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Chapter I.

General Introduction



I-i Theoretical Background of Raman spectroscopy

Raman effect is one of light scattering effects which was reported first by C. V. Raman on
1928 (1). When a light with a particular wavelength such as laser light is irradiated on to a substance,
several processes can happen (absorption, scattering etc.). Raman scattering is an inelastic scattering
process in which the irradiated light either loses or gains energy as a result of interaction with the
molecule. Wavelengths of such Raman scattered photons will be shifted from the irradiated light. This
shift is related to the energy of electronic, vibrational and rotational states. Among them, the study of
Raman effect for vibrational modes is most popular for both ease to measure and interests to recognize
structure of targeting molecule based on its molecular vibration. Thus vibrational Raman spectroscopy
can be grouped with infrared absorbance spectroscopy (a complementary technique which also probes
molecular vibrations!) as vibrational spectroscopy. Figure 1-1 illustrates Raman scattering with other

interaction together.
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Figure 1-1. Energy level of several interactions of light between substance. Fluorescence (FL), Infrared

absorption (IR), Rayleigh scattering (R), anti-Stokes Raman scattering (A) and Stokes Raman scattering (S).

Raman scattering can occur in two manners, the Stokes and anti-Stokes scattering. The
Energy of light and vibrational excitation states in a molecule is related in the figure 1-1. Here, 7
(Dirac's constant, 4/2m) is called as the reduced plank constant and the character ® is the anguler
frequency of light. Then energy of the light is explained as E = Aw. Each subscript i and r with ©
appearing in the figure indicates the irradiated light and Raman scattering light, respectively. In the
Stokes site (Figure 1-1. S), the molecule at vibrationally ground state (v = 0) is excited by the incident
radiation (%w;) virtually (middle in electronic between vibrational state) results in the scattered light
with loss of energy with % (o; — ®r), which corresponds to the energy difference from the excited to

ground state (fws). On the other hand, when the molecule at vibrationally excited state (v = 1) is



excited by the incident radiation (fic;), the scattered light gains energy as much as /o, with transition
of the originally vibrational excited state (v = 1) to the ground one (v = 0). Practically, Stokes and anti-
Stokes scattering of the light take place simultaneously, because a lot of molecules in the system are
distributed in different vibrational states at v = 0, 1, 2.. with the population ratio determined by the
rule of Boltzmann distribution. However, depending on the fact that much larger population of ground
state than excited state in the sample, the number of photons by Stokes scattering manner is much
larger than that of anti-Stokes manner. Therefore, in most cases, the Stokes site is detected for
molecular study purpose usually.

Generally speaking, the Stokes Raman scattering is called as Raman Spectrum, and the
scattered light can be realized as a phenomenon in which several interactions with light and molecular
vibrational modes results in generating photons with shifted longer wavelength (loss of frequency as
well as energy) than the excitation light. In order to make sure how much shifted, a Laser light is used
as an excitation light source. The photons are dispersed into certain range of wavelength by a
spectrophotometer. Customary, the horizontal axis of a Raman spectrum is called “Raman shift” as
an energy difference from that of the excited light. The unit for it is usually written as a reciprocal
wavelength expressed in cm (wavenumber, cm™!). The Wavenumber is common for infrared absorption
spectroscopy (IR) as Figure 1-1 shows same energy transition to Raman scattering. Raman shift is
comparable measure for Raman spectra frequently measured in different excitation laser sources.

Figure 1-2 shows an example of Raman spectrum of adenine in an aqueous solution
measured by 632. 8 nm excitation. When the Raman spectrum is measured for even pure molecule,
there might be some bands (called as Raman bands) each of them reflecting certain vibration modes

in the molecule.
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Figure 1-2. An example of Raman spectrum of adenine sulfate (5 mg/ml) in 0.5 M HCI aq. solution.
The excitation wavelength was 632. 8 nm and Laser power at sample was 2 mW. Exposure time was

300 sec and 5 times average to acquire this Raman spectrum.

Raman cross section is an optical property unique to every molecular species. Simply
speaking, a molecule with higher polarizability tends to give stronger Raman scattering light. When
we apply Raman spectroscopy to some biological system, the relatively low polarizability of water is
a strong benefit because the relatively weak Raman scattering causes little influence for measuring
such samples, in solution, tissues, cells, etc. This aspect may be one of stronger points of Raman
spectroscopy than FT-IR spectroscopy, in which the overwhelmingly strong water absorption bands
frequently hinders the measurement of weaker sample bands. We have to think about the hinderance
of strong auto-fluorescence light. It frequently occurs simultaneously to Raman scattering (Figure 1-
1. FL) and causes a serious difficulty in measuring much weaker Raman bands. Theoretically speaking,

the relative intensity of fluorescence light is 10* to 10® stronger than Raman scattered light.

I-ii Overview on Raman spectra of typical biomolecules

Raman spectrum is unique to each molecule and gives characteristic pattern, which is called
as “molecular finger print”. This pattern is originated by the combination of molecular vibrational
modes. The assignment of each band in a Raman spectrum assignable to certain vibrational mode is
very important for understand the molecular structure and molecular environments. Representative
biomolecules such as protein, nucleic acids, saccharides, lipids and pigments are deeply and repeatedly
investigated by both experimental observations and theoretical calculations.

The relationship between the structure of proteins and Raman spectra are well studied. For

example, a sharp and strong band observed in Raman spectra of proteins is due to the side chain of
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Phenylalanine (Phe). This band is assigned to so called breathing mode of benzene ring (mode vi),
often used as a protein marker band. This band is frequently used as standard Raman band for a protein
by the clear visibility; it is observed very clearly in most protein samples and frequently is
distinguished for the sample with strong auto-fluorescence. Phe gives relatively weak Raman bands
also, at 1203, 1032 and 624 cm™ due to different vibrational modes. Raman spectra due to the
secondary structures of protein or peptide are well studied. Vibrational modes assignable to peptide
bond are called as amide A, 1, 11, 111, V, IV, VI and VII. They can be observed in Raman and infrared
spectra and used as a measure to estimate the secondary structure of proteins and peptides. Amide |
(C=0 stretching and NH bending around 1660 cm?) and III (C=N stretching + HN bending around
1250 cm™) are Raman active, it is known that the wavenumber shift of these two bands would be
found depending on secondary structure such as a-helix, B-sheets, random coils and turns (2, 3).

In the lipid, C—H stretching vibration from CH, and CH3 appeared at around 2800 cm™*
called CH region, and CH, bending mode is observed at around 1444 cm (4) that are often dealt as
marker of total lipid abundance. Unsaturated fatty acids or their triglyceride gave C=C stretching mode
around 1650 cmL. Ester bond around 1750 cm is also picked up as triglyceride marker. In addition,
CH, twisting around 1300 cm, =C—H deformation around 1260 ¢cm and adjacent three C—C
stretching mode around 1100 cm™ are used for detail discussion related index of unsaturation.

These spectral features depend on the phase of the matter (liquid/solid state) and
molecular surroundings (water solution/organic solvent etc.). Therefore, it is especially necessary to
be aware of such effects during the experiment involving biological and medical applications and
make comparisons with appropriate molecular standards. It is important to understand that most of the
basic studies for the assignment of Raman bands of biomolecules were done in pure molecular systems,
while the actual biological or medical samples are usually complex systems containing mixtures of
biomolecules. Here, the problem is that superposition (or overlapping) of some Raman bands derived
from different molecules. Picking up one case to explain about the problem with lipid and protein, the
superposition of Amide I and C=C stretching mode around 1650 cm™ make discussions difficult. To
solve this problem, exploration of Raman marker band is important by eliminating possibility of such

superposition in the interested system.

I -iii Application of Raman spectroscopy for biological and medical researches

No necessity of special sample preparation and low invasiveness are benefits to use
Raman spectroscopy for biological and medical applications. Combination of microscopy with Raman
spectroscopy (called Raman micro-spectroscopy) gives label-free molecular imaging. Since the report
of Raman spectrum measurement of a single cell (5) and the report of Raman imaging of the division
process of fission yeast (6), many studies have been conducted by Raman micro-spectroscopy to study

biological and medical interests and problems. When it is desired to qualitatively compare
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experimental conditions different samples, mean Raman spectrum is compared and the difference
spectrum is taken to see the possibility of such as band shift and relative intensity ratio in many cases.
Moreover, since the Raman scattering intensity is proportional to the sample concentration, a semi-
quantitative analysis method can be performed by searching for a marker band of the target molecule.
In addition, if the sample is measured by scanning in 2D plane or 3D space, semi-quantitative analysis
and distribution analysis can be performed simultaneously by imaging (7). As a basic analysis method,
the area of the target marker band is calculated by Gaussian fitting or the sum of the differences
between the baseline and the peak intensity (8), and the area is treated as a variable, which is called
univariate analysis.

As mentioned in the previous section, there are various vibration modes even in a single
molecule, and there are numerous molecules in the biomolecular samples, so the contribution of
unknown molecules cannot be denied. Therefore, quantitative interpretation of Raman spectrum
measurement requires a deep understanding of the molecular species presumed in the sample and their
standard Raman spectrum. In addition, many of the possible variables measured with great effort are
wasted in univariate analysis when it is wanted to applied classification and regression. In order to
solve these problems, multivariate analysis has been performed in the last 2 decades in the application

of Raman spectroscopy for biological and medical samples.

l-iv Multivariate Analysis

In multivariate analysis, there are mainly two categories: multivariate classification (MC)
and multivariate regression (MR). MC tries to finds patterns in the given data and helps in
simplification by compressing or grouping the data. It can be further divided into either unsupervised
or supervised learning. Unsupervised MC methods [e.g., singular value decomposition (SVD),
principal components analysis (PCA), cluster analysis, independent component analysis, multivariate
curve resolution-alternating least squares (MCR-ALS) analysis, etc.] are exploratory in nature and
needs no a priori information (9). Especially, PCA is one of the most common technique to reduce
dimension (number of variable) to understand data structure. In contrast, supervised MC methods (e.g.,
linear discriminant analysis (LDA), multiple linear regression, partial least squares discriminant
analysis, support vector machines (SVM), neural networks (NN), etc.) requires a priori knowledge,
such as class labels identifying the sample group. These methods make classification model and are
applied to unknown samples for purposes such as diagnosis of disease and classification of certain
type of cells etc. MR analyses such as linear regression, principal component regression, partial least
squares regression, etc. model the data by training from given data sets with known variables such as
concentration in order to estimate relationships among the variables. It will eventually be applied to
predict the unknown once a model is developed with sufficient accuracy (9). Combination of these

analysis is also common. For example, PCA (unsupervised) followed by LDA (supervised) is called
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PC-LDA. Since LDA requires smaller variable than sample population, PCA is applied to reduce
dimension while keep original data information as much as possible.

In this section, SVD, PCA and MCR-ALS have been explained in detail as they have been
employed extensively in this thesis (Chapter I and III). To apply multivariate analysis, Raman spectral
data is recognized as vector and matrix. A single spectrum is recognized as m-dimensional column
vector x.

xt= (X1 X2, ..., Xm-1, Xm)
Here, n is number of points per spectrum that is usually within the number of channels in a detector.
Since we disperse Raman scattered light using a grating, each channel receives light of different
wavelength. They convert incoming photons into electron charges to eventually obtain a Raman
spectrum. Here, n channels with corresponding wavenumbers forms the horizontal axis (Raman shift).
When there are m number of spectra arranged in a 2D data matrix X (n x m), the expression of the

equation is the following:

X11 X120 Xym

X21 X2 -0 X
x=|"" am

Xn1 Xnz2 0 Xy

SVD

SVD is applied when one wants to know independent spectral components number and
to remove noise by using the results of matrix decomposition. SVD decompose matrix X as follows
(10):

X =UAV'+E (1)

Where U is matrix aligned eigenvector of XX". The A is a diagonal matrix of singular value, each
element has square root A, which is eigen value of AA". V is a matrix aligned eigenvector of X'X. E is
a residual matrix. When the singular values are plotted in descending order, number of significant
components and boundary between spectral and noise components can be identified. The difference
usually become small along to low order of singular values and eventually almost identical. We can
regard the point as boundary of spectral and noise components. This plot is also useful to estimate
number of components in MCR-ALS. Finally, de-noise is achieved by substituting singular value in

A into 0 only after the boundary and calculating X again by multiplication of U, substituted A, and V".

PCA

In the given data, PCA tries to find new ‘axis’, which make variance from the axis to original
variable maximum. The axis is called first principal components or loading vector. Once the first
principal component is determined, second principal components as well as third, fourth, ... are
determined to make variance maximum again under keeping a condition of orthogonality to previous

loading vector. Mathematically, a result of PCA decomposition is related to SVD and described as
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bilinear model by following (10):
X=TP'+E (2)

Where T is score, P and E are loading and residual matrix, respectively. The loading matrix P is derived
from using Eq (1).

AVE=P (3)
Then, T is a score matrix corresponding U in Eq (1).
To get matrices P and T by using SVD results, original data matrix X should be standardized before
the SVD. Instead of SVD, the major alternative way to introduce these metrices is nonlinear iterative
partial least square (NIPALS) algorithm that can be used to find only first few principal components
so as to save computational time.

Each principal component preserves spectral feature with corresponding score. The
scores which is useful for unsupervised MC can also be used for supervised MC and MR such as PC-
LDA and principal components regression. Although these methods achieve high classification
accuracy, they have an inherent problem i.e., loadings which contain spectral information lack physical
meaning because of the presence of both negative and positive values (Raman spectrum is never
negative!). One idea to solve this problem and get physically meaningful spectra is application of non-

negative constraints to MCR-ALS. This is also called non-negative matrix factorization (NMF).

MCR-ALS

In MCR-ALS analysis, matrix approximation sought by a linear combination of desired
number of spectral components can be written as follows:

A~WH

In this low-rank approximation, A is original mapping data of dimension m x n (m denotes number of
points per spectrum and n denotes the total number of spectra). Note the A is transposed X in Eq (1)
and Eq (2). W (m x k matrix) represents spectral components and rows of H (k x n matrix) represent
intensity profile of each spectral component. The parameter k, the number of components, can be
flexibly decided by referring SVD analysis or a priori estimation. W and H were iteratively refined
using alternating least squares, so that the Frobenius norm ||A—WH]|? is minimized with non-negative

constraints W>0 and H>0 (11).

In this thesis, to obtain sparser solutions, L1 penalty term for H (lasso regression) of a is applied as
follows:

(W'W + a?E)H = WA
where E is a k X k matrix whose elements are all unity. In addition, L2 penalty term for W (ridge
regression) of B is also applicable as follows:

(HH + B2DW = HA?
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where I is a k x k identity matrix. L1 penalty term for W and L2 penalty term for H are also applicable
in homemade program developed by pylon (8). Non-negativity in W and H endows us to interpret the
result with physical meaning. Only weak point of this technique is the result is not unique and depends

on initial conditions, setting of k and use of penalty terms.

l-v Objective of this thesis

Even though MCR-ALS technique are demonstrated and getting attention, practical use for
biological and medical studies are not so many (12, 13). Based on such backgrounds, I studied some
biomedical systems with Raman spectroscopy coupled with MCR-ALS. This thesis consists of the
results of two different such applications;
1) Visualizing wax ester fermentation in single FEuglena gracilis cells by Raman

microspectroscopy and multivariate curve resolution analysis

2) Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells (MCF-
7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and

Multivariate Curve Resolution Analysis

In Chapter II, Raman micro spectroscopy coupled with MCR-ALS was demonstrated as a
screening method for organisms suitable for biomass production by using EFuglena.

In Chapter III, As medical application, we searched for Raman spectral markers to classify
cultured breast cancer and normal cells, and discovered specific lipids as marker.

Both Chapters II and III use classical univariate analysis methods and popular multivariate
analysis and discuss the findings obtained by performing MCR-ALS analysis with together. The
purpose of this thesis is to show the significant finding of each of these studies in the biological and

medical field as well as usefulness of MCR-ALS in Raman spectroscopy.
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Chapter II.
Visualizing wax ester fermentation in
single Euglena gracilis cells
by Raman microspectroscopy and

multivariate curve resolution analysis
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In-i Introduction

Fossil fuels contribute to two thirds of the global energy demand out of which oils contribute
33% (14, 15). In an age of increasing population growth, overconsumption and depleting oil supplies,
continued use of petroleum sourced fuels is both unsustainable and damaging to environment with
long-standing negative impacts on public health and global climate(16, 17). Therefore, there is an
urgent need to find suitable renewable energy sources. Microalgal biofuels are currently the most
favored substitute for liquid fossil fuels than other nontoxic, eco-friendly alternatives such as plant or
animal biomass derived energy. Microalgae offers several advantages: (1) easy and quick growth under
various conditions, (2) does not compete for arable land and water with edible crops, and (3) provides
carbon neutral renewable energy by converting CO> to useful products such as fatty acids, alcohols,
and neutral lipids. Many algae generally produce substantial amounts of triacylglycerol of medium-
chain fatty acids such as palmitic (C16:0) and stearic (C18:0) acids, sometimes up to 70% of its dry
weight(18, 19).

One such microalgae that has received considerable attention in the past few decades as a
biotechnological tool to produce drop-in jet fuel is Euglena gracilis, a photosynthetic unicellular
flagellate eukaryote. Euglena being a mixotroph, feeds as an autotroph in the presence of sunlight to
produce sugars through photosynthesis while survives as a heterotroph taking in dissolved organic
compounds as nutrition under dark conditions. One of the main reasons for its attraction is because of
its ability to produce wax esters, chiefly myristyl myristate (MM). MM is made up of myristic (C14:0)
acid and myristyl alcohol (C14:0), each of which can individually be utilized for jet fuel because of
their low freezing point/high cetane number compared to other medium-chain fatty acids (20).
Typically, Euglena cells accumulate storage polysaccharide called paramylon granules, a 3-1,3-glucan
under aerobic conditions. However, such stored paramylon is broken down to glucose and further
converted to wax esters when put under anaerobic conditions. Since the anaerobic cells gain subtle
levels of ATP during the process, the phenomenon is called “wax ester fermentation” (21).

Though Euglena cells have huge potential and can serve as tiny factories for biofuel
production, inherent problem associated with large scale culturing is the slow growth rate of algal
strains with high oil content (21, 22). It appears that the synthesis and storage of wax esters as cytosolic
lipid particles is Euglena’s defense mechanism to cope with stress (18). Therefore, much effort has
been put to genetically engineer or optimize culturing conditions of algae for enhanced biofuel
production (21, 23-26). To evaluate any constructed algal strain or the choice of culture conditions,
polysaccharide/lipid profiles must be characterized. Conventional quantification methods employ
labor intensive, time consuming, destructive chemical extraction procedures followed by expensive
mass spectrometric measurements thereby limiting scientific progress.

Therefore, we set out to develop a Raman spectroscopy (RS) based molecular imaging

method to characterize various metabolites in Euglena in a simple and straightforward manner. Raman

13



spectrum, which is also called a molecular fingerprint, provides wealth of chemical information with
high specificity. Combining RS with a microscope endows subcellular resolution. Moreover, it is a
rapid, non-destructive, live cell compatible technique that requires no additional dye probes or
extensive sample preparation for molecular imaging. Previously, metabolic heterogeneity of live
Euglena was studied in real time by stimulated Raman scattering. However, only the heavily crowded
C—H stretching region could be analyzed (27). Spontaneous Raman spectroscopy has also proved to
be useful in studying enhanced lipid production in yeasts (28). In this work, we performed space- and
time-resolved Raman imaging of single living Euglena cells under anaerobic conditions and analyzed
fingerprint region rich in molecular and structural information to identify/visualize paramylon and
products of wax ester fermentation.

We identified Raman spectral markers for B-1,3-glucan/esters and constructed their
intracellular distribution images by simple univariate approach. In order to obtain carbon chain length
specific information of lipids and further probe any other unknown components, we employed
multivariate curve resolution analysis and succeeded in identifying MM (C28), a major product of

wax ester fermentation, which is ideal for a drop-in bio jet fuel.

I -ii Material and methods
Sample preparation

Euglena gracilis SM-ZK, a non-photosynthetic mutant was used in this study. First, Euglena
was pre-cultured aerobically in Koren—Hutner (KH) medium until stationary phase, diluted 20 times
with fresh medium, and cultured aerobically for another 2 days. To perform anaerobic digestion, 1.5
ml of aerobically grown culture was taken in an eppendorf tube of the same volume and sealed with
parafilm. All steps were done on a rotary shaker (120 rpm) at 26 °C under dark conditions (25, 29, 30).
For Raman spectroscopic measurements, since Euglena are flagellates, 20 pl of culture at each time
(0 h, 12 h, 24 h, and 48 h) was put on a concanavalin-A coated glass bottom dish. Then, after standing
for about 5 min, a few ml of lukewarm (~ 35 °C) 2% agarose solution was added to further restrict
their motion. The glass bottom dish containing Euglena cells was then transferred to the microscope
as it is for Raman imaging experiment and two cells were measured at each time. All chemical
standards were bought either from Sigma-Aldrich or Wako, Japan, and measured using glass bottom
dish.
Raman spectroscopy

Raman spectra were measured using a homemade confocal Raman microspectrometer
equipped with a He—Ne Laser (632.8 nm) (12). The laser beam was introduced into an inverted
microscope (Olympus, IX70) and tightly focused onto the sample on the microscope stage using oil
immersion objective lens (100x, NA=1.3). Backscattered light including the inelastically scattered

photons was collected by the same objective lens and passed through an edge filter to remove elastic
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scattering light. In the Raman path, a 50 um pinhole was set up to achieve confocality before light
entered polychromator (Chromex, 2501S). A liquid nitrogen cooled CCD detector operating at —120 °C
(Princeton Instruments, Spec-10) was used to record Raman spectra. The entrance slit width of the
polychromator was set to 50 um and measurements were done using a 600 g/mm grating, resulting in
spectral resolution of ~4.5 cm™!. Lateral and axial resolutions were 300 nm and 3 pm, respectively.
For imaging experiments, a step size of 0.6 um in X- and Y-direction was used with the help
of a piezo stage (Physik Instrumente). Each Euglena cell, being relatively large, took about ~40 min
to scan the whole cell with an exposure of just 1 s/spectrum. Laser power of 4 mW at the sample point
was used for all measurements. An exposure time of 30 s and 60 s was used for measuring several
points of lipids and B-1,3-glucan standards, respectively, and averaged. CCD detector and piezo stage
were controlled using the LabVIEW software (National Instruments). All measurements were done at
room temperature (22 °C).
Data analysis
Data pre-processing such as dark subtraction, intensity correction (using white light
spectrum), and spectral de-noising by singular value decomposition analysis were all carried out in
IGOR Pro (Wavemetrics). All standard spectra were an average of several points and the fluorescence
background was removed by assuming a polynomial baseline.
Raman imaging data from Euglena were analyzed by multivariate curve resolution performed on
homemade program written in Python which was used previously (12, 31).
A seven-component model (initialized with six random components and one fixed straight baseline)
was constructed. To obtain sparser solutions, L1 penalty term (lasso regression) of a>=0.008 and L2

penalty term (ridge regression) of p? = 0.008 were applied.
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I -iii Results and discussion
Raman microspectroscopy and conventional univariate imaging of single Euglena gracilis cells
To understand wax ester fermentation in Fuglena at the molecular level, we measured space-

and time-resolved Raman spectra and images of single cells grown under anaerobic conditions (Fig 2-

1).
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Fig 2-1. Raman microspectroscopy and imaging of single Euglena gracilis cells under anaerobic condition.
A Space-resolved Raman spectra measured at polysaccharide-rich region (a), and ester-rich region (b) from
a cell at 24 h. B Optical images of single E. gracilis cells (c), time-resolved univariate Raman images of
polysaccharides (d), and esters (e). Scale bar in each optical image measures 10 pm and measured points are

indicated using alphabets

As mentioned earlier, stored polysaccharides in Fuglena are converted to wax esters.
Therefore, to identify and discuss Raman spectral markers during wax ester fermentation, two most
relevant space-resolved Raman spectra from a Euglena cell are presented in Fig. 2-1. A. Spectrum at
point a (Fig. 2-1. A-a) had COO— asymmetric stretching at 1656 cm™', COO— symmetric stretch, and
C-H deformation modes between 1500 and 1200 cm™!, C—C and C-O stretch modes of pyranose rings
between 1150 and 1050 c¢cm™!, and C-C-C ring deformation mode at 425 cm' indicating
polysaccharide-rich region. In addition, we observed a band at 893 cm™!, a region which is sensitive
to glycosidic linkages. In fact, Raman spectroscopic studies on series of carbohydrate monomers have
revealed C—H equatorial bending vibration of B-anomer between 905 and 885 cm™ (12, 32, 33). We
can safely assume that the observed polysaccharide spectrum may particularly be rich in paramylon,
a pf-glucan (Scheme 2-1 a).

However, actual comparison with pure B-glucan is necessary. Major features in Raman

spectrum measured at point b (Fig 2-1. A-b) include C=O stretch of ester linkage at 1731 cm™!, C-H-
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bending vibrations of the aliphatic chain at 1440 cm™!, in-plane CH; twist at 1296 cm™!, and C—C
stretch between 1150 and 1050 cm™. It is important to note that the absence of any band in the C=C
stretch region around 1650 cm™! clearly indicates that this strain only accumulates esters containing
saturated hydrocarbon chains (Scheme 2-1 b).

It is then straightforward to choose 425 cm™ and 1731 cm™' bands to be markers of
paramylon and wax esters, respectively. To visualize dynamic intracellular distributions of these
components, we performed time-resolved Raman imaging experiment of single Euglena cells at 0 h,
12 h, 24 h, and 48 h under anaerobic conditions. Two representative cells at each time are presented
in Fig. 2-1 B. It is apparent from univariate Raman images that cells at 0 h (pre-grown under aerobic
conditions) have accumulated polysaccharides, while ester content is negligible. As the culture time
progresses, stored polysaccharide content decreases slowly, while wax esters start accumulating,

especially from 24 h. This is a clear indication of wax ester fermentation in Euglena.

Identification of carbon chain lengths in wax esters
Though we were able to visualize the fatty acid biosynthetic machinery at work, there is no
information on the nature of wax esters produced. Because, the C=O stretch of ester linkage (1731

cm™') used for molecular imaging does not indicate carbon chain lengths in compounds

a

H OH -,

B — 1,3 — glucan (paramylon)

0]

/’\,/\\/\,/\/\/\\/\0)]\/\/\/\/\/\/\

myristyl myristate(wax ester)

Scheme 2-1. Molecular structures. a p-1,3-glucan (paramylon) and b myristyl myristate

containing > 12 carbons (34), which is quite important in the context of its application for biofuel
production. Therefore, to characterize the chain length of wax esters in detail within single Fuglena
cells, we set out to identify Raman markers that are sensitive to carbon chains. To achieve this, we
measured series of standard wax esters with different chain lengths together with myristic acid and

myristyl alcohol, precursors of MM which is a promising candidate for drop-in jet fuel (Fig. 2-2).
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It is known that the position of C=O-stretching band in fatty acid methyl ester depends on the chain
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Fig. 2-2. Comparison of Raman spectra of standard wax esters, lipid, and alcohol. a Fingerprint region (1800—
800 cm™) of lauryl laurate (LL), myristyl myristate (MM), palmityl palmitate (PP), stearyl stearate (SS),
myristic acid, myristyl alcohol, and tripalmitin. b Enlarged view of the 1200—1000 cm™! region containing
C—C stretch information, which is useful for chain length analysis. Corresponding carbon chain lengths for
each compound is indicated using common notation. Fluorescence background was subtracted using a

polynomial baseline and all spectra were normalized to 1296 cm™' band

lengths. However, it is useful only for oils containing <12 carbon atoms and the change in band
position is minimal for fatty acids > 12 carbons (34). Although the overall spectral pattern looked very
similar (Fig. 2-2. a), careful screening of C—C-stretching region revealed significant difference that
can be attributed to chain lengths (Fig. 2-2. b). Raman bands at 1130 cm™' and 1063 cm™! have been
assigned to in-phase and out-of-phase skeletal C—C-stretching vibrations, respectively, for all-trans
chain conformation. The band in between these two is a superposition of all-trans C—C stretch with a
single gauche defect and C—C stretching of gauche conformation which is indicative of gauche isomer
formation (35-38). Its position has been found to be sensitive to carbon chain lengths and we observed

a systematic shift to higher wavenumber with increasing carbon number (Table 2-1).



Table 2-1. Carbon chain length dependence of gauche conformation sensitive C—C-stretching

band in saturated chains

Compound Chain length Band position ? (cm™)
Lauryl laurate 12:0/12:0 1084.7+0.9
Myristyl myristate = 14:0/14:0 1092.2+0.8
Palmityl palmitate = 16:0/16:0 1099.1+0.8
Stearyl stearate 18:0/18:0 1103.7+0.9
Myristic acid 14:0 1092.6 +0.4
Myristyl alcohol 14:0 1094.1+0.3
Tripalmitin 16:0/16:0/16:0 1098.6 0.7

2 Gaussian fitting was used to determine band positions and fitting errors are included

MM and both its precursors which contain C14:0 show Raman band close to 1092 cm™! while others
are shifted in either direction. Even though we succeeded in identifying chain length-specific Raman
spectral markers, we must keep in mind that the difference in band position is quite small and that the
measured samples were all pure compounds in solid state. This indicator has been shown to fail if the

lipids are in liquid state (34).

Extracting pure biomolecular information using MCR analysis

In the present context, Fuglena cells contain heterogeneous distributions of many different
biomolecules with varying phases and Raman spectrum measured at any given point in the cell is a
mixture of all components. For example, C—C-stretching region of Raman spectrum is quite crowded
with overlapping contributions not only from lipids or esters but also from other intracellular
biomolecules such as protein, nucleic acids, polysaccharides, etc. Therefore, simple univariate
approach is not suitable for such complex biological samples, especially to predict chain lengths. In
fact, if we take a closer look into the space-resolved spectrum from ester-rich region between 1150—
1050 cm™! (Fig. 2-1A-b), it is hard to find any C—C gauche band. However, a broad and an intense
band can be observed in the same region from polysaccharide-rich Raman spectrum (Fig. 2-1A-a)
indicating the complexity involved. Therefore, we applied MCR analysis to extract pure biomolecular
information and to visualize intracellular abundance of each component in a straightforward manner.

Results of seven components MCR model is given in Fig. 2-3 in which a straight baseline
was intentionally included to eliminate varying offset. Other six components were automatically
extracted. Let us look into the assignment of each in detail. Figure 2-3b includes O-H-bending

vibration of water around ~ 1600 cm™' and an overall broad fluorescence background. Raman

spectrum in Fig. 2-3c¢ includes phenylalanine ring breathing mode at 1004 cm™' and amide I band at

1

1660 cm™, indicating proteins. Next component (Fig. 2-3d) contains intense bands at 1522 cm™' and
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1158 cm™! which represent stretching modes of C=C and C-C of polyene chain in carotenoids,
respectively. It is important to note that protein and carotenoid spectra were obtained as a natural
consequence of MCR analysis without any a priori knowledge of their presence and, thus, could be
very useful in exploratory analysis. Spectrum in Fig. 2-3e can be assigned to polysaccharide.

Unexpectedly, we extracted two lipid components, named lipid 1 and 2, as shown in Fig. 2-3f, g,

respectively.
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Fig. 2-3. Results of MCR analysis assuming seven components. (a) Baseline, (b) fluorescence

background (FL) and water, (c) protein, (d) carotenoid, (¢) polysaccharide, and (f, g) lipids 1 and 2,

Comparison of MCR-extracted components with pure standards
To understand the origin of polysaccharide and lipids from MCR analysis more specifically,
we compared them with series of pure chemical standards of wax esters and their precursors. After

screening, comparison with expected compounds such as -1,3-glucan and MM is shown in Fig. 2-4.
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This is mainly because Fuglena is known to store appreciable amounts of paramylon (a -1,3-glucan)
as energy reserves under aerobic conditions which are almost converted exclusively to wax esters
containing saturated carbon chains. Gas chromatographic analysis showed esters with C28 to be the
major component along with minor contributions from other even numbered esters in C24—C32 range
(39). Indeed, MCR-extracted polysaccharide component matches very well with B-1,3-glucan and can
unambiguously be assigned to paramylon in Euglena. It is intriguing that two seemingly similar lipid
components were extracted separately in MCR analysis (Fig. 2-4d, e). Lipid 1 with bands at 1732 cm™
1, 1440 cm™, 1296 cm™, 1130 em™', 1092 cm™!, and 1063 cm™' matches quite well with MM and can
be assigned to C28 ester containing two saturated C14 chains. A closer look into lipid 2 reveals the
absence of 1732 cm™' and C-H-bending vibrations at 1440 cm™', while 1417 cm™! and 890 cm™ are
more pronounced. Absence of C=0 stretch band of ester raises the question whether lipid 2 is really a
lipid/ester. However, the presence of 1092 cm™' along with other C—C-stretching vibrational bands
indicates C14 carbon chain, indirectly suggesting that it could either be myristic acid or myristyl
alcohol. However, it does not correspond well with neither as expected, especially in C=0 stretch and

C-H deformation region, essentially leaving the spectrum unassigned.
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Fig. 2-4. Comparison of MCR spectral components with pure standards. (a) B-1,3-glucan, (b) MCR-
extracted polysaccharide (same as Fig. 2-3e), (c) myristyl myristate (MM), and (d, ) MCR lipids 1

and 2, respectively (same as Fig. 2-3f, g)

MCR analysis of Raman images of standard myristyl myristate

Since lipid 2 extracted from Euglena with 1092 cm™' band does not match either with wax
ester or their precursors, we performed Raman imaging on pure MM solid film (obtained after drying
10 mg/ml MM in hexane) and carried out detailed MCR analysis (Fig. 2-5). A two-component MCR
model constructed from data of pure MM showed surprising results. The two spectra were, indeed,
identical to the two lipid components obtained from the MCR analysis of living Euglena cells, i.e.,
Fig. 2-5A-a (MCR_MM]1) and Fig. 2-5A-c (lipid 1) were identical and both correspond well to
averaged MM spectrum measured earlier (Fig. 2-4c). Spectral profile of second component
(MCR_MM2), in which bands at 1732 cm™' and 1440 cm™' were missing, was identical to ‘lipid 2’

from Euglena cells, indicating its origin to MM. Only plausible explanation is the presence of crystal
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polymorphs (several crystalline structures with the same chemical composition).

It is known that long-chain esters/triglycerides exist in three major polymorphic forms, namely a, f',
and . Their stability varies in the order > B’'> a. While the subcell structure of o form is hexagonal
with no ordered arrangement of chain planes (H), ' is orthorhombic with every second chain being
perpendicular to the rest (O_L) and B is triclinic with all chain planes parallel (T//). In a Raman

spectrum, C—H deformation modes between 1500 and 1400 cm™! are sensitive to crystal structure. First
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Fig. 2-5. Results of MCR analysis of pure myristyl myristate. A Comparison of two MCR-extracted
spectra from (a, b) pure myristyl myristate solid (MCR_MMI and 2), and (c, d) Euglena (lipid 1 and

2). B Molecular distribution images of extracted components in pure myristyl myristate after MCR

set of spectra (MCR_MMI1 and lipid 1) in which three defined bands at 1461 cm™, 1440 cm™!, and
1417 cm! were observed corresponding to B’ polymorph. In fact, 1417 cm™! band is associated with

splitting of the Raman active methylene scissoring mode in B’ form (40-42). In the second set,
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MCR_MM2 and lipid 2, intense bands at 1417 cm™!, 1296 cm™!, and 1130 cm™! that are characteristics
of all-trans conformation of carbon chains in crystalline domains were observed (43). In addition, 890
cm! band corresponding to terminal C—C-stretching vibration was also prominent. However, it is
interesting to note that C=O-stretching (1732 cm™") and C-H-bending (1440 cm™) vibrations in both
spectra were absent. Since intensities of Raman bands depend on both crystal orientation and incident
polarization, it is possible that these bands are weak in this particular sample due to crystal orientation.
However, it may also be due to the presence of two polymorphs of MM in Euglena cells. This may
have serious implications as physical properties like molecular packing and freezing point, which are
crucial for MM’s efficient storage and eventual application as a bio jet fuel, will be different for
different polymorphs. Polarized-Raman spectroscopic measurements should be performed to obtain
further insights to make clear distinction between polymorphs.

We then constructed molecular distribution images of MCR-extracted components which
revealed heterogeneous pattern without much resemblance to each other (Fig. 2-5B). This result

further confirms the presence of two different forms in the standard MM sample.

Time-resolved MCR component images of Euglena cells

Once the assignment of all MCR-extracted spectral components was accomplished, we
constructed time-resolved Raman images to visualize intracellular biomolecular distribution (Fig. 2-
6). First, let us look into baseline (Fig. 2-6a). Although there is no difference at early culture times,
significant increase in localized areas was observed in cells from 24 h. On the other hand, varying
degrees of fluorescence background could be observed in cells at any given time (Fig. 2-6b). Protein
synthesis seems to be active as its intracellular abundance increases and gets more or less evenly
distributed throughout the cells as culture time progresses (Fig. 2-6¢). However, irrespective of time,
carotenoids were randomly distributed indicating cellular individuality (Fig. 2-6d). Details on wax
ester fermentation, which is our main target, can be visualized in Fig. 2-6e—g. Paramylon accumulated
under aerobic condition during pre-culture seems to decrease with time under anaerobic condition
(Fig.2- 6e). Complementarily, abundance of myristyl myristate (MM1 and MM2), which were not
present to begin with at 0 h, slowly starts increasing with passing culture time (Fig. 2-6f, g). Strong
accumulation of wax esters in a localized fashion can be observed starting from 24 h. Interestingly,
MMI1 distribution (from MCR analysis) is similar to the abundance images obtained using univariate
method (Fig. 2-1e). However, it is also important to note that MCR analysis led to identification of
MM2, whose intracellular distribution pattern is quite different from MM, reiterating the existence

of two forms of myristyl myristate. Further clarification of these two forms is left for future studies.
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Fig. 2-6. Raman images constructed from MCR analysis. (a) Baseline, (b) fluorescence background
and water, (c) protein, (d) carotenoid, (¢) paramylon, and (f, g) myristyl myristate 1 and 2, respectively.
Corresponding optical images are included (Opt.). Scale bar measures 10 um. Color scale in Raman

images indicates molecular abundance.
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In-iv Summary

We have demonstrated the unique ability of Raman microscopy coupled with MCR analysis
to investigate wax ester fermentation and obtain carbon chain length-specific information in single
living Fuglena cells. In the present study, conversion of aerobically accumulated paramylon to MM,
a C28 wax ester (C14:0-C14:0), has been successfully visualized. Interestingly, two polymorphic
forms of MM with different distribution patterns may have been separated during MCR analysis for
the first time in Euglena cells. Even though this work focused on specifically identifying MM, we
believe that this method can be applied to characterize other metabolites in many different cell types,
including but not limited to humans, animals, plants, etc. Moreover, this approach is directly applicable
to mutant strains or under other culture conditions. Therefore, our approach is expected to further our
understanding of lipid metabolism in Fuglena and its regulatory apparatus at the cellular level to
realize microalgae as an economically viable biofuel feedstock. Moreover, it is clear from the present
example that simple univariate analysis, though useful to some extent, is limited by overlapping
contributions and that multivariate approach is absolutely necessary to study complex samples of

biological origin.
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Chapter IlI.

Identification of Molecular Basis for Objective
Discrimination of Breast Cancer Cells (MCF-7) from
Normal Human Mammary Epithelial Cells
by Raman Microspectroscopy and Multivariate

Curve Resolution Analysis
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Hl-i Introduction

Despite advances in prognosis and treatment, cancer incidence and mortality are rapidly
increasing around the world. According to the estimates by the International Agency for Research on
Cancer in 2018, there were about 18.1 million new cases and 9.6 million cancer deaths. Among women,
breast cancer with 2.1 million cases and over 0.6 million deaths tops the chart (44). Breast cancer can
be diagnosed through multiple tests including an X-ray mammogram, ultrasound imaging, magnetic
resonance imaging, fine needle aspiration cytology, and tissue biopsy etc. Presently, histopathology
remains to be a gold standard in breast cancer diagnosis and treatment. However, identification of
molecular signatures using this invasive procedure is expensive, involves tedious sample preparation,
is time consuming and sometimes leads to ambiguous results due to human interpretations. Thus, it
has severe limitations especially during surgeries. Therefore, it is necessary to develop alternative
methods that are low- or non-invasive and economical while achieving rapid diagnosis with high
accuracy.

Raman spectroscopy (RS), a powerful vibrational spectroscopic technique based on inelastic
scattering of light, has been proposed to be a good alternative to overcome such difficulties.
Advantages of RS are manifold: (1) non-invasive, i.e., suitability to in vivo applications, (2) no need
for staining or genetic manipulation, (3) high sensitivity and specificity due to rich molecular
information. Indeed, RS has been gaining much attention and has been successfully applied in disease
prognosis and diagnosis (9, 45, 46), discriminate cells and tissues (47, 48), image living cells in a
label-free manner (12, 49) and probe metabolic pathways (7). However, there are limitations to RS as
well. First, traditional raster scanning methods employed in RS are extremely slow procedures,
especially when considering the size of the tissues examined during histopathology. To solve this
problem, researchers have proposed various methods, such as hand-held Raman probes for guided
biopsy (50) and autofluorescence combined with selective Raman sampling (51), etc. Second, since
RS measures molecular vibrations, different molecules containing similar chemical bonds show
similar frequencies and, in most cases, it is not appropriate to simply use a single band for spectral
interpretation. To make matters worse, Raman hyperspectral imaging results in a large volume of data
with thousands of Raman spectra to handle. Therefore, we need to employ multivariate analyses (MA)
for meaningful interpretation. To this end, a variety of multivariate analytical methods have been
developed. Some of the most popular unsupervised multivariate classification methods applied to
Raman spectroscopic data include singular value decomposition (SVD), principal components
analysis (PCA), and cluster analysis, etc., which are suitable for exploratory analysis. On the other
hand, if a priori information about the samples is available, supervised methods such as linear
discriminant analysis (LDA), neural networks, and support vector machine (SVM) etc., are well suited
to model the given Raman hyperspectral data and apply it to predict unknown samples.

It is surprising to note that some of the early studies demonstrating the potential application
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of RS to cancers was done by Manfait and co-workers as early as 1982 (52, 53). This was followed by
several studies especially focusing on RS-based breast cancer diagnosis in the early nineties (54, 55).
Due to technological advancements and the development of chemometrics in the last two decades, the
volume of RS-based literature has kept growing rapidly. To put things into perspective, a simple ‘Topic’
search with a keyword ‘Raman AND Cancer’ in the Web of Science database returned ~5000
documents. Even though application of RS has been proven to be successful under laboratory
situations, it is important to understand that these MA results are subjective to many factors, including
design of experiment and analysis, data pre-processing and overall quality of data. Therefore,
experience of the person, instrument performance and acquisition parameters also play a crucial role.
Owing to limitations in standardizing the whole procedure, universal adoption of RS in clinics has still
not been achieved. Another major drawback is that none of the above-mentioned MA procedures
discriminate/classify/predict based on inherent chemical information but strictly treat Raman
spectroscopic data only mathematically. Therefore, to overcome these limitations, we employed an
alternative approach called multivariate curve resolution-alternating least squares (MCR-ALS) in
which pure chemical components and their abundances are extracted from Raman hyperspectral data
to establish a molecular basis for reliable diagnosis. In this study, we identified for the first time that
linoleate rich triglycerides serve as the marker for objective discrimination of MCF-7 and HMEpC

cells in 632.8 nm excited chemometrics assisted Raman microspectroscopy.

HI-ii Material and methods
Cell Culture

MCF-7 malignant breast cancer cell line was cultured in DMEM low glucose without phenol
red (Thermo Fisher Scientific, Tokyo, Japan) with added supplements (0.1 mM sodium pyruvate, 2
mM L-Glutamine, 1% (v/v) antibiotics and 5% (v/v) fetal bovine serum). HMEpC primary cells
obtained from normal mammary glands (Cell Applications, Inc., San Diego, CA, USA) as control were
cultured in Human Mammary Epithelial Cell Media (TOYOBO Life Science, Osaka, Japan). Both
MCF-7 and HMEpC cells were incubated at 37 °C and 5% CO:. Cells were sub-cultured at ~80% of
cell confluence and Raman spectra were obtained from cells incubated for 3 days after gently washing
with PBS (-) on Poly-L-Lysine-coated glass bottom dish.
Raman Microspectroscopy

Raman spectra were measured using a homemade confocal Raman micro-spectrometer (38,
56). An excitation part consists of He-Ne laser (632.8 nm) coupled to an inverted microscope (IX70,
Olympus) with an oil immersion objective lens (100x, NA = 1.3) to focus the excitation laser on
specific points of cultured cells. Stokes Raman scattered light was collected using the same objective
lens in back scattering geometry using a long pass filter. To improve axial resolution, a confocal

pinhole of 50 um was used in collection path. A polychromator (Chromex, 2501S) dispersed the
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scattered light and was detected with a CCD device (Princeton instruments, Spec-10) cooled at
—120 °C with liquid nitrogen. To achieve optimal throughput while measuring the whole finger print
region, we used a 600 g/mm grating and set the slit width of polychromator to 50 um. All Raman
measurements were done at room temperature (22 °C) and the laser power was set to 4 mW at the
sample position. Raman spectra were obtained from 5 random points in each cell with an exposure of
30 s/point. A total of 60 cells (30 cells for each kind) were measured and averaged. For lipid standards,
several unsaturated fatty acids including docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA),
arachidonic acid (AA), y-linolenic acid (GLA), a-linolenic acid (ALA), linoleic acid (LA), oleic acid
(OA), and palmitoleic acid (PMA) purchased from Tokyo Chemical Industry Co., Ltd, Tokyo, Japan.
were measured under the same conditions.
Data Analysis

Data pre-processing such as dark light subtraction, cosmic ray removal, and data de-noising
by SVD were performed by IGOR Pro (Wavemetrics, Portland, OR, USA). Generally, no Raman
bands are expected in the so-called silent region between ~2800 ¢cm™'-1800 c¢cm'. Therefore, a
preliminary analysis of Raman spectra in the whole fingerprint region between ~1800 cm™'-370 cm™!
was carried out. Since no significant Raman band was observed except for strong contribution from
background, the fingerprint region between 739 ~ 1800 cm™' was chosen for multivariate analysis.
Discriminant Analysis

The first PCA was performed on mean-centered data using NIPALS algorithm with random
cross validation to extract principal components (PC). Using prior knowledge of principal components,
an LDA model for two classes was constructed by including the first 4 PC scores assuming equal prior
possibilities. Furthermore, to construct an SVM model, nu-SVM with linear kernel type was employed
with 10-fold cross validation. PCA, LDA and SVM were performed using Unscrambler (Camo
Analytics, Oslo, Norway).
MCR-ALS

Parameter k represents the number of spectral components and was set to 7 in this study
based on SVD analysis (31). First, 7 SVD components were used as initial points for further analysis.
To obtain sparser solutions, additional L1 penalty term (lasso regression) of a> = 0.005 and L2 penalty
term (ridge regression) of p? = 0.005 were applied respectively. MCR-ALS was performed using a

homemade program specifically developed for Raman spectroscopic applications using Python .
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HI - iii Results and discussion
Univariate Analysis of Normal and MCF-7 Cells Gives Little Information for Objective
Discrimination

Average Raman spectra of 30 cells each of normal human mammary epithelial cells
(HMEpC) and breast cancer cells (MCF-7) are presented in Figure 3-1A. Some of the prominent bands
observed in both spectra such as 1657 cm™ (amide 1/-C=C- str), 1446 cm™' (CH»/CH3), 1300 cm™!
(CH» twisting), 1263 cm™' (=C-H), and 1003 cm™' (Phenyl alanine) indicate the contribution of
proteins and lipids. Raman bands at 879 cm™! and 786 cm™! observed in cancer cells can be assigned
to C-C stretch (protein, amino acid hydroxyproline and lipids) and O-P-O symmetric stretch (nucleic
acids), respectively (4, 57). Since simple comparison only suggests general variation in proteins and
nucleic acids, we integrated intensities of important Raman bands, calculated ratios of various
biomacromolecules for each cell, and their averages along with standard deviations (S.D.) were used
to identify markers for discrimination as shown in Figure 3-1B. Some ratios such as nucleic acid/lipid
(Figure 3-1B(c)), protein/lipid (Figure 3-1B(d)) and C-C str/lipid (Figure 3-1B(e)) show significant
differences between normal and cancer cells. However, it is important to note that these are calculated
by univariate approach (using one representative band/species) and it is impossible to avoid band
overlaps from other components in the same region. For example, band around ~1440 cm™! has been
traditionally used as a lipid marker but it originally represents CH> and CH3 vibrations, which
inevitably contains contributions from most other biomolecules. Therefore, instead of single band
analysis, there is a need for multivariate methods that consider the whole spectrum for reliable

diagnosis.
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Application of Multivariate Statistical Methods to Discriminate Cancer Cells
To develop Raman spectroscopy as a diagnostic tool, it is imperative to detect subtle
biochemical changes in disease conditions by employing multivariate statistics. In order to identify

spectral differences and discriminate normal/cancer cells, we averaged only those spectra obtained
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Figure 3-1. Comparison of average Raman spectra of MCF-7 and HMEpC. (A) Averaged Raman
spectra (+S.D.) obtained from 30 cells of (a) HMEpC and (b) MCF-7, respectively. The consistent
band positions were shown with broken lines and significant differences were highlighted by shaded
bars. (B) Biomolecular ratios of (c) nucleic acid/lipid, (d) protein/lipid, (€) C—C str/lipid (chain
lengths) and (f) =C—H/lipid (unsaturation).
from five different points in a cell and retained Raman spectrum representative of each individual cell

for further analysis (60 spectra in total).

Principal Components Analysis

PCA essentially reduces the dimensionality of hyperspectral data to a few principal
components (PC) without losing much information. Indeed, it is one of the oldest and widely used
multivariate methods in data analysis and has previously been applied to Raman spectroscopic data
from cancer cells and tissues. Results of PCA showed a good degree of classification of the two groups
of cells. PCA identified 7 PCs. The first four components that contribute 88% are presented in Figure
3-2. PC scores indicate PC1 to be the main contributor (64%) as it essentially can classify efficiently
when taken with any of the next three PCs (Figure 3-2B). A closer look into loadings (Figure 3-2A)
reveals that PC1 spectrum is dominated by bands of lipid origin such as 1657 cm™', 1440 cm™', 1300
cm!, and 1263 cm™'. In addition to these bands in PC1, PC2 showed markers of protein (1003 cm™)
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and nucleic acids (782 cm™! and 1576 cm™). Nucleic acid marker band at 1576 cm™', which was not
clearly observed in the average spectra, can be seen in PCA. Although PC loadings may provide
molecular information to some degree, it is important to note that all of them show both positive and
negative features. Moreover, most of the bands are mixed and are observed in multiple loadings,

making it wrong to interpret the data in a physically meaningful way.

Linear Discriminant Analysis

In order to further the analysis, we used PC classifiers and constructed a discrimination
model based on LDA. The discrimination plot of LDA presented in Figure 3-3 shows good separation
of normal and cancer cells. Results are tabulated in a confusion matrix in Table 3-1. Constructed model

achieved 98% discrimination accuracy with 96% sensitivity and 100% specificity.
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Figure 3-2. Results of principal components analysis (PCA) analysis. (A) First 4 principal components (PC)
loadings, PC1 (64 %), PC2 (17%), PC3 (8%), and PC4 (4%). Broken lines show same band positions
regardless of positive or negative tendency. (B) Scores plots of (a) PC2, (b) PC3 and (c) PC4 vs. PC1,

respectively. Broken lines are drawn as visual guides to discriminate HMEpC and MCF-7.
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Figure 3-3. LDA Discrimination Plot. Linear discrimination score of normal HMEpC and breast cancer

MCEF-7 cells are plotted by blue boxes and red circles, respectively.

Table 3-1. Confusion matrix of linear discriminant analysis (LDA)

Actual
3 HMEpC MCF-7
'§ HMEpC 30 1
S
o MCF-7 0 29

Support Vector Machine Analysis

Unlike LDA in which data are expected to be normally distributed, SVM makes no
assumptions to the data and has gained much popularity among machine learning methods. To further
test the applicability of other supervised learning model, we employed the SVM algorithm and the
resultant confusion matrix is given in Table 3-2. Indeed, the constructed SVM model with linear
classification and 10-fold cross validation could achieve superior discrimination with training

accuracy of 100% and validation accuracy of 98%, as shown in Table 3-2.
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Table 3-2. Confusion matrix of SVM.

Actual
HMEpC MCF-7
o
L
§ HMEpC 30 0
&
MCF-7 0 30

Multivariate Curve Resolution Analysis

In order to understand molecular level differences and to establish a reasonable basis for

successful discrimination by statistical methods such as LDA or SVM, we performed exploratory

MCR-ALS analysis to obtain pure chemical components. Extracted spectral profiles of 7 components

from the MCR-ALS model are presented in Figure 3-4A.
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Figure 3-4. Seven components MCR-ALS analysis. (A)The extracted spectral components, (1)
autofluorescence with protein [AF + P], (2) autofluorescence [AF], (3) nucleic acid with protein [N
+ P], (4) Lipid 1, (5) Lipid 2, (6) Lipid 3 and (7) Protein [P]. (B) Abundance profiles of (a) N + P,
(b-d) lipid 1-3 and (e) protein, respectively. Broken line in B separates HMEpC and MCF-7 cells.

Unlike the results of PCA, these spectral profiles are meaningful as they correspond to pure

molecular species or groups. Respective abundance profiles obtained from ‘H’ matrix of seven

components MCR-ALS analysis, i.e., contribution of each component in single cells are shown in

Figure 3-4B. Component 1 (Figure 3-4(A1)) with bands at 1003 cm™!, 1450 cm™, and 1657 cm™! with
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broad background can be assigned to that part of autofluorescence which coexists with some proteins
while component 2 (Figure 3-4(A2)) to com-monly observed autofluorescence background in Raman
spectra of biological samples under this excitation conditions. Component 3 (Figure 3-4(A3))
containing bands typical to that of proteins at 879 cm™!, 1003 cm™!, 1657 cm™! and nucleic acids at 786
cm! and 1576 cm™' could be assigned to ‘nucleic acid + protein’ (denoted as ‘N + P’) that coexist
together. Its abundance profile (Figure 3-4(Ba)) suggests slightly higher concentration in MCF-7 cells.
Interestingly, components 4-6, which seem spectrally similar, were separated as independent
components. Bands at 1263 cm™', 1300 cm™, 1440 cm™, and 1657 cm™' indicate that these are lipids
and hence named as ‘Lipid 1’ (Figure 3-4(A4)), ‘Lipid 2’ (Figure 3-4(AS5)), and ‘Lipid 3’ (Figure 3-
4(A6)). Their abundance profiles indicate ‘Lipid 1’ (Figure 3-4(Bb)) to be lower in MCF-7 compared
to HMEpC cells whereas no significant difference can be observed in other two lipids (Figure 3-
4(Bc,d)). Finally, component 7 (Figure 3-4(A7)) can be assigned to ‘proteins’ (denoted as ‘P’) alone,
based on the spectral profile with no significant difference in their abundance.

Even though we get concentration information from MCR-ALS analysis, it should not be
compared directly as it is not an absolute quantity. Therefore, it is safe to calculate average relative
abundance of extracted components to understand meaningful trends. Figure 3-5A shows relative
concentrations along with their standard error of three separated lipid components to ‘N + P’ (Figure
3-5(Aa—)), to ‘P’ (Figure 3-5(Ad-f)) and to other lipids (Figure 3-5(Ag-i)). Of all nine ratios, four of
them; ‘Lipid 1’ to’ N + P’ or ‘P’ (Figure 3-5(Aa—d)) and ‘Lipid 3’ to ‘N + P’ or ‘P’ (Figure 3-5(Ac—f))
seem to have statistically significant differences. Further to perform objective discrimination based on
obtained pure molecular information, we constructed scatter plots to visualize all nine combinations
in a similar fashion (Figure 3-5B). Although several of them seem to show a fair degree of separation
(as indicated by broken lines in Figure 3-5(Bj,m,p and q)), considering statistical averages, we could
conclude that ratios involving ‘Lipid 1’ to other biomacromolecules such as nucleic acids and proteins
serve as reliable “Raman spectral marker” for discriminating cancer from normal cells. Moreover, it
is important to note that though scatter plots show lower discrimination than some of the other
chemometric methods, this disadvantage is overcome by the advantage of the physically meaningful

spectra.
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Figure 3-5. Discrimination analysis by MCR-ALS. (A) Relative abundance of MCR-ALS extracted components,
(@) Lipid 1/ (N + P), (b) Lipid 2/ (N + P), (c) Lipid 3/ (N + P), (d) Lipid 1/P, (e) Lipid 2/P, (f) Lipid 3/P, (g) Lipid
1/Lipid 2, (h) Lipid 1/Lipid 3, (i) Lipid 2/Lipid 3. N + P: nucleic acid with protein, P: protein. Error bars are
standard error of mean. p values obtained by t-test were denoted on top of histograms. (B) Scatter plots of each
logarithmic abundance, (j) Lipid 1 vs. (N + P), (k) Lipid 2 vs. (N + P), (I) Lipid 3 vs. (N + P), (m) Lipid 1 vs. P,
(n) Lipid 2 vs. P, (0) Lipid 3 vs. P, (p) Lipid 1 vs. Lipid 2, (q) Lipid 1 vs. Lipid 3, (r) Lipid 3 vs. Lipid 2. Some
labels of measured cells were omitted in those plots since the values of abundance were calculated into zero by

MCR-ALS. Broken lines serve as visual guides to separate two groups of cells.
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Molecular Assignment of MCR-ALS Extracted Lipid Components

Now that we have identified sensitive lipid spectral markers, it is necessary to assign
these components at the molecular level to develop an objective method to discriminate cancer cells
from normal ones. To begin with, all three lipid components (Figure 3-4A(4,5,6)) show bands at 1657
cm! and 1263 cm™ corresponding to -C=C- stretching and =C-H modes, respectively. Therefore, we
can safely say that none of the three components are saturated lipids. In order to screen for potential
candidates, we measured a series of standard fatty acids from palmitoleic acid with unsaturation index
of 1 to docosahexaenoic acid with 6 double bonds to cover a wide range of polyunsaturated fatty acids

(PUFA) as given in Figure 3-6A.
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Figure 3-6. Molecular level assignment of Raman spectral marker. (A) Standard Raman spectra of various unsaturated fatty
acids normalized using 1445 cm band; (a) docosahexaenoic acid(DHA), (b) eicosapentaenoic acid (EPA), (c) arachidonic
acid (AA), (d) y-linolenic acid (GLA), (e) a-linolenic acid (ALA) (f) linoleic acid (LA), (g) oleic acid (OA) and (h)
palmitoleic acid (PMA). (B) Unsaturation index plot. Relative intensity ratio of C=C/CH2 vs. number of C=C bonds in
standard unsaturated fatty acids. Relative intensities obtained from three lipids on MCR-ALS components are also plotted

and denoted in color. (C) Comparison of standard (i) LA, (j) Trilinolein (TLA) and (k) Lipid 1 extracted by MCR-ALS.

For further comparison of fatty acid standards, we normalized these spectra with band
area of 1445 cm™'. We can observe that intensity of 1658 cm™' greatly increases with an increasing
number of double bonds. In fact, it is well known that Raman intensity of C=C stretching mode is
directly proportional to the number of double bonds in the molecule. Therefore, it is rather
straightforward to construct a calibration model to predict the unsaturation index from measured

Raman spectra by calculating Raman intensity at 1658 cm™' (C=C stretching vibration) to that at 1445

38



cm™! (CH, deformation), i.e., 1658/1445 (4). Indeed, a linear relationship is observed when a ratio of
1658/1445 is plotted against number of double bonds in chemical structure of fatty acids as shown in
Figure 3-6B. To predict the molecular structure of MCR-ALS extracted lipid components, we
estimated the ratio of 1658/1440 in a similar fashion and compared with the constructed model as
marked in Figure 3-6B. We could therefore assign ‘Lipid 1’ to di-unsaturated fatty acid (linoleic acid,
LA) whereas ‘Lipid 2’ and ‘Lipid 3’ could be assigned to mono-unsaturated fats. It is important to note
that ‘Lipid 1’ contains a Raman band at 1745 cm™ corresponding to C=O stretch of esters. Since the
focus is to mainly identify ‘Lipid 1’ in an unambiguous manner, we further measured trilinoleic acid
(TLA), a triglyceride (TG) with three linoleic acid groups. A comparison reveals a perfect match
between TLA (Figure 3-6C(j)) and ‘Lipid 1’ (Figure 3-6C(k)) as opposed to simple LA (Figure 3-
6C(i)), in which 1745 cm™! band is not observed as shown in Figure 3-6C. Therefore, we believe the
relative content of TGs with high LA content is the main factor that helped to discriminate normal
(HMEpC) and cancer (MCF-7) cells. Although ‘Lipid 2’ and ‘Lipid 3° have been identified as mono-
unsaturated fats, further unambiguous assignment to the likes of Oleic acid (18:1) or palmitoleic acid
(16:1) could not be achieved in this study.

The choice of breast cancer cell line for this work (MCF-7) was established from
invasive ductal carcinoma (IDC) of a Caucasian patient and the cells are known to be estrogen (ER)
and progesterone receptor (PgR)-positive. It is important to note that ER and PgR-positive IDC is the
most common subtype accounting for >70% of breast cancers (58). Therefore, analysis of such a
cancer cell line adds meaningful value to understanding Raman spectral markers. Indeed, many
researchers have used MA such as PCA, LDA, and SVM for RS data of cancers for a long time and
reported marked differences in proteins and fat profiles in general, which corroborates well with this
study (59-63). Although these methods discriminated cancers well, as can also be seen from our own
data, they do not give insights into the chemical changes responsible for diagnosis, thereby making it
difficult to be translated to clinics. To overcome this, Haka et al. developed a method to model tissue
spectra as linear combinations of known components and succeeded in discriminating cancers with
some chemical information. Indeed, they showed that relatively low abundance of fats could be used
as an indicator to distinguish breast cancer tissues (50, 64). However, such analysis has several
assumptions and may overlook underlying pathology. Other researchers also reported decreased
overall lipid content in human breast cell/biopsy samples compared to normal breast cells/tissues using
RS but without molecular level information (54, 55, 65-67). Our results specifically showed that
relative abundance of linoleate-rich glyceride to other biomacromolecules, such as nucleic acids and
proteins, to be the major difference and possibly the reason for successful discrimination of breast
cancer cells from normal epithelial cells. Interestingly, a previous attempt by Sixian et al. could not
find strong correlation with PUFA and protein by Raman spectroscopy (68). We believe it was because

they calculated the ratio considering all fats as a single entity. It is important to note from this study
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that, although there are three groups of unsaturated fatty acids, only a linoleate-rich component could
serve a reliable discrimination index.

Alterations in lipid metabolism have been shown to play a critical role in development,
promotion, and maintenance of cancers (69, 70). Therefore, reprogramming of lipid metabolism is
being considered a hallmark of malignancy and can be used as a novel target for anti-cancer strategy
(71, 72). In particular, the role of unsaturated fatty acids including LA is of great importance as it is
used for synthesizing arachidonic acid (AA). For example, cyclooxygenase (COX) enzymes convert
AA to bioactive lipids such as prostaglandins (PG), which play key roles in adhesive, migratory, and
invasive behavior of cells during development and progression of breast and other cancers (73-75).
Therefore, we suspect from our results that a certain amount of AA could have been used up for the
synthesis of PG, thereby depleting LA-rich TG in MCF-7 cells.

From the nature of the analysis used in this study, one might expect that several protein
and/or saccharide components should also have been extracted. However, it is important to understand
the limitations involved. Since we use spontaneous Raman microspectroscopy, one of the main
limitations in detecting several more biomolecular components is their local intracellular
concentrations. Limitation to resolve multiple components arises from the inherent nature of MCR-
ALS with applied penalties (L1- and L2-norms). It is not possible to unmix two spectral components
if there is no difference in their intracellular distribution pattern. Essentially, such components are
treated as a single component. Considering the above limitations, it is understandable as to why weak

or minor molecular components such as saccharides could not be detected/separated in this study.

i -iv Summary

In this study, we tried to address the age-old problem of efficiently extracting hidden
information from chemically rich Raman hyperspectral data. In addition to demonstrating the utility
of discrimination analysis such as LDA and SVM, we developed and employed MCR-ALS with non-
negative constraints to extract physically meaningful Raman spectra using mammary epithelial cells
and breast cancer cells as a model case. In a truly exploratory fashion, without a priori information,
we obtained various biomolecular spectra including three individual lipid groups and successfully
identified relative ratios of linoleate-rich glyceride as the Raman spectral marker and molecular basis
for objective diagnosis of breast cancer. We would like to emphasize that this is the first report that
discusses cancer pathology in detail while discriminating breast cancer cells unambiguously using
specific fatty acid content in chemometrics-assisted RS. However, further studies are necessary to
determine whether the differences in linoleate-rich triglycerides can be directly related to cancer states.
Although both cell lines used in this study are of epithelial source, it is important to understand that
most tumors are like organs and have more than one type of cell. Therefore, while the model holds

true to this breast cancer cell line with 633 nm excitation, it is imperative that we further test on large
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numbers of other cell lines and with different excitations wavelengths as well to have general
consensus. Once established, spectral markers identified in the present study being at the cellular level
have the potential to be used as an adjunct or even an alternative to cytological diagnosis, especially
because specimens for cytology have scattered cells in them that are appropriate for RS. Moreover,
RS can be performed on any biological sample including cells, tissues and body fluids etc. We believe
such an approach when further developed can be adopted to real clinical applications for rapid yet

objective diagnosis of certain types of cancers.
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Chapter IV.

General conclusion
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In this thesis, Raman spectroscopy (RS) coupled with multivariate analysis, especially

MCR-ALS was utilized to study in two biomedical systems.

In a study described in Chapter II, we succeeded in visualizing molecular-specific
information in Euglena during wax ester fermentation by Raman micro-spectroscopy. It is obvious
from our results that simple univariate approach is insufficient and that MCR-ALS is crucial to extract
hidden information from Raman spectra. Even though we have not measured any mutants in this study,
our approach is directly applicable to other systems and is expected to deepen the knowledge on lipid
metabolism in microalgae, which eventually leads to new strategies that will help to enhance biofuel
production efficiency in the future.

In a study described in Chapter III, we applied MCR-ALS in medical diagnosis to help
understanding molecular basis. Human mammary epithelial cells (HMEpC) and breast cancer cells
(MCF-7) were measured by RS and to estimate diagnostic accuracy by PC-LDA and SVM categorized
supervised multivariate analysis (MA). While those MA gave fairly high accuracy, the molecular basis
was still unclear. Furthermore, to elucidate the underlying molecular changes in cancer cells, MCR-
ALS was applied to extract physically meaningful spectra from complex cellular data. Relative
abundance of linoleate rich lipid component seems to be strictly regulated between the two groups of
cells. This study successfully identified Raman spectral markers and demonstrated the potential of RS
to become an excellent cytodiagnostic tool that can both accurately and objectively discriminates
breast cancer from normal cells.

These results from two practical studies successfully show that Raman spectroscopy coupled
with MCR-ALS is strong analytical tool to extract biomolecular information. Although this technique
presently needs deep consideration of what is extracted, this problem will be solved combining such
as standard Raman spectrum library and user-friendly interface in future. I believe Raman
spectroscopy coupled with MCR-ALS technique probably endows researches opportunity for reading

"molecular finger print" as it is.
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Raman spectroscopic studies coupled with MCR-ALS applied on some biomedical systems

Abstract

Raman spectroscopy has been gaining attention as a valuable molecular characterization tool
especially in the context of biological and medical research. Label-free molecular imaging and low
invasiveness are some of the major beneficial points. Since biological and medical sample are mostly
complex systems, utilization of Raman spectral data is restricted by only using classical univariate
analytical methods. Multivariate curve resolution — alternating least square (MCR-ALS) is one kind
of multivariate analysis to fully utilize Raman spectral information. This thesis consists of two
practical applications of MCR-ALS to describe its usefulness and how to process entire analysis in

biological and medical field.

1) Visualizing wax ester fermentation in single FEuglena gracilis cells by Raman
microspectroscopy and multivariate curve resolution analysis

Global demand for energy is on the rise at a time when limited natural resources are fast
depleting. To address this issue, microalgal biofuels are being recommended as a renewable and eco-
friendly substitute for fossil fuels. Euglena gracilis is one such candidate that has received special
interest due to their ability to synthesize wax esters that serve as precursors for production of drop-in
jet fuel. However, to realize economic viability and achieve industrial-scale production, development
of novel methods to characterize algal cells, evaluate its culture conditions, and construct appropriate
genetically modified strains is necessary. Here, we report a Raman microspectroscopy-based method
to visualize important metabolites such as paramylon and ester during wax ester fermentation in single
Euglena gracilis cells in a label-free manner.

We measured Raman spectra to obtain intracellular biomolecular information in Euglena
under anaerobic condition. First, by univariate approach, we identified Raman markers corresponding
to paramylon/esters and constructed their time-lapse chemical images. However, univariate analysis
is severely limited in its ability to obtain detailed information as several molecules can contribute to a
Raman band. Therefore, we further employed multivariate curve resolution analysis to obtain chain
length-specific information and their abundance images of the produced esters. Accumulated esters in
Euglena were particularly identified to be myristyl myristate (C28), a wax ester candidate suitable to
prepare drop-in jet fuel. Interestingly, we found accumulation of two different forms of myristyl
myristate for the first time in Fuglena through our exploratory multivariate analysis.

2)  Identification of Molecular Basis for Objective Discrimination of Breast Cancer Cells
(MCF-7) from Normal Human Mammary Epithelial Cells by Raman Microspectroscopy and

Multivariate Curve Resolution Analysis
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Raman spectroscopy (RS), a non-invasive and label-free method, has been suggested to
improve accuracy of cytological and even histopathological diagnosis. To our knowledge, this novel
technique tends to be employed without concrete knowledge of molecular changes in cells. Therefore,
identification of Raman spectral markers for objective diagnosis is necessary for universal adoption
of RS. As a model study, we investigated human mammary epithelial cells (HMEpC) and breast cancer
cells (MCF-7) by RS and employed various multivariate analyses (MA) including principal
components analysis (PCA), linear discriminant analysis (LDA), and support vector machine (SVM)
to estimate diagnostic accuracy. Furthermore, to elucidate the underlying molecular changes in cancer
cells, we utilized multivariate curve resolution analysis—alternating least squares (MCR-ALS) with
non-negative constraints to extract physically meaningful spectra from complex cellular data.
Unsupervised PCA and supervised MA, such as LDA and SVM, classified HMEpC and MCF-7 fairly
well with high accuracy but without revealing molecular basis. Employing MCR-ALS analysis we
identified five pure biomolecular spectra comprising DNA, proteins and three independent unsaturated
lipid components. Relative abundance of one lipid component seems to be strictly regulated between
the two groups of cells and could be the basis for excellent discrimination by chemometrics-assisted
RS. It was unambiguously assigned to linoleate rich glyceride and therefore serves as a Raman spectral
marker for reliable diagnosis. This study successfully identified Raman spectral markers and
demonstrated the potential of RS to become an excellent cytodiagnostic tool that can both accurately

and objectively discriminates breast cancer from normal cells.

These results from two practical studies successfully show that Raman spectroscopy coupled
with MCR-ALS is strong analytical tool to extract biomolecular information. Although this technique
presently needs deep consideration of what is extracted, this problem will be solved combining such
as standard Raman spectrum library and user-friendly interface in future. I believe Raman
spectroscopy coupled with MCR-ALS technique probably endows researches opportunity for reading

"molecular finger print" as it is.
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