation of green (B3), blue (B2), and red edge (B8A) bands. The area identified as a shadow if the red 

edge reflectance value is between 900 and 1800, and the division of blue and green band is greater than 1.2. 

These calculations were modified from the automatic cloud and shadow detection for optical satellite imagery 

(Parmes et al. 2017). Then, the normalized difference vegetation index (NDVI) was calculated from the ratio 

of the near infrared band (B8) and the red band (B4). 

 

4.2.3.2 Classification process 

The GEE provides several types of supervised and unsupervised classification algorithms. In this study, the 

simple terms, can be defined as a forest made of several decision or predictor trees. Each tree depends on the 

value of the random sample independently, with equal distribution for the entire tree in the forest (Breiman, 

2001). The study area is divided into classes named upland fields, paddy, tobacco fields, settlement, woodland, 

and mixed garden crops. The training and accuracy assessment points for settlement, woodland, upland fields 

and mixed garden crops classes were selected based on the Pleiades image, with the assumption that the land 
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use and land covers change of these classes was minimum and could be neglected. The class of tobacco fields 

was selected from the Sentinel-2 optical images. Meanwhile, the sample points and accuracy assessment points 

for the paddy fields were selected based on Sentinel-1 data. 

The field survey conducted on August 2017 presented the paddy fields area in diverse stages. It was common 

to have some area in the early cultivation stage and the other area in the harvest stage. The steps for selecting the 

sample point for these paddy classes were as follows:  

(1) The woodland in the northern area and settlement areas are masked out. The average NDVI of 

Sentinel-2 in 2017 is calculated and a value greater than 0.63 is used as a woodland mask. The 

settlement mask for the average value of NDVI is less than 0.38, and the average VV band is greater 

than -3.8 dB. On the other hand, the slope area is masked out with the value less than -9 dB from the 

maximum VV polarization in one year. 

(2) The early stages for paddy fields, like transplanting, are crucial for detecting paddies using the SAR 

remote sensing, because this stage requires a lot of water. The 39 points from the transplanting stage 

during the field survey on August 2017 was selected for calculating the average value of the backscatter 

coefficient. Thus, in this study, the area identified as paddy if the backscatter coefficient of each image 

is between -31 to -17.4852 dB (from the average value calculation). This step changes images into 

Boolean data, with 0 as false and 1 as true (fulfill the rule conditions).  

(3) Sentinel-1 images were divided into six groups according to the image acquisition month: January to 

February as (a), March to April as (b), May to June as (c), July to August as (d), September to October 

as (e), and November to December as (f). The total value was changed into Boolean values by applying 

a rule greater than 1 for the January to February group, and greater than 2 for the other groups. These 

rules are generated because the image acquisition in January and February are less than in other months.  

(4) The paddy fields were often cultivated two or three times a year. Therefore, paddy fields were separated 

into two types, paddy planted in January, May, or September, and named Paddy-JMS, and paddy 

planted in March, July, and November, named Paddy-MJN class. The area with the value equaling 2 or 

3 from the total of (a), (c), and (e) groups indicate Paddy-JMS, and the area with the value equaling 2 or 

3 from the total of (b), (d) and (f) groups indicate Paddy-MJN. The value equaling 1 indicates that the 

area was rarely cultivated as paddy fields and more likely to contain other croplands, such as maize, 

cassava, or other vegetable crops. Therefore, the area equaling 1 was omitted.  

(5) Following that, the images of the Paddy-JMS and Paddy-MJN area were converted into vector 

polygons. Both the vector polygons were used to generate 90 random points. 
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The classification was run in GEE with the proportion around 70% sample points and 30% accuracy 

assessment points for all classes, which is described on Table 4-2. The random forest classifier was set with two 

numbers of trees equal to 25 and 50. There are four sets combination of Sentinel-1 polarization images (VH and 

VV) and the VH-VV polarization used for classifications. Table 4-3 describes the detail of four sets of 

polarization combinations for the classification. Thus, there were eight classifications generated in this study.  

 
Table 4-2 Detail description of sample and accuracy assessment points 

Class Name Sample points Accuracy assessment points Total Points 

Upland fields 73 31 104 

Paddy-JMS 62 28 90 

Paddy-MJN 63 27 90 

Tobacco fields 40 16 56 

Woodland 70 28 98 

Settlement  72 29 101 

Mixed garden crops 65 27 92 

Total Points 445 186 631 

 
Table 4-3 Polarization combination for the classification process 

Polarization 

Combination Name Description of polarization combination  
Number of 

images 
25 50 

A_25 A_50 VH and VV polarization 112 

B_25 B_50 VH, VV, subtraction of VH and VV 168 

C_25 C_50 VH, VV, subtraction of VH and VV taken on January to 

February, May to June and September to October 

75 

D_25 D_50 VH, VV, subtraction of VH and VV taken on March to April, 

July to August and November to December 

91 

 

4.3 Results and Discussion 

4.3.1 Sentinel-1 and Sentinel-2 data pre-processing 

Fig. 4-3 shows the Sentinel-1 image before and after the speckle filtering process for an image taken on 

January 3, 2017. The RGB in Fig. 4-3 is set with VV, VH, and VH-VV polarizations band composite to analyze 

the effect of speckle filtering. The backscatter coefficient became lower and the salt-pepper noise was 

decreased after the speckle filtering process, as can be seen in Fig. 4-3(b). In addition, the boundary between 

northern and southern area became clearer compared to the image before the speckle filtering process. The VV, 

VH, and VH-VV polarizations band composite follows (Cazals et al. 2016). In (Cazals et al. 2016) study shown 
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that the VV, VH, and VH-VV polarization band composite capable to differentiate the flooded area with 

non-flooded area. In Fig. 4-3 (b), the dark blue color shows low backscatter coefficient and indicates areas with 

higher moisture conditions, such as from land irrigation or agricultural activities for paddy field cultivation. 

The cloud cover in Sentinel-2 can be eliminated by the cloud removal method. However, pixel value content 

similar to spectral value characteristics were identified as clouds or shadows and masked out in this process. 

The shadow removal is more difficult than the cloud cover removal due to its similarity with the water area and 

dense vegetation. Even though there is no large water body in the study area, the shadow can still be found in 

some part of the study area. Due to the high percentage of cloud coverage in several Sentinel-2 images, the 

Sentinel-2 was reduced from 49 images to 20 images.   

 
Fig. 4-3 The Sentinel-1 image taken on 3 January 2017, (a) before speckle filtering process and (b) after 

speckle filtering process   

 

4.3.2 Paddy fields area identification 

The pixel area coverage of Paddy-JMS and Paddy-MJN were calculated in GEE. The total area identified as 

Paddy-JMS and Paddy-MJN is approximately 415.83 Hectare and 548.78 Hectare, respectively. Fig. 4-4 shows 

the area identified as Paddy-JMS in magenta and Paddy-MJN in cyan. The majority of paddy fields are 

identified in the southern part of study area. However, some bare or open fields in the northern part are also 

identified as Paddy-JMS or Paddy-MJN. These areas often inundated during rainfall and cause the moisture 

conditions to be higher than their surroundings. The backscatter coefficient became low which was 

misidentified as paddy fields. 
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Fig. 4-4 The distribution of Paddy-JMS and Paddy-MJN identification 

 

 The average of temporal backscatter coefficient and NDVI from Paddy-JMS and Paddy-MJN areas were 

calculated in GEE, which are shown in Fig. 4-5. After cloud removal, there are five days that the Sentinel-1 and 

Sentinel-2 acquired the same satellite image: June 8, July 18, August 7, October 6, and December 5. In order to 

simplify the visual presentation of the graph in Fig. 4-5, only three dates were marked in black vertical lines. In 

general, the backscatter coefficient and NDVI value have similar temporal patterns. 

The fluctuating patterns of the backscatter coefficient in Fig. 4-5 of Paddy-JMS occur from May to July. This 

phenomenon occurred because the Sentinel-1 images have two types of orbit modes ascending and 

descending that have different backscatter coefficients. The area identified as paddy fields has a low 

backscatter coefficient and NDVI value at the starting time of paddy cultivation for both cropping patterns. The 

low backscatter coefficient was influenced by the structure of the paddy growing stages. The backscatter 

coefficient is low during the preparation of paddy field cultivation. For the Paddy-JMS, cultivation occurs in 

January, from May to June, and from September to October. The backscatter coefficient increases until the 

mature stage and then starts to decrease near harvest time. The similar backscatter coefficients characteristic 

shows by the paddy cultivated in March, July and November.  

However, the changes in backscatter coefficient trends came later compared to the NDVI value trend at 

around 20 days, which is the peak of the NDVI value in May for the Paddy-MJN, and the peak of the NDVI 
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value in June for the Paddy-JMS. The NDVI value was derived from the optical remote sensing, meaning it is 

more sensitive to the greenness of the surface object. In comparison, the backscatter coefficient is more 

sensitive to surface structures conditions. As pointed by (Yang et al. 2008), the paddy growth parameters such 

as plant height, water content and plant structure are the most responsible for backscatter coefficient. Therefore, 

the backscatter coefficient remained high because the area was covered by the mature stage of paddy field, and 

the NDVI started to have a lower value because the greenness of paddy was fading. By contrast, the backscatter 

coefficient started to decrease, similar to NDVI value, immediately after the mature stage of paddy fields. 

 

 

Fig. 4-5 The average of VH polarization backscatter coefficient and NDVI value from paddy JMS and paddy 

 

4.3.3 Classification result 

Random forest with 50 trees gave a higher classification accuracy with an average above 70% than the 

random forest with 25 trees, as can be seen in Fig. 5-6 (a). The highest classification accuracy was obtained 

using a combination B_50, with 76.88% of the overall accuracy and 0.728 of the kappa value. The 

classification of D_25 gave the lowest accuracy, with 65.05% and 0.588 for overall accuracy and the kappa 

value, respectively. These results present that the additional bands from the subtraction of VH and VV 

polarizations increased both the overall accuracy and the kappa value, as can be seen in high accuracy for the 

classification of the B_25 and B_50 polarization band combination.  

Amongst al

60%. The average accuracy of the mixed garden crops class from 8 classifications is 35.18% and 46.61%, for 
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The Fig. 4-6 

classifications using random forest with 50 trees. The mixed garden crops class was often misclassified as an 

upland field class and a woodland class. The location of mixed garden crops is near the upland fields and is 

similar to upland fields but covered with tree canopy. It is because the C-band used for Sentinel-1 could not 

penetrate the dense canopy and received only the backscatter of the surface canopy. In the previous study 

(Mirelva & Nagasawa, 2018), mixed garden crops could be identified and classified better in L-band SAR, 

because the L-band could penetrate the canopy. Therefore, the mixed garden crops class tended to have lower 

accuracy and was misclassified as woodland class in C-band Sentinel-1.  

Settlement and woodland class have a minimum temporal change which influenced the stability of the 

backscatter coefficient in their surface area. Therefore, the accuracy of both classes is higher than other 

agricultural classes. The Paddy-JMS and Paddy-

65% for all classifications. 

 

Fig. 4-6 (a) The overall accuracy and kappa value of classification result and (b) the p

accuracy of all classes from random forest 50 classification 
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Fig. 4-7 The image of Sentinel-2 taken on 19 May 2017 and classification result for (a) A_50, (b) B_50, 

(c) C_50 and (d) D_50 with experimental part shows in red square 

 

In Fig. 4-7, the experimental part of study area sized 4 km2 of land uses and land covers consisting of 

settlements, paddy fields, and tobacco fields, which was selected to evaluate the classification results. The 

Sentinel-2 was taken on May 19, 2017, with band 4, band 3, and band 2 as RGB composite image. Some areas 

of the Paddy-JMS and the Paddy-MJN class were misclassified as tobacco fields because the tobacco fields 

were planted in the paddy field area during the dry season. The visual interpretation of Sentinel-2 indicates that 
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the plantation of tobacco fields started in the middle of May 2017 and finished around the end of September 

2017. As a result, the net cover for tobacco plantation was removed and the area became paddy fields in 

October. Therefore, the tobacco fields were correctly identified in A_50, B_50, and C_50. However, in D_50, 

some areas, which were identified with a yellow circle, were classified as the paddy fields and upland fields 

because the fields were cultivated after harvesting the tobacco fields.  

 

 
Fig. 4-8 The average of VH polarization backscatter coefficient for all classes 

 

Fig. 4-8 shows the average of VH polarization backscatter coefficient for all classes. In VH polarization, the 

Paddy-JMS, the Paddy-MJN, and the tobacco fields class have a lower average backscatter coefficient than 

other classes. A study conducted by (Tian et al. 2018) confirmed that the backscatter coefficient of paddy fields 

was lower than the backscatter coefficient of other land covers. The backscatter coefficient of tobacco fields 

reached the highest backscatter coefficient on May 3, 2017, and May 30, 2017, which are almost equal to other 

classes, such as woodland, settlement, upland fields, and mixed garden crops. The low moisture from land 

preparation for tobacco fields affected the low moisture in the soil, which shows in high backscatter coefficient. 

The backscatter coefficient of tobacco fields is relatively low, around -16 dB during wet season in January and 

December after the harvest of tobacco field. Therefore, the tobacco fields were often misclassified as paddy 

fields. The other classes, such as woodland and settlement, have the most stable VH polarization. In this study, 

the complex agricultural area and two paddy fields cropping pattern can be identified and classified using 

Sentinel-1 in GEE. 
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4.4 Conclusion 

The temporal microwave satellite images, such as Sentinel-1, could contain a large amount of data, and 

require a lot of storage for processing. However, GEE provides cloud-based storage for processing satellite 

images, including Sentinel-1. In this study, the Sentinel-1 data assisted with Sentinel-2 were successfully 

classified for the complex agricultural area in GEE platform. The threshold of backscatter coefficient less than 

-17.4852 dB and greater than -31 dB generated a paddy fields area. As a result, the cropping pattern of paddy 

fields was calculated based on how many times paddy fields were cultivated. In this study, the cropping patterns 

were separated into two types, Paddy-JMS (paddy planted in January, May, and September) and Paddy-MJN 

(paddy planted in March, July, and November). The average prod

fields was above 65%. A comparison of the backscatter coefficient and NDVI value of these paddy fields 

classes shows the backscatter coefficient was more sensitive to the surface structure, which led to the shifting 

time between the backscatter coefficient and NDVI. The random forest with 50 trees gave higher accuracy than 

the random forest with 25 trees, especially accuracy for the dataset with less polarization band combination. 

The combination band of VH, VV, and the subtraction of VH and VV polarization classified with the random 

forest with 50 number of trees obtained the highest overall accuracy and kappa value as 76.88% and 0.728, 

respectively. In this study, the Sentinel-1 was found to be very useful for agricultural croplands, especially 

paddy fields with different cropping patterns. The Sentinel-2 provides NDVI and the images for selected 

sample points and accuracy assessment points. As a result, the processing of Sentinel-1 and Sentinel-2 using 

GEE could successfully be applied in the agricultural croplands classification in tropical areas. 
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  Chapter 5
Identification and classification of complex agricultural Croplands using 

multi-temporal ALOS-2/PALSAR-2 data: a case study  
in Central Java, Indonesia 

 

 

5.1 Introduction 

Indonesia, like many Southeast Asian countries, depends on agriculture as one of national income sources, as 

r (including forestry and fishery) contributed 13.38% of 

agricultural sector. The agriculture croplands are mainly located on Java Island, where smallholding farmers 

cultivate agricultural cropland near volcanos due to the fertile soil available.  

The small-scale cultivated fields on Java typically follow the terrain contour. In general, horticultural crops 

are planted in upland areas, which range from flat to hilly, while paddy fields are mostly found in flat areas at 

lower altitudes. Agricultural parcels in Indonesia are small, around 0.3 ha per household (Agus & Manikmas 

2003), with many farmers often being sharecroppers who do not own their fields. Farmers have limited access 

to technology and are highly dependent on the seasonal weather for maintaining their crops. The intercropping 

patterns and types on adjacent agricultural croplands. These conditions increase the complexity of monitoring 

complex agricultural cropland on Java Island.  

The Indonesian government monitors agricultural areas on Java Island by using direct field surveys and the 

remote sensing technology. There are two kinds of remote sensing technology: optical and radar-based remote 

reflectance and provides high temporal data. Atmospheric conditions, such as clouds, limit the usage of optical 

data, while the radar-based remote sensing capability is unaffected. The satellite sensor for radar-based remote 

sensing, also known as synthetic aperture radar (SAR), transmits specific wavelengths and receives the scatter 

-band (2.5-4 cm), C-band (4-8 cm) 

and L-band (15-30 cm). SAR sensors using longer wavelengths penetrate deeper vegetation cover than those 

using shorter ones, as well as provide temporal data day and night and overcome the limitations caused by 

cloud cover, which often occurs in tropical areas.  

In recent years, many researchers have monitored agriculture using SAR data because of their sensitivity to 

the moist conditions and surface roughness of the areas monitored. Paddy fields are frequently monitored by a 

SAR because the inundation stage of the early planting season is useful as a key factor, which allows the SAR 
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to distinguish between paddy fields from other crops and land uses. Some studies have used SAR for paddy 

field identification and mapping (Y. Zhang, Wang, & Q. Zhang, 2011; Nelson et al. 2014), paddy field 

monitoring (Torbick et al. 2017), and paddy yield estimation (Inoue, Sakaiya, & Wang, 2014). Other studies 

have shown SAR to be highly effective in classifying whether a paddy is abandoned or not, identifying rubber 

and oil palm agricultural land (Yusoff et al. 2016), classifying crops (Tian et al. 2010), and separating tall 

vegetation from short vegetation (Mishra, Singh, & Yamaguchi, 2011).  

The Advanced Land Observing Satellite 2 (ALOS-2) was launched on May 24, 2014. Mounted on the 

ALOS-2 is the second-generation Phased Array Type L-band Synthetic Aperture Radar (PALSAR-2) sensor 

(Kankaku, Suzuki, & Osawa, 2013). The number of agricultural monitoring applications using SAR in 

Indonesia is still limited, especially when involving ALOS-2/PALSAR-2. This study aimed to analyze the 

ability and emphasize the advantages of multi-temporal ALOS-2/PALSAR-2 data for identifying complex 

agricultural croplands and classifying other land uses near agricultural cropland. Furthermore, this study was 

carried out to investigate the useful backscatter characteristics of temporal PALSAR-2 data for separating out 

the paddy field planting stages. 

 

5.2 Materials and methods 

5.2.1 Study area 

The study area covered 112 km2 

following geographic coordinates: 7o - 7o  110o -110o 

east longitude (Fig. 5-1

with elevations of 200-600 m.  

Despite frequent volcanic eruptions, people continue to live and work in this hazardous area because of the 

strong relationship between the Javanese people and the mountain (Lavigne et al. 2008). They view Mount 

Merapi as a sacred living thing, which provides abundant natural resources (Nofrita & Krol, 2014; Mei et al. 

2013), given that the fertile soil resulting from the eruptions is highly beneficial to their agricultural activities. 

Therefore, many households depend on the agricultural sector and work as farmers or sharecroppers. Land use 

in the study area generally consists of woodland, settlements, paddy fields, upland fields, tobacco fields and 

mixed garden crops. The distribution of land covers differs in the northern and southern parts according to 

topographic conditions. The hilly northern part has woodlands, upland fields and mixed garden crops, while 

paddy fields, tobacco fields and some upland fields are located in the flat or gently sloping areas of the southern 

part. The settlements are spread across both southern and northern parts of the study area.  
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Fig. 5-1 Location of study area and coverage of Pleiades 

 

5.2.2 Remotely sensed data 

ALOS-2/PALSAR-2 is provided by the Japan Aerospace Exploration Agency (JAXA) and delivers higher 

resolution SAR images than its predecessor, ALOS/PALSAR (Rosenqvist et al. 2014). This study used 

multi-temporal dual polarization and full polarization data in the highly sensitive mode with a 6.85 m resolution 

as the primary data. The dual polarization of PALSAR-2 consisted of HH and HV polarizations and the full 

polarization consisted of HH, HV, VH and VV polarizations. The first letter of polarization indicates the 

transmission direction, while the second letter indicates the received direction. H stands for horizontal and V for 

vertical direction. The complementary data are from Pleiades and the Landsat 8 Operational Land Imager 

(OLI), which hereafter will be referred to as Landsat 8.  

 

Table 5-1 Acquisition description of primary and complementary data used in this study 

Primary data 
Acquisition 

date in  
yyyy.mm.dd 

Complementary 
data 

Acquisition date in  
yyyy.mm.dd 

ALOS-2/PALSAR-2: Level 1.1 Pleiades Image 2015.08.26 

- Dual polarization  

(HH & HV polarizations) 

2015.01.30 

Landsat 8 Images 

(12 images) 

2015.01.05 2015.07.16 

2015.07.03 2015.02.22 2015.08.01 

2015.09.11 2015.03.26 2015.09.02 

- Full polarization  

(HH, HV, VH, and VV 

polarizations) 

 2015.05.13 2015.09.18 

2015.05.17 2015.05.29 2015.10.04 

 2015.06.14 2015.10.20 
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Pleiades is an ortho-rectified multi-spectral imagery satellite with a 0.5 m spatial resolution, while Landsat 8 

is a multispectral image satellite with a 30 m spatial resolution. These complementary data were used for a 

preliminary study of the land use and cropping patterns in the study area. In addition, Pleiades was used for the 

base image in the georeference process. Table 5-1 describes the detailed acquisition of primary and 

complementary data used in this study. The date acquisition description in the yyyy.mm.dd format will be used 

hereafter. The field survey was performed twice, on March 25, 2017, and August 24-25, 2017, in order to 

validate the land use and cropping patterns in the study area.  

 

5.2.3 ALOS-2/PALSAR-2 Preprocessing and Landsat-8 Preprocessing 

Sentinels Application Platform (SNAP) software from the European Space Agency (ESA) provides the tools 

for processing Sentinel-1 satellite data, as well as other satellite data, such as from PALSAR-2. The 

preprocessing steps are (i) calibration, (ii) multi-look with a 1:2 ratio for azimuth and range (JAXA, 2014), (iii) 

co-registration, (iv) speckle filtering for reducing the noise in SAR data, (v) geocoded processing and (vi) 

backscatter coefficient calculation.  

All PALSAR-2 data were stacked and co-registered together by using the Shuttle Radar Topographic 

Mission digital elevation model (SRTM DEM). The single product speckle filter was applied based on the Lee 

speckle filtering method with a window size of 5 × 5. The PALSAR-2 data were geocoded to the Universal 

Transverse Mercator (UTM) projection 49S with World Geodetic System 1984 (WGS84) datum. The 

topographic effect was corrected using the SRTM DEM. The results of the geocoded images formed a subset 

based on study area coverage and were confirmed to have a perfect fit with the Pleiades image. The backscatter 

coefficient in decibel units (dB) was then calculated using this formula (JAXA, 2017) where the Cf and A are 

calibration factors with a value of -83 and 32 dB, respectively.  

 

                    (Eq. 5-1) 

 

Landsat 8 data were processed using ERDAS Imagine 9.2 software. The preprocessing steps were (i) 

conversion from a digital number to a reflectance value with sun angle correction (USGS, 2014), (ii) the study 

area subset and (iii) the cloud removal process. The Iterative Self-Organizing Data Analysis Technique 

(ISODATA) method (Helmer & Ruefenacht, 2005) was used for removing cloud cover from the study area. 

Then, cloud-free Landsat 8 data were examined to observe the growing stage of the agricultural cropland 

between the acquisition dates of the PALSAR-2 data.  

 

5.2.4 Sample point collection and classification method 

Sample points, consisting of training and accuracy assessment points, were randomly selected by using a 
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combination of visual interpretations from PALSAR-2, Pleiades and Landsat 8 data. PALSAR-2 data are 

sensitive to water. Therefore, the red-green-blue (RGB) channel composite was set with a backscatter 

coefficient of HH, HV and HV-HH polarizations and used to separate the paddy fields in the early growing 

stage (inundated phase) from those in the late stage (generative phase). A previous study (Cazals et al. 2016) 

showed that the RGB composite of VV, VH and VH-VV Sentinel-1 data was useful for identifying the 

moisture condition of wetland areas. In this study, a similar approach was implemented using HH, HV and 

HV-HH polarizations instead of VV, VH and VH-VV, for identifying paddy fields. Other land uses, such as 

tobacco fields, settlements, woodland upland fields and mixed garden crops, were identified and selected based 

on visual interpretations in the Pleiades and Landsat 8 data. After collecting the sample points for all land use, 

the points were divided into training points (70%) and accuracy assessment points (30%). The supervised 

classification method, known as maximum likelihood classification, was used for the classification process. 

The accuracy assessment of remote sensing classification results can be estimated by calculating the error 

matrix, which consists of producer accuracy and user accuracy for each class, overall accuracy and the kappa 

coefficient as total accuracy (Congalton, 1991). Producer accuracy is related to the proportion of correctly 

classified reference samples, while user accuracy is related to sample or training points that are correctly 

classified (Mas et al. 2014). Overall accuracy and the kappa coefficient are related to classification accuracy in 

general.  

 

5.3 Results and Discussion 

5.3.1 ALOS-2/PALSAR-2 backscatter coefficient 

Fig. 5-2 shows the backscatter coefficient of PALSAR-2 polarizations. The brightness of the backscatter 

coefficient could be used to identify the surface roughness condition and/or water content in the study area. In 

general, HV polarization has a lower average value than HH polarization, which affects the image brightness 

intensity color. The bright color in HH polarization indicates a rougher surface condition and less water content. 

It also has a higher backscatter coefficient than the darker color. Bareland and concrete buildings will have a 

stronger backscatter coefficient than water body areas, which give a weak or almost no backscatter. Therefore, 

the water body or high water content area appeared darker. 

In Fig. 5-2, there were temporal changes in the southern part as indicated by the color variation in HH 

polarizations of the PALSAR-2 backscatter coefficient. The cropping activities in the paddy fields, tobacco 

fields and upland fields in the southern part of the study area affect the backscatter coefficient value. Paddy 

fields require large amounts of water in the early planting stage. Therefore, the paddy fields scatter different 

backscatter coefficient strengths between the inundated and harvested periods. The HH polarization for January 

30, 2015, in the southwestern part appeared very bright compared to other acquisition dates because the surface 

was rough and lacked water content or was very dry. This is an indication that the fields were being prepared for 
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other agricultural activities or just harvested. Thus, the backscatter coefficient is very strong. The tobacco fields 

and upland fields have varied backscatter coefficients during the growing stages. The northern part of the study 

area was mostly covered by woodland and mixed garden crops, which were surrounded by perennial trees and 

indicated less temporal change compared to the upland fields, thereby affecting the brightness of the 

backscatter coefficient in terms of appearing consistent.  

 

 
Fig. 5-2 Backscatter coefficient of PALSAR-2 polarizations 

 
Based on the field survey, it was found that paddy field irrigations in this study area are not equally 

southeastern parts of the study area. Therefore, the paddy fields in this study are divided into two classes: 

paddy-I and paddy-II. The paddy-I class was made up of paddy fields with adequate irrigation, which were 

cultivated either three times a year or five times in two years. The paddy-II class was rain-fed and cultivated as 

paddy fields in the wet season and changed to upland fields in the dry season. In this study, the RGB composite 

of HH, HV and HV-HH polarizations was used for the separation cropping patterns. Fig. 
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5-3 shows the RGB composite of HH, HV, HV-HH polarizations for each PALSAR-2 data. The low 

backscatter coefficient areas, which appeared as dark blue, were interpreted as being inundated or in an early 

vegetative stage. These areas are categorized as paddy-I. Meanwhile, the paddy fields in a late growing stage, or 

those being prepared for a change of crop, showed more roughness and a higher backscatter coefficient. They 

appeared as bright orange on the RGB composite and categorized as paddy-II.  

 

 

Fig. 5-3 RGB composite of HH, HV, VH-VV of ALOS-2/PALSAR-2 taken on January 30th, May 17th, 

July 3rd, and September 11th 

 
 

5.3.2 Landsat 8 preprocessing result 

The cloud-free Landsat 8 data in a true-color composite (reflectance bands of 4, 3 and 2) are shown in Fig. 

5-4. The temporal changes in cropping patterns could be visually identified. For example, the tobacco fields 

appeared as a bright white area on the Landsat 8 data for the period from March 26 to September 2, 2015, 

because of the shade nets used for pest prevention. The tobacco plants in this area took about six months from 

first planting to harvest. After harvesting, several tobacco shade nets were removed as can be seen in the 

Pleiades data (Fig. 5-1). 

Besides the tobacco fields, the other cropland cropping activities could be identified as well. In the 

2015.03.26 image (Fig. 5-4), the southern part was in a dry condition but the vegetation coverage was identified 
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in images for previous (2015.02.22) and later months (2015.05.13 and 2015.06.14). Therefore, other land use 

classes, except paddy fields, were selected by using visual interpretations of Pleiades and Landsat 8 data with 

the following descriptions: (i) woodland comprising several trees or non-agricultural tall vegetation, (ii) a 

settlement comprising housing and nearby home gardens, (iii) upland fields with an open field for growing 

cassava, maize and horticultural crops, and (iv) an area where mixed garden crops are cultivated, which has 

similar characteristics to upland fields, but is located near perennial trees or non-agricultural tall vegetation. 

 

 

Fig. 5-4 The cloud-free Landsat 8 data in true color composite (reflectance bands of 4,3,2) 

 

5.3.3 Training points analysis and classification result 

In total, there were seven land use classes, namely: paddy-I, paddy-II, woodland, settlements, upland fields, 

tobacco fields and mixed garden crops. Table 5-2 shows the training points and accuracy assessment points 

collected from the analysis of the PALSAR-2 backscatter coefficient and the visual interpretation of Landsat 8 

and Pleiades data. The temporal combination column in Table 5-2 was obtained and randomly selected based 

on combined paddy-I and paddy-II sample point classes from each acquisition date. These sample points were 

especially applied with regard to the combination of multi-temporal classification process. The other classes 
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were assumed to have minimum land use change; therefore, the temporal classification process will be used the 

same set of sample points. The combination and polarization band compositions for the classification process 

are described in the Table 5-3. 

 

Table 5-2 Training points and accuracy assessment points 

Class Name 
            Temporal combination

TP AAP TP AAP

Paddy-I     

2015.01.30 (0130) 74 33   

2015.05.17 (0517) 70 30 119 50 

2015.07.03 (0703) 71 31   

2015.09.11 (0911) 56 24   

Paddy-II     

2015.01.30 (0130) 70 30   

2015.05.17 (0517) 7 3    30     117    50  

    .07.03 (0703)2015  56 24   

2015.09.11 (0911) 35 15   

Upland fields 78 33 78 33 

Tobacco Fields 55 23 55 23 

Woodland 90 38 90 38 

Settlement 85 36 85 36 

Mixed garden crops 89 37 89 37 

Note. TP means training points, AAP means accuracy assessment points.  

 

Table 5-3 Polarization composition for classification process 

Combination name Polarization composition description Number of bands 

0130_A 2015.01.30 (HH, HV) 2 

0130_B 2015.01.30 (HH, HV, HV-HH) 3 

0517_A 2015.05.17 (HH, HV) 2 

0517_B 2015.05.17 (HH, HV, HV-HH) 3 

0517_C 2015.05.17 (HH, HV, VH, VV) 4 

0517_D 2015.05.17 (HH, HV, VH, VV, HV-HH) 5 

0703_A 2015.07.03 (HH, HV) 2 

0703_B 2015.07.03 (HH, HV, HV-HH) 3 

0911_A 2015.09.11 (HH, HV) 2 
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0911_B 2015.09.11 (HH, HV, HV-HH) 3 

Temp_comb_1 

2015.01.30 (HH, HV) 

2015.05.17 (HH, HV) 

2015.07.03 (HH, HV) 

2015.09.11 (HH, HV) 

8 

Temp_comb_2 

2015.01.30 (HH, HV, HV-HH) 

2015.05.17 (HH, HV, HV-HH) 

2015.07.03 (HH, HV, HV-HH) 

2015.09.11 (HH, HV, HV-HH) 

12 

Temp_comb_3 

2015.01.30 (HH, HV) 

2015.05.17 (HH, HV,VH, VV) 

2015.07.03 (HH, HV) 

2015.09.11 (HH, HV) 

10 

Temp_comb_4 

2015.01.30 (HH, HV, HV-HH) 

2015.05.17 (HH, HV,VH, VV, HV-HH) 

2015.07.03 (HH, HV, HV-HH) 

2015.09.11 (HH, HV, HV-HH) 

14 

 
5.3.4 ALOS-2/PALSAR-2 backscatter coefficient characteristics 

Fig. 5-5 shows the averages of the training points of land use classes based on the backscatter coefficient 

from HH and HV polarizations from each PALSAR-2 data. Fig. 5-5 (a) and 5(b) shows the averages of training 

points for woodland, settlements, upland fields, tobacco fields and mixed garden crops. The HH and HV 

polarizations of the paddy-I and paddy-II classes from each acquisition date were shown in Fig. 5-5 (c) and 5(d) 

respectively. In Fig. 5-5 (a), the settlement class showed the highest HH polarization backscatter coefficient 

around -5 dB to -3 dB. It can be seen in Fig. 5-5 (b) that the HV polarization backscatter coefficient of 

settlement and woodland classes was almost identical and higher than the other classes. The HV polarization 

value for these classes was around -14 dB to -12 dB. The dense vegetation and the home gardens close to the 

settlement areas influenced the HV polarization behavior. The HV polarization for settlement appeared similar 

to the woodland area. The mixed garden crops also have higher HV polarization backscatter coefficient than 

upland fields and tobacco fields. Thus, the HV polarization was found to be more sensitive to buildings and tall 

or dense vegetation.  

In Fig. 5-5 (c), the HH polarization of the paddy-I class has a lower backscatter coefficient and more repeated 

patterns than the paddy-II class. This backscatter coefficient pattern was similar to the paddy field pattern 

presented in the study from Zhang et al. (2009). The dynamic pattern of the backscatter coefficient from the 
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paddy-I class was influenced by the moisture conditions, which changed during the paddy growing stages. As 

can be seen in Fig. 5-5 (c), the HH polarization of paddy-I class shows two graphs involving opposite temporal 

patterns. The first pattern consists of the paddy-I class from the acquisitions from January 30 (paddy I_0130) 

and July 3 (paddy I_0703), 2015. The second pattern concerns acquisitions from May 17 (paddy I_0517) and 

September 11 (paddy I_0911), 2015. However, all of the backscatter coefficients from the PALSAR-2 

acquisition dates were low, with a value below -15 dB. Thus, the sample points were selected in the same stage 

of the paddy fields. Paddy I_0130 in Fig. 5-5 (c) represents the repetition of paddy cultivation in this study area.  

 

 

Fig. 5-5 Averages of training points based on HH and HV polarization from each PALSAR-2 data: (a) and 

(b) for woodland, settlement, upland fields, tobacco fields, mixed-garden-crops classes; (c) and (d) for 

paddy-1 and paddy-II classes 

 

The backscatter coefficient of paddy I_0517 and paddy I_0703 also increased from the backscatter 

coefficient in the acquisition date. Thus, the backscatter coefficient of HH polarization from the paddy-I class 

-I class, the HH polarization backscatter 

coefficient of the paddy-II class, as can be seen in Fig. 5-5 (c), showed an inconsistent temporal change and a 

high backscatter coefficient. The high backscatter coefficient is related to low moisture conditions or a rough 
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surface, such as that in the dry condition area. In Fig. 5-5 (d), the HV polarization backscatter coefficient value 

of the paddy II_0130, paddy II_0517, paddy II_0703 and paddy II_0911 classes were around -22 dB to -16 dB, 

that is, the same range as the upland fields class. This result was expected because the paddy-II class fields 

became upland fields when there was minimum water availability. 

 

5.3.5 Classification result analysis 

Table 5-4 shows the overall accuracy and kappa coefficient values obtained from the classification process. 

In general, the classification result based on a single PALSAR-2 acquisition date was lower compared to the 

classification result for multi-temporal combinations. The 0911_A gave the highest accuracy amongst other 

single acquisition data sets, with an overall accuracy of 71.35% and a kappa coefficient of 0.66. The 

classification result of 0911 is higher than other single date acquisition data because the dates of acquisition for 

the Pleiades and PALSAR-2 data taken on September 9, 2015, involve a short time gap and affect the sample 

points, which are based on visual interpretations of Pleiades data. In this study, PALSAR-2 data taken on May 

17, 2015, are the only full polarization data.  

 

Table 5-4 The overall accuracy and kappa coefficient of classification result 

Combination name Number of bands Overall accuracy (%) Kappa coefficient 

0130_A 2 64.37 0.582 

0130_B 3 63.91 0.577 

0517_A 2 65.63 0.596 

0517_B 3 62.99 0.567 

0517_C 4 66.07 0.603 

0517_D 5 67.4 0.619 

0703_A 2 66.21 0.603 

0703_B 3 64.41 0.585 

0911_A 2 71.35 0.66 

0911_B 3 70.98 0.655 

Temp_comb_1 8 85.02 0.824 

Temp_comb_2 12 76.4 0.724 

Temp_comb_3 10 80.6 0.775 

Temp_comb_4 14 73.03 0.685 

 

The full polarization of PALSAR-2 data (0517_C) showed higher accuracy than the 0517_A classification, 

which consists of two polarizations, HH and HV. The additional polarization of HV-HH decreases the 

classification accuracy for 0130_B, 0517_B, 0703_B and 0911 _B, as can be seen in Table 4. However, the 

addition of the HV-HH polarization causes an increase in the classification result of the full polarization data 
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(0517_D). In Table 5-4, the classification of multi-temporal combinations shows a high level of accuracy. 

Temp_comb_1 obtained the highest accuracy with an overall accuracy of 85.02% and a kappa coefficient value 

of 0.824. The additional band in temp_comb_2 and temp_comb_4 was not able to improve the accuracy. 

Therefore, higher classification accuracy can be achieved by using the multi-temporal combination of HH and 

HV polarizations.  

Fig. 5-6 shows producer accuracy and user accuracy in all classes for the temp_comb_1, 0130_A, 0517_A 

and 0911_A classification results. These classification results were chosen in order to compare the accuracy of 

all classes. According to Fig. 5-6, the paddy-I and paddy-II classes displayed higher producer and user accuracy 

compared to other classes.  

In the single date acquisition, as can be seen in Fig. 5-6, the producer and user accuracy of paddy-I and 

paddy-II classes were typically above 90%, with some obtaining 100% accuracy. These results confirmed that 

the selection based on the RGB composite of PALSAR-2 data is effective in increasing paddy field accuracy. 

However, the temporal combination of dual polarizations could increase producer or user accuracy in all classes, 

except the paddy-I and paddy-II classes. The sample points for multi-temporal classification were randomly 

selected from the sample points for single acquisition date classification. Thus, the producer and user accuracy 

of multi-temporal classification was lower than the single date classification result. In contrast with the paddy-I 

and paddy-II classes, the multi-temporal backscatter could have increased the probability of separating 

woodland, settlements, upland fields, tobacco fields and mixed garden crops classes.  

 
Fig. 5-6 

classification result 



50 
 

Fig. 5-7 shows the agriculture cropland classification results by using single date acquisition data (0130_A, 

0517_A, 0703_A and 0911_A) and the multi-temporal combination (temp_comb_1). These classification 

results were chosen as the most representative comparison between single acquisition and multi-temporal 

classification results. The southern part was mostly classified as tobacco fields, as can be seen in Fig. 5-7(a), 

and upland fields, as can be seen in Fig. 5-7 (b), (c), and (d). The settlement areas were misclassified as 

woodland or mixed garden crops. Therefore, producer and user accuracy for these classes was very low. The 

paddy-II class was used for classifying the area with cropping patterns of paddy fields in the rainy season and 

upland fields in the dry season. 

 

 
Fig. 5-7 The classification result of (a) 0130_A, (b) 0517_A, (c) 0703_A, (d) 0911_A, and (e) 

temp_comb_1 

 

In Fig. 5-7(a), the area was classified as paddy-II, spreading out in the eastern part, while decreasing in the 

next acquisition time period (Fig. 5-7 (c)-(d)). The paddy-I class was identified in smaller areas, compared to 

the paddy-II class, because the planting time for paddy fields was not coordinated, as it was decided by each 

farmer. However, by combining the multi-temporal dual polarization data (Fig. 5-7(e)), the paddy-I and 

paddy-II areas became larger and easier to identify, even though the producer and user accuracies decreased. 

The coverage upland fields and mixed garden crops also decreased, which corresponds to higher accuracy. This 
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result is similar to that reported in a study revealing that temporal SAR data are useful for classifying paddy 

fields (Zhang, Wang, & Zhang, 2011). Therefore, the backscatter coefficient was found to be useful for 

separating the cropping patterns of paddy fields. Moreover, the highly accurate classification of complex 

agricultural croplands could be achieved by using a multi-temporal combination of dual polarization 

PALSAR-2 data.  

 

5.4 Conclusion 

This study shows the potential of PALSAR-2 multi-temporal data in examining complex agricultural 

croplands. In this study, the RGB composite of HH, HV and HV-HH and multi-temporal PALSAR-2 data were 

used and found to be very useful when identifying and classifying the particulars of complex agricultural 

croplands. The RGB composite of HH, HV and HV-HH supported the selection of sample points needed to 

separate two types of paddy field: the all-year paddy (paddy-I) and paddy upland field (paddy-II) cropping 

patterns, which are often found in this study area. By using this RGB composite, producer accuracy and user 

accuracy for paddy-I and paddy-II were very high compared to other land use classes. This study also achieved 

an overall accuracy of 85.02% and a kappa coefficient of 0.824 by using the multi-temporal combination of HH 

and HV polarization from four temporal data taken between January and September 2015. This multi-temporal 

combination was effective for classifying the agricultural croplands, which could increase overall accuracy by 

about 10%, compared to the average of single date acquisition classification results. Moreover, these temporal 

combination data increased the producer and user accuracy of other land use classes, such as woodland, upland 

fields, tobacco fields, settlements and mixed garden crops up to 70%. This study successfully demonstrated 

PALSAR-  
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  Chapter 6
General discussion and recommendation 

 

6.1 General discussion 

The aim of this study was to explore the identification of agricultural croplands by using synthetic aperture 

radar. The research was conducted by selecting suitable complex agricultural croplands as study area and 

developed methodology for classifying the agricultural croplands by using single date imagery and 

multi-temporal imageries of SAR. The agricultural croplands in Central Java fulfilled two characteristics 

which is suitable as study area for this research. The first characteristic is various cropland types, such as rice, 

horticulture croplands, and tobacco, are grown in small fields size by the smallholder famers. The second 

characteristic is the location of agricultural croplands is close to other land use types such as settlement and 

woodland area. The SAR imagery is sensitive to the backscatter of various objects. Therefore, the area 

consists of both agricultural croplands and non-agricultural croplands will be valuable to gather more 

information about SAR capabilities. The optical remote sensing imageries and field survey were also utilized 

as the complementary data to provide description the distribution of land use and land cover types. The 

research was further divided into more specific objectives in order to obtain satisfactory method for 

identifying complex agricultural croplands.  

The first objective is to examine the characteristic of complex agriculture cropland that can be identified by 

using active remote sensing data. The agriculture croplands such as paddy fields have specific phenology 

which is inundated phase at the beginning of cultivation. The inundated phase can be detected as low 

backscatter coefficient in SAR imagery. The dry field and non-agricultural like settlement was detected as 

higher backscatter coefficient. Based on these hypotheses, the full polarization was selected to obtain more 

characteristic of backscatter coefficient which leads to the second objective, to explore the ability of 

ALOS/PALSAR full polarization mode for classifying agricultural croplands.  

There were thirty-three new parameters generated from the combination of four polarizations from one full 

polarization image. In addition to these parameters, the full polarization was generated into two types of 

decomposition, the Freeman and Durden decomposition and Yamaguchi 4 components decomposition. These 

parameters were evaluated by using separability index for separating the land use types. Several combinations 

from polarization of ALOS/PALSAR and the new parameters were classified by using the Maximum 

Likelihood Classification method. The result shows for full polarization (HH, HV, VH, and VV) achieved 

60.84% and 0.441 for overall classification and kappa respectively. Meanwhile, the integration between 

backscatter coefficients (HH, HV, VH, VV, and HH+HV) and the three components of the Freeman and 

Durden decomposition significantly improved the overall accuracy and kappa coefficient (74.11% and 0.6247, 



53 
 

respectively). This fact implies that the integration of the full polarization and polarimetric decomposition of 

Freeman and Durden methods was able to compensate for the weakness of each component in discriminating 

complex agricultural croplands. Based on the classification result, the dry fields and paddy fields become bare 

land before the cultivation or after the harvest. These stages lead to the misclassification between both classes. 

On the other hand, mixed garden crop was surrounding with tree canopy that produced unique backscatter. 

Consequently, the mixed garden crop could be distinguished from other croplands class. The settlement class 

is recognized from the building structures that reflect stronger backscatter compared to other classes.  

The third objective is to perform classifying and mapping of Sentinel-1 by using the cloud based system of 

GEE. In the fifth chapter, the multi-temporal imageries of Sentinel-1 taken on 2017 were applied in the 

similar study to the ALOS2/PALSAR2 study area. Compared to the previous chapters, it has fifty-six 

imageries with two types of polarization, the VH and VV polarizations. In this study, the Sentinel-1 data 

assisted with Sentinel-2 were successfully classified for the complex agricultural area in GEE platform. The 

threshold of backscatter coefficient less than -17.4852 dB and greater than -31 dB generated a paddy fields area. 

The detail cropping pattern of paddy fields became possible with the high multi-temporal of Sentinel-1 and 

the optical of Sentinel-2. A comparison of the backscatter coefficient and NDVI value derived from the 

Sentinel-2 of these paddy fields classes shows the backscatter coefficient was more sensitive to the surface 

structure, which led to the shifting time between the backscatter coefficient and NDVI. The combination band 

of VH, VV, and the subtraction of VH and VV polarization classified with the random forest with 50 number of 

trees obtained the highest overall accuracy and kappa value as 76.88% and 0.728, respectively. The accuracy of 

agricultural croplands classification from C-band wavelength is lower than the accuracy of the L-band 

wavelength. It is acceptable because the C-band wavelength is more sensitive to the canopy structure and 

could not penetrate deeper than the L-band which lead to lower accuracy. 

The knowledge derived from the first study was then continued by utilizing the multi-temporal of 

ALOS2/PALSAR2. The four and fifth objective was designed to investigate the multi-temporal of 

ALOS-2/PALSAR-2 for identifying and classifying the agricultural croplands as well as to analyze the 

influence of sample points selection based on the backscatter value characteristic for classification process. 

The new study area with more complex agricultural cropland and more classes were selected to attain those 

objectives. Three dual polarizations mode imageries of ALOS2/PALSAR2 were assigned together with one 

full polarization mode imagery. The paddy field was separated into two types the paddy-I with irrigation 

system and paddy-II with rain-fed system. The sample points for both paddy fields classes were selected from 

the backscatter coefficient condition. The integrated between this new point selection method and the 

multi-temporal imagery gained higher classification result compared to the first study. The overall accuracy of 

85.02% and a kappa coefficient of 0.824 were achieved by using the multi-temporal combination of HH and 
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HV polarization from four temporal data taken between January and September 2015. The multi-temporal 

data of ALOS2/PALSAR2 with only HH and HV polarization from all imageries were favorable in increasing 

the classification accuracy. The image combination with VH and VV polarization achieved lower accuracy 

compared to the combination of HH and HV polarizations. This fact shows that increase in number of bands 

was not a guarantee to get satisfactory accuracy for ALOS2/PALSAR2. However, multi-temporal 

combination was effective for classifying the agricultural croplands. The combination could increase overall 

accuracy by about 10%, compared to the average of single date acquisition classification results. 

Based on the results of this study, the agricultural cropland classification and mapping could be achieved by 

using single full polarization of ALOS/PALSAR, multi-temporal of dual and full polarization of 

ALOS2/PALSAR2, and multi-temporal of dual polarization of Sentinel-1. There are several important notes 

to be discussed especially from the results obtained in this study: (1) the similarity and dissimilarity of L-band 

and C-band SAR capability in term of identifying agricultural croplands, (2) the complexity of agricultural 

croplands and its relation to the L-band and C-band SAR characteristic, and (3) the advantage and 

disadvantaged of the cloud based system in identifying and classifying agricultural croplands.  

The C-band and L-band has similarity in sensitivity to the water content or moisture in earth s surface. The 

dissimilarity between both C-band and L-band is the acquisition time frequency and the strength of 

penetration. The C-band and L-band SAR are affected by the moisture condition such as in the paddy fields 

area especially during the early stage of paddy plantation. The water column in paddy field is beneficial for 

separating the paddy field with other agricultural cropland classes. Thus, the water content on soil affect the 

backscatter coefficient C-band and L-band SAR become lower which often assumed as the paddy fields. The 

complex agricultural croplands in Central Java characterized with the high perennial tree surrounding the 

agricultural fields and have the various cropping types in close by each other. The C-band has shorter 

wavelength than L-band therefore it is less capable to differentiate the structure of the perennial tree and the 

croplands. However, the acquisition of C-band is more frequent than L-band that can compromise the 

seasonal pattern of agricultural croplands. 

The integration between the cloud based system and the SAR data was possible and could improve the time 

process in classification and mapping. However, the cloud based system for processing SAR data, like other 

methodology, will have advantage and disadvantage. The processing satellite imagery without cloud based 

system need to obtain the imagery from the satellite image service provider and then the user will be able to 

use the satellite imagery. At this step, the file size of imageries, especially SAR imageries, could be huge. It 

will be inconvenient for study with small target area because the user need to generate the satellite imagery 

using the similar boundary with target area. The cloud based system provides the tools for user to select the 

provided satellite imageries as well as to crop the satellite imagery by using the boundary of study area, even 
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before obtaining the satellite imagery. The process is easier and more efficient. However, the availability of 

satellite imageries in cloud based system is limited to free of charge satellite imageries. The L-band SAR such 

as ALOS/PALSAR and ALOS2/PALSAR2 were not provided in the cloud based system. Besides the 

availability of satellite imageries, the main pre-processing for SAR imageries, for example the speckle noise 

filtering, have to be performed in other software outside the GEE. Despite the advantages of cloud based 

system, there are three important things to be noted: (i) the processing of satellite imageries took short time in 

GEE, but the download process from cloud server to the user computer hardware requires more time, (ii) the 

users is recommend to have other commercial remote sensing and GIS processing software, and (iii) there is 

limitation between user interaction with the GEE windows.  

This study has been to be useful in establishing the methodology for classifying complex agricultural 

croplands by using C-band and L-band SAR imageries. The methodology for choosing sample points and 

applying in cloud-based processing to get the most effective and efficient classification were also 

demonstrated in this study.  

 

6.2 Recommendation 

In establishing and updating the land use and land covers of complex agricultural croplands in tropical area, 

the two types of SAR imageries were used to compensate the cloud cover. The L-band is more capable in 

separating the area which often covers or surrounding by the tree branches. Meanwhile the high temporal of 

C-band SAR is more useful for understanding the cropping pattern of paddy fields. These two SAR 

wavelengths were processing separately. However, the possibility to combine these wavelengths to get higher 

accuracy for land use and land cover mapping in agricultural croplands is high. Hence the combination is 

encouraged to be done in the next study. In this study, the selection of sample points by using the backscatter 

coefficient, especially for the paddy fields, and based on the visual interpretation for other agricultural 

croplands. Even though the other land use and land cover types has relatively similar backscatter coefficient, 

the sample points by using backscatter coefficient is applicable by increasing the number of backscatter 

coefficient parameters from both C-band and L-band. Thus, the same method could be applied on other land 

use and land cover agricultural croplands area with less dynamic cropping pattern than paddy field area, in 

order to give higher accuracy. The recent technology of cloud based system processing could increase the 

time processing of satellite imageries as well as decrease the necessity of high performance processing 

hardware. Therefore, the methodology of the croplands identification in cloud based system could be 

implemented in larger area scale such as regency or province. Hopefully, this could be benefit for updating the 

existing land use and land cover map for the other agricultural croplands area.  
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APPENDIX 

 

Appendix 1 The agricultural condition of study area 

 

 

Picture (a), (b), (c) are typical paddy field which often cultivated with other horticultural croplands. 

Picture (d) is typical upland field area. Picture (e) is tobacco fields and picture (f) is vegetable crops. 
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Appendix 2 The classification result of Central Java province by using random forest in 

Chapter 4 

 

 

The classification result with 25 random forest 
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The classification result with 25 random forest 
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Appendix 3 The classification result of Central Java province in Chapter 5 

 

The classification result for 0130_A, 0517_A, 0703_A, and 0911_A 
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The classification result for 0130_B, 0517_B, 0703_B, and 0911_B 
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The classification result for 0517_C, 0517_D, Temp_comb_1, Temp_comb_2, Temp_comb_3 and 

Temp_comb_4 
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Summary 

According to the statistics of Indonesia Statistics Bureau in 2010-2014, the ratio of agriculture, forestry and 

fisheries sector to gross domestic product shows high value (13.38%). Despite its small area, Java Island in 

Indonesia plays a central role in agriculture. Rural areas are widely distributed in Central Java province and 

Eastern Java province. The traditional rural landscapes can be seen at the foot of Merapi volcano in Central Java 

province. Majority of people living in these traditional rural areas are working as small-scale farmers which 

cultivate various crops and cultivation types, including paddy. In these small-scale farming systems, the area 

under management per household is generally as small as 0.3 hectares, and they are irregularly dispersed in 

more complex terrain shapes. Due to these conditions, it is extremely difficult to map detailed agricultural land 

use patterns and to grasp the spatial and spatial changes. 

Currently, the population of Java is still increasing. The population growth is directly related to the need to 

increase food production; however, agricultural fields are decreasing due to the expansion of land used for 

infrastructure purposes. The reduction of agricultural fields could result in less agricultural production. Thus, 

accurate and updated information on land use and land cover mapping in agricultural areas has become a 

crucial issue for decision-making on agricultural policy. However, the mapping of agricultural land use and 

land cover is difficult due to the complexity of farming systems, the diversity of natural conditions, and the 

rapid development taking place on Java Island. In fact, agricultural statistics are still based on direct surveys of 

fields, despite the highly time consuming nature of these surveys. In this regard, there are extremely high 

expectations for geo-spatial technology, such as GIS and remote sensing to obtain information about 

agricultural croplands. In particular, synthetic aperture radar (SAR) satellite imagery is now being increasingly 

utilized based on its convenience and utility in overcoming cloud cover in tropical regions. 

In this study, the available imagery from L-band SAR systems, such as ALOS/PALSAR, 

ALOS2/PALSAR2, and C-band SAR named Sentinel-1 was used to classify the land use and land cover of 

complex agricultural areas in Java Island as well as for discussing methods of classification. There are six 

objectives that must be met in order to achieve this purpose: (1) to examine the characteristics of complex 

agricultural cropland that can be identified by using active remote sensing data, (2) to explore the full 

polarization ability of ALOS/PALSAR, (3) to understand the backscatter value characteristics of paddy field 

cropping patterns, (4) to test the most effective backscatter value parameters for classifying areas of complex 

agricultural croplands, (5) to investigate the efficacy of temporal ALOS-2/PALSAR-2 in identifying and 

classifying croplands, and (6) to analyze the influence of sample point selection based on the backscatter value 

characteristics for the classification process. 

In brief, main component of the SAR image is the transmitted and received waves in horizontal (H) and 

vertical (V) directions. There are four polarizations that can be generated from these two directions, namely HH, 
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HV, VH, and VV. The two letters in each abbreviation indicate transmission direction and receive direction. 

The classification of agricultural land use and land cover type using four polarization mode of L-band SAR, the 

ALOS/PALSAR, taken in April 2010. The target area covered around 50 km2 in Central Java province. The 

four polarizations were processed into two types of decomposition type namely the Freeman and Durden and 

Yamaguchi 4-component. There are also 33 parameters extracted from these polarization by using the 

arithmetic calculation, such as add, subtract, multiply and division. The classification of full polarization 

achieved 67.09% and 0.523 for overall classification and kappa respectively. Meanwhile, the integration 

between backscatter intensities (HH, HV, VH, VV, and HH+HV) and the three components of the Freeman 

and Durden decomposition significantly improved the overall accuracy and kappa coefficient (74.11% and 

0.6247). This fact implies that the integration of the full polarization and polarimetric decomposition of 

Freeman and Durden methods was able to compensate for the weakness of each component in discriminating 

complex agricultural croplands. The dry fields and paddy fields become bare land before the cultivation or after 

the harvest. These stages lead to the misclassification between both classes. On the other hand, mixed garden 

crop was surrounding with tree canopy that produced unique backscatter. Consequently, the mixed garden crop 

could be distinguished from other croplands class. The settlement class is recognized from the building 

structures that reflect stronger backscatter compared to other classes.  

Next, the multi-temporal imageries of C-band SAR, the Sentinel-1, taken on 2017 were applied in the similar 

study to the second research. The Sentinel-1 data assisted with Sentinel-2 were successfully classified for the 

complex agricultural area in GEE platform. The threshold of backscatter coefficient less than -17.4852 dB and 

greater than -31 dB generated a paddy fields area. The detail cropping pattern of paddy fields became possible 

with the high multi-temporal of Sentinel-1 and the optical of Sentinel-2. A comparison of the backscatter 

coefficient and NDVI value derived from the Sentinel-2 of these paddy fields classes shows the backscatter 

coefficient was more sensitive to the surface structure, which led to the shifting time between the backscatter 

coefficient and NDVI. The combination band of VH, VV, and the subtraction of VH and VV polarization 

classified with the random forest with 50 number of trees obtained the highest overall accuracy and kappa value 

as 76.88% and 0.728, respectively.  

This research also focuses on classifying agricultural land using the time series imageries from the L-band 

SAR, ALOS2/PALSAR2. The study area covers around 112 km2 and consists of several land use and land 

cover types such as woodlands, paddy fields, upland fields, tobacco fields, settlement and mixed garden crops. 

There are three of dual polarizations imageries (HH, HV) and one full polarization imagery (HH, HV, VH, and 

VV). Similar to the previous study, the maximum likelihood classification method was also applied in this 

study. However, the temporal of ALOS2/PALSAR2 and field survey conducted in this area present there are 

two types of paddy field cultivation, paddy I for irrigated paddy field and paddy II for rain-fed paddy field. The 
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significant size of tobacco fields which planted during the dry season increases the difficulty of the 

classification process. Therefore, the temporal of Landsat-8 imageries were also applied to assist the sample 

point selection, especially for the tobacco fields. The RGB composite of HH, HV and HV-HH polarizations 

. Sample points were selected based on the 

characteristic of the RGB composite. The low backscatter coefficient areas, which appeared as dark blue, were 

categorized as paddy-I. Meanwhile, the paddy fields in a late growing stage showed more roughness and a 

higher backscatter coefficient and categorized as paddy-II. This method gave higher classification result 

compared to the first study. The overall accuracy of 85.02% and a kappa coefficient of 0.824 were achieved by 

using the multi-temporal combination of HH and HV polarization from four temporal data taken between 

January and September 2015.  

In summary, this study presented the capability of SAR imageries for identifying and mapping the complex 

agricultural croplands in tropical area. This study explored the best parameters generated by using the 

combination of full polarizations from L-band, the benefit of sample points collection based on the backscatter 

coefficient of multi-temporal from L-band SAR and the methodology for sample point collection in cloud 

based system classification for multi-temporal C-band SAR. The results and finding exposed that the 

characteristic of the cropland derived from the backscatter coefficient is beneficial for classifying the complex 

agricultural croplands. The multi-temporal polarizations and the optical imageries assistance were also highly 

affected the accuracy of classification. The cloud based processing is highly favorable to maintain and process 

big amount of temporal data. Lastly, this study aimed to enhance more knowledge for faster identifying and 

mapping complex agricultural lands in tropical regions by using C-band and/or the L-band SAR.  

Keywords: Agricultural land use, ALOS, PALSAR, PALSAR-2, Sentinel-1, Multi-temporal imageries, 

Cloud based remote sensing,  
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