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Chapter 1

General introduction







Chapter 1. General introduction

1.1 Background of the study

Drylands cover more than 40% of the earth’s land area, and desertification directly affects over
250 million people (Reynolds et al., 2007). Although the population density in the dryland areas
is much lesser than other areas, their life and economy heavily rely on the local resources (Enfors
et al., 2007). In dryland, livestock is the primary source of food and the major livelihood of the
herdsman (Martin et al., 2016). And the landscape in dryland is always of grassland. Forage
resources from the grassland and sustainable use of the grassland are of critical in maintaining the
livelihood of local people and the stability of the ecosystem and the society (DeYoung et al., 2000;
Briske et al., 2008). However, in past several decades, with the booming of population and the
change in grassland management policy, the livestock has doubled/tripled, which is considered to
be one of the major causes of severe desertification in the dryland. (Wang, 2002; Glindemann et
al., 2009b).

Previous studies have shown that nearly 90% of the grasslands in northern China are
degraded to some extent (Nan, 2005). Grassland degradation is mostly attributed to overgrazing
and conversion of grassland to cropland as well as an unregulated collection of fuel and medicinal
plants (Akiyama and Kawamura, 2007). The Horgin sandy land (Figure 1.1) is one of the four
sandy lands in northern China. It is proved to be one of the major dust source regions that ravaged
the Beijing and other northern areas of China. The land in Horgin has undergone severe
desertification due to the overuse of grassland and over-exploitation and mismanagement of the
grassland (Zhu and Wang, 1992). The total number of livestock increased from 2.32 million in
1970 to 9.5 million (an increase of 309.5 %) in 2010 (Duan et al., 2014). Besides the misuse of the

grassland in Horgin sandy land, the climate change could also contribute to the desertification in
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the Horgin sandy land (Ge et al., 2015). Many field experiments and modelling studies were carried
out to determine the relative contribution of climate change and livestock grazing to the
desertification (Sun et al., 2019; Briske et al., 2013; Li et al., 2000; Cerda et al., 1999). In most of
the livestock grazing experiments, the number of livestock per unit areas is considered as the
surrogate of grazing pressure or foraging density (Pringle et al., 2004; Bultt et al., 2010). This kind
of studies provides some insights on how the livestock impacts the plant community composition,
productivity, and soil properties (Qu et al., 2016; Jing et al., 2014). One assumption of these studies
is the even distribution of livestock grazing. However, even in areas with flat topography, the
livestock grazing is uneven. In Horgin Sandy Land, the landscape is characterized by the sand
dunes and interdune lowland in Figure 1.1(Zhang et al., 2012). The average size of sand dunes is
around the height of 5-8 m, length of 400-600 m, and width of 20-40 m (Zhang et al., 2005).
From 1980 to 2014, the annual mean temperature was 7.3 °C, and the annual mean precipitation
was 318mm, with 70-80% of the precipitation occurring between June and August (Liu et al.,
2014). The average annual wind speed ranged from 3.2 to 4.5 m s—1, with most windy days and

windstorms occurring between March and May (Zhang et al., 2012).

Sand dune

LS Interdune lowland

Figure 1.1 The schematic diagram of contrasting landform in Horgin Sandy Land including sand
dune and interdune lowland



Previous studies applied grazing density directly on plant communities and soil properties to
these areas (Zhang et al., 2005; Li et al., 2012; Tang et al., 2016). The spatial layout of the sand
dunes and inter-dune will result in the heterogeneous distribution of soil moisture, forage resources,
etc., which therefore would lead to the uneven grazing of livestock. When an area of sandy land is
overgrazed due to the uneven distribution of grazing pressures, the desertification may start from
the over-grazed area. Moreover, it neglects the spatiotemporal dynamics of actual foraging

pressure and the desertification of semiarid grassland is still ongoing (Miao et al., 2015).
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Figure 1. 2 Location map of Horgin Sandy Land in northern China

Livestock in heterogeneous landscapes often adopts different seasonal foraging strategies as

a response to temporal changes in resource availability (VanderWaal et al., 2017). The critical
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driving factors related to the abiotic such as the settlement of watering points and topography,
biotic factors such as pasture quality and quantity are strongly determined the selective distribution
pattern (Coughenour et al., 1991). However, these factors are often ignored to consider in the
practical management of livestock grazing, which is crucial for preventing degradation and
restoration of degraded grassland by conducted fine and various types of management grazing
(DeYoung et al., 2000; Briske et al., 2008; Hao et al., 2018).

Previous studies found out that different grazing behaviors have a various effect on the
grassland. The walking behavior will trample and land surface and change the physical
characteristics, then the hydrological cycling, and finally lead to land degradation (Jewell et al.,
2001). The foraging and preferential foraging of certain species will reduce the productivity and
change plant community composition, which consequently will change the biogeochemical
cycling of the grassland and lead to the vegetation degradation (Bagchi et al., 2010). On the other
hand, livestock is found to be able to maintain plant diversity and main productivity stability
(Bagchi et al., 2010). Among the different behaviors, foraging exerts the most important influence

on the grassland.

1.2 The effort to cattle foraging

1.2.1 Cattle behaviors classification

In pasture ecology, measurement of grazing behavior of livestock is an important component of
many researches of grazing system. Time spent by livestock in grazing activities such as foraging,
ruminating and resting reflect efficient resource use, productivity, and impacts on ecosystem
functioning (Allden and Whittaker, 1970; Hasegawa and Hidari, 2001). Foraging can increase or

decrease heterogeneity of vegetation, depending on pre-existing vegetation patterns and the



strength of plant-soil interactions (Adler et al., 2001). Walking and trampling of animals could
lead to soil compaction and is a potential source of soil erosion. Resting is often associated with
deposition of excreta which can, together with herbage removal by grazing, lead to a large-scale
redistribution of nutrients over the pasture area (Jewell et al., 2007). Pastoral livestock micro-
mobility has been used to infer how animals cope with environmental variability by documenting
seasonal patterns of forage intake and energy expenditure.

Understanding sustainable grazing systems requires modelling methods that can accurately
describe the individual components of livestock behavior as they interact across space and time.
Accurate behavioral models provide important information about diet selection, herbage intake
and how the grazing animal modifies the environment. One such method involves applying several
statistical (Bestley et al., 2012) and deep-learning (Mellone et al., 2011) models to collected data
from accelerometers for classifying livestock behaviors, which have been developed by using large
datasets placed on animals in managed grassland (Buho et al., 2011). These accelerometers
measure the instantaneous and independent local movement of animals’ legs, heads, or bodies,
thus ensuring high accuracy of behavior classification (Braun et al.,, 2013). However,
accelerometers cannot provide information regarding the location of the livestock, which is crucial
for identifying the spatial distribution of animals and grassland management. Another method is
to use Global Positioning System (GPS) data and machine-learning algorithms to classify livestock
behaviors (Schlecht et al., 2004). Using the location records, the GPS data-based method can
project the spatial distribution of various behaviors, which is crucial for herd management and the
prevention of rangeland degradation. GPS data-based methods require an optimal time interval,
during which metrics such as linear distance (d), cumulative distance (d), and turning angle are

calculated to predict behaviors (Mellone et al., 2011). To build models for predicting livestock



movement, the time intervals for metric calculation have previously been selected empirically
(Anderson et al., 2012). The optimal time interval for GPS data-based methods varies with the
ecosystem, livestock species, topography, and spatial distribution of available resources to
evaluate (Witte et al., 2005). Therefore, the question arises how to gain behavioral information

from position data alone and to what extent this is possible.

1.2.2 The effects of biotic factor on cattle foraging behavior

Forage quality and quantity affect livestock distribution, and the time of animal spent in a plant
community is proportional to the quality and quantity of forage available (Senft 1989). Livestock
spends more time in areas of the pasture that are more productive and have higher levels of forage
quantity and/or quality, and they spend less time in areas with less food (Duncan 1983; Taylor
1984; Owens et al. 1991). This often results in slower grazing velocity and greater residence time
relative to other grazing areas available to the animal.

Moreover, the physical structure and chemical composition of forages vary greatly from the
season so season (Bennett et al., 2007; Kennedy et al., 2007). While the quality specific plants
community livestock preferred, which results in bite-size declines, at least partially compensatory
changes in grazing time and rate of biting (Davies and Southey, 2001). Decreased forage quality
also increases time spent in ingested mastication (Sahlu et al.,1989; Lachica and Aguilera, 2003).
However, the interaction effects of seasonal variation and management on animal behavior have
not been explored. Knowledge of this interaction can be harnessed for improving the management
of grazing animals. This knowledge could be used to optimize forage allocation to different grazing
ruminants and enable herders to identify vegetation attribution on which to base the rangeland

restoration practices.



1.2.3 The effects of abiotic factor on cattle foraging

Quantifying spatial heterogeneity is a central focus of landscape ecology (Turner 2005) with
abiotic factors (slope, elevation, distance to water) for cross-site comparisons are stable across
time (Bolliger et al. 2007). The rugged terrain strongly facility the uneven grazing distribution
while the livestock spent more time on gentle terrain and left other areas ungrazed (Bailey et al.
2015; Ganskopp and Vavra 1987; Mueggler 1965). For example, Gillen et al. (1984) reported
cattle avoided forging in areas with slopes greater than 20%.

Moreover, elevation differences can lead to a heterogeneous distribution of available
resources and differences in plant community composition and soil type (Miyasaka et al., 2011).
Livestock forages longer in a nutrient-rich patch in an area with heterogeneous topographic
features, but they rarely forage in the same patch for several consecutive days in a homogeneous
environment (Bailey, 2005).

Spatial differences in the quality and quantity of herbage due to rugged terrain on a ranch
will lead to a heterogeneous distribution of livestock (Henkin et al., 2012). Livestock prefers to
spend more time in relatively flat areas where lower energy consumption is required for grazing
activities (Parker et al., 1984). Few studies related to livestock grazing distribution have included
slope and elevation in cattle distribution models (Bailey et al. 1996; Clark et al. 2014; Clark et al.

2016) generated model coefficients are specific to a given study pasture.

1.2.4 Water settlement on cattle foraging

Location of watering facilities on grazing system has been widely recognized as a factor
restructuring the livestock grazing system and controlling foraging distribution of livestock
grazing in arid and semi-arid (Western, 1975, de Leeuw et al., 2001). For example, during periods

of limited water availability, livestock tends to move their water-dependent towards remaining
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water bodies (Western, 1975, Coppolillo, 2000, de Leeuw et al., 2001). Thus, livestock
concentration may cause habitat degradation by changing plant structure and composition around
these water bodies (Andrew, 1988, Johnson, 1993, Pickup et al., 1998).

Also, distance to water can have a major effect and result in a grazing gradient where
overgrazing occurs near the watering point while pasture remains underutilized away from the
watering point (Malan et al., 2018). Therefore, distance to water must be considered when
calculating the carrying capacity of a paddock. If paddocks are stocked simply according to
paddock size, areas close to the water will be over-grazed while remaining parts of the paddock

will be underutilized (Dubeux et al., 2009).

1.2.5 Ranch management on cattle foraging
Poor grazing distribution within pastures has been and continues to be a major problem confronting
livestock manager (Bailey et al., 2004). Therefore, the management of livestock grazing requires
a sound understanding of the variation of livestock behaviors on the pasture ecosystems. As the
majority of pastures are heterogeneous, there are spatial differences in the quality and quantity of
pasture across the landscape (Homburger et al., 2015). Based on the logical reasoning research,
the implements of rotational grazing systems subdivided pastures into several small paddocks with
altering the temporal grazing density to achieve more foraging distribution (Norton et al., 2013).
By doing this, overgrazing areas were avoided and allow adequate recovery time for the forages
between grazing events (Teague et al., 2011).

On most range and pasture systems, the goals of management improvement were to provide
more uniform grazing without reducing livestock numbers (Hunt et al., 2007). Determining the

appropriate practices to implement takes a thorough appreciation for the interaction between an



animal’s foraging behavior and driving factors that contribute to poor grazing distribution (Hunt

et al., 2007).

1.3 The objectives of the study
The main objective of this study is to understand cattle foraging distribution and affecting factors
over grazing season on the contrasting landforms of the fenced ranch. The specific objective to be
perused under this study include:
e To identify cattle different behaviors by GPS recording locations and in the Random forest
algorithm.
e To investigate the seasonal dynamics of spatial distribution of cattle foraging behaviors and
driving factors on lowland and sand dunes.
e To understand the probability of spatial distribution of cattle foraging areas and affecting

factors over the grazing season on the contrasting landforms

1.4 The structure of the thesis

The thesis is organized into five chapters (Figure 1.3). This chapter (Chapter 1) is devoted to is to
understand cattle foraging distribution and driving factors over grazing season on the contrasting
landforms of the fenced ranch. This is help readers to understand the extent of the problem and lay
the ground to the rest of the chapters. Chapter 2 is devoted to proving cattle different behaviors by
GPS recording locations in the Random forest algorithm. Thus, Chapter 3 is to investigate the
seasonal dynamics of cattle grazing distribution patterns and driving factors between lowlands and
sand dunes areas. In Chapter 4, we developed models to predict probability of spatial distribution
of cattle foraging and driving factors over the grazing season on the contrasting landforms. The

last chapter, Chapter 5, presents the main synthesis of the thesis.
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Figure 1.3 Flow chart of this thesis
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Chapter 2. Method for classifying behavior of livestock on fenced temperate rangeland in

northern China

2.1 Introduction

Drylands cover more than 41% of the Earth’s land area, and desertification directly affects more
than 250 million people (Reynolds et al., 2007). Overgrazing is considered to be the primary cause
of land degradation (Massa et al., 2012). Previous studies examining overgrazing of rangeland
generally used the number of livestock in a given area as the grazing intensity; this practice
assumes that livestock foraging is spatially distributed evenly and that all livestock behaviors have
the same influence on the rangeland (Okayasu et al., 2010). However, the livestock always shows
patchy and selective grazing even in homogenous rangeland to minimize their activity range and
to maximize energy use efficiency (Manthey et al., 2010). In fact, vegetation typically shows a
mosaic distribution, whether induced by abiotic factors, such as elevation and slope, or by selective
grazing, which aggravates the overuse of some areas of the grassland (Bailey et al., 1996).

The spatial distribution of different behavioral activities was critical for understanding the
effects of grazing on ecosystem function, growth, reproduction and survival, how to make efficient
use of resources (Anderson et al., 2012), and mechanisms for coping with environmental
conditions (Anderson et al., 2012). In the grazing areas, the vegetation was significantly reduced
by the selective foraging of livestock. Moreover, concentrated grazing depletes the soil of nutrients
(Li et al., 2008) thus promotes further degradation of grassland (Fernandez et al., 2001), whereas
light grazing can improve plant diversity by restraining inherent inter and intra-specific
competition (Scimone et al., 2007). In comparison, nongrazing behaviors including resting and
walking trample plants and compact the soil surface in overused areas, and the cumulative

deposition of excreta alters various physical properties of soil, including soil bulk density,
13



aggregate stability, aggregate size distribution and surface microrelief. Recovering rangeland from
degradation due to nongrazing behaviors is considered more difficult than remediating the effects
of concentrated grazing (Warren et al., 1986).

Accurately classifying different behaviors of livestock is necessary to understand rangeland
degradation and to devise effective interventions to restore the degraded land. One such method
involves applying several statistical (Lagarde et al., 2008) and deep-learning (Cornou et al., 2008)
models to collected data from accelerometers for classifying livestock behaviors, which have been
developed by using large data sets placed on animals in managed grassland (Martiskainen et al.,
2009; Gonzélez et al., 2015). These accelerometers measure the instantaneous and independent
local movement of animals’ legs, heads, or bodies, thus ensuring high accuracy of behavior
classification (Fahlman et al., 2008; Gleiss et al., 2010; Green et al., 2009; Halsey et al., 2008).
However, accelerometers cannot provide information regarding the location of the livestock,
which is crucial for identifying the spatial distribution of animals and grassland management.
Another method is to use Global Positioning System (GPS) data and machine-learning algorithms
to classify livestock behaviors (Homburger et al., 2014). Using the location records, the GPS data-
based method can project the spatial distribution of various behaviors, which is crucial for herd
management and the prevention of rangeland degradation. However, GPS data-based methods
require an optimal time interval, during which metrics such as linear distance (d), cumulative
distance (d), and turning angle (t) are calculated to predict behaviors (Cornou et al., 2008). To
build models for predicting livestock movement, the time intervals for metric calculation have
previously been selected empirically (Schlecht et al., 2004; Homburger et al., 2014). The optimal
time interval for GPS data-based methods varies with the ecosystem, livestock species, topography,

and spatial distribution of available resources to evaluate (Weerd et al., 2015).
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The Horgin Sandy Land in northern China has been seriously degraded since the mid-1980s,
and various restoration countermeasures (e.g., fencing) have been introduced to restore the
degraded land (Li et al., 2015). In Horgin Sandy Land, the average area of the fenced rangeland
per household is approximately 15 to 30 ha (Zuo et al., 2009). Fencing limits the space, and thus
the forage, available to animals and consequently might aggravate mosaic grazing in areas; in
addition, dense walking along the fence might lead to mosaic degradation. The objectives of our
study were to develop a method for classifying livestock behavior by using location information

and to define the optimal time interval for a GPS data-based model for fenced rangeland.

2.2 Materials and Methods

The study was conducted in a fenced household pasture, which is located in the southwestern part
(42°55'N, 120°42'E; altitude, ~360 m) of Horqin Sandy Land, China. The climate is temperate,
semi-arid, continental, and monsoonal. Average annual precipitation is 360 mm, with an annual
mean temperature of 6.4 °C. The minimal and maximal monthly mean temperatures are —13.1 °C
in January and 23.7 °C in July, respectively.

The pasture was grazed by Simmental cattle from 1 July through 1 October 2018 (three
months). During our study, the rangeland area was 20.1 ha, and herd size was 13 cattle. The
stocking rate was calculated in terms of the common method (Scarnecchia et al., 1985), which the
value was 0.51 Animal Unit Months per hectare. The total grazing time was approximately 3
months yearly due to the implement of ‘suspending grazing’ policy by the local government, which
was for preventing grassland degradation. The availability of forage in our study area was about
53 g/m? in July and 243 g/m? in August for enclosure rangeland (Zuo et al., 2012). The vegetation
was composed mainly of herbage belonging to arid grassland types (Pennisetum centrasiaticum,

Cleistogenes squarrosa), with some dwarf shrubs (Artemisia oxycephala, Artemisia halodendron).
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2.2.1 Equipment and animals

All 13 cattle in the pastured herd were fitted with GPS devices (catalog no. GT-600, i-gotU, Mobile
Action Technology, Taipei, Taiwan) and tri-axis accelerometers (catalog no. UA-004-64, Hobo
model, Onset, Bourne, MA, USA). GPS devices were attached on the neck only, whereas tri-axis
accelerometers were placed on the neck, one leg, and the tail of each animal. The GPS device
recorded cattle location at 50-s intervals throughout two consecutive days, after which the GPS
devices were removed, recharged, and re-attached to the cattle; this process continued throughout
the 10-d study period. The three-dimensional accelerometers recorded the anterioposterior,
transverse, and superior-inferior acceleration of livestock movement. The batteries of the tri-axis
devices were able to record acceleration at 50-s resolution throughout the 10-day study period

without needing to be recharged.

2.2.2 Observation of livestock behaviors

Classification and criteria for animal behavior followed the method of Ganskopp and Bohnert ,
2012. The direct visual behavioral observation was recorded continuously by one observer
following one cattle at approximately 20 meters away from the cattle in consecutive two days
(Septer 23, and 24, 2018). The observer held a timer which is synchronized with the time of the
GPS. The field observation of behaviors started from 9:00 am local time. The time interval of the
GPS to record each location is 50 s. The GPS will flash when recording the location of the cattle.
When the GPS flashes, the observer will read the timing from the timer and record the cattle
behavior. If the cattle were foraging with head down when the GPS recording the location, it is
considered as grazing behavior. If the cattle were standing still, chewing, or walking it is
considered as nongrazing behavior. In total, 9 hours and 539 behaviors were recorded,;

approximately 80% of activities were grazing behaviors, and the remaining 20% was the
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2.1.

nongrazing activity. Detailed information regarding the behavior classification is given in Table

Table 2. 1 Descriptions of the observed behaviors (modified from Ganskopp and Bohnert, 2012)

Behavior category

Definition
Grazing

Explanation

Foraging, Foraging—walking

Nongrazing Standing, Lying down, Rumination

Foraging: foraging
continuously (head
lowered)
Foraging—walking:
foraging while
walking (head raised
and lowered)

Standing: the animal
stands on all four
legs, with head erect
and without
swinging its head
from side to side
Lying down: the
cattle lies on the
ground in any
position (except flat
on its side) without
ruminating
Ruminating: the
cattle lies in a stall
masticating
regurgitated feed,
swallowing
masticated feed, or
regurgitating feed

17
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2.2.3 Movement metrics derived from GPS and tri-axis accelerometer data

Coordinates of GPS device were converted from latitude/longitude form to a Universal Transverse
Mercator (UTM) format to facilitate metrics of distances and turning angle (Weerd et al., 2015).
Metrics related to distances cattle moved and the turning angle were derived to classify the animal
behaviors at the GPS-determined locations (Figure 2.1). In the first step, we calculated the basic
two metrics over two recording positions (100s), then we extended the time interval and
recalculated the metrics from 100 to 800s. The distance moved included the cumulative distance
travelled and linear distances between focal locations. Distances that occurred temporally before
a considered location are called backward distances, and those after a focal location are called
forward distances. The distance between b3 and al was calculated by Eq1, and the d2, d3, d4, d5,
d6, d7 and d8 was used the same equation. The accumulative distance of backward and forward
was the sum of b1, b2 and b3 in Eq2 and sum of al, a2 and a3 in Eg3. In our study, the distances

were calculated at time intervals of 100 to 800 s (Figure 2.2).

Figure 2.1 Schematic representation of movement metrics used as predictive metric in the
classification. Movement metrics include backward accumulative distance (the sum of b1, b2 and
b3), forward accumulative distance (the sum of a4, a5 and a6), backward linear distance (b7),

forward linear distance (b8), and turning angle between GPS positions (c).
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dl = J(b3x —al)* + (b3, — al,)* Eql
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Figure 2.2 Metrics of distance extracted from GPS device were appiyed to classify livestock
behaviors from 100 to 800s time interval in Random forest model. Backward and forward linear
distance were showed in the figure, the metrics of accumulative were calcalated by sum of distance
of segment in each time interval. (Forward accumulative distance: d63 = d2+d3; d64 = d63+d8;
d65 = d64+d12; d66 = d65+d14; d67 = d66+d16; d68 = d67+d23; d69 = d68+d34; d70 = d69 +
d35; d71 = d70+ d36; d72 = d71+d37; d73 = d72+d38;d74 = d73 + d39; d75 = d74+d39; d76 =
d75+d41; d77 = d76+d42. Backward accumulative distance: d78 = d1+d4; d79 = d78+d7; d80 =
d79+d11; d81 = d80+d13; d82 = d81+d15; d83 = d82+d23; d84 = d83+d24; d85 = d84+d25; d86
= d85+d26; d87 = d86+d27; d88 = d87+d28; d89 = d88+d29; d90 = d89+d30; d91 = d90+d31;
d92 = d91+d32.)
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Five groups (Table 2.2) of metrics were calculated at 50s intervals across the dataset of cattle,
including acceleration along three orthogonal axes (d,, d;,, andd,) which was defined as three
dimensional Cartesian system; Magnitude of acceleration was calculated by Eq 4; Standard
Deviation of the d,-axes calculated by Eq 5 and d,-axes, d,-axes used the same equation, d, is
the running mean of acceleration over the previous 5 min in the equation; Standard Deviation of
Magnitude was calculated by Eq 6; M is the running mean of M over the previous 5 min in the

equation;

M=d+d,’+d°  Eq4
SD= /M Eq5
n
SDM= /E(MT‘W Eq6

where d, is acceleration (m/s?) in the superior-inferior axis, d,, is acceleration (m/s?) in the

anterioposterior axis and d, is acceleration (m/s?) in transverse axis;

Overall dynamic body acceleration (ODBA) was measured in livestock by external attachment of
a tri-axis acceleration logger. The total acceleration recorded in each axis is the result of two
components; a static acceleration component, which is the result of the earth’s gravitational pull
across axes, and a dynamic component, which results from livestock movement and varies in
magnitude according to the perceived motion (Shepard et al., 2008). ODBA uses the dynamic
component, as only the dynamic acceleration is a function of the livestock’s movement. The static
acceleration in each axis in one recording can be calculated by applying a running mean of six

accelerations in 2.5 min. before and 2.5 min. after this recording (Wilson et al., 2006). The dynamic
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acceleration is then determined by subtracting the static component from the acceleration recorded.
The ODBA is the sum of the absolute values of the dynamic accelerations from all three axes in

Eq 7 (Wilson et al., 2006).

where Ax, Ay and Az are the derived dynamic accelerations at any point in time corresponding to

the three orthogonal axes of the accelerometer

Table 2. 2 Metrics used in the Random Forest algorithm for tri-axis accelerometer data-based

behavior classification

Label
Predictors variables n Definition
Leg Neck Tail
Axes d:cln d;m d.z.l d:CZ! d;Z! d;Z d:c3, d;,3, d;3 X, Y, Z axes
Square root of the sums of squares
Magnitude M1 M2 M3 of the acceleration in the X, Y,
and Z axes

Dynamicbody = ODBA Axl, ODBA Ax2, ODBA Ax3, Mean of dynamic acceleration
acceleration ODBA Ayl, ODBA Ay?2, ODBA Ay3, value along X, Y, and Z axes
ODBA Azl, ODBA Az2, ODBA Az3,

Overall dynamic Sum of ODBA X, ODBAY,

body acceleration ODBAL ODBA2 ODBA3 ODBA Z
Leg, Neck, Tail
Standard deviation SDX
of acceleration and SDY .
magnitude SDZ Standard deviation
SDM

Using the various metrics derived at intervals of 100 to 800 s, we built three types of model: one

using GPS data-based metrics only (GPS model); another from the tri-axis accelerometer data only
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(tri-axis model); and a model combining the tri-axis accelerometer and GPS data-based metrics

(GPS-tri model).

2.2.4 Livestock behavior modelling

The Random Forest algorithm classification model was used to categorize livestock behavior, with
movement metrics as dependent variables and observed behaviors as independent variables
(Homburger et al., 2014). Random Forest is a machine-learning algorithm that especially suits data
sets with many dependent variables. Random Forest provides well-supported predictions from
large numbers of dependent variables and has the ability to identify the important variables of the
model (Evans and Cushman, 2009). The modelling process of Random Forest can be summarized
as consisting of many decision trees (Breiman, 2001):

1. Construct bootstrap data set (bag data set) from approximate 2/3 of the original data set; the
remaining 1/3 of the data set is recognized as ‘out of bag’ (OOB).

2. Randomly select several predictor variables to calculate nodes in the bootstrap dataset.

3. At each decision tree node, test a random subset of predictor variables, to partition the
bootstrap data into increasingly homogeneous subsets. The node-splitting variable selected from
the variable subset is that which results in the greatest increase in data purity (Gini) before and
after the tree node split.

4. The trees are fully grown, and each tree is used to predict OOB data, compute accuracy,
and average error rates over all predictions.

5. The predictions are calculated by means of the majority vote of OOB predictions of the tree,
and all predictions are averaged together to determine the class for the observation. Three training
parameters need to be defined in the Random Forest algorithm; these parameters then determine

the model prediction power:
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Our analysis is carried out with the caret package in R Studio (R Development Core Team
2011) by using the Random Forest, Caret, and Plotmo packages. When building random forest
models within this package there are two main user-controlled parameters: the number of variables
to try at each node (the ‘mtry’ argument), and the number of trees in the forest (the ‘ntree’
argument). We used the train() function from the caret package to get an optimal combination of
‘mtry’ and ‘ntree’. The train() function was run for 10 (‘mtry’ from 1 to 10) times. To determine
the optimal number of trees for our data, the approach was to create many ‘caret’ models for our
algorithm and pass in a different value of ‘ntree’ while holding ‘mtry’ constant at the default value
above. We tested models with varying numbers of trees as a function of tree number of tress
approaches a flat line between 500 and 2000 trees.

Mean decrease in Gini is used to determine the importance of variables in the classification
model; this parameter is based on the Gini impurity index used for the calculation of splits during
training (Homburger et al., 2014). When a tree is built, the decision regarding which variable to
split at each node uses the Gini parameter. For each variable, the sum of the Gini decrease across
every tree of the forest is accumulated every time that variable is chosen to split a node. The sum

is divided by the number of trees in the forest to give the mean decrease in Gini.

2.2.5 Performance of the Random Forest classifier

The performance of Random Forest classification models was evaluated by using two indices:
overall accuracy and the k coefficient (Mouton et al., 2010). Overall accuracy represents the
proportion of the total number of correctly classified observations. The k coefficient, which
considers the agreement occurring by chance, is a statistical measure of inter-rater agreement for

categorical items (Mouton et al., 2010).
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To evaluate the performance of the Random Forest model, we used 10-fold (i.e., performed
5 times) cross-validation to separate the data set into different, smaller data sets as training data
sets and testing data sets. This process enabled us to more precisely control the number of samples

compared with the inherent bootstrap sample in the Random Forest model (Cutler et al., 2007).

2.3 Results

2.3.1 Performance of GPS, tri-axis, and GPS-tri axis models

Overall classification accuracy increased as the time interval increased: 0.844, 0.845, 0.864, and
0.876 at time intervals of 100, 150, 200, and 250 s. For all GPS models, accuracy began to plateau
around 0.89 to 0.91, when the time interval was greater than 300 to 800 s. For both the GPS-tri
and tri-axis models, overall classification accuracy was approximately 0.96 at all time intervals
(Figure 2.2).

Compared with the relatively small change in overall classification accuracy with different
time intervals, the x coefficient for GPS models increased dramatically from 0.07 to 0.42 as the
time interval increased from 100 to 250 s. The k coefficient stabilized at 0.57 to 0.65 when the
time interval exceeded 300 s (Figure 2.2). The GPS-tri and tri-axis models yielded approximately

the same « coefficient (0.91 to 0.92, 0.92) at all time intervals (Figure 2.3).
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Figure 2. 3 (a) Overall accuracy and (b) « coefficients of the GPS (gray bars) and GPS-tri (white

bars) with time intervals of 100-800 s and of the tri-axis model (black bars).

2.3.2 Cross-validation

For GPS models with time intervals of 100 to 800 s, the accuracy for grazing behavior was 0.92
to 0.98, whereas the accuracy for nongrazing behavior increased from 0.2 to 0.47 as the time
interval increased from 100 to 250 s and from 0.58 to 0.66 with time intervals of 300 to 800 s
(Table 2.3). The performances of tri-axis were showed accuracy for grazing behaviors (0.98) and

nongrazing (0.92) (Table 2.4).
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Table 2.3 The confusion matrix for livestock behaviors classification as categorized by using
GPS models with time intervals of 100 to 800 s

Predicted behaviors

Observed Percent Percent Percent
behaviors  Grazing Nongrazing accuracy Grazing Nongrazing accuracy Grazing Nongrazing accuracy

100s 150s 200s
Grazing 421 35 0.92 428 28 0.94 428 28 0.94
Nongrazing 66 17 0.20 63 20 0.24 51 32 0.39
250s 300s 350s
Grazing 427 29 0.94 430 26 0.94 433 23 0.95
Nongrazing 44 39 0.47 30 53 0.64 34 49 0.59
400s 450s 500s
Grazing 447 9 0.98 440 16 0.96 446 10 0.98
Nongrazing 33 50 0.60 31 52 52 35 48 0.58
550s 600s 650s
Grazing 446 10 0.98 444 12 0.97 445 11 0.98
Nongrazing 35 48 0.59 33 50 0.6 32 51 0.61
700s 750s 800s
Grazing 442 14 0.97 440 15 0.96 435 21 0.95
Nongrazing 32 51 0.61 28 55 0.66 29 56 0.66

For each row, accuracy was calculated as the proportion of the observed class relative to the total

number of behaviors.

Table 2. 4 The confusion matrix for livestock behaviors classification as categorized by using
the tri-axis model

Predicted behaviors

Observed behaviors Grazing Nongrazing Accuracy
Grazing 447 9 0.98
Nongrazing 7 76 0.92

For each row, accuracy was calculated as the proportion of the observed class relative to the total

number of behaviors.
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2.3.3 Relative importance of variables

The first four metrics in order of importance (as indicated by the mean decrease in Gini) for the
GPS model with time intervals from 100 to 800 s are shown in Figure 2.3 and Figure S2.1. In most
of the models, either linear or accumulated distance—rather than turning angle—was the important
metric in the modelling. The time lag until the important distance metric occurred increased with
the time interval from 100 to 800 s (Figure 2.4). Among all of the important metrics at different
time intervals, d19 (the backward linear distance at a time interval of 300 s) and d43 (backward
linear distance at a time interval of 350 s) were the most frequently used metrics in the
classification of livestock behaviors. The variable d19 was the most important for the GPS models
when the time interval was 300 to 600 s, and d43 was most important for time intervals from 350

to 700 s.
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Figure 2.4 Variable importance plot generated by using the Random Forest algorithm with GPS
models. The plot shows the first four important metrics of each GPS model (1, 2, 3, 4) according
to the mean decrease in Gini; as this parameter increases, the variable is more important and a

more accurate predictor of behavior classification.
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In the tri-axis model, the variable d” yneck (acceleration of anterioposterior movement in
the neck) had the highest mean decrease in Gini, and M_tail (square root mean of the sum of
acceleration in the neck, leg, and tail) the second largest. The mean decrease in Gini gradually
declined from d” yleg (acceleration of anterioposterior movement in the foot) to d” xleg
(acceleration of superior-inferior movement in the foot) but then dramatically decreased from

d” xleg to d” _zneck (acceleration of transverse movement in the neck) (Figure 2.5).
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Figure 2.5 Variable importance plot generated by using the Random Forest algorithm with the tri-
axis model. The plot shows the importance of each variable according to the mean decrease in
Gini; as this parameter increases, the variable is more important and a more accurate predictor of

behavior classification.
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2.3.4 Marginal effect of the variable on livestock behavior classification

We used partial dependence plots to show the marginal effect of the metrics used in the behavior
classification. For all GPS models, we generated partial dependence plots for the first four most
important variables determined according to the mean decrease in Gini (Figure 2.2).

Although d19 and d43 had important roles in behavior modelling, the marginal probability
of classifying a behavior as nongrazing decreased as the time interval increased. The probability
of nongrazing showed a sharp decrease when d19 and d43 were greater than approximately 35 to
50 m. In the GPS model at the 300-s time interval, the marginal probability to classify a behavior
as nongrazing was around 0.4 when d19, d18 (the backward linear distance at a time interval of
250 s), d17 (the backward linear distance at a time interval of 200 s), and d20 (the backward
accumulative distance at a time interval of 200 s) were less than 35 to 50 m (Figure 2.6A), thus
accounting for more than 80% of the total behavior in this range of distance (Figure 2.6B). The
utility power of these four distances in classifying a behavior as nongrazing gradually decreased

and then stabilized around 0.22 when they were greater than 50 m (Figure 6A).
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Figure 2.6 Partial dependence plots of nongrazing (A) and the proportion of behaviors
corresponding to threshold in the GPS model (B). Partial plots represent the marginal effect of a
single metric (d19, d18, d17, d20) of 300s time-interval included in the Random Forest model on
the probability of nongrazing behavior, when the effects of all other metrics are averaged out. The
criteria of threshold distance of each partial plot are recognized that the nongrazing behaviors

remain same probability.

In the tri-axis model, when d;,l was less than —3 m/s?, the behavior was never classified as
nongrazing, whereas the probability of a behavior being classified as nongrazing was around 0.8
when d},l was greater than —3 m/s?. For the variable M3, the probability of a behavior being
classified as nongrazing was 0.5 when M3 was 0 m/s? and dropped dramatically to 0.3 when M3
was 7 m/s?. The behavior being classified as nongrazing was 0.3 when d;z was from -20 to 0 m/s?,
dropped to 0.22 when d;,z was 8 m/s?, increased to 0.25 when d;z was more than 11 m/s®. By
using d.,,, the highest marginal probability of determining a behavior as nongrazing was 0.31 and

dropped to 0 when d, was 11 m/s? (Figure 7).

30



5 y1 100% 100%
i 050 80% 80%
5 6 0.45 oo
g 4 0.40 60% 6
S 0,
8 2 0.35 o 40% 10%
E 0 0.30 '% 20% 20%
= : -
£ 20 -0 0 10 20 30 40 50 B 0% 0%
5 Acceleration (m s%) Acceleration (m s?) 5 >3ms? <-3ms? <ITms? >7Tms?
g .. o ° . "
5 dJ’ 2 2 dyZ dy;
2 .30 0.31 s 100% 100%
= I3
s & 0.301 e 8% 80%
o ) o
< 26 60% 60%
a 0.29
24 10% 40%
0.28
0.22 0% .
-20 -10 0 10 20 30 0 10 20 30 0% o
Acceleration (m s?) Acceleration (m s?) ~8ms? <8 m s’ S1ims? <11m s?

Figure 2.7 Partial dependence plots of nongrazing (A) and the proportion of behaviors
corresponding to threshold in the tri-axis model (B). Partial plots represent the marginal effect of
a single metric (d,,, M3, d,,, dy,) included in the Random Forest model on the probability of
nongrazing behavior, when the effects of all other metrics are averaged out. The criteria of
threshold distance of each partial plot are recognized that the nongrazing behaviors remain same
probability.

2.4 Discussion

2.4.1 Optimal time interval for GPS models

GPS location data can be used to infer latent states of behavior from within individual movement
trajectories (Homburger et al., 2014). The duration to complete a specific behavioral activity
depends on the type of livestock and the condition of the pasture (Anderson et al., 2012). Distance
and turning angle metrics extracted from GPS data over specific time intervals can be used to
classify livestock behaviors, such as 1 min for beef cows on desert grassland (Anderson et al.,
2012), 3 min for Brown Swiss cows in a cow shed (Schlecht et al., 2004), and 5 min (i.e., 300 s)

for dairy cows on upland grassland (Homburger et al., 2014). In our study, the optimal time interval

31



for behavior classification was approximately 300 s because the k coefficient at this time interval
was higher than for shorter time intervals and was nearly stable afterward (Figure 2.3). In addition,
the most frequently used metric (d19) was the backward linear distance at the 300-s time interval
(Figure 2.4).

Although overall accuracy did not vary over time intervals from 100 to 800 s, it may be a
poor measure for assessing model performance, given that overall accuracy can happen just due to
coincidence, especially when the data are imbalanced (Anderson et al., 2012). In contrast, the «
coefficient, which estimates accuracy beyond expectation, can correctly assess the accuracy of
imbalanced data (Shoukri et al., 1992). For imbalanced data, the observed and predicted accuracies
and their agreement in regard to minor behaviors determine the k coefficient. In reality, foraging
occurs more often than other behaviors. During the cross-validation, given that the accuracies for
grazing behavior were relatively high and stable, the critical determinants of the k coefficient were
the accuracies for nongrazing behaviors. For the GPS models, the low accuracies of the nongrazing
behaviors during cross-validation (Table 2.3) explain the low « coefficients for the time intervals
from 100 to 250 s (Figure 2.3). At time intervals of 300 s and greater, the x coefficient stabilized
around 0.5 to 0.6 because of the increase in the accuracies of nongrazing behavior (Table 2.3). In
addition, the d19 (backward linear distance at 300 s) was the most frequent metric in other models
when the time interval was greater than 300 s (Figure 2.4). Therefore, the optimal time interval for

using the GPS location data to classify the livestock behavior in the study area was 300 s.

2.4.2 Model performance
Predicting the accuracy of models by using GPS data depends on the livestock type and the pasture
condition (Weerd et al., 2015), but when using tri-axis accelerometer data it depends only on the

instantaneous body posture of the animal (Fahlman et al., 2008). With the same time step to log
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the GPS position and the body posture by tri-axis accelerometer, models using tri-axis
accelerometer data-based metrics only or combined tri-axis and GPS data-based metrics showed
higher overall accuracies and k coefficients than the models that used only GPS data-based metrics
(Figure 2.3).

The distance moved by a livestock over a given time interval is expected to be an indicator
of its activity. Short distances are likely to indicate static behavior (standing, ruminating), and long
distances typically are associated with foraging (Augustine et al., 2013). In the current study,
distance variables were the first four most important variables in most of the GPS models (Figure
2.4), thus supporting the power of using distance to classify cattle behavior.

The GPS models demonstrated several critical distances for classifying grazing and
nongrazing behaviors (Figure 2.4). But the marginal probabilities of the important variables to
distinguish between grazing and nongrazing behaviors were lower for the GPS models than for the
tri-axis models (Figure S2.1 and Figure 2.7). Moreover, the distances tended to be within the range
that ambiguously classified the two behaviors (Figure S2.1). Therefore, distinguishing between
grazing and nongrazing was particularly challenging and relied on the use of multiple movement
metrics, including backward and forward linear and accumulative distances (Figure 2.4). For
example, for the 300-s time interval, d19 was the first most important metric to determine the two
behaviors. The marginal probability for nongrazing was approximately 0.4, meaning unclear
differentiation between grazing and nongrazing when d19 was less than 35 m. However, the
probability of nongrazing was around 0.2, indicating that the two behaviors were clearly
differentiated when d19 exceeded 35 m. Unclear classification at shorter distances than this critical
distance (35 m) might reflect the condition of the specific habitat. For example, the presence of

woody vegetation might have made it more difficult to distinguish between grazing and nongrazing,
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because the consumption of shrubs slows movement and can blur the graze signature in terms of
the motion sensor counts. In addition, 89% of the d19 data were less than 35 m. Hence, the lower
probability of the distance metrics to classify the two behaviors under the threshold value and the
skewed distribution of these metrics could be responsible for the relatively low accuracy of the
GPS models.

The tri-axis accelerometer model was based on the body posture that was simultaneously
associated with a specific behavior and did not need to account for any time interval, which might
lead to uncertainty regarding behavior classification (Scheibe et al., 2006). Unlike the GPS model,
the tri-axis model can measure the instantaneous and independent local movement of the legs,
heads, or entire bodies of animals, thus ensuring high accuracy of behavior classification (Fahlman
et al., 2008; Gleiss et al., 2010; Green et al., 2009; Halsey et al., 2008). Our findings showed that
the backward-and-forward movement of the neck was critical for distinguishing livestock
behaviors (Figure 2.5), in agreement with the results of another study, which used x-axis sensor
counts (Gonzélez et al., 2015).

Livestock behaviors were influenced by the available forage and stocking density. With
increasing stocking density, the average intake of each livestock will reduce due to the given
availability forage in the rangeland (Hepworth et al., 1991). Livestock preferred to spend less time
on grazing behaviors when consuming of energy was more than grain (Hepworth et al., 1991).
More available forage in August (243 g/m?) than that in July (53 g/m?) in Horgin Sandy Land
might lead to the livestock spending more time on grazing with sufficient energy of forage in
August. For the behavior’s classification, livestock may spend less time over a given distance for

finishing grazing behavior. So, the optimal time-interval of the GPS method for classifying

34



behaviors will decrease. Our GSP model was built over 100 to 800s to cover various situations

corresponding with the change of rangeland pasture, thus the method can be applied in other sites.

2.5 Conclusions
Our current study demonstrates that data from both GPS devices and tri-axis accelerometers can
be applied to build reliable models for livestock behavior classification. To achieve the high and
stable performance of the GPS model, we selected the optimal time interval from 300 to 800s,
which is sufficient for most livestock activities associated with behaviors to be displayed. Metrics
of linear distance had the most important effects on behavior classification. In addition, the
marginal effects of linear distance indicated a distance of 35 to 50 m as the threshold for
differentiating behaviors; at greater distances, grazing was more likely than nongrazing behavior.
Because it is based on the instantaneous acceleration of livestock body movement, the tri-
axis model achieves higher performance regarding livestock behavior classification than does the
GPS model. The anteroposterior movement of the animal’s neck was the most important metric
for the tri-axis model. The marginal effects showed that acceleration of —3 m/s? was the threshold
for differentiation of behaviors; at greater values, nongrazing was more likely than grazing.

In summary, compared with GPS models, a tri-axis model can better support livestock
behavior classification, which is advantageous for assessing the detailed activities associated with
investigating livestock physiology. But the main disadvantage of a tri-axis model is its lack of
location information. A GPS model is sufficient for livestock behaviors classification and provides
information regarding an animal’s location; this feature is associated with the interaction between
livestock activities and the rangeland ecosystem. These findings may improve our understanding

of how the selection of the time interval influences the process of distinguishing livestock activities
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in a GPS model and provide insight into selecting an optimal time interval when using GPS data

only to classify livestock behaviors.
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Chapter 3

Seasonal dynamics of cattle grazing behaviors on contrasting landforms of a

fenced ranch in northern China

(O Grazing area

<—» Correlated with foraging density
<--» Uncorrelated with foraging density

+Increase - Decrease

Biomass -
Crude Protein Crude Protein -

Acid Detergent Fiber Acid Detergent Fiber +
Total Digestion Nutrient || Total Digestion Nutrient -

Biomass

Biomass Biomass - Biomass - Biomass -
Crude Protein Crude Protein - Crude Protein - Crude Protein -

Acid Detergent fiber Acid Detergent fiber + Acid Detergent fiber + Acid Detergent Fiber +
Total Digestion Nutrient Total Digestion Nutrient - Total Digestion Nutrient - Total Digestion Nutrient -

Science of the Total Environment, 749, 141613

37






Chapter 3. Seasonal dynamics of cattle grazing behaviors on contrasting landforms of a

fenced ranch in northern China

3.1 Introduction

The total desertified land area is estimated to be 3.6 billion ha in arid and semi-arid regions around
the world (Daily, 1995). Overgrazing is believed to be one of the primary driving forces of
degradation (Schlesinger et al., 1990; Van De Koppel and Rietkerk, 2000). Overgrazing can lead
to marked reductions in nutritive value and yield of herbage (Chaneton et al., 1988; Ayantunde et
al., 1999; Gutman et al., 1999) and result in severe grassland degradation. With the surging
numbers of livestock in arid and semi-arid lands, understanding how to manage livestock grazing
both temporally and spatially is crucial for preventing degradation and restoration of degraded
grassland as well as for maintaining livestock production (DeYoung et al., 2000; Briske et al.,
2008; Hao et al., 2018).

Many field grazing experiments have been carried out (Lunt et al., 2007; Hanke et al., 2014;
Eldridge et al., 2016) to clarify how livestock grazing affects grassland productivity (Huang et al.,
2016), species diversity (Pour and Ejtehadi, 1996), soil quality (Hiernaux et al., 1999), and
desertification (Weber and Horst, 2011). In these experiments, researchers used different grazing
density gradients indicated by the number of livestock per unit area (Okayasu et al., 2010; Wang
and Wesche, 2016). The effects of different livestock behaviors such as foraging and resting were
ignored across space. However, grazing density varies temporally and spatially with the
availability of resources and the changing environments across a grassland (Chillo and Ojeda,
2014). Therefore, monitoring and modeling different livestock behaviors and investigating the

seasonal dynamics of the spatial distribution of livestock would improve the management of
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livestock grazing and help to prevent grassland degradation (Bailey et al., 1996; Kohler et al.,
2006).

Estimating the spatial distribution and temporal dynamics of grazing density is difficult
because of the spatial heterogeneity and temporal dynamics of resource availability and differences
in livestock energy consumption across various landforms (Butt, 2010). Grazing activities,
including foraging and non-foraging activities, comprise various interactions between livestock
and the environment (Baumont et al., 2004). Complex interactions among biotic factors, such as
forage quantity and quality, and abiotic factors, such as elevation and distance to a watering point
(Von Muiller et al., 2017), determine the spatial distribution of different livestock behaviors on a
ranch (Hirata et al., 2010). In a ranch with abundant vegetation and flat terrain, livestock generally
concentrate in several areas that have good-quality forage at the beginning of the grazing season
and then expand over a broader area to achieve an even spatial distribution with relatively low
grazing density late in the season (Evans et al., 2004; Pelster et al., 2004). On a ranch with spatially
homogenous resources, the livestock’s use of herbage resources also shows selective grazing and
amosaic pattern that balances the nutrient demand and energy supply for livestock (Andrew, 1988;
Barnes et al., 2008, Okayasu et al., 2010). The spatial expansion across a ranch is moderated by
the trade-off between the area’s forage quality and productivity. Livestock instinctually avoid
walking long distances to save energy given abundant herbage resources (Sejian et al., 2012).
Otherwise, the spatial range of livestock movement will be constrained by the energy gained at the
expense of energy consumption (Fierro and Bryant, 1990).

Spatial differences in the quality and quantity of herbage due to rugged terrain on a ranch
will lead to a heterogeneous distribution of livestock (Henkin et al., 2012). Livestock prefer to

spend more time in relatively flat areas where lower energy consumption is required for grazing
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activities (Parker et al., 1984). As compared to that on flat terrain, grazing capacity was 30% lower
in areas with slopes between 11% and 30%, and 60% lower in areas with slopes between 31% and
60% (Holechek, 1988). Moreover, elevation differences can lead to a heterogeneous distribution
of available resources and differences in plant community composition and soil type (Miyasaka et
al., 2011). Livestock forage longer in a nutrient-rich patch in an area with heterogeneous
topographic features, but they rarely forage in the same patch for several consecutive days in a
homogeneous environment (Bailey, 2005).

The Horgin Sandy Land of northern China has suffered from serious desertification (Chen
and Su, 2008). Despite many national and regional restoration projects, such as fence construction
and the provision of cash subsidies to reduce the livestock number per household, desertification
of grasslands in the Horgin Sandy Land is still ongoing (Miao et al., 2015). Several researchers
have investigated plant communities under different grazing densities in the Horgin Sandy Land
(Zhang et al., 2005; Li et al., 2012; Tang et al., 2016). The direct application of grazing density to
arid and semi-arid pastoral systems has been criticized, however, because it neglects the
spatiotemporal dynamics of actual foraging pressure (Bailey et al., 1996). Understanding these
spatiotemporal dynamics may help ranchers to improve the efficiency of resource use and to
respond effectively to the actual environmental conditions on a ranch (Anderson et al., 2012).
Given the landform characteristics of the Horgin Sandy Land and the ongoing land degradation
(Lietal., 2012), we expect that livestock should preferentially use low-land areas and that temporal
patterns of grazing pressure should differ in areas with contrasting landforms.

The objectives of our study were (1) to quantify the ratio of foraging to non-foraging

behaviors of livestock on a ranch in the Horgin Sandy Land; (2) to explore the spatial distribution

40



of livestock grazing and its temporal dynamics on contrasting landforms (i.e., low-land vs. sand-

dune); and (3) to understand the biotic factors determining the grazing spatial distribution.

3.2 Material and methods

3.2.1 Study site

The study was conducted in the western part of the Horqin Sandy Land (42°00°N, 119°39°E),
Naiman County, Inner Mongolia, northern China (Fig. 1A). The area is characterized by
interspersed low-land areas, fixed and semi-fixed sand dunes with an average height of 5-8 m,
length of 400-600 m, and width of 20-40 m (Zhang et al., 2005). The fixed and semi-fixed dunes
account for 70% of the total area (Zhang et al., 2012). From 1980 to 2014, the annual mean
temperature was 7.3 °C, and the annual mean precipitation was 318 mm, with 70-80% of the
precipitation occurring between June and August (Liu et al., 2014). The average annual wind speed
ranged from 3.2 to 4.5 m s, with most windy days and windstorms occurring between March and
May (Zhang et al., 2012).

Sheep, goats, and cattle have been grazed in this region in recent decades. However, the
carrying capacity of pasture has decreased from 1.81 to 0.19 sheep unit ha™ owing to the
continuously increasing number of livestock in the region (Jiang et al., 2003; Li et al., 2012). For
this reason, a livestock exclusion policy has been extensively implemented in the Horgin Sandy
Land (Li et al., 2012) since the mid-1980s to prevent grassland degradation (Baxter, 2007).

Before monitoring livestock movement and conducting the plant survey, we visited and
inspected ranches of several households in this region and selected one (42°51'24.59" N,
120°55'50.34" E) of them as the research site (Fig. 1) for the following reasons. First, consistent

with the prevailing management practices in this region, livestock grazing at this ranch occurred
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without herdsman interventions, such as supplemental feed supplies. Second, landforms on the
range included both fixed dunes and low-land areas, which are typical landforms in the Horgin
Sandy Land (total area is 20.1 ha, with 8.04 ha of lowland and 12.06 ha of sand dunes; Figure 3.1).
Third, the ranch’s use history was clear; low-land areas were used to grow corn and millet from
1995 until 2007, when fencing was erected and livestock grazing began across the ranch. Finally,
the owner of the ranch communicated well with us, and good communication was essential for this
experiment to be completed.

At the research site, livestock grazing usually occurs from early July to late September. The
vegetation is typical of a temperate desert steppe; the dominant species are Pennisetum
centrasiaticum, Cleistogenes squarrosa, and some dwarf shrubs (Artemisia oxycephala and
Artemisia halodendron).

The low-land area characterized by Kastanozems, and sand-dune by Ustic Sandic Entisols
(FAO, 2006). The Ustic Sandic Entisols are with a loose structure, and they are particularly
susceptible to wind erosion (Li et al., 2009). Soils in the low-land areas have more nutrients and

higher soil moisture level, as compared with soil property in dunes (Li et al., 2009).
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Figure 3.1. (A) Location of the Horgin Sandy Land, (B) digital surface model of the study ranch,

and (C) landform classification into low-land and sand-dune areas and sampling plot locations.

3.2.2 Land survey
An elevation map of the study ranch was generated by using drone photogrammetry. A drone (DJI
Phantom 4 Pro, https://www.dji.com/jp/phantom-4-pro) was used to capture photos covering the
whole ranch by using an autopilot flight paths program. Since the total area of the study ranch was
20.1 ha, the fixed height and horizontal speed were set to 80 m and 3 m s and the forward overlap
(flying direction) and side lap (between adjacent flight lines) were set to 80%. With these
parameters applied to the flight autopilot, the program was designed to obtain 400 images over a
target area of 700 m x 700 m (Fig. 3.1B).

Pix4Dmapper Pro software (version 2.0) was used to process the acquired photographs and
to automatically generate orthoimages, a 3D point cloud, and a digital surface model (DSM) with
2 cm x 2 cm ground resolution (Car et al., 2016). To refine the geolocation of the drone

photographs and to assess the accuracy of the DSM, eight ground control points were evenly
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positioned across the study ranch. Geographic coordinates and elevation of the eight ground
control points were measured with a Trimble RTK GPS (Real-Time Kinematic) within 1 m
accuracy (UTM Zone 51 N, WGS84 horizontal datum). We then evaluated the spatial accuracy by
comparing digitized and known coordinates from the ground and calculating the root mean square
error (RMSE). Finally, we generated a DSM with a vertical resolution of 5 cm.

Landforms at the study site were classified as low-land or sand-dune by using field
observations. We selected an elevation threshold of 438 m to distinguish the two landforms; if the
pixel elevation was higher than 438 m, that DSM pixel was classified as sand-dune; otherwise it

was classified as low-land (Fig. 3.1C).

3.2.3 Grazing behavior analysis

During the grazing season of 2018 (1 July to 30 September), 13 adult Simmental cattle (3 to 6
years old) grazed the ranch. Each animal had a GPS device (precision £ 3 m; catalog no. GT-600,
i-gotU, Mobile Action Technology, Taipei, Taiwan) attached to a collar around its neck with a
battery that allowed the GPS device to operate for more than 5 days. The GPS device continuously
recorded the animal's location at 50-s intervals for five consecutive days; then it was removed,
recharged, and re-attached. This procedure was followed throughout the grazing season.

During the grazing season, we observed cattle activities for around 15 days (09:00 to 17:00
UTC+8) per month and found that the 13 animals moved together around the ranch. However, the
number of available GPS devices declined through the sampling period due to rainfall damage and
loss. Because the objective of the study was to compare cattle behaviors and distribution patterns
among three grazing periods in both the low-land and sand-dune areas, the GPS recordings should
have the same time length, a fixed date-interval corresponding to the timing of the herbage survey

(15th of each month), and the same number of cattle among the 3 months. In September, GPS
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recordings were available only for two cattle on 5 consecutive days (11 to 15 September).
Therefore, we calculated the foraging density for 5 consecutive days in each month using the GPS
recordings of two cattle, and the GPS data of two cattle were used for the following analysis.

Every 5 days, there were around 8550 GPS position data for each animal. The predicted
metrics of distance (linear distance, cumulative distance) and turning angle were calculated by
using the focal locations from 100- to 800-s time intervals. We applied the random forest algorithm
to classify livestock behaviors by using predicted metrics and field-observed behavioral data. To
evaluate the performance of the random forest model, we used 10-fold (i.e., performed 5 times)
cross-validation to separate the data into smaller training data sets and testing data sets. The overall
accuracy of the random forest model was 87% (95% CI = 85-90%), and the accuracy of foraging
behaviors was 95% (95% CI = 92-98%) in the model. Then, we randomly selected two cattle for
each grazing period and imported these data into the constructed algorithm to classify foraging
and non-foraging behaviors (Gou et al., 2019). The few and similar precipitation occurred during
these periods; 1.2 mm of rain fell in July, 5.6 mm in August, and 0.2 mm in September (Fig. S1).
The mean air temperature was 25.6 °C in July, 23.8 °C in August, and 20.7 °C in September (Fig.
S2). Few precipitation events occurred in the 3 months.

As explained in section 2.4, we surveyed plant communities and collect biomass in mid-July,
mid-August, and mid-September of 2018. Thus, only the GPS recordings covering 11-15 July,

11-15 August, and 11-15 September 2018 were used for further analysis.

3.2.4 Herbage production and quality measurement
For the plant community surveys and biomass collection, we selected seven low-land sites that
were evenly distributed and three typical sand dunes on the ranch. As there were small variations

in the species composition across the low-land areas, we selected three small and four large low-
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land sites to investigate the herbage community. Most sand-dunes on the ranch were distributed
along the edges of ranch fences, and we selected three sand dunes evenly distributed in the center
of the ranch to investigate the sand dune plant community.

On 15 July, 15 August, and 15 September 2018, three (1 m x 1 m) quadrats were randomly
established at each selected low-land site along the diagonal of a 10 m x 10 m plot, and three
quadrats were established on each sand-dune, one at the top, one on the leeward slope, and one on
the windward slope (i.e., 21 low-land quadrats and 9 sand-dune quadrats in each month). We
recorded every species that occurred in the quadrats, cut the aboveground part of each plant, and
put the material in envelopes separated by species. The plant samples were dried to constant weight
(55 °C for 48 h) and then weighed to obtain the biomass of each species. The biomass of each
quadrat is the summed biomass of all plants in the quadrat. Then the same species from different
low-land or sand-dune quadrats were mixed. The crude protein (CP), neutral detergent fiber (NDF),
acid detergent fiber (ADF), and total digestible nutrients (TDN) of each species per month were
determined by chemical analyses performed by Cumberland Valley Analytical Services
(Tongzhou District, Beijing, China). The CP, NDF, ADF, and TDN of each quadrat were the
means of CP, NDF, ADF, and TDN of each species in the quadrat weighted by the relative

abundance of each species.

3.2.5 Cattle density

The boundary of the study ranch was recorded by a real-time differential hand-held GPS (GPS
PRO XR, Trimble Navigation Ltd., Sunnyvale, CA, USA), which we moved along the fence
boundary while recording GPS position at 10-s intervals. The DSM was clipped by the boundary
data to cover the study ranch. The GPS position data of the two selected cattle were classified as

foraging or non-foraging behaviors by using a random forest algorithm (Gou et al., 2019). In our
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study, 80% of the moving distance in the 50-seconds interval was less than 10m (Fig. S3). Thus,
to examine the spatial distribution of cattle behaviors, we analyzed the foraging density at the
10x10 grid. Thus, each livestock behavior at each point had position information. Then, the
summed number of foraging behaviors in each 10 m x 10 m grid was considered as the foraging
density of the grid. The average foraging densities in the low-land and sand-dune areas each month

were the means of the foraging density of the low-land and sand-dune grids, respectively.

3.2.6 Data analysis

The foraging density at each elevation was the average of foraging densities at that elevation
throughout the 3 months of grazing. The foraging area was the sum of grids in which foraging
occurred in low-land and sand-dune areas, respectively. The proportional low-land foraging area
was the ratio of low-land grids in which foraging occurred to the total number of ranch grids. The
same method was used to calculate the proportional sand-dune foraging area.

The number of GPS points was considered to represent the total time that cattle stayed on
the ranch every 5 days. The number of foraging behaviors in the same period was considered to
represent the foraging pressure on the ranch. The ratio of summed foraging behaviors to the total
number of GPS points was the proportion of foraging during the period. This way of calculating
proportional foraging is the same as using the ratio of foraging time to the total time cattle stayed
on the ranch because the time interval for each GPS point is the same. The calculation of the
proportion of non-foraging behavior was done in the same way.

After log-transformation, the foraging densities in all 10 m x 10 m grids in low-land and
sand-dune areas during the 3 months were tested for normal distribution and variance equality by
using the Kolmogorov—Smirnov and Levene’s tests, respectively; data normal distribution and

homogeneity of the variances were considered at a P > 0.05. The foraging densities during this
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period were not normally distributed, and heteroscedasticity was observed in both low-land and
sand-dune areas. Therefore, differences in foraging density between the two landforms during the
3 months were tested by using the non-parametric Kruskal-Wallis test (rstatix package in R). Log-
transformation of the raw data does not affect the results of the Kruskal-Wallis test. Thus, the log-
transformed foraging density data were used in the following analyses. For multiple comparisons
of foraging densities among the 3 months in both low-land and sand-dune areas, the Kruskal—
Wallis test and Dunn’s post hoc test were used to analyze the differences between pairs of months
and between the landforms. The foraging density in all grids during the 3 months was used to
assess the frequency distribution in low-land areas and in sand-dune areas. Two-way ANOVA
(ANOVA.TFNs package in R) was used for comparing the herbage quality (CP, NDF, ADF, TDN)
and quantity (biomass, species diversity) among the 3 months between low-land and sand-dune
areas; significance levels were set a P < 0.05. Species diversity was calculated by using the
Shannon diversity index in the vegan package in R.

A multiple linear regression model (Ime4 package in R) was used to analyze the relationships
between foraging density and herbage quality and quantity in the study. First, the data from both
low-land and sand-dune areas were included. The dependent variable in the model was the foraging
density in grids of field plots where biomass and forage quality had been determined. The
independent variables in the model were herbage quality and quantity at plots on the ranch. In the
analysis, the “period of July” was a dummy reference category compared with the “period of
August” and “period of September” for effects of seasonal grazing density.

Also, to evaluate the effects of landform on the cattle behaviors and distribution pattern, the
variable “sand-dune” was a dummy reference category compared with “low-land”. In the second

step, two multiple linear regression models were calculated to assess the relationship between
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cattle density and herbage conditions in low-land and sand-dune separately; significance levels
were set at P < 0.05. In both analyses, the independent variables were the same as in the first step
except for the variable of “landform”. All analyses were conducted in RStudio v.1.2.1335 with R

3.6.1 and ArcGIS 10.2 (Environmental Systems Research Institute, Olympia, WA, USA).

3.3. Results

3.3.1 Dynamics of the spatial distribution pattern of livestock behavior

We observed a significant difference (P < 0.05) in the summed log-transformed foraging density
in July, August, and September (number of total foraging behaviors in 5 days measured at 50-s
intervals per grid cell of 10 m x 10 m) between low-land and sand-dune areas (Figure 3.2A). The
average log-transformed foraging density ranged from 1.5 to 2.8 in low-land areas during the
grazing season and from 1.2 to 2.0 in sand-dune areas (Figure 3.2B). The average foraging density

decreased with increasing elevation (Figure 3.2C).
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Figure 3. 2 (A) Seasonal summed cattle foraging density (log-transformed) in low-land and
sand- dune areas (*P < 0.05), (B) the foraging density summed across the entire grazing season
in each grid of the ranch, and (C) the relationship between cattle density and elevation (shading
indicates the standard error of foraging density of grids at the same elevation; number of grid-
cells = 1200). In the box plots, bounds of the box spans from 25 to 75% percentile, center line

represents mean, and whiskers visualize 5 and 95% of the data points.
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The spatial distributions of grazing density in July, August, and September are presented in
Figure 3. During the grazing season, the proportion of time spent foraging across the entire ranch
increased from 63% to 67% to 68% in July, August, and September, respectively, with a
corresponding decrease in time spent not foraging. Likewise, the proportion of time spent foraging
increased from 41% to 43% to 44% in the low-land areas and from 21% to 23% to 24% in the
sand-dune areas in the July, August, and September grazing periods, respectively (Figure 3.3A).

The log-transformed foraging density significantly increased from 0.61 in July to 0.66 in
August to 0.88 in September in low-land areas (P < 0.05), whereas no differences were observed
in sand-dune areas (0.44, 0.44, and 0.66, respectively; Figure 3.3B). The detailed distribution of
foraging behavior showed that higher foraging density (1.2-2.5) was mainly confined to the low-
land area around the cattle shed in July (see Figure 3.1C for this location), but cattle spread to other
areas of the ranch in August and September (Figure 3.3E). The proportion of area foraged by cattle
increased in both low-land and sand-dune areas. Of the entire low-land area on the ranch, 31%,
35%, and 36% was used for foraging in July, August, and September, respectively; similarly, the
relative area of sand dunes used increased in those months (45%, 47%, and 51%, respectively;
Figure 3.3C). Low- and high-density foraging decreased whereas medium-density foraging

increased from July to September in both low-land and sand-dune areas (Figure 3.3D).
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Figure 3.3 Seasonal dynamics of cattle behavior. (A) Relative proportions of foraging and non-
foraging behaviors in the low-land and sand-dune areas and in the whole ranch area, (B) spatial
averages of monthly foraging density (log-transformed) in low-land and sand-dune areas (*P <
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0.05), In the box plots, bounds of the box spans from 25 to 75% percentile, center line represents
mean, and whiskers visualize 5 and 95% of the data points, (C) proportion of total low-land and
sand-dune areas used for foraging, (D) foraging density frequency in low-land and sand-dune areas
in each month, and (E) spatial distributions of foraging density (log-transformed) in each grid in

July, August, and September.

3.3.2 Temporal changes in forage quantity and quality

The average biomass of the 21 low-land quadrats was 144, 87, and 44 g m~2 in July, August, and
September, respectively; these values are higher than those in the nine sand dune quadrats in those
months (66, 50, and 30 g m™?, respectively; Figure 3.4A). The decreasing trend of biomass in both
low-land and sand-dune areas was significant (P < 0.05; Figure 3.4A). Species diversity was also
higher in low-land than in sand-dune areas and declined from July to September in both (Figure
3.4B). The value of NDVI decreased significantly from July (0.41) to August (0.38) and September
(0.23) in low-land areas. The same trend was observed in sand-dune areas (0.37 in July, 0.28 in
August, and 0.22 in September). A significant difference of NDVI between low-land and sand-
dune was observed in July and August, but not in September (Figure S3.4).

The CP and TDN significantly declined from July to September in both the low-land and
sand-dune areas (Figure 3.4C, E). The ADF did not differ significantly between July and August
in low-land areas, but it increased significantly from August to September; the same trend was
observed in sand-dune areas (Figure 3.4D). The biomass, species diversity, and TDN in low-land
was significantly higher than those in sand-dunes (Figure 3.4A, B, E). More detailed information

is given in Tables S3.1 and S3.2.
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Figure 3.4. Comparison of herbage quantity and quality in different grazing periods between low-
land and sand-dune. The box plots show the values of (A) pasture aboveground biomass, (B)
species diversity, (C) crude protein (CP), (D) acid detergent fiber (ADF), (E) total digestible
nutrients (TDN), (F) neutral detergent fiber (NDF). In the box plots, bounds of the box spans from
25 to 75% percentile, center line represents mean, and whiskers visualize 5 and 95% of the data
points. (*P < 0.01, **P < 0.001).
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Table 3.1 Multiple linear regression results for whole ranch, low-land and sand-dune areas.

Total ranch low-land sand-dune
Variable Regression Regression Regression
P value P value P value
coefficient coefficient coefficient
Biomass (g m?) -0.064 0.091 -0.157 0.053 -0.133 0.877
CP (% DM) -0.7 0.078 -2.377 0.055 -0.641 0.771
ADF (% DM) 0.15 0.071 3.093 0.025* 1.026 0.795
NDF (% DM) 0.07 0.102 1.42 0.102 0.184 0.815
TDN (% DM) -0.41 0.06 -5.731 0.017* -2.512 0.811
August
-0.508 0.143 -0.612 0.143 -3.81 0.653
(dummy)
September
-0.806 0.147 -0.736 0.147 -1.541 0.915
(dummy)
Low-land
1.328 0.05*
(dummy)
R Square 0.45 0.75 0.379
Adjusted R Square 0.34 0.624 -3.966
F-statistic 2.86 5.74 0.087
P value 0.064 0.034* 0.988

Notes: The variables used in the regression of cattle density was the dependent variable, and biomass, crude
protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and total detergent nutrient (TDN)
were independent variables for the fixed effects in the model. August, September and low-land are the dummy
variables for fixed effects of seasonal grazing periods, the variable of July and sand-dune were reference
group in the model. In analysis, each dummy variable is compared with the reference group. *Indicates a

significant relationship (P < 0.05).

The adjusted R? of the multiple regression for the whole ranch was 0.34 (P = 0.06). The results
showed that landform, rather than forage quality and quantity, significantly affected the foraging
density: cattle foraging significantly increased (P = 0.05) in low-land but decreased in sand-dune
areas. The adjusted R2 of the multiple linear regression for the low-land was 0.62 (P = 0.034). In

the low-land, biomass (P = 0.053), CP (P = 0.055), and TDN (P = 0.017) were negatively related
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and ADF (P = 0.025) was positively related with foraging density (Table 3.1). No significant
relationships were observed between foraging density and herbage nutrient contents in sand-dune

areas.

3.4. Discussion

3.4.1 Cattle distribution pattern in low-land and sand-dune areas

Generally, livestock prefer gentle terrain and adjust their grazing strategies to avoid higher
elevations (Roath and Krueger, 1982). The greater proportion of foraging behaviors in the low-
land areas than in sand-dune areas (Figure 3.3A) supports the grazing habits of livestock in an
undulating landscape, which led to higher foraging densities in the low-land areas (Figure 3.2A,
B). Our study also demonstrated a negative relation between foraging density and elevation (Figure
3.2C). High energy costs are associated with cattle moving about a rugged terrain. A previous
study reported that the cost of lifting one kilogram one vertical meter is 5.9 kcal for wild and
domestic ungulates, regardless of body weight or species (Parker et al., 1984), and the oxygen
consumption rate increases when they walk on steep slopes (Yousef et al., 1972).

Moreover, herbage quality and quantity are also associated with the different cattle
distribution patterns between low-land and sand-dune areas (Sanaei et al., 2019). With respect to
pasture quantity, our results showed greater biomass and species diversity in low-land areas than
in sand-dune areas throughout the grazing period from July to September. These results are
consistent with a previous works that reported livestock tend to lengthen their foraging time in
plant communities that offer abundant quantities of preferred forages (Provenza, 1995;
Launchbaugh and Howery, 2005). With regard to herbage quality, although the nutrient contents

of forage species did not differ between low-land and sand-dune areas throughout the grazing
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period (Fig. 4), the livestock probably could gain more nutrients from forage species in low-land
areas because the they were more abundant (higher biomass) (Sebata and Ndlovu, 2012). Cattle
prefer to forage in plant communities with higher species diversity because a mixture of forage
species can supply more nutrients and energy (Rosiere et al., 1975). Thus, the higher species
diversity in low-land areas (Fig. 4) might be one possible reason for the higher foraging density

there (Rosiere et al., 1975).

3.4.2 Variation of cattle behavioral activity and foraging density
Previous studies revealed a trade-off between livestock grazing time and intake rate per bite, which
is determined by the pasture condition (Gordon and Lascano, 1993). The intake rate per bite
declines with a reduction in forage availability, which results in at least partially compensatory
changes in foraging time (Davies and Southey, 2001; Lachica and Aguilera, 2003). Cattle can meet
their necessary energy requirement in a shorter foraging time with a high intake rate per bite
(Prache et al., 1998). In our study, at the beginning of the grazing season in July, less foraging time
and lower foraging density were observed both in low-land and sand- dune areas (Figure 3.3A, B).
During this period, the biomass and nutrients of herbage were higher (Figure 3.4), consistent with
there being a higher intake mass per bite and a higher nutrient intake per bite in a relatively small
area (Figure 3.3C). Moreover, the relatively small foraging areas of cattle in both low-land and
sand-dune areas supports the idea that livestock can gain the necessary energy in a relatively short
period without moving to other areas for foraging.

Foraging time increased from July to September (Figure 3.3A), while the foraging density
increased in August and September by cattle in the low-land areas (Figure 3.3B). The probable
reason is that herbage quantity and quality both gradually decreased from July to September

(Figure 3.4; Figure S3.4), as the herbage was consumed by cattle (Butt, 2010) and reached maturity
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(Schonbach et al., 2009). Cattle density was negatively related with herbage quantity and quality
in low-land areas (Table 3.1). The maturation process of herbage can lead to a decline in CP and
an increase in ADF because the proportion of stems and leaves increases (Benvenultti et al., 2008).
Therefore, the maturation of plants increases their tensile strength and causes the cattle to spend
more time chewing and alters their biting position as they select more nutritious parts of the
herbage (Tjardes et al., 2002). When forage availability is low and herbage quality is poor, cattle
can improve their intake by taking smaller bites (Lyons and Machen, 2000), but they need a longer
grazing time to compensate for the decline of intake mass and nutrients per bite (Baumont et al.,
2007). The relative increase of foraging time from August to September was greater than that from
July to August in both the low-land and sand-dune areas; this result can be explained by the decline
of herbage quality, which caused the cattle to spend more time ruminating to absorb the nutrients
from the herbage. The foraging density also increased as the proportion of low-land areas foraged
increased. This finding implies that as the grazing season progresses, cattle spend more time
foraging on herbage in a given area and they acquire more cumulative nutrients by foraging on
different herbage communities by increasing the proportion of low-land areas foraged.

The variation of foraging behaviors on the ranch supports previous findings that cattle have
the ability to alter their behaviors to cope with the balance between nutrient demand and energy
consumption by using various spatiotemporal distribution patterns (Fierro and Bryant, 1990; Bultt,
2010). In our study, there was no change of foraging density in sand-dune areas (Figure 3.3B) even
though the proportion of sand-dune area foraged sharply increased from July to September given
the elevated foraging time during this period. While the cattle foraged in sand-dune areas, they
consumed more energy to maintain a standing posture and to walk on the soft sandy soils of the

dunes (Relton, 2015). We also observed no relationship between cattle density and herbage
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nutrient content in sand-dune areas (Table 3.1), possibly because sand-dunes offer relatively lower
cumulative herbage nutrients throughout the grazing period and because a larger grazing area is
required to gain sufficient nutrients from sand-dune herbage communities.

In addition to the different distribution of cattle foraging between low-land and sand-dune
areas, a heterogeneous distribution was observed in the low-land areas (Figure 3.3E). Generally,
cattle can readily travel across gentle terrain while grazing (Bailey, 2005), but in rugged
topography, the movement of cattle from one feeding site to another is restricted (Bailey, 1995).
Livestock always show a concentrated distribution early in the grazing season and a more
dispersed distribution as the season progresses (Evans et al., 2004). We observed a high density
near the cattle shed at the beginning of the grazing season, but subsequently cattle spread to other
areas; the decline in both high and low foraging density and the increase in medium foraging
density (Figure 3.3D) indicated widely dispersed and evenly distributed foraging late in the grazing
season (Figure 3.3E). The exploration of new grazing areas forces the cattle to pass through rugged
terrain. Thus, the movement route for foraging might cross dunes on the ranch, thus increasing the

foraging area in sand dunes later in the season.

3.4.3 Limitations of the study

Our study has several limitations, including insufficient data for the experiment design, and the
results were affected by biotic and abiotic factors involved in the cattle behavior and distribution
pattern. First, the cattle behaviors and distribution pattern varied under different climate conditions,
such as extreme air temperature, which could increase the cattle’s core body temperature and
respiration rate and reduce activity, feed intake, and milk yield (Hahn, 1999, Ominski et al., 2002,
West, 2003). Daily air temperature and precipitation were monitored at a meteorological station

20 km away from the study site. Few and similar precipitation events occurred during the recording
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periods of cattle behaviors in our study, and the difference in temperature among the grazing
periods hardly affected the cattle behaviors and distribution during the experimental periods
(Figure S3.1 and S3.2). Therefore, the results of our study may not be generalized to ranches
affected by extreme climate conditions that would influence the cattle’s normal behaviors and
distribution pattern. In future studies, it will be critical to include longer grazing times under
different climate conditions to broaden the scope of our findings.

Another limitation was that we obtained GPS data for only two cattle and used them to
represent the behaviors and distribution pattern of the entire cattle population. The size of a herd
will vary with resource conditions on a ranch (Howery et al., 1998). When resources are relatively
abundant, cattle in a herd usually feed and rest together, and dominant animals displace
subordinates less frequently. A previous study showed that as cattle herds extend their home ranges,
they divide into several small groups in winter and spring but form a large group and concentrate
near water and feed at other times (Lazo, 1994). Our study period was from July through
September. Because the forage resource of this period was relatively abundant, the cattle
congregated in a large group. Our field observations during the period also provide evidence of
group behaviors where cattle foraged together in the same low-land area and sand-dune area.
Therefore, the behavior of two cattle might actually be representative of the population. However,
in our study, the recorded grazing density might be higher than the actual density because we used
the grazing density of just two cattle to represent the whole population in September. The home
range of the cattle herd in September might be larger because of the low quality and quantity of
herbage (Venter et al., 2019). Therefore, location data obtained from more cattle over a longer

period are needed to clarify cattle behaviors and distribution patterns.
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3.4.4 Implications for land management

The spatial and temporal variation of livestock foraging density can affect ecosystem functions
(Venter et al., 2019). Our results indicate that higher foraging density occurred in low-land areas
than in sand-dune areas (Figure 3.2A), especially when the herbage quantity and quality were low
(Figure 3.3B). In the grazing periods with poor herbage conditions, foraging in low-land areas
tended to occur at high density because of the reduction in forage quality and availability. Thus,
ranchers should initiate interventions such as a rotational grazing system, in which a ranch is
delineated into two grazing areas, such as low-land and sand-dune areas.

The essential role of rotational grazing is to decrease the grazing time in the area with higher
grazing density (Heitschmidt and Taylor, 1991). Continuous grazing may lead to ranch
degradation over the long term (Venter et al., 2019). For policymakers, when recommending the
management practice of rotational grazing to herdsman, low-land and sand-dune areas should be
recognized as two grazing camps. The management of grazing duration at each camp is determined
by the herbage conditions; for example, cattle might be moved to the sand-dune camp once the

herbage condition at the low-land camp fell as a result of poor herbage weather conditions.

3.5. Conclusion

The cattle preferred to forage in low-land areas compared to sand-dune areas, probably reflecting
the greater energy consumption required and poorer herbage conditions in the high-elevation areas.
The temporal dynamics of foraging pressure showed different patterns in low-land and sand-dune
areas from July to September. The foraging pressure and proportional area used by cattle both
increased from July to September in low-land areas, whereas only the proportional area foraged

increased in the sand-dune areas. As the grazing season progressed, the foraging time increased in
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both low-land and sand-dune areas. The foraging density increased as herbage quality and quantity
declined in low-land areas.

Our results indicate that microtopographic variation facilitates uneven and patchy foraging
distributions on the ranch, and that high foraging density is likely to occur in low-land areas of an
undulating landscape. When making grazing policies in this region, the microtopography of a
ranch and seasonal dynamics of the spatial distribution of foraging density should be considered
to manage grazing density. Ranch owners should consider using a rotational grazing system in
which cattle are shifted from a low-land grazing camp to a higher elevation camp during periods

of herbage decline.
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Figure S3.1 Mean air temperature in the three grazing periods (11-15 July; 11-15 August; 11-15
September). In the box plots, the lower and upper bounds of the box span the interval from the
25th to the 75th percentile, the center line represents the mean, and the whiskers represent the 5th
and 95th percentiles.
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Figure S3. 4 Comparison of the box plots of pasture NDVI values compared between lowland
and sand dune areas and among the different grazing periods. In the box plots, the lower and upper
bounds of the box span the interval from the 25th to the 75th percentile, the center line represents
the mean, and whiskers represent the 5th and 95th percentiles. Significance was assessed by a

Kolmogorov—-Smirnov test; * denotes statistical significance at P < 0.05.
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Table S3. 1 The two-way ANOVA table for the herbage indicators in the study

Variables Effect Df F-value P value
Biomass (g m?) Time 1 39.898 <0.001
Landform 1 24.471 <0.001
TxL 2 4,747 <0.01
Species diversity Time 2 19.575 <0.001
Landform 1 5.034 <0.01
TxL 2 1.03 0.36
Crude protein (DM %)  Time 1 80.613 <0.001
Landform 1 0.058 0.07
TxL 1 0.52 0.47
Total digestion (DM %) Time 1 88.40 <0.001
Landform 1 4.62 <0.01
TxL 1 1.22 0.27
Acid detergent fiber Time 1 9.353 <0.001
(DM %) Landform 1 0.448 0.51
TxL 1 0.19 0.66
Neutral Detergent Fiber  Time 1 17.089 <0.001
(DM %) Landform 1 0.132 0.71
TxL 1 0.148 0.7
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Table S3.2 Number of samples, Means and SD for the herbage indicators in the study

low-land sand-dune

Variables Number  Mean Std'. . Number Mean Std'. .
deviation deviation

Biomass (g m?)
June 21 1475 1.8 9 69.1 6.1
August 21 112.7 5.6 9 51.7 1.7
September 21 519 15 9 30.7 51
Species diversity
June 21 3.2 0.75 9 2.65 0.63
August 21 239 0.78 9 2.36 0.3
September 21 206 0.49 9 1.83 0.25
Crude protein
(%DM)
June 21 125 0.63 9 13.1 0.38
August 21 118 1.2 9 11.2 1.01
September 21 10. 1.09 9 10.7 0.67
Total digestion
(%DM)
June 21 559 1.16 9 55.5 0.73
August 21 55.1  0.67 9 55 0.99
September 21 536 1.38 9 52.6 0.62
Neutral Detergent
Fiber (DM %)
June 21 55.9 4.04 9 58.6 2.9
August 21 554  3.67 9 52.1 4.7
September 21 62.1 4.29 9 62.8 3.22
Acid detergent fiber
(DM %)
June 21 414 184 9 41.9 1.36
August 21 422 4.04 9 41.7 1.04
September 21 43 1.34 9 44 0.71
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Chapter 4

Impacts of landform and distance to water resource on the spatial use of
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Chapter 4. Impacts of landform and distance to water resource on the spatial use of forage

by cattle change with the resource availability

4.1 Introduction

Livestock grazing is the most widespread land-use practice and significantly benefits the society
in terms of food, income, nutrients and others (Fuhlendorf and Engle, 2001; Gibson, 2012). In the
provision of these benefits, the total number of livestock will increase by two times by 2050 owing
to the increased population density and corresponding demand (Rosegrant et al., 2009). The
overgrazing can alter ecosystem function and reduce vegetation nutrient and yield, especially in
the arid and semi-arid land globally (Ayantunde et al., 1999; Gutman et al., 1999).

Negative livestock grazing impacts on rangelands are often the result of uneven distribution
when the rangeland is over-stocked. The fence has been widely used to reduce overgrazing by
breaking a whole ranch into several sub-areas to promote uniformity of the foraging pressure over
the ranch (Smith and Owensby, 1978; Charles et al., 1985). Grassland managers in China
implemented the fences in the name of ‘Grazing exclusion’ and ‘Livestock-forage balance
management’ since the 1970s to prevent grassland degradation from continuously increasing the
number of livestock units in the household ranch (Conte & Tilt, 2014). Relevant studies showed
the application of fencing could enhance plant community recovery, soil physicochemical and
biological properties of the degraded grassland (Wang et al., 2018). Yet the positive effect of
fencing will decrease over time (Yao et al., 2019). For instance, the implement of rotational grazing
with fencing showed few efforts for the selection of proportional grazing of available plants
(Launchbaugh and Howery, 2005; Bailey and Brown, 2011), because animals choose to eat plants
based on nutritional status and digestibility regardless of how tightly they are concentrated (Bailey

and Brown, 2011).
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Understanding livestock distribution is crucial to sustainable management in the ranch
(Vallentine 2001). The critical driving factors related to the abiotic such as the settlement of
watering points and topography, biotic factors such as pasture quality and quantity determine the
selective distribution pattern (Jouven et al., 2010). However, these factors are often ignored to
consider in the practical management of livestock grazing, which is critical for preventing
degradation and restoration of degraded grassland (Briske et al., 2008; Hao et al., 2018). The
rugged terrain strongly facilitates the uneven grazing distribution while the livestock concentrated
and spent more time on gentle terrain (Bailey et al. 2015; Ganskopp and Vavra 1987; Mueggler
1965). The concentration of grazing in areas preferred by livestock can result in adverse impacts
on forage production, water quality, wildlife habitat, and other ecosystem goods and services
(Pinchak et al. 1991). For example, cattle often prefer riparian areas and spend a disproportionate
amount of time in these areas as compared to uplands (Smith et al. 1992). Concentrated grazing,
especially in riparian zones, may reduce vegetative cover and stream bank stability as well as
increase soil erosion (Kauffman et al. 1983; Blackburn 1984). If cattle spend more time grazing
upland slopes farther from water, condition and function of riparian areas can be improved
effectively. The problem is determining trade-offs between energy expenditure and cost of
livestock selecting forage, and the efficient and cost-effective method to modify grazing patterns
and prevent animals from overusing preferred areas pastures (Bailey 2004).

The Horgin Sandy Land in northern China has suffered from serious desertification (Chen
and Su, 2008). In the past two decades, the fences were established to restore the decertified
grassland. But, the desertification in this region grassland is still ongoing (Miao et al., 2015). The
landforms characterized by the rugged micro-topography result in the complex interaction between

livestock distribution and landforms and relative herbage conditions. Before the use of fences, the
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ratio of dune areas decreased because they were fattened to cropland for the economic benefits,
which shift landscape and vegetation community (Zuo et al., 2009). Previous studies used the
number of unit livestock per unit area as a surrogate of grazing density on plant communities and
soil properties (Zhang et al., 2005; Li et al., 2012; Tang et al., 2016). Results from these studies
can provide some insight into the relationship between livestock grazing and the ecological
processes of the grassland, however, it neglects the spatiotemporal dynamics of actual foraging
pressure. Our previous study showed that cattle spent more time foraging on lowland areas than
dunes areas with the seasonal decline of herbage conditions (Gou et al., 2020). Knowledge of fine
scale-space use and seasonal foraging strategies of cattle in the rangelands of Horgin Sandy Land
would be a critical component of developing optimized grazing strategies to reduce overgrazing.

A comprehensive analysis of the mechanisms governing livestock distribution can provide
guidelines for local farmers to minimize overgrazing. With the emergency of the high-resolution
sensors with drone extracted the image such as landform characteristic, which could support
detailed and fine information about biophysical and biochemical parameters of vegetation
remotely and overbroad spatial extents (Lu, 2017). An RSF is defined by characteristics measured
on resource units such that its value for a unit is proportional to the probability of that unit being
used by an organism (McLoughlin et al., 2010).

We hypothesized that cattle will utilize productive vegetation in the lowland areas, located
closer to waster point and avoid high land areas during both early and late grazing period. The
difference is that the strength of preventing high elevation areas become stronger while the decline
of available vegetation resource during the late grazing period due as to minimalize energy losses.
Therefore, the study is to develop models to predict cattle behaviors distribution on contrasting

landforms. To predict and map the probability of cattle use habitat and inform ranch management
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efforts, 1) to determine the important factors affecting resource selection by cattle grazing between
early and late grazing period, 2) to quantify the impact of the interaction between landforms and
available vegetation resource to the cattle selection distribution, 3) to assess the accuracy of RSF

model by comparing RSF value in each grid and actual counting number of each grid.

4.2 Materials and methods

4.2.1 Study area

The study area was located in Horqin Sandy Land (42°00'N, 119°39’E) of northern China. The
landforms mainly include low-land areas, fixed and semi-fixed dunes, with the dunes was the
dominate landforms in the area account for 70% the total area (Zhang et al., 2012) with averaged
5-8m in height, 400-600 m in length and 20-40 m in width (Zhang et al., 2005).

Precipitation occurs mainly between June and August with per cent of 70-80 % and the annual
mean temperature was 7.3 °C from 1980 to 2014. The period of windy days with windstorms occur
mainly between March and May with speed ranged from 3.2 to 4.5 m s (Zhang et al., 2012).

The practical management of livestock grazing in Horqin Sandy Land include ‘Grazing
exclusion’ and ‘Livestock-forage balance management’, and the breed is sheep, goats, and cattle
have been grazed in this region in recent decades. With the decline of grazing capacity of the
pasture from 1.81 to 0.19 sheep unit (Jiang et al., 2003; Li et al., 2012), the study area
(42°51"24.59"N, 120°55'50.34"E) implemented the ‘Livestock-forage balance management’
allowed grazing periods from 1% July to 30" September to reduce the number of livestock in the
region (Jiang et al., 2003; Li et al., 2012).

The study ranch represented the typical household ranch with typical landforms included

both fixed dunes and low-land areas in the Horgin Sandy Land (total area is 20.1 ha, with 8.04 ha
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of lowland and 12.06 ha of sand dunes). The history of land use was to grow corn and millet on
the low land areas in the past decade. The vegetation is typical of a temperate desert steppe; the
dominant species are Pennisetum centrasiaticum, Cleistogenes squarrosa, and some dwarf shrubs
(Artemisia oxycephala and Artemisia halodendron). The low-land area characterized by
Kastanozems, and sand-dune by Ustic Sandic Entisols (FAO, 2006). The Ustic Sandic Entisols are
with a loose structure, and they are particularly susceptible to wind erosion (Li et al., 2009). Soils
in the low-land areas have more nutrients and higher soil moisture level, as compared with soil

property in dunes (Li et al., 2009).

4.2.2 Data selection
We generated cattle locations from 2 of the adult Simmental cattle attached to the GPS device with
50-s recording time intervals (precision £3 m; catalog no. GT-600, i-gotU, Mobile Action
Technology, Taipei, Taiwan) during the grazing season 2018 (1 July to 30 September). As the
damage of GPS devices through the water damage and loss, the available GPS data was only for
5 consecutive days (11 to 15 September) two cattle. The available data of cattle location in July
was selected following the same time length from 11 to 15 July. During the grazing season, we
observed cattle activities for around 15 days (09:00 to 17:00 UTC + 8) per month and found that
the 13 animals moved together around the ranch. Therefore, we selected 5 consecutive days in
early and late grazing period, and the GPS data of two cattle were used for the following analysis.
As the objective of this study is to understand the cattle behavior distribution pattern, we
only focus on foraging behaviors. The predicted metrics of distance (linear distance, cumulative
distance) and turning angle were calculated by using the focal locations from 100- to 800-s time
intervals. We applied the random forest algorithm to classify livestock behaviors by using

predicted metrics and field-observed behavioral data. To evaluate the performance of the random
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forest model, we used 10-fold (i.e., performed 5 times) cross-validation to separate the data into
smaller training data sets and testing sets. The overall accuracy of the random forest model was
87% (95% CI = 85 - 90%). Then, imported cattle positions into the constructed algorithm to

classify foraging and non-foraging behaviors (Gou et al.,2019).

4.2.3 Resource selection

We developed separate cattle resource selection function (RSF) models for foraging behavior and
season (early and late grazing period). The RSF was conducted by using the logistic regression
model by compared used locations and randomly generated available locations from GPS (Gillies
et al., 2006). Cattle locations generated within fenced lines of study ranch approximated to the
home range.

To obtain unbiased estimator of B with the adequate number of random locations, we
followed the method of Northup et al. (2013) and Roever et al. (2015) and fit logistic regression
models to incrementally increasing samples of random locations (100, 1000, 5000, 10000, 30000)
from the larger availability samples within the home range (ranch size, 100,000 grid cells). We
repeated this process 1000 times and monitored the 3 coefficients of 4 representative covariates to
identity the density at which coefficient values begin to converge. Convergence occurred at a
minimum of 10000 random locations in both early and late RSF model (Figure S4.1).

To explore the cattle resource selection preferences, we considered several environment
variables including seasonal vegetation types, slope, elevation, aspect and distance to water and
Normalized Difference Vegetation Index (NDV1). NDVI as high-resolution image, as all variables
converted to 2 meters as the following analysis.

The methods to generate the ranch true color map and DSM map have shown in Gou et al

(2020) in 2 m x 2 m resolution. the vegetation classification map was generalized into 5 habitat
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categories (bare land, grassland, forest land and brushland). The maximum likelihood
classification to calculates the probability that a given pixel belongs to a specific class. Each of the
classes selected 200 samples randomly through inside the ranch, and 80% of the data set was
developed model and remained data was used to test the data. Elevation, aspect and slope (degrees,

north—south—facing slopes) were derived from the DSM map with 2-m resolution.

4.2.4 Statistical analyses

We used R software and package MuMin to compare all possible variable combinations and
Akaike Information Criterion to assess model fit (AICc; Grueber et al., 2011; Zuur et al., 2009).
We considered that models with DAICc < 2 with respect to the best model had similar empirical
support (Burnham and Anderson, 2002). To obtain the final coefficients we averaged the models
using Akaike weights within the given AlCc threshold.

To assess how well predictive maps fit the test data, we classified pixels of the predictive
map into 20 equal-interval RSF intervals that corresponded to the relative probability of use (i.e.
0-5%, 5-10%, 10-15%, etc.; Durner et al. 2009). We plotted data corresponding to the appropriate
time period on the predictive map and calculated the frequency distributions of observed elk
locations within RSF intervals.

Conditional indirect effects of the NDVI moderating the effects of landforms characteristics
on RSF value were examined by decomposing the significant interactions between NDVI and
landforms characteristics using bootstrapping analysis. To identify the extent of the conditional
indirect effects, the Johnson—Neyman (JN) technique was used to estimate the region of significant
standard deviation values of the moderator (NDVI). A bootstrapping procedure was used and
obtained 95% bias corrected confidence intervals based on 50 000 replicates for the lowest (or

highest negative) significant standard deviation (SD) values of the moderator from the JN
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technique rounded to the nearest 0.05 SD. If the moderator value was not significant (P > 0.05), it

was lowered by 0.05 SD. This process was repeated until a moderator SD value was significant.

When this happened, the previous value tested was retained.

4.3 Results

The most supported model of cattle resource selection in early grazing periods (AAICc=0; Table

4.1), considered that models with AAICc < 2 with respect to the best model had similar empirical

support (Burnham and Anderson, 2002).

Table 4.1 Model selection results for the examination of habitat use by cattle in July. The 5

highest-ranking models are presented.

Model Covariate composition DF AlCc AAICc  Weight
1 vegetation + slope + elevation + aspect + dist to water + NDVI 9 22813.2 48.9 <0.001
2 vegetation + elevation + slope + dist to water + NDVI 8 22764.3 0.0 0.975
3 vegetation + elevation + dist to water + NDVI 8 22771.6 7.3 0.025
4 vegetation + slope+ dist to water + NDVI 7 Inf Inf <0.001
5 vegetation + slope + elevation + aspect + NDVI 8 22822.9 58.6 <0.001

During the period of early grazing, habitat use selected vegetation classes dominated by trees and

bush over grass, prefer to higher NDV I and areas closer to water, avoiding areas at higher elevation

and distance to settlement (Table 4.2).
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Table 4. 2 Coefficients (B) of standardized effects from best performance regression model
explaining variations in habitat use by cattle in July. The coefficients of land cover classes are

calculated in related to class “bare land”.

Predictor B SE P value
Intercept -0.67 0.04 <.01**
Forestland 0.33 0.06 <.01**
Grassland 0.02 0.05 0.64
Bushland 0.13 0.05 0.21
Elevation -0.20 0.01 <.01**
Distance to water -0.14 0.03 <.01**
Slope -0.06 0.01 0.01458 *
NDVI 0.22 0.02 <.01**
NDVI x Elevation 0.02 0.01 n.s
NDVI x Slope 0.04 0.01 n.s
NDVI x DTW 0.49 0.03 <.01**

Additionally, the interaction effects were no significant between NDVI and slope and
elevation but was positive significant with distance to water, which significantly reduced the
negative effects of DTW under 0.4 of NDVI and increased positive effects over 0.43 in early

grazing period (Figure 4.1)
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Figure 4.1 The conditional indirect effects of Normalized Difference Vegetation Index (NDVI)
with 95% confidence intervals on elevation (m) and distance to water point (DTW) as a function

of RSF value corresponding Johnson-Neyman plot in early and late grazing period.

The best model explaining cattle resource selection during the late grazing period was the same as

the period of the early period include all variables expect aspect (AAICc=0; Table 4.3).
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Table 4.3 Model selection results for the examination of habitat use by cattle in September. The

5 highest-ranking models are presented.

Model Covariate composition DF AlCc AAICc Weight
1 vegetation + slope + elevation + aspect + dist to water + NDVI 9 53697.2 53.1 <0.001
2 vegetation + slope + elevation + dist to water + NDVI 8 53644.1 0.0 1

3 vegetation + elevation + dist to water + NDVI 8 53660.7 16.6 <0.001
4 vegetation + slope + dist to water + NDVI 7 Inf Inf <0.001
5 vegetation + slope + elevation + aspect + NDVI 8 53680.8 36.7 <0.001

During the period of late grazing cattle prefer to forest land over both bush and grassland,

lower elevation, higher NDVI, even slope and areas closer to water (Table 4.4).
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Table 4. 4 Coefficients (B) of standardized effects from best performance regression model
explaining variations in habitat use by cattle in September. The coefficients of land cover classes

are calculated in related to class “bare land”.

Predictor B SE P value
Intercept -1.73 0.03 <.01**
Forestland 0.30 0.04 <.01 **
Grassland 0.06 0.03 0.150
Bushland 0.03 0.03 0.982
Elevation -0.42 0.01 <.01 **
Distance to water -0.17 0.02 <.01**
Slope -0.06 0.02 <.01**
NDVI 0.20 0.01 <.01**
NDVI x Elevation 0.10 0.02 <.01**
NDVI x Slope 0.03 0.01 n.s
NDVI x DTW 0.31 0.03 <.05*

The interaction effects between NDVI and elevation and distance to water were positive
significant, the conditional indirect effect of NDVI significantly reduced the negative effects of
elevation while the value of NDVI less than 0.44 and significantly decreased the negative effects
of DTW under 0.3 of NDVI and increased positive effects over 0.33 of NDVI in late grazing period
(Figure 4.1). The average NDVI decreased with increasing elevation in the early grazing period,
and the average NDVI slightly increased with increasing elevation in the late grazing period

(Figure 4.2).
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Figure 4.2 The relationship between elevation and NDVI in July grazing period (A) and in

September grazing period (B). Shading indicates the standard error of NDVI at the same elevation.

Maps in Figure 4.3 present cattle seasonal space utilization in the study area, after
extrapolating the resource selection function to the whole study area in both early and late grazing
period. Cattle high utilization is concentrated near cattle settlement in the early grazing period, in

contrast, cattle are spread to the areas far from cattle settlement along the fences of the ranch.
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Figure 4. 3 The predicted relative probability of cattle use during the July period and September

period. Areas of the highest relative probability of use are shown in red and areas of the lowest

relative probability of use are shown in dark blue.

The predictive accuracy of early grazing period was higher than that late grazing period. Of the

accuracy during the early period, 72 % of locations occurred in > 75% RSF interval and 85 % of

locations occurred in > 50% RSF interval. Forty-eight per cent of September period locations

occurred in > 75% RSF interval and 70 % of locations occurred in > 50 % RSF interval. Thirty per

cent of August period locations occurred in > 75% RSF interval and 60 % of locations occurred

in > 50 % RSF interval (Table S4.1).

4.4 Discussion

4.4.1 Comparisons of early and late grazing distribution

Yet few studies have quantified the cattle selective foraging for fine-scale ranches and examined

how strength selection of contrasting landform varies across a seasonal variation of available

vegetation resource. Our study provides a framework for modelling and predicting the occurrence
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of cattle foraging selectivity in the Horgin Sandy Land, separately in the early and late grazing
period. In support of our hypothesis, cattle showed the preference of high resource availability and
avoid high elevation areas of sand dunes in both early and late grazing periods. Cattle distribution
pattern varied between early and late of grazing periods with the landform characteristics of dunes
responding to changes in resource availability across the seasonal cattle grazing periods (Table 4.2
and Table 4.4).

During the early grazing periods, cattle locations concentrated around the cattle settlement
which was consistent with the previous study showed cattle start from the central place for foraging
in the semi-free ranging system (Table 4.2; Figure 4.3). Cattle appear to maximize the efficiency
of nutrient intake during the period with high quality and quantity in the early grazing time, were
foraging on the lowlands near the water resource and avoid dunes and related vegetation resource
on dunes. During the late grazing period with a decline of vegetation conditions, after grazing
these areas in the grazing early period within the ranch, cattle used vegetation resource on steeper
areas and grazed farther from water in the late period, which is the likely explanation of the general
increase in the uniformity of grazing. and, where to strength the weight of avoiding dunes but
higher areas of dunes while the more productive availability resource occurred (Table 4.4; Figure
4.3).

The water resource is also a critical factor to affect cattle selection for vegetation resource
(Moyo et al., 2013; Zengeya et al., 2014). The results of the study showed cattle prefer to stay
around the cattle resource in both early and late grazing period (Figure 4.3). The interpretation of
the resource selection function is a trade-off between cattle moving long-distance against water

point, which is the most limiting resource, but also maximizing access to high-quality forage.
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In the early period, cattle did not select for higher quality or quantity forage, behaving more
like a bulk feeder, as food is generally more abundant in herbage quality and quantity than in the
late season. Therefore, in the early grazing period cattle can easily fulfil their energetic and
nutritious needs with medium or even lower quality fodder. On the contrary, cattle exhibited
preference towards quality forage even in the late period, and especially when using areas further
from the water and higher elevation (Kaszta et al., 2016b).

In both seasons, cattle exhibited preference towards areas covered by trees. This preference,
however, was significant only in the wet period, which is also the hottest season, when trees
provide shade. Furthermore, below-canopy grasses are usually richer in nutrients than grasses that
grow in the open, differentially attracting grazers (Treydte et al., 2010). As pointed out by several
authors (Vavra and Ganskopp 1987; Pinchak et al. 1991), cattle prefer grazing areas on gentler
landforms and closer to water, with higher forage quality and more preferred species, as these areas
allow them to maximize the average energy intake rate through optimal foraging (MacArthur and

Pianka 1966).

4.4.2 Interaction between NDVI and landforms

The utility of these predicted metrics is not limited to the original products and can be used to
derive additional landform properties that reflect specific spatial processes of interest of livestock.
The metrics of NDVI and elevation can be used to identify the timing of migration in ungulates
and seasonal resource use. We were also interested in fine-scale processes that influenced the
energetics of movement and accessibility of forage. We suspect that to minimize energy losses in
the late season when forage condition is low animals may limit the distance for foraging. However,
the results showed cattle move longer from water point near the boundary fences for foraging more

resource availability. The explanation was the indirect effect of NDVI decreased the negative
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effects of distance to water on space use of cattle foraging (Table 4.2; Table 4.4). These are
conflicting goals, as overgrazing near water sources results in low forage availability. Such grazing
patterns can lead to overgrazing of the rangelands directly surrounding villages, especially those
close to rivers and other water sources. Cattle kept close to water resource in season will minimize
energy expenditures, but as the cost of limiting energy and nutritional intake. Therefore, the cattle
move further areas to forage more productive availability resources in both early and late of
grazing periods. Considering cattle preferences for specific resources, fine-scale resource selection
function modelling revealed patterns that can be explained as an adaptation to reduced availability
of water and high-quality fodder during the dry season.

Thus, the energetic costs of moving through dunes are likely to affect the way animals
navigate landscapes (Lundmark and Ball 2008, Avgar et al. 2013). As we predicted, cattle selected
for areas with rugged landforms, corresponding to wind-blown ridges at moderate-to-high
elevations. Such selection patterns may help offset energy deficits by minimizing the effort
required to forage ground herbage on sand dunes (Nichols and Bunnell 1999). Contrary to
expectations, however, cattle selected for higher elevation while higher NDVI of herbage
distributed on the dunes. Cattle should avoid higher elevation of dunes unless sufficient available
herbage exists to support an individual’s foot loadings because the costs of travelling through
dunes increase exponentially with a density below some threshold of support (Parker et al. 1984).

These results imply a link between behavioral state and selection for specific landforms conditions.

4.4.3 Implement of livestock grazing management
It is crucial to sustainable range livestock production that managers manipulate livestock
distribution to meet production and conservation goals. Thus, removing livestock that concentrates

in overused areas and selecting livestock that travels farther from water and up steeper slopes has
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the potential to improve livestock grazing distribution (Bailey et al., 2006). Attracting livestock
away from critical areas and into underused areas of pastures requires innovative management and
an understanding of livestock grazing behavior.

While fences and water developments strongly influence livestock distribution, they are not
the only tools available to the manager. The results of these studies demonstrate that strategic
placement of supplement can be an effective tool for altering livestock distribution during the dry
season. Assessment of the effects of conservation practices used on grazing lands is ongoing but
does not include nutrient supplement placement (Kannan et al. 2005; Maderik et al. 2006).
Previous studies (McDougald et al. 1989; Bailey and Welling 1999) suggest that supplement
placement is an effective practice for attracting livestock into areas where grazing is desired and
keeping livestock away from environmentally critical areas such as riparian zones. When green
forage is adequate, the supplement sites are less attractive. When the supplement is placed in
rangeland pastures or allotments, cattle not only congregate at the supplement site, but they graze
and rest in adjacent areas within 600 m of the supplement site. While supplement placement has a
strong influence on beef cow distribution, it must be integrated with fencing, water development,
and other practices to accomplish grazing management goals.

Further work should be carried out to extend the predictive mapping of cattle occurrence to
the more ranches and involving more types of rangeland management systems. Local authorities
need tools to understand cattle spatial behavior and predict patterns of utilization to prevent
overgrazing. Our modelling approach based on fine-scale environmental data and detailed
information on cattle movement allowed new insights and mapped predictions that can guide
management actions to minimize the rangelands overutilization. Adaptive management of

rangelands should take into account seasonal differences in cattle spatial behavior, mainly related
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to the diversity of landforms and changes in the availability of forage quality and quantity. We
advise that the local authorities consider seasonal ranging patterns of herders in efforts to avoid
rangeland overgrazing in the areas of high seasonal cattle home range overlap. Creating grazing
regimes in which early and late season grazing areas (or at least core areas) do not extensively
overlap would allow vegetation to more effectively regenerate.

This would help to minimize the negative consequences of overgrazing, such as soil
degradation, erosion, declines in grassland productivity and/or bush encroachment. Our models
can be used to map and predict trends in overgrazing areas based on current environmental factors.
Doing so will help managers to identify areas of high suitability during vegetation-covered periods,
and to anticipate how these high-value areas will shift as the snowpack evolves through time
(Hoefs 1984, Post and Stenseth 1999, Mysterud and Saether 2011). Understanding the spatial
requirements and resource needs of livestock, while accommodating dynamic landscapes, will be
critical in predicting how livestock will respond to increasingly variable and severe environmental

conditions change.

4.5 Conclusion

Local farmers in the ranch of Horgin Sandy Land need tools to understand cattle spatial behaviors
and the patterns of utilization to prevent overgrazing. Our modelling approach based on fine-scale
environmental data and detailed information on cattle movement allowed new insights and mapped
predictions that can guide management actions to minimize the risk of rangelands overutilization.
Adaptive management of rangelands should consider seasonal differences in cattle spatial behavior,
mainly related to changes in the availability of forage resource availability, and the interaction

with the elevation of sand dunes.
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We advise that the local farmers consider seasonal management of grazing cattle in efforts to
avoid ranch overgrazing. Creating grazing regimes in the early grazing period where the core areas
of cattle foraging concentrated near the water point separate ranch into several groups to reduce
foraging pressure to allow vegetation to more effectively regenerate. Furthermore, the practice of
forage supplement should be conducted near the water point and lower areas of sand dunes to
prevent cattle walking longer on lowland and moving upper on sand dunes for saving energy and

keep animals’ body weight.
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Figure S4.1 Coefficient estimator and 95% simulation envelopes (solid lines) from 500 RSF

model iterations fit to data simulated from variables.

90



Table S4.1 Frequency distributions and percentage of cattle locations within equal-area RSF

intervals during the periods of early and late grazing

Early grazing time Late grazing tome
RSF interval Number of Percentage =~ Number of Percentage

locations locations locations locations
0-5% 100 0.953% 251 2.41%
5-10% 169 1.611% 392 3.76%
10-15% 176 1.678% 302 2.90%
15-20% 157 1.497% 384 3.69%
20-25% 115 1.096% 302 2.90%
25-30% 167 1.592% 328 3.15%
30-35% 185 1.764% 390 3.74%
35-40% 199 1.897% 451 4.33%
40-45% 221 2.107% 384 3.69%
45-50% 247 2.355% 333 3.20%
50-55% 240 2.288% 301 2.89%
55-60% 193 1.840% 315 3.02%
60-65% 303 2.889% 311 2.99%
65-70% 285 2.717% 549 5.27%
70-75% 261 2.489% 463 4.45%
75-80% 344 3.280% 691 6.64%
80-85% 797 7.599% 794 7.62%
85-90% 777 7.408% 774 7.43%
90-95% 1039 9.907% 894 8.58%
95-100% 4513 43.030% 1805 17.33%
Total 10488 10414
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Chapter 5: General conclusions

This thesis generated the seasonal variation of cattle foraging behaviors and spatial distribution on
the contrasting landforms of fenced ranch in northern China.

We found that the GPS model is sufficient for livestock behaviors classification and provides
information regarding an animal’s location; this feature is associated with the interaction between
livestock activities and the rangeland ecosystem. The classification model with the different time
intervals of GPS location data, the tri-accelerometers, and the combination of the two kinds of the
dataset were tested. The overall accuracy of GPS models was 85% to 90% when the time interval
was greater than 300-800 s, which was approximated to the tri-axis model (96%) and GPS-tri
models (96%). In the GPS model, the linear backward or forward distance were the most important
determinants of behavior classification, and nonforaging behavior was less than 30% when
livestock traveled more than 30-50 m over a 5-min interval. For the tri-axis accelerometer model,
the anteroposterior acceleration (-3 m s-2) of neck movement was the most accurate determinant
of livestock behavior classification. The instantaneous acceleration of livestock body movement
more precisely classified livestock behaviors than did GPS location-based distance metrics. When
a tri-axis model is unavailable, GPS models will yield sufficiently reliable classification accuracy
when an appropriate time interval is defined. These findings may improve our understanding of
how the selection of the time interval influences the process of distinguishing livestock activities
in a GPS model and provide insight into selecting an optimal time interval when using GPS data
only to classify livestock behaviors.

Then, we found that cattle preferred to forage in low-land areas compared to sand dune areas,
probably reflecting the greater energy consumption required and poorer herbage conditions in the

high-elevation areas. The temporal dynamics of foraging pressure showed different patterns in
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low-land and sand-dune areas from July to September. The foraging pressure and proportional area
used by cattle both increased from July to September in low-land areas, whereas only the
proportional area foraged increased in the sand-dune areas. As the grazing season progressed, the
foraging time increased in both low-land and sand dune areas. The foraging density increased as
herbage quality and quantity declined in low-land areas. Our results indicate that topographic
features should be considered when managing livestock, especially during periods with adverse
conditions of herbage quality and quantity.

The predicting map based on RSF model showed the process that the affecting factors derived
foraging distribution from early to late grazing. The mechanism behind this change is that seasonal
variation of resource availability moderates the responding pattern of cattle foraging selectivity to
the sand dunes and water resource. The seasonal increasing of foraging areas expanded from water
point to the further places where the higher abundant vegetation distributed on lowland areas, and
move to higher areas of sand dunes for the rich resources on sand dunes. the probability of
everywhere to be foraged by cattle was modeled by the resource function selection and the
affecting factors of the probability were examined. The high probability to be used areas by cattle
was the forest land, and areas with high NDV1 and closer to the watering point, the low probability
areas was the area with high elevation. The high probability areas moved from near the water point
to the far areas from the early to the late grazing period. During the early grazing season, the
probability to be forage is negatively related to the elevation and positively related to the NDVI.
During the late grazing period, the NDV1 and elevation influence on the probability to be foraged
decreased, and the interaction between NDVI and elevation influence the probability.

These conclusions for the implications for ranch management strategies to prevent

overgrazing depend on the requirements and fine scale to be achieved. If just considering the
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rugged landform derived from distribution of sand dunes across the ranch, ranch owners should
use a rotational grazing system in which cattle are shifted from a low-land grazing camp to a higher
elevation camp during periods of herbage decline. Moreover, the implication of more fine
management, the owner should consider the conditions of seasonal resource availability and
interaction effects with landform characteristics and waster point. In the early grazing time,
creating camp to separate the core grazing areas into several groups to reduce the overgrazing, and
in the late grazing time, the forage supplement should conduct near the water point and lower areas

of dunes to reduce animal’s energy cost by walking longer and climbing upper places.
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SUMMARY
Overgrazing can alter ecosystem function and reduce the nutrient content and yield of vegetation,
especially in arid and semi-arid regions. Overgrazing of rangelands often results from uneven
distribution of grazing pressure due to either under- or overstocking. Fencing has widely been used
to manage grazing pressure, by breaking large tracts into several smaller areas, thus preventing
patchy degradation of grasslands and maintaining the productivity of vegetation and livestock.

To prevent grassland degradation, the spatial distribution of livestock grazing must be
understood. Previous grazing experiments have used the number of livestock per unit area to
investigate the effects of grazing on herbage production, soil properties, plant communities, and
other factors. However, this approach cannot provide detailed information regarding how livestock
graze, especially in terms of seasonal changes in the spatial distribution of grazing pressure on
grassland. In addition, an underlying assumption of these previous studies is the even distribution
of grazing pressure, which is not characteristic of actual livestock grazing behavior.

The trade-off between the energy expended in searching for and reaching the forage source
and the potential energy gain provided by the herbage determines the movement of livestock
during their grazing activities and consequently the spatial distribution of livestock grazing
pressure. Therefore abiotic factors, such as topography and access to drinking water, as well as
biotic factors, such as pasture quality and quantity, are critical factors that influence the spatial
variation of herbage and the energy expended during livestock’s acquisition of sufficient forage.
These elements in turn influence the spatial distribution of grazing pressure and its seasonal
dynamic.

The grassland in the arid and semi-arid regions of northern China has degraded severely since

the 1970s. This degradation has contributed to several environmental problems, one of the most
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striking of which is dust storms. In particular, the Horgin Sandy Land, in the central eastern region
of China’s Inner Mongolia province, suffers from desertification and is a material source for the
dust storms that have ravaged Beijing and other, distant areas. The landform of the Horquin Sandy
Land is characterized by sand dunes interwoven with interdune lowlands; this intricate topography
complicates understanding of the relationship between livestock grazing and land degradation in
this region.

Various grazing behaviors, such as foraging, resting, and walking, have different
consequences on grassland. Using traditional methods to track and record these behaviors is
laborious and rarely provides continuous and long-term data. However, the development of the
Global Positioning System (GPS), accelerometers, and machine learning now make it possible to
elucidate the relative effects of different grazing behaviors. Therefore, the current study used GPS
and machine learning techniques to reveal the spatial distribution of foraging and non-foraging
behaviors of cattle in the Horgin Sandy Land.

In this research, we first developed a method to classify cattle grazing into component
foraging and nonforaging behaviors according to GPS location and tri-accelerometry data. We
then investigated seasonal changes in the spatial distribution of grazing pressure and the relative
contributions of the sand dune and interdune regions to this seasonality. Finally, we modeled the
probability to be forage of everywhere in the ranch and analyzed the factors that influenced the
likelihood of use.

First, we tested various models for classifying various behaviors as foraging or nonforaging
behaviors; these models were based on GPS location data solely, tri-axis accelerometry data only,
and the combination of these two datasets; in addition, we assessed various time intervals with

each model. When the time interval was greater than 300-800 s, the overall accuracy of the GPS
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model was 85% to 90%, which approximated the accuracies of the tri-axis accelerometry model
(96%) and the combined GPS-tri model (96%). In the GPS model, the linear backward or forward
distance was the most important determinant of behavior classification, and nonforaging behavior
accounted for less than 30% of all grazing behavior when livestock traveled more than 30-50 m
over a 5-min interval. For the tri-axis accelerometry model, the anteroposterior acceleration (-3 m
s2) of neck movement was the most accurate determinant of livestock behavior classification. The
instantaneous acceleration of livestock body movement classified livestock behaviors more
precisely than did GPS location-based distance metrics. However, when a tri-axis model is
unavailable, a GPS model yields sufficiently reliable classification accuracy as long as an
appropriate time interval is defined.

Second, we determined the foraging density and the area associated with foraging behavior
for both the dune and lowland regions. Overall, the time that livestock spent foraging increased
from 63% in July to 67% in August and 69% in September, and nonforaging behavior decreased
in a compensatory manner in both dune and lowland regions. In lowland, the log-transformed
average foraging density (i.e., total number of foraging behaviors in 5 days measured at 50-s
intervals per 10 x 10 m grid) increased significantly from 0.61 in July to 0.66 in August and 0.88
in September; in contrast, on sand dunes, this parameter remained constant throughout this period.
The relative area of lowland foraged by cattle was 31% in July, 35% in August, and 36% in
September. In comparison, the proportion for sand dunes increased from 45% in July to 47% in
August and 51% in September. In lowland, foraging density was negatively correlated with
biomass (P = 0.07), total digestible nutrients (P < 0.05), and crude protein (P = 0.06) and positively

correlated with acid detergent fiber (P < 0.05), whereas no such relationships occurred in sand
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dunes. Our results indicate that topographic features should be considered when managing
livestock, especially during periods with low herbage quality and quantity.

Third, we used resource function selection to model the probability of a landform to be foraged
by cattle and then examined the factors that influenced this probability. The factors associated with
a high probability of being grazed by cattle were forest land, areas with high NDVI, and areas
close to watering sites; conversely areas at high elevation had a low probability of being grazed.
The high-probability areas moved further from watering sites as the grazing period progressed
from early to late. During the early grazing season, the probability of being grazed was negatively
related to elevation and positively related to NDVI. During the late grazing period, the individual
influences of NDVI and elevation on the probability of being grazed decreased, and instead the
interaction between NDVI and elevation influenced this probability.

The findings from this study show that the instantaneous acceleration of livestock body
movement more precisely classified livestock behaviors than did GPS location-based distance
metrics. When a tri-axis model is unavailable, a GPS model yields sufficiently reliable
classification accuracy as long as an appropriate time interval is defined. The foraging duration
was greater in lowland than dunes areas in both early and late grazing periods. On both sand dunes
and lowland, foraging time increased as the grazing period progressed from early to late. In
lowland areas, the increase in foraging time resulted from increases in both average foraging
density and foraging area. However, increased foraging time on sand dunes was due solely to
increases in foraging area. Resource selection function modeling can successfully predict the
probability that cattle will graze a particular area; this probability is comparable to the observed

duration of grazing.
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In the Horgin Sandy Land, cattle spent more time foraging on interdune lowland than on sand
dunes. However, foraging time increased over the grazing season as resource availability declined
in both lowland and dune regions. This increase in foraging time over the grazing season reflects
changes in the cattle’s behavior patterns that is, extending foraging areas away from water sources

in lowland areas and climbing sand dunes to obtain additional resources.
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