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I - i Theoretical Background of Raman spectroscopy 

Raman effect is one of light scattering effects which was reported first by C. V. Raman on 

1928 (1). When a light with a particular wavelength such as laser light is irradiated on to a substance, 

several processes can happen (absorption, scattering etc.). Raman scattering is an inelastic scattering 

process in which the irradiated light either loses or gains energy as a result of interaction with the 

molecule. Wavelengths of such Raman scattered photons will be shifted from the irradiated light. This 

shift is related to the energy of electronic, vibrational and rotational states. Among them, the study of 

Raman effect for vibrational modes is most popular for both ease to measure and interests to recognize 

structure of targeting molecule based on its molecular vibration. Thus vibrational Raman spectroscopy 

can be grouped with infrared absorbance spectroscopy (a complementary technique which also probes 

molecular vibrations!) as vibrational spectroscopy. Figure 1-1 illustrates Raman scattering with other 

interaction together.  

 

Raman scattering can occur in two manners, the Stokes and anti-Stokes scattering. The 

Energy of light and vibrational excitation states in a molecule is related in the figure 1-1. Here, ħ 

(Dirac's constant, h/2π) is called as the reduced plank constant and the character ω is the anguler 

frequency of light. Then energy of the light is explained as E = ħω. Each subscript i and r with ω 

appearing in the figure indicates the irradiated light and Raman scattering light, respectively. In the 

Stokes site (Figure 1-1. S), the molecule at vibrationally ground state (ν = 0) is excited by the incident 

radiation (ħωi) virtually (middle in electronic between vibrational state) results in the scattered light 

with loss of energy with ħ (ωi – ωr), which corresponds to the energy difference from the excited to 

ground state (ħωS). On the other hand, when the molecule at vibrationally excited state (ν = 1) is 

Figure 1-1. Energy level of several interactions of light between substance. Fluorescence (FL), Infrared 

absorption (IR), Rayleigh scattering (R), anti-Stokes Raman scattering (A) and Stokes Raman scattering (S). 
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excited by the incident radiation (ħωi), the scattered light gains energy as much as ħωr with transition 

of the originally vibrational excited state (ν = 1) to the ground one (ν = 0). Practically, Stokes and anti-

Stokes scattering of the light take place simultaneously, because a lot of molecules in the system are 

distributed in different vibrational states at ν = 0, 1, 2.. with the population ratio determined by the 

rule of Boltzmann distribution. However, depending on the fact that much larger population of ground 

state than excited state in the sample, the number of photons by Stokes scattering manner is much 

larger than that of anti-Stokes manner. Therefore, in most cases, the Stokes site is detected for 

molecular study purpose usually.  

Generally speaking, the Stokes Raman scattering is called as Raman Spectrum, and the 

scattered light can be realized as a phenomenon in which several interactions with light and molecular 

vibrational modes results in generating photons with shifted longer wavelength (loss of frequency as 

well as energy) than the excitation light. In order to make sure how much shifted, a Laser light is used 

as an excitation light source. The photons are dispersed into certain range of wavelength by a 

spectrophotometer.  Customary, the horizontal axis of a Raman spectrum is called “Raman shift” as 

an energy difference from that of the excited light. The unit for it is usually written as a reciprocal 

wavelength expressed in cm (wavenumber, cm-1). The Wavenumber is common for infrared absorption 

spectroscopy (IR) as Figure 1-1 shows same energy transition to Raman scattering. Raman shift is 

comparable measure for Raman spectra frequently measured in different excitation laser sources. 

Figure 1-2 shows an example of Raman spectrum of adenine in an aqueous solution 

measured by 632. 8 nm excitation. When the Raman spectrum is measured for even pure molecule, 

there might be some bands (called as Raman bands) each of them reflecting certain vibration modes 

in the molecule. 
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Raman cross section is an optical property unique to every molecular species.  Simply 

speaking, a molecule with higher polarizability tends to give stronger Raman scattering light. When 

we apply Raman spectroscopy to some biological system, the relatively low polarizability of water is 

a strong benefit because the relatively weak Raman scattering causes little influence for measuring 

such samples, in solution, tissues, cells, etc. This aspect may be one of stronger points of Raman 

spectroscopy than FT-IR spectroscopy, in which the overwhelmingly strong water absorption bands 

frequently hinders the measurement of weaker sample bands. We have to think about the hinderance 

of strong auto-fluorescence light. It frequently occurs simultaneously to Raman scattering (Figure 1-

1. FL) and causes a serious difficulty in measuring much weaker Raman bands. Theoretically speaking, 

the relative intensity of fluorescence light is 104 to 108 stronger than Raman scattered light.  

 

I - ii Overview on Raman spectra of typical biomolecules 

Raman spectrum is unique to each molecule and gives characteristic pattern, which is called 

as “molecular finger print”. This pattern is originated by the combination of molecular vibrational 

modes. The assignment of each band in a Raman spectrum assignable to certain vibrational mode is 

very important for understand the molecular structure and molecular environments.  Representative 

biomolecules such as protein, nucleic acids, saccharides, lipids and pigments are deeply and repeatedly 

investigated by both experimental observations and theoretical calculations. 

The relationship between the structure of proteins and Raman spectra are well studied. For 

example, a sharp and strong band observed in Raman spectra of proteins is due to the side chain of 

Figure 1-2. An example of Raman spectrum of adenine sulfate (5 mg/ml) in 0.5 M HCl aq. solution. 

The excitation wavelength was 632. 8 nm and Laser power at sample was 2 mW. Exposure time was 

300 sec and 5 times average to acquire this Raman spectrum. 
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Phenylalanine (Phe). This band is assigned to so called breathing mode of benzene ring (mode ν1), 

often used as a protein marker band. This band is frequently used as standard Raman band for a protein 

by the clear visibility; it is observed very clearly in most protein samples and frequently is 

distinguished for the sample with strong auto-fluorescence. Phe gives relatively weak Raman bands 

also, at 1203, 1032 and 624 cm–1 due to different vibrational modes. Raman spectra due to the 

secondary structures of protein or peptide are well studied. Vibrational modes assignable to peptide 

bond are called as amide A, I, II, III, V, IV, VI and VII. They can be observed in Raman and infrared 

spectra and used as a measure to estimate the secondary structure of proteins and peptides. Amide I 

(C=O stretching and NH bending around 1660 cm–1) and III (C=N stretching + HN bending around 

1250 cm–1) are Raman active, it is known that the wavenumber shift of these two bands would be 

found depending on secondary structure such as α-helix, β-sheets, random coils and turns (2, 3). 

 In the lipid, C−H stretching vibration from CH2 and CH3 appeared at around 2800 cm–1 

called CH region, and CH2 bending mode is observed at around 1444 cm–1 (4) that are often dealt as 

marker of total lipid abundance. Unsaturated fatty acids or their triglyceride gave C=C stretching mode 

around 1650 cm–1. Ester bond around 1750 cm–1 is also picked up as triglyceride marker. In addition, 

CH2 twisting around 1300 cm–1, =C−H deformation around 1260 cm–1 and adjacent three C—C 

stretching mode around 1100 cm–1 are used for detail discussion related index of unsaturation. 

 These spectral features depend on the phase of the matter (liquid/solid state) and 

molecular surroundings (water solution/organic solvent etc.). Therefore, it is especially necessary to 

be aware of such effects during the experiment involving biological and medical applications and 

make comparisons with appropriate molecular standards. It is important to understand that most of the 

basic studies for the assignment of Raman bands of biomolecules were done in pure molecular systems, 

while the actual biological or medical samples are usually complex systems containing mixtures of 

biomolecules. Here, the problem is that superposition (or overlapping) of some Raman bands derived 

from different molecules. Picking up one case to explain about the problem with lipid and protein, the 

superposition of Amide I and C=C stretching mode around 1650 cm–1 make discussions difficult. To 

solve this problem, exploration of Raman marker band is important by eliminating possibility of such 

superposition in the interested system. 

 

I - iii Application of Raman spectroscopy for biological and medical researches 

 No necessity of special sample preparation and low invasiveness are benefits to use 

Raman spectroscopy for biological and medical applications. Combination of microscopy with Raman 

spectroscopy (called Raman micro-spectroscopy) gives label-free molecular imaging. Since the report 

of Raman spectrum measurement of a single cell (5) and the report of Raman imaging of the division 

process of fission yeast (6), many studies have been conducted by Raman micro-spectroscopy to study 

biological and medical interests and problems. When it is desired to qualitatively compare 



8 

 

experimental conditions different samples, mean Raman spectrum is compared and the difference 

spectrum is taken to see the possibility of such as band shift and relative intensity ratio in many cases. 

Moreover, since the Raman scattering intensity is proportional to the sample concentration, a semi-

quantitative analysis method can be performed by searching for a marker band of the target molecule. 

In addition, if the sample is measured by scanning in 2D plane or 3D space, semi-quantitative analysis 

and distribution analysis can be performed simultaneously by imaging (7). As a basic analysis method, 

the area of the target marker band is calculated by Gaussian fitting or the sum of the differences 

between the baseline and the peak intensity (8), and the area is treated as a variable, which is called 

univariate analysis.  

As mentioned in the previous section, there are various vibration modes even in a single 

molecule, and there are numerous molecules in the biomolecular samples, so the contribution of 

unknown molecules cannot be denied. Therefore, quantitative interpretation of Raman spectrum 

measurement requires a deep understanding of the molecular species presumed in the sample and their 

standard Raman spectrum. In addition, many of the possible variables measured with great effort are 

wasted in univariate analysis when it is wanted to applied classification and regression. In order to 

solve these problems, multivariate analysis has been performed in the last 2 decades in the application 

of Raman spectroscopy for biological and medical samples. 

 

I - iv Multivariate Analysis 

In multivariate analysis, there are mainly two categories: multivariate classification (MC) 

and multivariate regression (MR). MC tries to finds patterns in the given data and helps in 

simplification by compressing or grouping the data. It can be further divided into either unsupervised 

or supervised learning. Unsupervised MC methods [e.g., singular value decomposition (SVD), 

principal components analysis (PCA), cluster analysis, independent component analysis, multivariate 

curve resolution-alternating least squares (MCR-ALS) analysis, etc.] are exploratory in nature and 

needs no a priori information (9). Especially, PCA is one of the most common technique to reduce 

dimension (number of variable) to understand data structure. In contrast, supervised MC methods (e.g., 

linear discriminant analysis (LDA), multiple linear regression, partial least squares discriminant 

analysis, support vector machines (SVM), neural networks (NN), etc.) requires a priori knowledge, 

such as class labels identifying the sample group. These methods make classification model and are 

applied to unknown samples for purposes such as diagnosis of disease and classification of certain 

type of cells etc. MR analyses such as linear regression, principal component regression, partial least 

squares regression, etc. model the data by training from given data sets with known variables such as 

concentration in order to estimate relationships among the variables. It will eventually be applied to 

predict the unknown once a model is developed with sufficient accuracy (9). Combination of these 

analysis is also common. For example, PCA (unsupervised) followed by LDA (supervised) is called 
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PC-LDA. Since LDA requires smaller variable than sample population, PCA is applied to reduce 

dimension while keep original data information as much as possible.  

In this section, SVD, PCA and MCR-ALS have been explained in detail as they have been 

employed extensively in this thesis (Chapter Ⅱ and Ⅲ). To apply multivariate analysis, Raman spectral 

data is recognized as vector and matrix. A single spectrum is recognized as m-dimensional column 

vector x.  

xt = (x1, x2, …, xm-1, xm) 

Here, n is number of points per spectrum that is usually within the number of channels in a detector. 

Since we disperse Raman scattered light using a grating, each channel receives light of different 

wavelength. They convert incoming photons into electron charges to eventually obtain a Raman 

spectrum. Here, n channels with corresponding wavenumbers forms the horizontal axis (Raman shift). 

When there are m number of spectra arranged in a 2D data matrix X (n × m), the expression of the 

equation is the following: 

𝑿 = [

𝑥11 𝑥12 ⋯ 𝑥1𝑚
𝑥21 𝑥22 ⋯ 𝑥2𝑚

⋮ ⋮
𝑥𝑛1 𝑥𝑛2

⋱
⋯

⋮
𝑥𝑛𝑚

] 

SVD 

 SVD is applied when one wants to know independent spectral components number and 

to remove noise by using the results of matrix decomposition. SVD decompose matrix X as follows 

(10): 

𝑋 = 𝑈𝛬𝑉𝑡 + 𝐸 (1) 

Where U is matrix aligned eigenvector of XXt. The Λ is a diagonal matrix of singular value, each 

element has square root λ, which is eigen value of AAt. V is a matrix aligned eigenvector of XtX. E is 

a residual matrix. When the singular values are plotted in descending order, number of significant 

components and boundary between spectral and noise components can be identified. The difference 

usually become small along to low order of singular values and eventually almost identical. We can 

regard the point as boundary of spectral and noise components. This plot is also useful to estimate 

number of components in MCR-ALS. Finally, de-noise is achieved by substituting singular value in 

Λ into 0 only after the boundary and calculating X again by multiplication of U, substituted Λ, and Vt.  

 

PCA 

In the given data, PCA tries to find new ‘axis’, which make variance from the axis to original 

variable maximum. The axis is called first principal components or loading vector. Once the first 

principal component is determined, second principal components as well as third, fourth, … are 

determined to make variance maximum again under keeping a condition of orthogonality to previous 

loading vector. Mathematically, a result of PCA decomposition is related to SVD and described as 
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bilinear model by following (10): 

𝑋 = 𝑇𝑃𝑡 + 𝐸 (2) 

Where T is score, P and E are loading and residual matrix, respectively. The loading matrix P is derived 

from using Eq (1). 

𝛬𝑉𝑡 = 𝑃 (3) 

Then, T is a score matrix corresponding U in Eq (1). 

To get matrices P and T by using SVD results, original data matrix X should be standardized before 

the SVD. Instead of SVD, the major alternative way to introduce these metrices is nonlinear iterative 

partial least square (NIPALS) algorithm that can be used to find only first few principal components 

so as to save computational time. 

 Each principal component preserves spectral feature with corresponding score. The 

scores which is useful for unsupervised MC can also be used for supervised MC and MR such as PC-

LDA and principal components regression. Although these methods achieve high classification 

accuracy, they have an inherent problem i.e., loadings which contain spectral information lack physical 

meaning because of the presence of both negative and positive values (Raman spectrum is never 

negative!). One idea to solve this problem and get physically meaningful spectra is application of non-

negative constraints to MCR-ALS. This is also called non-negative matrix factorization (NMF).  

 

MCR-ALS 

In MCR-ALS analysis, matrix approximation sought by a linear combination of desired 

number of spectral components can be written as follows: 

 𝐴 ≈ 𝑊𝐻 

In this low-rank approximation, A is original mapping data of dimension m × n (m denotes number of 

points per spectrum and n denotes the total number of spectra). Note the A is transposed X in Eq (1) 

and Eq (2). W (m × k matrix) represents spectral components and rows of H (k × n matrix) represent 

intensity profile of each spectral component. The parameter k, the number of components, can be 

flexibly decided by referring SVD analysis or a priori estimation. W and H were iteratively refined 

using alternating least squares, so that the Frobenius norm ||A−WH||2 is minimized with non-negative 

constraints W≥0 and H≥0 (11). 

 

In this thesis, to obtain sparser solutions, L1 penalty term for H (lasso regression) of α is applied as 

follows: 

(𝑊𝑡𝑊 + 𝛼2𝐸)𝐻 = 𝑊𝑡𝐴 

where E is a k × k matrix whose elements are all unity. In addition, L2 penalty term for W (ridge 

regression) of β is also applicable as follows: 

 (𝐻𝐻𝑡 + 𝛽2𝐼)𝑊 = 𝐻𝐴𝑡 
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where I is a k × k identity matrix. L1 penalty term for W and L2 penalty term for H are also applicable 

in homemade program developed by pylon (8). Non-negativity in W and H endows us to interpret the 

result with physical meaning. Only weak point of this technique is the result is not unique and depends 

on initial conditions, setting of k and use of penalty terms. 

 

I - v Objective of this thesis 

Even though MCR-ALS technique are demonstrated and getting attention, practical use for 

biological and medical studies are not so many (12, 13). Based on such backgrounds, I studied some 

biomedical systems with Raman spectroscopy coupled with MCR-ALS. This thesis consists of the 

results of two different such applications; 

1) Visualizing wax ester fermentation in single Euglena gracilis cells by Raman 

microspectroscopy and multivariate curve resolution analysis 

 

2) Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells (MCF-

7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and 

Multivariate Curve Resolution Analysis 

 

In Chapter Ⅱ, Raman micro spectroscopy coupled with MCR-ALS was demonstrated as a 

screening method for organisms suitable for biomass production by using Euglena.  

In Chapter Ⅲ, As medical application, we searched for Raman spectral markers to classify 

cultured breast cancer and normal cells, and discovered specific lipids as marker. 

Both Chapters Ⅱ and ⅡI use classical univariate analysis methods and popular multivariate 

analysis and discuss the findings obtained by performing MCR-ALS analysis with together. The 

purpose of this thesis is to show the significant finding of each of these studies in the biological and 

medical field as well as usefulness of MCR-ALS in Raman spectroscopy.  
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Chapter II. 

Visualizing wax ester fermentation in  

single Euglena gracilis cells 

 by Raman microspectroscopy and  

multivariate curve resolution analysis 
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II - i Introduction 

Fossil fuels contribute to two thirds of the global energy demand out of which oils contribute 

33% (14, 15). In an age of increasing population growth, overconsumption and depleting oil supplies, 

continued use of petroleum sourced fuels is both unsustainable and damaging to environment with 

long-standing negative impacts on public health and global climate(16, 17). Therefore, there is an 

urgent need to find suitable renewable energy sources. Microalgal biofuels are currently the most 

favored substitute for liquid fossil fuels than other nontoxic, eco-friendly alternatives such as plant or 

animal biomass derived energy. Microalgae offers several advantages: (1) easy and quick growth under 

various conditions, (2) does not compete for arable land and water with edible crops, and (3) provides 

carbon neutral renewable energy by converting CO2 to useful products such as fatty acids, alcohols, 

and neutral lipids. Many algae generally produce substantial amounts of triacylglycerol of medium-

chain fatty acids such as palmitic (C16:0) and stearic (C18:0) acids, sometimes up to 70% of its dry 

weight(18, 19). 

One such microalgae that has received considerable attention in the past few decades as a 

biotechnological tool to produce drop-in jet fuel is Euglena gracilis, a photosynthetic unicellular 

flagellate eukaryote. Euglena being a mixotroph, feeds as an autotroph in the presence of sunlight to 

produce sugars through photosynthesis while survives as a heterotroph taking in dissolved organic 

compounds as nutrition under dark conditions. One of the main reasons for its attraction is because of 

its ability to produce wax esters, chiefly myristyl myristate (MM). MM is made up of myristic (C14:0) 

acid and myristyl alcohol (C14:0), each of which can individually be utilized for jet fuel because of 

their low freezing point/high cetane number compared to other medium-chain fatty acids (20). 

Typically, Euglena cells accumulate storage polysaccharide called paramylon granules, a β-1,3-glucan 

under aerobic conditions. However, such stored paramylon is broken down to glucose and further 

converted to wax esters when put under anaerobic conditions. Since the anaerobic cells gain subtle 

levels of ATP during the process, the phenomenon is called “wax ester fermentation” (21). 

Though Euglena cells have huge potential and can serve as tiny factories for biofuel 

production, inherent problem associated with large scale culturing is the slow growth rate of algal 

strains with high oil content (21, 22). It appears that the synthesis and storage of wax esters as cytosolic 

lipid particles is Euglena’s defense mechanism to cope with stress (18). Therefore, much effort has 

been put to genetically engineer or optimize culturing conditions of algae for enhanced biofuel 

production (21, 23-26). To evaluate any constructed algal strain or the choice of culture conditions, 

polysaccharide/lipid profiles must be characterized. Conventional quantification methods employ 

labor intensive, time consuming, destructive chemical extraction procedures followed by expensive 

mass spectrometric measurements thereby limiting scientific progress. 

Therefore, we set out to develop a Raman spectroscopy (RS) based molecular imaging 

method to characterize various metabolites in Euglena in a simple and straightforward manner. Raman 
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spectrum, which is also called a molecular fingerprint, provides wealth of chemical information with 

high specificity. Combining RS with a microscope endows subcellular resolution. Moreover, it is a 

rapid, non-destructive, live cell compatible technique that requires no additional dye probes or 

extensive sample preparation for molecular imaging. Previously, metabolic heterogeneity of live 

Euglena was studied in real time by stimulated Raman scattering. However, only the heavily crowded 

C−H stretching region could be analyzed (27). Spontaneous Raman spectroscopy has also proved to 

be useful in studying enhanced lipid production in yeasts (28). In this work, we performed space- and 

time-resolved Raman imaging of single living Euglena cells under anaerobic conditions and analyzed 

fingerprint region rich in molecular and structural information to identify/visualize paramylon and 

products of wax ester fermentation. 

We identified Raman spectral markers for β-1,3-glucan/esters and constructed their 

intracellular distribution images by simple univariate approach. In order to obtain carbon chain length 

specific information of lipids and further probe any other unknown components, we employed 

multivariate curve resolution analysis and succeeded in identifying MM (C28), a major product of 

wax ester fermentation, which is ideal for a drop-in bio jet fuel. 

 

II - ii Material and methods 

Sample preparation 

Euglena gracilis SM-ZK, a non-photosynthetic mutant was used in this study. First, Euglena 

was pre-cultured aerobically in Koren–Hutner (KH) medium until stationary phase, diluted 20 times 

with fresh medium, and cultured aerobically for another 2 days. To perform anaerobic digestion, 1.5 

ml of aerobically grown culture was taken in an eppendorf tube of the same volume and sealed with 

parafilm. All steps were done on a rotary shaker (120 rpm) at 26 ℃ under dark conditions (25, 29, 30). 

For Raman spectroscopic measurements, since Euglena are flagellates, 20 µl of culture at each time 

(0 h, 12 h, 24 h, and 48 h) was put on a concanavalin-A coated glass bottom dish. Then, after standing 

for about 5 min, a few ml of lukewarm (~ 35 ℃) 2% agarose solution was added to further restrict 

their motion. The glass bottom dish containing Euglena cells was then transferred to the microscope 

as it is for Raman imaging experiment and two cells were measured at each time. All chemical 

standards were bought either from Sigma-Aldrich or Wako, Japan, and measured using glass bottom 

dish. 

Raman spectroscopy 

Raman spectra were measured using a homemade confocal Raman microspectrometer 

equipped with a He–Ne Laser (632.8 nm) (12). The laser beam was introduced into an inverted 

microscope (Olympus, IX70) and tightly focused onto the sample on the microscope stage using oil 

immersion objective lens (100×, NA=1.3). Backscattered light including the inelastically scattered 

photons was collected by the same objective lens and passed through an edge filter to remove elastic 
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scattering light. In the Raman path, a 50 μm pinhole was set up to achieve confocality before light 

entered polychromator (Chromex, 250IS). A liquid nitrogen cooled CCD detector operating at −120 ℃ 

(Princeton Instruments, Spec-10) was used to record Raman spectra. The entrance slit width of the 

polychromator was set to 50 μm and measurements were done using a 600 g/mm grating, resulting in 

spectral resolution of ~ 4.5 cm−1. Lateral and axial resolutions were 300 nm and 3 μm, respectively. 

For imaging experiments, a step size of 0.6 μm in X- and Y-direction was used with the help 

of a piezo stage (Physik Instrumente). Each Euglena cell, being relatively large, took about ~40 min 

to scan the whole cell with an exposure of just 1 s/spectrum. Laser power of 4 mW at the sample point 

was used for all measurements. An exposure time of 30 s and 60 s was used for measuring several 

points of lipids and β-1,3-glucan standards, respectively, and averaged. CCD detector and piezo stage 

were controlled using the LabVIEW software (National Instruments). All measurements were done at 

room temperature (22 ℃). 

Data analysis 

Data pre-processing such as dark subtraction, intensity correction (using white light 

spectrum), and spectral de-noising by singular value decomposition analysis were all carried out in 

IGOR Pro (Wavemetrics). All standard spectra were an average of several points and the fluorescence 

background was removed by assuming a polynomial baseline. 

Raman imaging data from Euglena were analyzed by multivariate curve resolution performed on 

homemade program written in Python which was used previously (12, 31).  

A seven-component model (initialized with six random components and one fixed straight baseline) 

was constructed. To obtain sparser solutions, L1 penalty term (lasso regression) of α2 = 0.008 and L2 

penalty term (ridge regression) of β2 = 0.008 were applied. 
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II - iii Results and discussion 

Raman microspectroscopy and conventional univariate imaging of single Euglena gracilis cells 

To understand wax ester fermentation in Euglena at the molecular level, we measured space- 

and time-resolved Raman spectra and images of single cells grown under anaerobic conditions (Fig 2-

1.).  

As mentioned earlier, stored polysaccharides in Euglena are converted to wax esters. 

Therefore, to identify and discuss Raman spectral markers during wax ester fermentation, two most 

relevant space-resolved Raman spectra from a Euglena cell are presented in Fig. 2-1. A. Spectrum at 

point a (Fig. 2-1. A-a) had COO− asymmetric stretching at 1656 cm–1, COO− symmetric stretch, and 

C–H deformation modes between 1500 and 1200 cm−1, C–C and C–O stretch modes of pyranose rings 

between 1150 and 1050 cm–1, and C–C–C ring deformation mode at 425 cm–1 indicating 

polysaccharide-rich region. In addition, we observed a band at 893 cm–1, a region which is sensitive 

to glycosidic linkages. In fact, Raman spectroscopic studies on series of carbohydrate monomers have 

revealed C–H equatorial bending vibration of β-anomer between 905 and 885 cm–1 (12, 32, 33). We 

can safely assume that the observed polysaccharide spectrum may particularly be rich in paramylon, 

a β-glucan (Scheme 2-1 a).  

However, actual comparison with pure β-glucan is necessary. Major features in Raman 

spectrum measured at point b (Fig 2-1. A-b) include C=O stretch of ester linkage at 1731 cm−1, C–H-

Fig 2-1. Raman microspectroscopy and imaging of single Euglena gracilis cells under anaerobic condition. 

A Space-resolved Raman spectra measured at polysaccharide-rich region (a), and ester-rich region (b) from 

a cell at 24 h. B Optical images of single E. gracilis cells (c), time-resolved univariate Raman images of 

polysaccharides (d), and esters (e). Scale bar in each optical image measures 10 μm and measured points are 

indicated using alphabets 
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bending vibrations of the aliphatic chain at 1440 cm−1, in-plane CH2 twist at 1296 cm−1, and C–C 

stretch between 1150 and 1050 cm−1. It is important to note that the absence of any band in the C=C 

stretch region around 1650 cm−1 clearly indicates that this strain only accumulates esters containing 

saturated hydrocarbon chains (Scheme 2-1 b).  

It is then straightforward to choose 425 cm–1 and 1731 cm–1 bands to be markers of 

paramylon and wax esters, respectively. To visualize dynamic intracellular distributions of these 

components, we performed time-resolved Raman imaging experiment of single Euglena cells at 0 h, 

12 h, 24 h, and 48 h under anaerobic conditions. Two representative cells at each time are presented 

in Fig. 2-1 B. It is apparent from univariate Raman images that cells at 0 h (pre-grown under aerobic 

conditions) have accumulated polysaccharides, while ester content is negligible. As the culture time 

progresses, stored polysaccharide content decreases slowly, while wax esters start accumulating, 

especially from 24 h. This is a clear indication of wax ester fermentation in Euglena. 

 

Identification of carbon chain lengths in wax esters 

Though we were able to visualize the fatty acid biosynthetic machinery at work, there is no 

information on the nature of wax esters produced. Because, the C=O stretch of ester linkage (1731 

cm–1) used for molecular imaging does not indicate carbon chain lengths in compounds 

containing > 12 carbons (34), which is quite important in the context of its application for biofuel 

production. Therefore, to characterize the chain length of wax esters in detail within single Euglena 

cells, we set out to identify Raman markers that are sensitive to carbon chains. To achieve this, we 

measured series of standard wax esters with different chain lengths together with myristic acid and 

myristyl alcohol, precursors of MM which is a promising candidate for drop-in jet fuel (Fig. 2-2). 

 

Scheme 2-1. Molecular structures. a β-1,3-glucan (paramylon) and b myristyl myristate 

(wax ester) 
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It is known that the position of C=O-stretching band in fatty acid methyl ester depends on the chain 

lengths. However, it is useful only for oils containing < 12 carbon atoms and the change in band 

position is minimal for fatty acids > 12 carbons (34). Although the overall spectral pattern looked very 

similar (Fig. 2-2. a), careful screening of C–C-stretching region revealed significant difference that 

can be attributed to chain lengths (Fig. 2-2. b). Raman bands at 1130 cm−1 and 1063 cm−1 have been 

assigned to in-phase and out-of-phase skeletal C–C-stretching vibrations, respectively, for all-trans 

chain conformation. The band in between these two is a superposition of all-trans C–C stretch with a 

single gauche defect and C–C stretching of gauche conformation which is indicative of gauche isomer 

formation (35-38). Its position has been found to be sensitive to carbon chain lengths and we observed 

a systematic shift to higher wavenumber with increasing carbon number (Table 2-1). 

 

 

 

Fig. 2-2. Comparison of Raman spectra of standard wax esters, lipid, and alcohol. a Fingerprint region (1800–

800 cm−1) of lauryl laurate (LL), myristyl myristate (MM), palmityl palmitate (PP), stearyl stearate (SS), 

myristic acid, myristyl alcohol, and tripalmitin. b Enlarged view of the 1200–1000 cm−1 region containing 

C–C stretch information, which is useful for chain length analysis. Corresponding carbon chain lengths for 

each compound is indicated using common notation. Fluorescence background was subtracted using a 

polynomial baseline and all spectra were normalized to 1296 cm−1 band 
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Table 2-1. Carbon chain length dependence of gauche conformation sensitive C–C-stretching 

band in saturated chains 

Compound  Chain length  Band position a (cm−1)  

Lauryl laurate  12:0/12:0  1084.7 ± 0.9  

Myristyl myristate  14:0/14:0  1092.2 ± 0.8  

Palmityl palmitate  16:0/16:0  1099.1 ± 0.8  

Stearyl stearate  18:0/18:0  1103.7 ± 0.9  

Myristic acid  14:0  1092.6 ± 0.4  

Myristyl alcohol  14:0  1094.1 ± 0.3  

Tripalmitin  16:0/16:0/16:0  1098.6 ± 0.7  

a Gaussian fitting was used to determine band positions and fitting errors are included 

 

MM and both its precursors which contain C14:0 show Raman band close to 1092 cm−1 while others 

are shifted in either direction. Even though we succeeded in identifying chain length-specific Raman 

spectral markers, we must keep in mind that the difference in band position is quite small and that the 

measured samples were all pure compounds in solid state. This indicator has been shown to fail if the 

lipids are in liquid state (34). 

 

Extracting pure biomolecular information using MCR analysis 

In the present context, Euglena cells contain heterogeneous distributions of many different 

biomolecules with varying phases and Raman spectrum measured at any given point in the cell is a 

mixture of all components. For example, C–C-stretching region of Raman spectrum is quite crowded 

with overlapping contributions not only from lipids or esters but also from other intracellular 

biomolecules such as protein, nucleic acids, polysaccharides, etc. Therefore, simple univariate 

approach is not suitable for such complex biological samples, especially to predict chain lengths. In 

fact, if we take a closer look into the space-resolved spectrum from ester-rich region between 1150–

1050 cm−1 (Fig. 2-1A-b), it is hard to find any C–C gauche band. However, a broad and an intense 

band can be observed in the same region from polysaccharide-rich Raman spectrum (Fig. 2-1A-a) 

indicating the complexity involved. Therefore, we applied MCR analysis to extract pure biomolecular 

information and to visualize intracellular abundance of each component in a straightforward manner. 

Results of seven components MCR model is given in Fig. 2-3 in which a straight baseline 

was intentionally included to eliminate varying offset. Other six components were automatically 

extracted. Let us look into the assignment of each in detail. Figure 2-3b includes O–H-bending 

vibration of water around ~ 1600 cm−1 and an overall broad fluorescence background. Raman 

spectrum in Fig. 2-3c includes phenylalanine ring breathing mode at 1004 cm−1 and amide I band at 

1660 cm−1, indicating proteins. Next component (Fig. 2-3d) contains intense bands at 1522 cm−1 and 



20 

 

1158 cm−1 which represent stretching modes of C=C and C–C of polyene chain in carotenoids, 

respectively. It is important to note that protein and carotenoid spectra were obtained as a natural 

consequence of MCR analysis without any a priori knowledge of their presence and, thus, could be 

very useful in exploratory analysis. Spectrum in Fig. 2-3e can be assigned to polysaccharide. 

Unexpectedly, we extracted two lipid components, named lipid 1 and 2, as shown in Fig. 2-3f, g, 

respectively. 

 

 

Comparison of MCR-extracted components with pure standards 

To understand the origin of polysaccharide and lipids from MCR analysis more specifically, 

we compared them with series of pure chemical standards of wax esters and their precursors. After 

screening, comparison with expected compounds such as β-1,3-glucan and MM is shown in Fig. 2-4. 

Fig. 2-3. Results of MCR analysis assuming seven components. (a) Baseline, (b) fluorescence 

background (FL) and water, (c) protein, (d) carotenoid, (e) polysaccharide, and (f, g) lipids 1 and 2, 

respectively. 
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This is mainly because Euglena is known to store appreciable amounts of paramylon (a β-1,3-glucan) 

as energy reserves under aerobic conditions which are almost converted exclusively to wax esters 

containing saturated carbon chains. Gas chromatographic analysis showed esters with C28 to be the 

major component along with minor contributions from other even numbered esters in C24–C32 range 

(39). Indeed, MCR-extracted polysaccharide component matches very well with β-1,3-glucan and can 

unambiguously be assigned to paramylon in Euglena. It is intriguing that two seemingly similar lipid 

components were extracted separately in MCR analysis (Fig. 2-4d, e). Lipid 1 with bands at 1732 cm–

1, 1440 cm–1, 1296 cm–1, 1130 cm–1, 1092 cm–1, and 1063 cm–1 matches quite well with MM and can 

be assigned to C28 ester containing two saturated C14 chains. A closer look into lipid 2 reveals the 

absence of 1732 cm–1 and C–H-bending vibrations at 1440 cm–1, while 1417 cm–1 and 890 cm–1 are 

more pronounced. Absence of C=O stretch band of ester raises the question whether lipid 2 is really a 

lipid/ester. However, the presence of 1092 cm–1 along with other C–C-stretching vibrational bands 

indicates C14 carbon chain, indirectly suggesting that it could either be myristic acid or myristyl 

alcohol. However, it does not correspond well with neither as expected, especially in C=O stretch and 

C–H deformation region, essentially leaving the spectrum unassigned. 
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MCR analysis of Raman images of standard myristyl myristate 

Since lipid 2 extracted from Euglena with 1092 cm−1 band does not match either with wax 

ester or their precursors, we performed Raman imaging on pure MM solid film (obtained after drying 

10 mg/ml MM in hexane) and carried out detailed MCR analysis (Fig. 2-5). A two-component MCR 

model constructed from data of pure MM showed surprising results. The two spectra were, indeed, 

identical to the two lipid components obtained from the MCR analysis of living Euglena cells, i.e., 

Fig. 2-5A-a (MCR_MM1) and Fig. 2-5A-c (lipid 1) were identical and both correspond well to 

averaged MM spectrum measured earlier (Fig. 2-4c). Spectral profile of second component 

(MCR_MM2), in which bands at 1732 cm–1 and 1440 cm–1 were missing, was identical to ‘lipid 2’ 

from Euglena cells, indicating its origin to MM. Only plausible explanation is the presence of crystal 

Fig. 2-4. Comparison of MCR spectral components with pure standards. (a) β-1,3-glucan, (b) MCR-

extracted polysaccharide (same as Fig. 2-3e), (c) myristyl myristate (MM), and (d, e) MCR lipids 1 

and 2, respectively (same as Fig. 2-3f, g) 
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polymorphs (several crystalline structures with the same chemical composition). 

It is known that long-chain esters/triglycerides exist in three major polymorphic forms, namely α, β′, 

and β. Their stability varies in the order β > β′ > α. While the subcell structure of α form is hexagonal 

with no ordered arrangement of chain planes (H), β′ is orthorhombic with every second chain being 

perpendicular to the rest (O⊥) and β is triclinic with all chain planes parallel (T//). In a Raman 

spectrum, C–H deformation modes between 1500 and 1400 cm–1 are sensitive to crystal structure. First 

set of spectra (MCR_MM1 and lipid 1) in which three defined bands at 1461 cm–1, 1440 cm–1, and 

1417 cm–1 were observed corresponding to β′ polymorph. In fact, 1417 cm–1 band is associated with 

splitting of the Raman active methylene scissoring mode in β′ form (40-42). In the second set, 

Fig. 2-5. Results of MCR analysis of pure myristyl myristate. A Comparison of two MCR-extracted 

spectra from (a, b) pure myristyl myristate solid (MCR_MM1 and 2), and (c, d) Euglena (lipid 1 and 

2). B Molecular distribution images of extracted components in pure myristyl myristate after MCR 
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MCR_MM2 and lipid 2, intense bands at 1417 cm–1, 1296 cm–1, and 1130 cm–1 that are characteristics 

of all-trans conformation of carbon chains in crystalline domains were observed (43). In addition, 890 

cm–1 band corresponding to terminal C–C-stretching vibration was also prominent. However, it is 

interesting to note that C=O-stretching (1732 cm–1) and C–H-bending (1440 cm–1) vibrations in both 

spectra were absent. Since intensities of Raman bands depend on both crystal orientation and incident 

polarization, it is possible that these bands are weak in this particular sample due to crystal orientation. 

However, it may also be due to the presence of two polymorphs of MM in Euglena cells. This may 

have serious implications as physical properties like molecular packing and freezing point, which are 

crucial for MM’s efficient storage and eventual application as a bio jet fuel, will be different for 

different polymorphs. Polarized-Raman spectroscopic measurements should be performed to obtain 

further insights to make clear distinction between polymorphs. 

We then constructed molecular distribution images of MCR-extracted components which 

revealed heterogeneous pattern without much resemblance to each other (Fig. 2-5B). This result 

further confirms the presence of two different forms in the standard MM sample. 

 

Time-resolved MCR component images of Euglena cells 

Once the assignment of all MCR-extracted spectral components was accomplished, we 

constructed time-resolved Raman images to visualize intracellular biomolecular distribution (Fig. 2-

6). First, let us look into baseline (Fig. 2-6a). Although there is no difference at early culture times, 

significant increase in localized areas was observed in cells from 24 h. On the other hand, varying 

degrees of fluorescence background could be observed in cells at any given time (Fig. 2-6b). Protein 

synthesis seems to be active as its intracellular abundance increases and gets more or less evenly 

distributed throughout the cells as culture time progresses (Fig. 2-6c). However, irrespective of time, 

carotenoids were randomly distributed indicating cellular individuality (Fig. 2-6d). Details on wax 

ester fermentation, which is our main target, can be visualized in Fig. 2-6e–g. Paramylon accumulated 

under aerobic condition during pre-culture seems to decrease with time under anaerobic condition 

(Fig.2- 6e). Complementarily, abundance of myristyl myristate (MM1 and MM2), which were not 

present to begin with at 0 h, slowly starts increasing with passing culture time (Fig. 2-6f, g). Strong 

accumulation of wax esters in a localized fashion can be observed starting from 24 h. Interestingly, 

MM1 distribution (from MCR analysis) is similar to the abundance images obtained using univariate 

method (Fig. 2-1e). However, it is also important to note that MCR analysis led to identification of 

MM2, whose intracellular distribution pattern is quite different from MM1, reiterating the existence 

of two forms of myristyl myristate. Further clarification of these two forms is left for future studies. 
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Fig. 2-6. Raman images constructed from MCR analysis. (a) Baseline, (b) fluorescence background 

and water, (c) protein, (d) carotenoid, (e) paramylon, and (f, g) myristyl myristate 1 and 2, respectively. 

Corresponding optical images are included (Opt.). Scale bar measures 10 μm. Color scale in Raman 

images indicates molecular abundance. 
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II - iv Summary 

We have demonstrated the unique ability of Raman microscopy coupled with MCR analysis 

to investigate wax ester fermentation and obtain carbon chain length-specific information in single 

living Euglena cells. In the present study, conversion of aerobically accumulated paramylon to MM, 

a C28 wax ester (C14:0–C14:0), has been successfully visualized. Interestingly, two polymorphic 

forms of MM with different distribution patterns may have been separated during MCR analysis for 

the first time in Euglena cells. Even though this work focused on specifically identifying MM, we 

believe that this method can be applied to characterize other metabolites in many different cell types, 

including but not limited to humans, animals, plants, etc. Moreover, this approach is directly applicable 

to mutant strains or under other culture conditions. Therefore, our approach is expected to further our 

understanding of lipid metabolism in Euglena and its regulatory apparatus at the cellular level to 

realize microalgae as an economically viable biofuel feedstock. Moreover, it is clear from the present 

example that simple univariate analysis, though useful to some extent, is limited by overlapping 

contributions and that multivariate approach is absolutely necessary to study complex samples of 

biological origin. 
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Chapter III. 

Identification of Molecular Basis for Objective 

Discrimination of Breast Cancer Cells (MCF-7) from 

Normal Human Mammary Epithelial Cells  

by Raman Microspectroscopy and Multivariate 

Curve Resolution Analysis 
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III - i Introduction 

Despite advances in prognosis and treatment, cancer incidence and mortality are rapidly 

increasing around the world. According to the estimates by the International Agency for Research on 

Cancer in 2018, there were about 18.1 million new cases and 9.6 million cancer deaths. Among women, 

breast cancer with 2.1 million cases and over 0.6 million deaths tops the chart (44). Breast cancer can 

be diagnosed through multiple tests including an X-ray mammogram, ultrasound imaging, magnetic 

resonance imaging, fine needle aspiration cytology, and tissue biopsy etc. Presently, histopathology 

remains to be a gold standard in breast cancer diagnosis and treatment. However, identification of 

molecular signatures using this invasive procedure is expensive, involves tedious sample preparation, 

is time consuming and sometimes leads to ambiguous results due to human interpretations. Thus, it 

has severe limitations especially during surgeries. Therefore, it is necessary to develop alternative 

methods that are low- or non-invasive and economical while achieving rapid diagnosis with high 

accuracy. 

Raman spectroscopy (RS), a powerful vibrational spectroscopic technique based on inelastic 

scattering of light, has been proposed to be a good alternative to overcome such difficulties. 

Advantages of RS are manifold: (1) non-invasive, i.e., suitability to in vivo applications, (2) no need 

for staining or genetic manipulation, (3) high sensitivity and specificity due to rich molecular 

information. Indeed, RS has been gaining much attention and has been successfully applied in disease 

prognosis and diagnosis (9, 45, 46), discriminate cells and tissues (47, 48), image living cells in a 

label-free manner (12, 49) and probe metabolic pathways (7). However, there are limitations to RS as 

well. First, traditional raster scanning methods employed in RS are extremely slow procedures, 

especially when considering the size of the tissues examined during histopathology. To solve this 

problem, researchers have proposed various methods, such as hand-held Raman probes for guided 

biopsy (50) and autofluorescence combined with selective Raman sampling (51), etc. Second, since 

RS measures molecular vibrations, different molecules containing similar chemical bonds show 

similar frequencies and, in most cases, it is not appropriate to simply use a single band for spectral 

interpretation. To make matters worse, Raman hyperspectral imaging results in a large volume of data 

with thousands of Raman spectra to handle. Therefore, we need to employ multivariate analyses (MA) 

for meaningful interpretation. To this end, a variety of multivariate analytical methods have been 

developed. Some of the most popular unsupervised multivariate classification methods applied to 

Raman spectroscopic data include singular value decomposition (SVD), principal components 

analysis (PCA), and cluster analysis, etc., which are suitable for exploratory analysis. On the other 

hand, if a priori information about the samples is available, supervised methods such as linear 

discriminant analysis (LDA), neural networks, and support vector machine (SVM) etc., are well suited 

to model the given Raman hyperspectral data and apply it to predict unknown samples. 

It is surprising to note that some of the early studies demonstrating the potential application 
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of RS to cancers was done by Manfait and co-workers as early as 1982 (52, 53). This was followed by 

several studies especially focusing on RS-based breast cancer diagnosis in the early nineties (54, 55). 

Due to technological advancements and the development of chemometrics in the last two decades, the 

volume of RS-based literature has kept growing rapidly. To put things into perspective, a simple ‘Topic’ 

search with a keyword ‘Raman AND Cancer’ in the Web of Science database returned ~5000 

documents. Even though application of RS has been proven to be successful under laboratory 

situations, it is important to understand that these MA results are subjective to many factors, including 

design of experiment and analysis, data pre-processing and overall quality of data. Therefore, 

experience of the person, instrument performance and acquisition parameters also play a crucial role. 

Owing to limitations in standardizing the whole procedure, universal adoption of RS in clinics has still 

not been achieved. Another major drawback is that none of the above-mentioned MA procedures 

discriminate/classify/predict based on inherent chemical information but strictly treat Raman 

spectroscopic data only mathematically. Therefore, to overcome these limitations, we employed an 

alternative approach called multivariate curve resolution-alternating least squares (MCR-ALS) in 

which pure chemical components and their abundances are extracted from Raman hyperspectral data 

to establish a molecular basis for reliable diagnosis. In this study, we identified for the first time that 

linoleate rich triglycerides serve as the marker for objective discrimination of MCF-7 and HMEpC 

cells in 632.8 nm excited chemometrics assisted Raman microspectroscopy. 

 

III - ii Material and methods 

Cell Culture 

MCF-7 malignant breast cancer cell line was cultured in DMEM low glucose without phenol 

red (Thermo Fisher Scientific, Tokyo, Japan) with added supplements (0.1 mM sodium pyruvate, 2 

mM L-Glutamine, 1% (v/v) antibiotics and 5% (v/v) fetal bovine serum). HMEpC primary cells 

obtained from normal mammary glands (Cell Applications, Inc., San Diego, CA, USA) as control were 

cultured in Human Mammary Epithelial Cell Media (TOYOBO Life Science, Osaka, Japan). Both 

MCF-7 and HMEpC cells were incubated at 37 °C and 5% CO2. Cells were sub-cultured at ~80% of 

cell confluence and Raman spectra were obtained from cells incubated for 3 days after gently washing 

with PBS (-) on Poly-L-Lysine-coated glass bottom dish. 

Raman Microspectroscopy 

Raman spectra were measured using a homemade confocal Raman micro-spectrometer (38, 

56). An excitation part consists of He-Ne laser (632.8 nm) coupled to an inverted microscope (IX70, 

Olympus) with an oil immersion objective lens (100×, NA = 1.3) to focus the excitation laser on 

specific points of cultured cells. Stokes Raman scattered light was collected using the same objective 

lens in back scattering geometry using a long pass filter. To improve axial resolution, a confocal 

pinhole of 50 μm was used in collection path. A polychromator (Chromex, 250IS) dispersed the 
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scattered light and was detected with a CCD device (Princeton instruments, Spec-10) cooled at 

−120 °C with liquid nitrogen. To achieve optimal throughput while measuring the whole finger print 

region, we used a 600 g/mm grating and set the slit width of polychromator to 50 μm. All Raman 

measurements were done at room temperature (22 °C) and the laser power was set to 4 mW at the 

sample position. Raman spectra were obtained from 5 random points in each cell with an exposure of 

30 s/point. A total of 60 cells (30 cells for each kind) were measured and averaged. For lipid standards, 

several unsaturated fatty acids including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), 

arachidonic acid (AA), γ-linolenic acid (GLA), α-linolenic acid (ALA), linoleic acid (LA), oleic acid 

(OA), and palmitoleic acid (PMA) purchased from Tokyo Chemical Industry Co., Ltd, Tokyo, Japan. 

were measured under the same conditions. 

Data Analysis 

Data pre-processing such as dark light subtraction, cosmic ray removal, and data de-noising 

by SVD were performed by IGOR Pro (Wavemetrics, Portland, OR, USA). Generally, no Raman 

bands are expected in the so-called silent region between ~2800 cm–1–1800 cm–1. Therefore, a 

preliminary analysis of Raman spectra in the whole fingerprint region between ~1800 cm–1–370 cm–1 

was carried out. Since no significant Raman band was observed except for strong contribution from 

background, the fingerprint region between 739 ~ 1800 cm–1 was chosen for multivariate analysis. 

Discriminant Analysis 

The first PCA was performed on mean-centered data using NIPALS algorithm with random 

cross validation to extract principal components (PC). Using prior knowledge of principal components, 

an LDA model for two classes was constructed by including the first 4 PC scores assuming equal prior 

possibilities. Furthermore, to construct an SVM model, nu-SVM with linear kernel type was employed 

with 10-fold cross validation. PCA, LDA and SVM were performed using Unscrambler (Camo 

Analytics, Oslo, Norway). 

MCR-ALS 

Parameter k represents the number of spectral components and was set to 7 in this study 

based on SVD analysis (31). First, 7 SVD components were used as initial points for further analysis. 

To obtain sparser solutions, additional L1 penalty term (lasso regression) of α2 = 0.005 and L2 penalty 

term (ridge regression) of β2 = 0.005 were applied respectively. MCR-ALS was performed using a 

homemade program specifically developed for Raman spectroscopic applications using Python . 
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III - iii Results and discussion 

Univariate Analysis of Normal and MCF-7 Cells Gives Little Information for Objective 

Discrimination 

Average Raman spectra of 30 cells each of normal human mammary epithelial cells 

(HMEpC) and breast cancer cells (MCF-7) are presented in Figure 3-1A. Some of the prominent bands 

observed in both spectra such as 1657 cm–1 (amide Ⅰ/-C=C- str), 1446 cm–1 (CH2/CH3), 1300 cm–1 

(CH2 twisting), 1263 cm–1 (=C-H), and 1003 cm–1 (Phenyl alanine) indicate the contribution of 

proteins and lipids. Raman bands at 879 cm−1 and 786 cm−1 observed in cancer cells can be assigned 

to C-C stretch (protein, amino acid hydroxyproline and lipids) and O-P-O symmetric stretch (nucleic 

acids), respectively (4, 57). Since simple comparison only suggests general variation in proteins and 

nucleic acids, we integrated intensities of important Raman bands, calculated ratios of various 

biomacromolecules for each cell, and their averages along with standard deviations (S.D.) were used 

to identify markers for discrimination as shown in Figure 3-1B. Some ratios such as nucleic acid/lipid 

(Figure 3-1B(c)), protein/lipid (Figure 3-1B(d)) and C-C str/lipid (Figure 3-1B(e)) show significant 

differences between normal and cancer cells. However, it is important to note that these are calculated 

by univariate approach (using one representative band/species) and it is impossible to avoid band 

overlaps from other components in the same region. For example, band around ~1440 cm–1 has been 

traditionally used as a lipid marker but it originally represents CH2 and CH3 vibrations, which 

inevitably contains contributions from most other biomolecules. Therefore, instead of single band 

analysis, there is a need for multivariate methods that consider the whole spectrum for reliable 

diagnosis.  
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Application of Multivariate Statistical Methods to Discriminate Cancer Cells 

To develop Raman spectroscopy as a diagnostic tool, it is imperative to detect subtle 

biochemical changes in disease conditions by employing multivariate statistics. In order to identify 

spectral differences and discriminate normal/cancer cells, we averaged only those spectra obtained 

from five different points in a cell and retained Raman spectrum representative of each individual cell 

for further analysis (60 spectra in total). 

 

Principal Components Analysis 

PCA essentially reduces the dimensionality of hyperspectral data to a few principal 

components (PC) without losing much information. Indeed, it is one of the oldest and widely used 

multivariate methods in data analysis and has previously been applied to Raman spectroscopic data 

from cancer cells and tissues. Results of PCA showed a good degree of classification of the two groups 

of cells. PCA identified 7 PCs. The first four components that contribute 88% are presented in Figure 

3-2. PC scores indicate PC1 to be the main contributor (64%) as it essentially can classify efficiently 

when taken with any of the next three PCs (Figure 3-2B). A closer look into loadings (Figure 3-2A) 

reveals that PC1 spectrum is dominated by bands of lipid origin such as 1657 cm–1, 1440 cm–1, 1300 

cm–1, and 1263 cm–1. In addition to these bands in PC1, PC2 showed markers of protein (1003 cm–1) 

Figure 3-1. Comparison of average Raman spectra of MCF-7 and HMEpC. (A) Averaged Raman 

spectra (S.D.) obtained from 30 cells of (a) HMEpC and (b) MCF-7, respectively. The consistent 
band positions were shown with broken lines and significant differences were highlighted by shaded 
bars. (B) Biomolecular ratios of (c) nucleic acid/lipid, (d) protein/lipid, (e) C–C str/lipid (chain 
lengths) and (f) =C–H/lipid (unsaturation). 
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and nucleic acids (782 cm–1 and 1576 cm–1). Nucleic acid marker band at 1576 cm–1, which was not 

clearly observed in the average spectra, can be seen in PCA. Although PC loadings may provide 

molecular information to some degree, it is important to note that all of them show both positive and 

negative features. Moreover, most of the bands are mixed and are observed in multiple loadings, 

making it wrong to interpret the data in a physically meaningful way. 

 

Linear Discriminant Analysis 

In order to further the analysis, we used PC classifiers and constructed a discrimination 

model based on LDA. The discrimination plot of LDA presented in Figure 3-3 shows good separation 

of normal and cancer cells. Results are tabulated in a confusion matrix in Table 3-1. Constructed model 

achieved 98% discrimination accuracy with 96% sensitivity and 100% specificity. 

 

 

 

Figure 3-2. Results of principal components analysis (PCA) analysis. (A) First 4 principal components (PC) 

loadings, PC1 (64 %), PC2 (17%), PC3 (8%), and PC4 (4%). Broken lines show same band positions 

regardless of positive or negative tendency. (B) Scores plots of (a) PC2, (b) PC3 and (c) PC4 vs. PC1, 

respectively. Broken lines are drawn as visual guides to discriminate HMEpC and MCF-7. 
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Table 3-1. Confusion matrix of linear discriminant analysis (LDA) 

  Actual 

P
re

d
ic

te
d

  HMEpC MCF-7 

HMEpC 30 1 

MCF-7 0 29 

 

Support Vector Machine Analysis 

Unlike LDA in which data are expected to be normally distributed, SVM makes no 

assumptions to the data and has gained much popularity among machine learning methods. To further 

test the applicability of other supervised learning model, we employed the SVM algorithm and the 

resultant confusion matrix is given in Table 3-2. Indeed, the constructed SVM model with linear 

classification and 10-fold cross validation could achieve superior discrimination with training 

accuracy of 100% and validation accuracy of 98%, as shown in Table 3-2. 

 

 

 

 

 

      
      

 
 
  
 

     

Figure 3-3. LDA Discrimination Plot. Linear discrimination score of normal HMEpC and breast cancer 

MCF-7 cells are plotted by blue boxes and red circles, respectively. 
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Table 3-2. Confusion matrix of SVM. 

Actual 

P
re

d
ic

te
d

 

 HMEpC MCF-7 

HMEpC 30 0 

MCF-7 0 30 

 

Multivariate Curve Resolution Analysis 

In order to understand molecular level differences and to establish a reasonable basis for 

successful discrimination by statistical methods such as LDA or SVM, we performed exploratory 

MCR-ALS analysis to obtain pure chemical components. Extracted spectral profiles of 7 components 

from the MCR-ALS model are presented in Figure 3-4A. 

Unlike the results of PCA, these spectral profiles are meaningful as they correspond to pure 

molecular species or groups. Respective abundance profiles obtained from ‘H’ matrix of seven 

components MCR-ALS analysis, i.e., contribution of each component in single cells are shown in 

Figure 3-4B. Component 1 (Figure 3-4(A1)) with bands at 1003 cm–1, 1450 cm–1, and 1657 cm–1 with 

Figure 3-4. Seven components MCR-ALS analysis. (A)The extracted spectral components, (1) 
autofluorescence with protein [AF + P], (2) autofluorescence [AF], (3) nucleic acid with protein [N 
+ P], (4) Lipid 1, (5) Lipid 2, (6) Lipid 3 and (7) Protein [P]. (B) Abundance profiles of (a) N + P, 
(b-d) lipid 1-3 and (e) protein, respectively. Broken line in B separates HMEpC and MCF-7 cells. 
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broad background can be assigned to that part of autofluorescence which coexists with some proteins 

while component 2 (Figure 3-4(A2)) to com-monly observed autofluorescence background in Raman 

spectra of biological samples under this excitation conditions. Component 3 (Figure 3-4(A3)) 

containing bands typical to that of proteins at 879 cm–1, 1003 cm–1, 1657 cm–1 and nucleic acids at 786 

cm–1 and 1576 cm–1 could be assigned to ‘nucleic acid + protein’ (denoted as ‘N + P’) that coexist 

together. Its abundance profile (Figure 3-4(Ba)) suggests slightly higher concentration in MCF-7 cells. 

Interestingly, components 4–6, which seem spectrally similar, were separated as independent 

components. Bands at 1263 cm–1, 1300 cm–1, 1440 cm–1, and 1657 cm–1 indicate that these are lipids 

and hence named as ‘Lipid 1′ (Figure 3-4(A4)), ‘Lipid 2′ (Figure 3-4(A5)), and ‘Lipid 3′ (Figure 3-

4(A6)). Their abundance profiles indicate ‘Lipid 1′ (Figure 3-4(Bb)) to be lower in MCF-7 compared 

to HMEpC cells whereas no significant difference can be observed in other two lipids (Figure 3-

4(Bc,d)). Finally, component 7 (Figure 3-4(A7)) can be assigned to ‘proteins’ (denoted as ‘P’) alone, 

based on the spectral profile with no significant difference in their abundance. 

Even though we get concentration information from MCR-ALS analysis, it should not be 

compared directly as it is not an absolute quantity. Therefore, it is safe to calculate average relative 

abundance of extracted components to understand meaningful trends. Figure 3-5A shows relative 

concentrations along with their standard error of three separated lipid components to ‘N + P’ (Figure 

3-5(Aa–c)), to ‘P’ (Figure 3-5(Ad–f)) and to other lipids (Figure 3-5(Ag–i)). Of all nine ratios, four of 

them; ‘Lipid 1′ to’ N + P’ or ‘P’ (Figure 3-5(Aa–d)) and ‘Lipid 3′ to ‘N + P’ or ‘P’ (Figure 3-5(Ac–f)) 

seem to have statistically significant differences. Further to perform objective discrimination based on 

obtained pure molecular information, we constructed scatter plots to visualize all nine combinations 

in a similar fashion (Figure 3-5B). Although several of them seem to show a fair degree of separation 

(as indicated by broken lines in Figure 3-5(Bj,m,p and q)), considering statistical averages, we could 

conclude that ratios involving ‘Lipid 1′ to other biomacromolecules such as nucleic acids and proteins 

serve as reliable “Raman spectral marker” for discriminating cancer from normal cells. Moreover, it 

is important to note that though scatter plots show lower discrimination than some of the other 

chemometric methods, this disadvantage is overcome by the advantage of the physically meaningful 

spectra. 
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Figure 3-5. Discrimination analysis by MCR-ALS. (A) Relative abundance of MCR-ALS extracted components, 

(a) Lipid 1/ (N + P), (b) Lipid 2/ (N + P), (c) Lipid 3/ (N + P), (d) Lipid 1/P, (e) Lipid 2/P, (f) Lipid 3/P, (g) Lipid 

1/Lipid 2, (h) Lipid 1/Lipid 3, (i) Lipid 2/Lipid 3. N + P: nucleic acid with protein, P: protein. Error bars are 

standard error of mean. p values obtained by t-test were denoted on top of histograms. (B) Scatter plots of each 

logarithmic abundance, (j) Lipid 1 vs. (N + P), (k) Lipid 2 vs. (N + P), (l) Lipid 3 vs. (N + P), (m) Lipid 1 vs. P, 

(n) Lipid 2 vs. P, (o) Lipid 3 vs. P, (p) Lipid 1 vs. Lipid 2, (q) Lipid 1 vs. Lipid 3, (r) Lipid 3 vs. Lipid 2. Some 

labels of measured cells were omitted in those plots since the values of abundance were calculated into zero by 

MCR-ALS. Broken lines serve as visual guides to separate two groups of cells.  
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Molecular Assignment of MCR-ALS Extracted Lipid Components 

 Now that we have identified sensitive lipid spectral markers, it is necessary to assign 

these components at the molecular level to develop an objective method to discriminate cancer cells 

from normal ones. To begin with, all three lipid components (Figure 3-4A(4,5,6)) show bands at 1657 

cm–1 and 1263 cm–1 corresponding to -C=C- stretching and =C-H modes, respectively. Therefore, we 

can safely say that none of the three components are saturated lipids. In order to screen for potential 

candidates, we measured a series of standard fatty acids from palmitoleic acid with unsaturation index 

of 1 to docosahexaenoic acid with 6 double bonds to cover a wide range of polyunsaturated fatty acids 

(PUFA) as given in Figure 3-6A. 

 For further comparison of fatty acid standards, we normalized these spectra with band 

area of 1445 cm–1. We can observe that intensity of 1658 cm–1 greatly increases with an increasing 

number of double bonds. In fact, it is well known that Raman intensity of C=C stretching mode is 

directly proportional to the number of double bonds in the molecule. Therefore, it is rather 

straightforward to construct a calibration model to predict the unsaturation index from measured 

Raman spectra by calculating Raman intensity at 1658 cm–1 (C=C stretching vibration) to that at 1445 

Figure 3-6. Molecular level assignment of Raman spectral marker. (A) Standard Raman spectra of various unsaturated fatty 

acids normalized using 1445 cm–1 band; (a) docosahexaenoic acid(DHA), (b) eicosapentaenoic acid (EPA), (c) arachidonic 

acid (AA), (d) γ-linolenic acid (GLA), (e) α-linolenic acid (ALA) (f) linoleic acid (LA), (g) oleic acid (OA) and (h) 

palmitoleic acid (PMA). (B) Unsaturation index plot. Relative intensity ratio of C=C/CH2 vs. number of C=C bonds in 

standard unsaturated fatty acids. Relative intensities obtained from three lipids on MCR-ALS components are also plotted 

and denoted in color. (C) Comparison of standard (i) LA, (j) Trilinolein (TLA) and (k) Lipid 1 extracted by MCR-ALS. 
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cm–1 (CH2 deformation), i.e., 1658/1445 (4). Indeed, a linear relationship is observed when a ratio of 

1658/1445 is plotted against number of double bonds in chemical structure of fatty acids as shown in 

Figure 3-6B. To predict the molecular structure of MCR-ALS extracted lipid components, we 

estimated the ratio of 1658/1440 in a similar fashion and compared with the constructed model as 

marked in Figure 3-6B. We could therefore assign ‘Lipid 1’ to di-unsaturated fatty acid (linoleic acid, 

LA) whereas ‘Lipid 2’ and ‘Lipid 3’ could be assigned to mono-unsaturated fats. It is important to note 

that ‘Lipid 1’ contains a Raman band at 1745 cm–1 corresponding to C=O stretch of esters. Since the 

focus is to mainly identify ‘Lipid 1’ in an unambiguous manner, we further measured trilinoleic acid 

(TLA), a triglyceride (TG) with three linoleic acid groups. A comparison reveals a perfect match 

between TLA (Figure 3-6C(j)) and ‘Lipid 1’ (Figure 3-6C(k)) as opposed to simple LA (Figure 3-

6C(i)), in which 1745 cm−1 band is not observed as shown in Figure 3-6C. Therefore, we believe the 

relative content of TGs with high LA content is the main factor that helped to discriminate normal 

(HMEpC) and cancer (MCF-7) cells. Although ‘Lipid 2’ and ‘Lipid 3’ have been identified as mono-

unsaturated fats, further unambiguous assignment to the likes of Oleic acid (18:1) or palmitoleic acid 

(16:1) could not be achieved in this study. 

 The choice of breast cancer cell line for this work (MCF-7) was established from 

invasive ductal carcinoma (IDC) of a Caucasian patient and the cells are known to be estrogen (ER) 

and progesterone receptor (PgR)-positive. It is important to note that ER and PgR-positive IDC is the 

most common subtype accounting for >70% of breast cancers (58). Therefore, analysis of such a 

cancer cell line adds meaningful value to understanding Raman spectral markers. Indeed, many 

researchers have used MA such as PCA, LDA, and SVM for RS data of cancers for a long time and 

reported marked differences in proteins and fat profiles in general, which corroborates well with this 

study (59-63). Although these methods discriminated cancers well, as can also be seen from our own 

data, they do not give insights into the chemical changes responsible for diagnosis, thereby making it 

difficult to be translated to clinics. To overcome this, Haka et al. developed a method to model tissue 

spectra as linear combinations of known components and succeeded in discriminating cancers with 

some chemical information. Indeed, they showed that relatively low abundance of fats could be used 

as an indicator to distinguish breast cancer tissues (50, 64). However, such analysis has several 

assumptions and may overlook underlying pathology. Other researchers also reported decreased 

overall lipid content in human breast cell/biopsy samples compared to normal breast cells/tissues using 

RS but without molecular level information (54, 55, 65-67). Our results specifically showed that 

relative abundance of linoleate-rich glyceride to other biomacromolecules, such as nucleic acids and 

proteins, to be the major difference and possibly the reason for successful discrimination of breast 

cancer cells from normal epithelial cells. Interestingly, a previous attempt by Sixian et al. could not 

find strong correlation with PUFA and protein by Raman spectroscopy (68). We believe it was because 

they calculated the ratio considering all fats as a single entity. It is important to note from this study 
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that, although there are three groups of unsaturated fatty acids, only a linoleate-rich component could 

serve a reliable discrimination index. 

Alterations in lipid metabolism have been shown to play a critical role in development, 

promotion, and maintenance of cancers (69, 70). Therefore, reprogramming of lipid metabolism is 

being considered a hallmark of malignancy and can be used as a novel target for anti-cancer strategy 

(71, 72). In particular, the role of unsaturated fatty acids including LA is of great importance as it is 

used for synthesizing arachidonic acid (AA). For example, cyclooxygenase (COX) enzymes convert 

AA to bioactive lipids such as prostaglandins (PG), which play key roles in adhesive, migratory, and 

invasive behavior of cells during development and progression of breast and other cancers (73-75). 

Therefore, we suspect from our results that a certain amount of AA could have been used up for the 

synthesis of PG, thereby depleting LA-rich TG in MCF-7 cells. 

From the nature of the analysis used in this study, one might expect that several protein 

and/or saccharide components should also have been extracted. However, it is important to understand 

the limitations involved. Since we use spontaneous Raman microspectroscopy, one of the main 

limitations in detecting several more biomolecular components is their local intracellular 

concentrations. Limitation to resolve multiple components arises from the inherent nature of MCR-

ALS with applied penalties (L1- and L2-norms). It is not possible to unmix two spectral components 

if there is no difference in their intracellular distribution pattern. Essentially, such components are 

treated as a single component. Considering the above limitations, it is understandable as to why weak 

or minor molecular components such as saccharides could not be detected/separated in this study. 

 

III - iv Summary 

 In this study, we tried to address the age-old problem of efficiently extracting hidden 

information from chemically rich Raman hyperspectral data. In addition to demonstrating the utility 

of discrimination analysis such as LDA and SVM, we developed and employed MCR-ALS with non-

negative constraints to extract physically meaningful Raman spectra using mammary epithelial cells 

and breast cancer cells as a model case. In a truly exploratory fashion, without a priori information, 

we obtained various biomolecular spectra including three individual lipid groups and successfully 

identified relative ratios of linoleate-rich glyceride as the Raman spectral marker and molecular basis 

for objective diagnosis of breast cancer. We would like to emphasize that this is the first report that 

discusses cancer pathology in detail while discriminating breast cancer cells unambiguously using 

specific fatty acid content in chemometrics-assisted RS. However, further studies are necessary to 

determine whether the differences in linoleate-rich triglycerides can be directly related to cancer states. 

Although both cell lines used in this study are of epithelial source, it is important to understand that 

most tumors are like organs and have more than one type of cell. Therefore, while the model holds 

true to this breast cancer cell line with 633 nm excitation, it is imperative that we further test on large 
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numbers of other cell lines and with different excitations wavelengths as well to have general 

consensus. Once established, spectral markers identified in the present study being at the cellular level 

have the potential to be used as an adjunct or even an alternative to cytological diagnosis, especially 

because specimens for cytology have scattered cells in them that are appropriate for RS. Moreover, 

RS can be performed on any biological sample including cells, tissues and body fluids etc. We believe 

such an approach when further developed can be adopted to real clinical applications for rapid yet 

objective diagnosis of certain types of cancers. 
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Chapter IV. 

General conclusion 
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In this thesis, Raman spectroscopy (RS) coupled with multivariate analysis, especially 

MCR-ALS was utilized to study in two biomedical systems. 

 

In a study described in Chapter Ⅱ, we succeeded in visualizing molecular-specific 

information in Euglena during wax ester fermentation by Raman micro-spectroscopy. It is obvious 

from our results that simple univariate approach is insufficient and that MCR-ALS is crucial to extract 

hidden information from Raman spectra. Even though we have not measured any mutants in this study, 

our approach is directly applicable to other systems and is expected to deepen the knowledge on lipid 

metabolism in microalgae, which eventually leads to new strategies that will help to enhance biofuel 

production efficiency in the future. 

In a study described in Chapter Ⅲ, we applied MCR-ALS in medical diagnosis to help 

understanding molecular basis. Human mammary epithelial cells (HMEpC) and breast cancer cells 

(MCF-7) were measured by RS and to estimate diagnostic accuracy by PC-LDA and SVM categorized 

supervised multivariate analysis (MA). While those MA gave fairly high accuracy, the molecular basis 

was still unclear. Furthermore, to elucidate the underlying molecular changes in cancer cells, MCR-

ALS was applied to extract physically meaningful spectra from complex cellular data. Relative 

abundance of linoleate rich lipid component seems to be strictly regulated between the two groups of 

cells. This study successfully identified Raman spectral markers and demonstrated the potential of RS 

to become an excellent cytodiagnostic tool that can both accurately and objectively discriminates 

breast cancer from normal cells. 

These results from two practical studies successfully show that Raman spectroscopy coupled 

with MCR-ALS is strong analytical tool to extract biomolecular information. Although this technique 

presently needs deep consideration of what is extracted, this problem will be solved combining such 

as standard Raman spectrum library and user-friendly interface in future. I believe Raman 

spectroscopy coupled with MCR-ALS technique probably endows researches opportunity for reading 

"molecular finger print" as it is. 
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Raman spectroscopic studies coupled with MCR-ALS applied on some biomedical systems 

 

Abstract 

 

Raman spectroscopy has been gaining attention as a valuable molecular characterization tool 

especially in the context of biological and medical research. Label-free molecular imaging and low 

invasiveness are some of the major beneficial points. Since biological and medical sample are mostly 

complex systems, utilization of Raman spectral data is restricted by only using classical univariate 

analytical methods. Multivariate curve resolution – alternating least square (MCR-ALS) is one kind 

of multivariate analysis to fully utilize Raman spectral information. This thesis consists of two 

practical applications of MCR-ALS to describe its usefulness and how to process entire analysis in 

biological and medical field.  

 

1) Visualizing wax ester fermentation in single Euglena gracilis cells by Raman 

microspectroscopy and multivariate curve resolution analysis 

Global demand for energy is on the rise at a time when limited natural resources are fast 

depleting. To address this issue, microalgal biofuels are being recommended as a renewable and eco-

friendly substitute for fossil fuels. Euglena gracilis is one such candidate that has received special 

interest due to their ability to synthesize wax esters that serve as precursors for production of drop-in 

jet fuel. However, to realize economic viability and achieve industrial-scale production, development 

of novel methods to characterize algal cells, evaluate its culture conditions, and construct appropriate 

genetically modified strains is necessary. Here, we report a Raman microspectroscopy-based method 

to visualize important metabolites such as paramylon and ester during wax ester fermentation in single 

Euglena gracilis cells in a label-free manner. 

We measured Raman spectra to obtain intracellular biomolecular information in Euglena 

under anaerobic condition. First, by univariate approach, we identified Raman markers corresponding 

to paramylon/esters and constructed their time-lapse chemical images. However, univariate analysis 

is severely limited in its ability to obtain detailed information as several molecules can contribute to a 

Raman band. Therefore, we further employed multivariate curve resolution analysis to obtain chain 

length-specific information and their abundance images of the produced esters. Accumulated esters in 

Euglena were particularly identified to be myristyl myristate (C28), a wax ester candidate suitable to 

prepare drop-in jet fuel. Interestingly, we found accumulation of two different forms of myristyl 

myristate for the first time in Euglena through our exploratory multivariate analysis. 

2)  Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells 

(MCF-7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and 

Multivariate Curve Resolution Analysis 
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 Raman spectroscopy (RS), a non-invasive and label-free method, has been suggested to 

improve accuracy of cytological and even histopathological diagnosis. To our knowledge, this novel 

technique tends to be employed without concrete knowledge of molecular changes in cells. Therefore, 

identification of Raman spectral markers for objective diagnosis is necessary for universal adoption 

of RS. As a model study, we investigated human mammary epithelial cells (HMEpC) and breast cancer 

cells (MCF-7) by RS and employed various multivariate analyses (MA) including principal 

components analysis (PCA), linear discriminant analysis (LDA), and support vector machine (SVM) 

to estimate diagnostic accuracy. Furthermore, to elucidate the underlying molecular changes in cancer 

cells, we utilized multivariate curve resolution analysis–alternating least squares (MCR-ALS) with 

non-negative constraints to extract physically meaningful spectra from complex cellular data. 

Unsupervised PCA and supervised MA, such as LDA and SVM, classified HMEpC and MCF-7 fairly 

well with high accuracy but without revealing molecular basis. Employing MCR-ALS analysis we 

identified five pure biomolecular spectra comprising DNA, proteins and three independent unsaturated 

lipid components. Relative abundance of one lipid component seems to be strictly regulated between 

the two groups of cells and could be the basis for excellent discrimination by chemometrics-assisted 

RS. It was unambiguously assigned to linoleate rich glyceride and therefore serves as a Raman spectral 

marker for reliable diagnosis. This study successfully identified Raman spectral markers and 

demonstrated the potential of RS to become an excellent cytodiagnostic tool that can both accurately 

and objectively discriminates breast cancer from normal cells.  

 

These results from two practical studies successfully show that Raman spectroscopy coupled 

with MCR-ALS is strong analytical tool to extract biomolecular information. Although this technique 

presently needs deep consideration of what is extracted, this problem will be solved combining such 

as standard Raman spectrum library and user-friendly interface in future. I believe Raman 

spectroscopy coupled with MCR-ALS technique probably endows researches opportunity for reading 

"molecular finger print" as it is. 
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MCR-ALS 法を組み合わせたラマン分光法による医・生物学的応用研究 

 

摘要 

 

ラマン分光法は、生物学的および医学的研究を研究するためのツールとして注目

をあつめている。ラベルフリー分子イメージングが可能なことと、低侵襲性で非破壊な分子

分析が可能であることが主な理由である。生物試料には多数の分子が存在するため、従来の

単変量分析のみを用いたラマンスペクトルの解析は分子情報のすべてを活かすことができ

ない。交互最小二乗多変量曲線分解(MCR-ALS) は、ラマンスペクトルに含まれる分子の情

報を純粋なラマンスペクトル成分に分解して、半定量的に評価できる多変量解析であるが、

医・生物学分野における適用例はまだ多くない。本研究は、医・生物学分野において MCR-

ALS を適用した 2 つの実践的な研究についてその研究成果を示すとともに、ラマン分光法

と MCR-ALS を組み合わせた手法の有用性を示すことを目的とした。本論文は、次の 2 章か

ら成る。 

 

１）顕微ラマン分光法と多変量曲線分解を用いたユーグレナのワックスエステル発酵の可

視化 

 世界のエネルギー需要が増加する一方で、化石燃料の急速な枯渇が問題となっ

ている。微細藻類バイオ燃料は、化石燃料の代替品として注目を集めており、そのうち

Euglena gracilis は、ワックスエステルの一種であるミリスチン酸ミリスチル(C28)を多く蓄

積する。このワックスエステルはジェット燃料に利用可能なドロップイン燃料の原料とし

て期待されている。産業規模の生産を実現するには、高効率でワックスエステルを生産する

ような遺伝子組換え株をスクリーニングしたり、培養条件を評価したりする手法が必要で

ある。そこで、本研究では、顕微ラマン分光法を用いてワックスエステル発酵に関わる代謝

物を視覚化する方法を示した。 

ユーグレナは好気性の条件でワックスエステル発酵の前駆物資であるパラミロン

を蓄積し、嫌気性の条件でミリスチン酸ミリスチル(C28)を多く蓄積することが知られてい

る。好気性条件下で培養したユーグレナを嫌気的条件に移し、パラミロンがミリスチン酸ミ

リスチルに代謝されていく過程の分子イメージングを試みた。まず、パラミロン/ワックス

エステルに対応するラマンマーカーバンドを決定し、ラマンイメージングを構築した。しか

し、この単変量解析では、複数の分子がラマンバンドに寄与する可能性があるため、正確な

可視化ができているとは言えなかった。そこで、多変量曲線分解(MCR-ALS)を用いたとこ

ろ、ミリスチン酸ミリスチル (C28) の鎖長特異的なラマンスペクトル成分が得られ、正確

な分子イメージングが可能となった。また、ミリスチン酸ミリスチルの標準ラマンスペクト

ルが異なる 2 種類存在し、同一のラマンスペクトル成分がユーグレナでも得られることを

明らかにした。単変量解析ではこの 2 種類のラマンスペクトルを反映したイメージングを
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得ることはできないため、MCR-ALS 解析を適用する重要性も同時に示すことができた。 

 

2) 顕微ラマン分光法および多変量曲線分解による正常ヒト乳腺上皮細胞と乳癌細胞 

(MCF-7) の客観的識別のための分子認識 

非侵襲、ラベルフリーで分子認識が可能なラマン分光法は、細胞学的および組織病

理学的診断の精度向上をもたらすことが期待されている。しかし、ラマン分光法を用いた医

療診断に関する研究報告では、機械学習を適用することで高い診断精度を示す一方で、多く

の例では細胞内の分子変化に関する具体的な理解を伴っていない傾向がある。ラマン分光

法を用いた診断は、現在は臨床で用いられている段階ではなく、将来において普遍的に利用

されるためには、分子情報に基づいた客観的な診断ができることを示す必要がある。そこで

本研究では、ヒト乳上皮細胞 (HMEpC) および乳がん細胞 (MCF-7) を細胞診モデルとして

測定し、ラマンスペクトルマーカーの探索をおこなった。診断精度の算出のために、主成分

分析 (PCA)、線形判別分析 (LDA)、およびサポートベクトルマシン（SVM）などの、様々

な多変量分析を行った。教師あり学習である LDA と SVM によって、HMEpC と MCF-7 は

正確に分類されたが、PCA では両者の識別を可能にする分子に基づいた情報は不明瞭なま

まであった。 

そこで、がん細胞の分子変化を解明するために、MCR-ALS を用いて、物理的に意

味のあるラマンスペクトル成分の抽出を試みた。結果として、DNA、タンパク質、3 つの独

立した不飽和脂質成分を含む 5 つの純粋な生体関連分子ラマンスペクトルが抽出された。

また、これらの成分の半定量的な比較によって、3 つの不飽和脂質のうちリノール酸に帰属

された脂質の相対的量が、SVM や LDA が示した高い診断精度の分子学的基礎である可能

性が示唆された。この研究は、乳がん診断におけるラマンスペクトルマーカーの同定に成功

し、ラマン分光法が診断技術としてがん細胞と正常細胞を正確かつ客観的に区別できる優

れた手法となる可能性を示した。 

 これら２つの実践的研究の結果は、ラマン分光法と MCR-ALS による解析が、

生体分子情報を抽出するための強力な分析手法であることを示した。現状では、抽出された

ラマンスペクトルの特徴から特定分子への帰属は深く考察する必要がある。標準ラマンス

ペクトルライブラリの構築やそれを参照するユーザーフレンドリーなインターフェイスと

組み合わせることで、様々な分野の研究者が「分子の指紋」をそのまま読み解く事が可能に

なる。 
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