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Chapter 1 
General Introduction 

1.1. Background 

Drylands are most sensitive to climate change; global warming over the past century is higher in 

drylands than in wetlands (Huang et al. 2016). Further, temperatures in drylands would increase 

by 3°C under the 1.5 °C mean global warming scenario, and their areas would tend to increase in 

the future (Huang et al. 2017). In dryland agro-ecosystems, the effect of climate variability on crop 

production under changing climate needs to be understood. 

 

Recent climate change has been reducing crop production in many parts of the world including 

Africa (IPCC 2014, 2019). Temperature tends to increase over Sub-Saharan Africa (Gil-Alana et 

al. 2019), and increasing trends in maximum and minimum temperatures are most likely associated 

with increasing trends in warm days and nights (Omondi et al. 2014; Ongoma and Chen 2017; 

Gebrechorkos et al. 2019) in both arid and tropical regions (Elagib 2010; Mengistu et al. 2014; 

Nsubuga et al. 2014). In countries vulnerable to climate change, temperature increases would 

impact field crop production (Hatfield et al. 2011; Hatfield and Prueger 2015), particularly that of 

wheat (Triticum aestivum), a major cereal that is normally grown under cool climate. The first step 

toward wheat adaptation is to understand the historic relationship between crop productivity and 

temperature variability (Iizumi et al. 2018; Ray et al. 2019). 

 

Crop yield estimation is required for the process of decision-making in food policy on a regional 

scale. For example, the outlook for cereal production prior to harvest is crucial for the government 

decision-makers to plan grain imports beforehand in case of shortages. Further, crop yield 

prediction using seasonal weather forecasts can help in coping with climate-related risks by taking 

mitigation measures. Thus, early warning systems for climate risk management in crop production 

have gained worldwide attention, as they can provide useful crop yield information based on 

seasonal weather forecasts (Asfaw et al. 2018). However, the current spatial resolution of the 

forecast data is not high enough for operational use in estimating crop yield. 

 

High spatial resolution climate data are required for local-scale impact assessments of climate 

variability and changes of ecosystem services. The outputs of general circulation models (GCMs) 



 

2 
 

are not sufficient for such local-scale studies, and therefore regional climate models (RCMs), 

which incorporate detailed specifications of the earth’s surface such as land use and water bodies, 

have been broadly applied to satisfy this requirement. RCMs outperform GCMs in detailed 

simulation of mesoscale processes, e.g., convective rainfall processes (Wilby and Wigley 1997; 

Soares et al. 2012; Garcia-Carreras et al. 2015). Weather Research and Forecasting (WRF) is a 

well-known RCM used for many purposes such as operational forecasting and dynamical 

downscaling. As local climates are regulated by global circulations and further constrained by land 

surface conditions, the WRF model provides multiple physics options to satisfy region-dependent 

climate conditions (Figure 1.1). Numerous studies have been conducted with the aim of identifying 

robust configurations of physical processes for specific scales and geographical locations and their 

applications (Fu et al. 2005; Christensen et al. 2007; Giorgi et al. 2009; van der Linden and 

Mitchell JFB 2009; Mearns et al. 2012; Solman et al. 2013). The WRF model has been worldwide 

adapted to generate high spatial climate information for various studies of climate impacts in 

different regions. 

 

Wheat is one of the most important grains in the world and contributes significantly to food 

security in many countries. The demand for wheat production is increasing due to the increase of 

the world’s population, and so does Sudan. Crop growing seasons in Sudan depend on temperature 

and rainfall. While the lack of rainfall has a negative impact on summer crops, high temperature 

has a negative impact on wheat during the dry season. Iizumi et al. (2021) have reported that crop 

yield projections for the future global average temperature warming of 1.5 to 4.2 °C indicate that 

the domestic production share of wheat in Sudan could decrease from the current 16% to 4.5–

12.2% by 2050, and hence it is essential to increase the yields by up to 4.7% per year in order to 

maintain the current domestic production share through different adaptation measures to global 

warming. While improving the heat tolerance of wheat varieties is one of the reliable measures to 

adapt to climate change and increasing climate variability, a wheat yield outlook system with high 

spatial resolution data of seasonal forecasts is also a valuable tool to cope with climate variability 

under changing climate. 
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Figure 1.1 A schematic diagram of physics options and their interactions within a typical 

numerical weather prediction model [redrawn Fig. 2 of Dudhia (2014)]. ( PBL indicate Planetary 

Boundary Layer, SW and LW indicate shortwave and longwave radiation, respectively, LH and 

SH and are the  latent heat and sensible heat fluxes, respectively, and T and Qv are the mean 

temperatures and water vapor mixing ratios) 
 

1.2. Study aim 

Sudan is one of the most vulnerable countries to climate variability and change. In particular, 

agriculture is affected by climate hazards such as drought in summer and extremely high 

temperatures in winter. To cope with such hazards, farmers need timely and reliable climate 

information for agronomic management, including seed planting, fertilizer application, and 

irrigation scheduling. The interpretation of seasonal climate forecasts is important as a way to 
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project crop yield before the growing season. In Sudan, wheat is one of the most important grains, 

and its cultivation is carried out under irrigation during the hot and dry season. The aim of this 

thesis is therefore to develop an approach for crop yield prediction with regard to the impact of 

high temperature on wheat production. The main objectives are (1) to investigate the regional-

scale relationship of wheat yields with temperature for the last five decades, (2) to identify a robust 

configuration of the WRF model for generating high-spatial-resolution climate data for crop 

growing seasons, and (3) to study the feasibility of wheat yield forecasting. Thus, the thesis is 

structured as the following main chapters: statistical analysis of yield and temperature relationship 

(Chapter 2), dynamical downscaling of climate variables (Chapter 3), and forecasting the yield 

production anomaly with statistical model (Chapter 4). 
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Chapter 2 

Statistical Analysis of Yield and Temperature Relationship 

2.1. Introduction 

Case studies on wheat yield trends and temperature variations have been reported from various 

countries (You et al. 2009; Brisson et al. 2010; Licker et al. 2013; Tack et al. 2015; Asseng et al. 

2017; Morgounov et al. 2018). Yield loss of winter wheat in Kansas (USA) in 1985–2013 largely 

resulted from freezing temperatures in fall and extreme heat in spring during the growing season 

from September to May (Tack et al. 2015). In China, wheat yield decreased by 4.5% in 1979–2000 

(You et al. 2009). Under rainfed conditions, an 11% yield decline in 1973–2010 was reported in 

Picardy (France), a vital winter wheat-producing region in Europe, where maximum spring 

temperatures increased by 2.4 °C and total fall precipitation decreased by 9% over the study period 

(Licker et al. 2013). Rainfed spring wheat in Eurasia and North America is harmed by high 

temperature in June and July, when heading, flowering, and ripening occur (Morgounov et al. 

2018). In regions where spring wheat is grown under irrigation, such as India,  higher mean 

growing-season temperature is associated with lower yield (Asseng et al. 2017). According to 

model simulation at a global scale (Asseng et al. 2015), wheat production would fall by 6% for 

each degree of temperature increase. 

 

Wheat production is considerably reduced by temperatures above the optimum. According to 

Porter and Gawith (1999), the optimum temperature for wheat is around 20 °C, ranging between 

17 °C and 23 °C; plants stop to grow below 0 °C or above 37 °C, and die at around − 17 °C or 

47.5 °C. Increased daytime and nighttime temperatures decrease wheat yields in controlled 

environments (Prasad et al. 2008; Garcia et al. 2015; Garcia et al. 2016; Narayanan et al. 2015; 

Nuttall et al. 2018). The exposure of wheat plants to daytime temperatures ≥ 35 °C during anthesis 

decreases grain yield (Nuttall et al. 2018), and additional exposure to high nighttime temperature 

further decreases it (Narayanan et al. 2015). Nighttime temperature ≥ 20 °C from booting to 

maturity shortens grain filling duration, hence reducing yield (Prasad et al. 2008). Similar 

responses to high night temperature have been found under field conditions from stem elongation 

to anthesis (Garcia et al. 2015) and from post-anthesis to maturity (Garcia et al. 2016). High 

temperature during grain-filling decreases yield in wheat-producing regions with a hot climate, 

such as Sudan (Ishag and Mohamed 1996). 
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The effect of climate change is particularly severe in Sub- Saharan Africa, and the Sudano-Sahelian 

countries could experience a considerable loss of agricultural production (Calzadilla et al. 2013). 

Sudan is one of the most important irrigated wheat producers in the region; its climate is 

characterized by high temperature and low humidity (Negassa et al. 2013). Wheat production in 

this hot region will deteriorate in the future (Asseng et al. 2017), and heat-resistant cultivars need 

to be improved to meet the future demand in the country. The only study (Adam and Ageeb 1994) 

that reported on the relationship between wheat yields and temperature in Sudan analyzed a single 

area, the Gezira Scheme, during a short period (10 crop seasons from 1981/82 to 1991/92). 

 

Although wheat yields in Sudan are low due to a combination of constraints such as high 

temperature, short growing season, low fertilizer input, and low soil carbon content, we focus on 

temperature in this study. The main objective of this study was to investigate the regional-scale 

relationship of wheat yields with temperature in Sudan for the last five decades. The specific 

objectives were to (1) evaluate recent trends in annual temperature, (2) analyze time series trends 

in temperature during the wheat growing season, and (3) determine how yield is associated with 

growing-season temperature. We also discussed the future trends in the effect of climate change 

on yields. To the best of our knowledge, this is the first study to investigate the yield–temperature 

relationship in Sudan using long-term observed data. 

 

2.2. Methods 

2.2.1. Study area 

Three major wheat-producing areas in Sudan were selected: Northern State (northern region), 

Gezira State (central region), and Kassala State (eastern region) (Figure 2.1). They cover about 

80% of the wheat cultivation area and account for about 85% of domestic production (FAO 2019). 

Spring-type wheat is cultivated under irrigated conditions in the relatively cold, dry season. 

Irrigated fields are located along the Nile River in Northern State, the Blue Nile River in Gezira 

State on the central clay plain, and the Atbara River in Kassala State. 

 

Data from three meteorological stations were used: Dongola (19.17°N, 30.48°E) in Northern State, 

Wad Medani (14.40°N, 33.48°E) in Gezira State, and New Halfa (15.32°N, 35.60°E) in Kassala 

State (Figure 2.1). They lie on flat land (elevations a.s.l.: Dongola, 226 m; Wad Medani, 408 m; 
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and New Halfa, 462 m) and are representative of the study areas. Dongola is located in a hyper-

arid region with an annual rainfall of < 15 mm and an annual potential evapotranspiration (PET) 

of about 2300 mm. Wad Medani and New Halfa are located in arid regions with an annual rainfall 

of 250–300 mm and an annual PET of 1950–2250 mm (Elagib and Mansell 2000). According to 

the FAO (2012) soil classification, Arenosols, Fluvisols, Leptosols, and Vertisols are found in 

Northern State; mainly Vertisols and, in small areas, Luvisols in Gezira State; and Luvisols, 

Cambisols, and Vertisols in Kassala State. 

 

2.2.2. Data collection and processing 

Wheat crop data of the study areas were obtained from the Ministry of Agriculture and Natural 

Resources of Sudan. The time series data of wheat production (kg) and harvested area (ha) for 48 

years (1970/71–2017/18 crop seasons) were used. The year-by-year grain yields (kg/ha) were 

calculated as the production divided by the harvested area. No data were available for Gezira and 

Kassala states in 1984/85 and for Kassala State in 2006/07, 2008/09, and 2009/10.  

The regional-scale yield shows a reasonable agreement with the plot-scale yield at research stations 

and if the two types of yield are compared for the overlapped period (2015/16 and 2016/17); the 

yields of the major varieties, i.e., Imam, Debeira, Wad Elneel, and Zakia, in 2015/16 and 2016/17 

range between 1800 and 6100 kg/ha at Gezira Research Station and between 1300 and 4500 kg/ha 

at New Halfa Research Station (Tahir et al. 2018). 

 

Daily maximum and minimum temperature data at the three meteorological stations for 1970–

2018 were obtained from the Sudan Meteorological Authority. Prior to the data processing, the 

homogeneity test of the temperature time series data was conducted to detect the changepoints 

using RHtestsV4, software developed by the Joint CCl/Clivar/ JCOMM Expert Team on Climate 

Change Detection and Indices (Wang and Feng 2013); detected changepoints of the minimum 

temperature time series data at Wad Medani and New Halfa were adjusted using a provision of 

Quantile- Matching (QM) included in the software. 

 

Annual and monthly averages of daily maximum temperature (annual and monthly TMAX, 

respectively) and daily minimum temperature (annual and monthly TMIN, respectively) were 

calculated. Also, extreme temperature indicators of hot days (maximum temperature > 35 °C) and 
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hot nights (minimum temperature > 20 °C) (Collins et al. 2000) were used. The ratio of hot days 

to the number of days in a month (monthly THD) and the ratio of hot nights to the number 

of days in a month (monthly THN) were calculated using ClimPACT2, software introduced by the 

Commission for Climatology Expert Team on Sector-specific Climate Indices of the World 

Meteorological Organization. In Sudan, wheat is typically planted in November, heading and 

flowering occur in January, and the ripening period is mainly February; November–February was 

defined as the growing season in this study. Means of daily maximum and minimum temperatures 

for the 4 months (growing-season TMAX and TMIN, respectively) and the ratios of hot days and 

hot nights to the number of days in the 4 months (growing-season THD and THN, respectively) 

were calculated. 

 

2.2.3. Data analysis 

To determine the trends of the temperature indicators (TMAX, TMIN, THD, and THN), linear 

regression analysis over time was carried out. To determine whether a time series had a monotonic 

upward or downward direction, the temperature indicators were further tested using the 

nonparametric Mann–Kendall and Sen’s slope estimator tests. The trend lines from regression 

analysis were used to analyze the yield–temperature relationship. Increasing yield trends could be 

expected owing to newly released cultivars, increased use of quality seeds, increased inorganic 

fertilizer application, and better irrigation and technology dissemination (Faki et al. 1994; Tahir et 

al. 2000; Tahir et al. 2020a). A detrending approach (Nicholls 1997) was used to remove the effect 

of agricultural development: time series data of the yields were detrended as deviations 

(anomalies) from regression lines detected at a significance level of 5%. All the temperature 

indicators with significant trends were detrended using the regression lines; in the absence of a 

trend, anomalies from the means over the period were used. The relationships between the 

detrended yields and temperature indicators were analyzed by correlating the anomalies using 

Pearson’s correlation and nonparametric Spearman’s rank correlation. Prior to the correlation 

analyses, the Shapiro–Wilk normality test was conducted to detect whether the yield anomalies 

were normally distributed and therefore the detrended procedure functioned validly; all the 

datasets met the assumption of normality at p ≤ 0.05. 

 



 

9 
 

 

Figure 2.1 Three major wheat-producing (irrigated) areas of Sudan (Northern State, Gezira 

State, and Kassala State) and their  representative meteorological stations (Dongola, Wad 

Medani, and New Halfa, respectively) 

 

Irrigated areas 

Elevation 

 1 
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Counterfactual yield is the estimated yield what would occur without warning and derived by 

inputting detrended temperature data to the established yield–temperature relationships. To 

calculate the counterfactual yields, (i) 5-year moving averages of the original yields and growing-

season mean temperatures (growing-season averages of daily mean temperature = average of daily 

TMAX and TMIN) were calculated; (ii) temperature increments relative to 1970/71 over the period 

were calculated using linear equations, with which the 5-year moving averages were fitted; (iii) 

yield changes relative to 1970/71 were calculated by substituting the temperature increments into 

equations of linear regression between the anomalies of growing-season mean temperatures and 

the original yields from the 5-year moving averages; and (iv) yield changes were subtracted from 

the original yield. This approach is essentially similar to the methods used in the previous studies 

(Lobell and Field 2007; Lobell et al. 2011; Moore and Lobell 2015). All data analyses were 

conducted in MS Excel, SPSS v. 25, and R v. 3.6.1 software. 

 

2.3. Results 

2.3.1 Maximum and minimum temperatures 

Annual TMIN and TMAX trends for 1970–2018 at the three meteorological stations are shown in 

Figure 2.2. Annual TMIN had increasing trends (p ≤ 0.05); slopes of the regression lines indicated 

a higher increase per decade at Dongola (0.83 °C) than at Wad Medani (0.50 °C) and New Halfa 

(0.31 °C). Annual TMAX had increasing trends at Dongola (0.23 °C) and Wad Medani (0.25 °C) 

(p ≤ 0.05), but not at New Halfa. The Mann–Kendall and Sen’s slope estimator tests also detected 

monotonic upward trends in both TMAX and TMIN at all locations (p ≤ 0.05), except for TMAX 

at New Halfa. The highest daily TMAX during the study period was 49.8 °C at Dongola on 24 

June 2010, 47.4 °C at Wad Medani on 27 May 1991, and 47.5 °C at New Halfa on 25 May 1998. 

The lowest daily TMAX was 16.2 °C at Dongola on 29 January 1983, 20.3 °C at Wad Medani on 

26 December 1992, and 20.5 °C at New Halfa on 10 January 1990. The highest daily TMIN was 

35.0 °C at Dongola on 18 May 2016, 32.6 °C at Wad Medani on 7 May 2009, and 34.7 °C at New 

Halfa on 30 April 2011. The lowest daily TMIN was 1.0 °C at Dongola on 9 February 1982, 4.1 °C 

at Wad Medani on 25 December 1971, and 4.8 °C at New Halfa on 6 February 1983. 

 

2.3.2 Growing‑season temperature indicators 

The distribution of monthly TMAX and TMIN is shown in Figure 2.3. Among the median values 
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at Dongola, the highest TMAX was in June and the highest TMIN was in August. At Wad Medani 

and New Halfa, the highest TMAX was in May and the highest TMIN in June. All locations had 

the lowest monthly TMAX and TMIN (medians) in January, followed by December and February. 

Linear regression analysis (data not shown) revealed monthly TMAX and TMIN trends for the 

growing season. Dongola had increasing trends in TMIN in all months (p ≤ 0.05) and in TMAX 

in November only (p ≤ 0.05). Wad Medani had a monthly TMAX increase over the entire period 

(p ≤ 0.05) except January, and increasing trends in TMIN in December, January, and February. 

New Halfa had increasing trends in TMIN over the entire period (p ≤ 0.05) except January and no 

trends in TMAX. In the Mann–Kendall and Sen’s slope estimator tests (Table 2.1), Dongola had 

the same results for TMIN, but a monotonic upward trend in TMAX in December instead of 

November. Wad Medani had monotonic upward trends in TMAX in November and December but 

not in January or February, and increasing trends in TMIN in all months except January. New Halfa 

had the same results (no trends) for TMAX, but monotonic upward trends for TMIN over the entire 

period (p ≤ 0.05). 

 

Linear trends in the growing-season TMAX and TMIN are shown in Figure 2.4. All three locations 

had increasing trends in both TMAX (decadal increase of 0.26 °C, 0.37 °C, and 0.20 °C for 

Dongola, Wad Medani, and New Halfa, respectively) and TMIN (0.71 °C, 0.40 °C, and 0.40 °C) 

(all p ≤ 0.05). In the nonparametric tests, both TMAX and TMIN had monotonic upward trends at  

all three locations, except for TMAX at Dongola (Table 2.1). 

 

During the growing season, the highest daily TMAX recorded at Dongola was higher in November 

(41.5 °C) and February (42.4 °C) than in December (37.6 °C) and January (39.0 °C). In contrast, 

the highest daily TMIN was higher in December (34.0 °C) and January (33.5 °C) than in November 

(26.0 °C) and February (24.0 °C). At both Wad Medani and New Halfa, the highest daily TMAX 

was above 40 °C and TMIN was above 26 °C in November–February. All records were higher than 

the thresholds (35 °C for hot days and 20 °C for hot nights). 

 

In Dongola, monthly THN had increasing trends in November and December (p ≤ 0.05) in 

both ?the linear regression and nonparametric analyses and THD had a monotonic upward trend 

in November (Table 2.1). In Wad Medani, monthly THD had upward trends (p ≤ 0.05) except in 
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November in both the linear regression and nonparametric analyses, and monthly THN had an  

increasing trend in February (p ≤ 0.05) in linear regression analysis but no trend in nonparametric 

tests (Table 2.1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Linear trends in annual average daily maximum (TMAX) and minimum temperatures 

(TMIN) from 1970 to 2018 at the Dongola, Wad Medani, and New Halfa meteorological stations 

in Sudan. Linear lines (estimated by least squares regression) in the figures are significant 

increasing trends in TMAX and TMIN 
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In New Halfa, THN had an increasing trend in November in both the linear regression and 

nonparametric analyses (Table 2.1) (p ≤ 0.05) and in February in linear regression analysis (p ≤ 

0.05). Growing-season THD and THN had increasing trends at all three locations (p ≤ 0.05), except 

for THD at New Halfa, whereas nonparametric analysis detected monotonic upward trends in all 

cases (Table 2.1). 

 

2.3.3. Relationships between yields and growing‑season temperature indicators  

The yield trends for the study period are shown in Figure 2.5. All study areas had increasing trends 

(p ≤ 0.05). Kassala State had the highest increase rate (23 kg/ha per year), followed by Gezira State 

(21 kg/ha per year) and Northern State (18 kg/ha per year). In Northern State, the yield dropped 

sharply in the 2007/08 season and was consistently below the trend line until 2016/17 so that 

additional linear regression analysis for 1970/71 to 2006/07 revealed a remarkable increasing trend 

(45 kg/ha per year) before a decline started in 2007/08 (Figure 2.5).  The original yields were lower 

than the counterfactual yields, and the differences increased from the 1970s to the 2010s in all 

study areas (Figure 2.6). In the 1970s, the original yields were lower than the counterfactual yields 

on average by 1% in Northern and Gezira states and by 2% in Kassala State, and the differences 

increased in the 2010s (7%, 12%, and 9%, respectively). 

Pearson’s correlation and Spearman’s rank correlation between detrended yields (anomalies in 

Figure 2.5) and the temperature indicators (detrended) are shown in Table 2.2. In Northern 

State/Dongola, yield was negatively correlated with November THN and February TMAX 

(Pearson’s correlation) and November THN (Spearman’s rank correlation). Additional analysis for 

the period prior to 2007/08 showed negative correlation of yield with February TMIN (r = − 0.43, 

ρ = − 0.33) and THN (r = − 0.43, ρ = − 0.61), and with November THN (ρ = − 0.41), December 

THN (ρ = − 0.53), and January THN (ρ = − 0.63) (p ≤ 0.05). In Gezira State/Wad Medani, yield 

was negatively correlated with January TMAX. In Kassala State/New Halfa, yield was negatively 

correlated with several temperature indicators, particularly with November TMIN and February 

THN. Better yield–temperature relationships were found with the growing-season temperature 

indicators (Table 2.2). In Northern State/Dongola, yield was negatively correlated with the 

growing-season THN (r = − 0.41, ρ = − 0.38), and the same result was found for the period prior 

to 2007/08 (r = − 0.41, ρ = − 0.52). In Gezira State/Wad Medani, yield was negatively correlated  
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Figure 2.3 Box-and-whisker plots of monthly average daily maximum (TMAX) and minimum 

temperatures (TMIN) for from 1970 to 2018 at the Dongola, Wad Medani, and New Halfa 

meteorological stations in Sudan. Each box indicates the lower and upper quartiles, the 

horizontal line in the box represents the median, and the whiskers (vertical lines) denote the 

minimum and maximum values, excluding outliers (circles)   
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Figure 2.4 Wheat growing-season (November–February) average daily maximum (TMAX) and 

minimum temperatures (TMIN) from 1970 to 2018 at the Dongola, Wad Medani, and New Halfa 

meteorological stations in Sudan. Linear lines (estimated by least squares regression) in the 

figures are significant increasing trends in TMAX and TMIN 
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Table 2.1 Mann–Kendall (Z statistic) and Sen’s estimator tests for monthly temperature indicators 

during wheat growing season in 1970–2018 at 3 meteorological stations in Sudan.    TMAX, 

maximum temperature; TMIN, minimum temperature; THD, proportion of  hot nights in a month 

 

 

 

 

 

 

 

 

Station Temperatur

e indicator 

November December January February Season 

Z p-value Z p-value Z p-value Z p-value Z p-

value 

Dongola TMAX 1.82 0.07 2.47 0.01 0.86 0.39 1.25 0.20 1.87 0.06 

TMIN 4.78 < 0.01 4.50 < 0.01 3.39 < 0.01 3.75 < 0.01 5.15 < 0.01 

THD 2.02 0.04 1.23 0.21 0.67 0.50 1.06 0.28 2.21 0.02 

THN 2.29 0.02 1.96 0.04 0.46 0.60 1.51 0.12 2.52 0.01 

Wad 

Medani 

TMAX 2.57 0.01 2.89 < 0.01 1.56 0.11 1.84 0.06 3.43 < 0.01 

TMIN 2.97 0.02 4.44 <0.01 1.50 0.13 2.59 <0.01 3.43 <0.01 

THD 1.18 0.23 4.99 <0.01 2.11 0.03 2.08 0.03 3.17 < 0.01 

THN 1.46 0.14 1.54 0.12 0.83 0.40 1.58 0.11 2.38 0.01 

New Halfa TMAX 1.30 0.19 1.53 0.12 1.07 0.20 1.48 0.13 2.57 0.01 

TMIN 2.95 <0.01 2.52 0.01 2.22 0.02 3.11. <0.01 3.41 < 0.01 

THD -0.23 0.81 1.28 0.20 0.8 0.40 1.31 0.18 2.04 0.04 

THN 2.38 0.01 1.31 0.18 0.59 0.55 1.82 0.06 3.06 <0.01 
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Figure 2.5 Irrigated wheat yield in the 1970/71 to 2017/18 seasons in Northern State, Gezira 

State, and Kassala State, Sudan and their anomalies from regression lines. Linear lines (estimated 

by least squares regression) in the figures are significant in Irrigated wheat yield in the 1970/71 

to 2017/18 seasons in Northern State, Gezira State, and Kassala State, Sudan and their anomalies 

from regression lines. Linear lines (estimated by least squares regression) in the figures are 

significant increasing trends in the yield. For Northern State, the dashed regression line for 

1970/71–2006/07 was used 
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Figure 2.6 Time series (1970/71–2017/18 crop seasons) of the original and counterfactual yields 

of wheat in Northern State, Gezira State, and Kassala State, Sudan. Counterfactual yield was 

defined as observed yield minus the effect of increasing temperature. The counterfactual yield is 

the estimated yield what would occur without increasing temperature over the 48 crop seasons 
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with growing-season TMAX (r = − 0.43, ρ = − 0.33). In Kassala State/New Halfa, yield was 

negatively correlated with all four indicators, particularly TMIN (r = − 0.55, ρ = − 0.54). 

Relationships of detrended yields with the growing-season TMAX and TMIN are also shown in 

Figure 2.7. In Gezira State/Wad Medani, yield decreased with increased TMAX from 32.6 °C to 

37.1 °C (p ≤ 0.05). In Kassala State/New Halfa, yield was negatively associated with TMAX 

between 32.7 °C and 37.2 °C and TMIN between 14.6 °C and 19.1 °C (p ≤ 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7  Relationships between wheat yield anomalies and growing-season (November-

February) average daily maximum (TMAX) and minimum temperatures (TMIN) for Northern 

State/Dongola, Gezira State/Wad Medani, and Kassala State/New Halfa, Sudan. Linear lines 

(estimated by least squares regression) in the figures are significant yield–temperature  

relationships 
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Table 2.2 Pearson correlation and Spearman’s rank correlation between wheat yield anomalies in 

Northern State, Gezira State, and Kassala State and temperature indicators at the respective 

meteorological stations (Dongola, Wad Medani, and New Halfa)  

TMAX, maximum temperature; TMIN, minimum temperature; THD, proportion of hot days in a month; THN, 

proportion of hot nights in a month; r, Pearson’s correlation coefficient; ρ, Spearman’s rank correlation coefficient; 

*p ≤ 0.05; **p ≤ 0.01; ns, not significant 

 

 

 

Production area/Station Temperature 

indicator 

November December January February Season 

r ρ r ρ r ρ r ρ r ρ 

Northern State/ 

Dongola 

TMAX –0.05 

ns 

–0.05 

ns 

–0.19 

ns 

–0.25 

ns 

–0.10 

ns 

–0.07 

ns 

–0.32 

* 

–0.22 

ns 

–0.26 

ns 

–0.26 

ns 

TMIN -0.19 

ns 

–0.13 

ns 

–0.04 

ns 

–0.13 

ns 

–0.07 

ns 

–0.04 

ns 

–0.19 

ns 

–0.21 

ns 

–0.17 

ns 

–0.21 

ns 

THD –0.251 

ns 

–0.24 

ns 

0.10 

ns 

–0.04 

ns 

–0.16 

ns 

–0.08 

ns 

–0.11 

ns 

–0.20 

ns 

–0.22 

ns 

–0.32 

* 

THN –0.38 

* 

–0.33 

* 

–0.06 

ns 

–0.04 

ns 

–0.11 

ns 

–0.07 

ns 

–0.05 

ns 

–0.15 

ns 

–0.41 

** 

–0.38 

** 

Gezira State/ 

Wad Medani 

TMAX –0.23 

ns 

–0.17 

ns 

–0.18 

ns 

–0.15 

ns 

–0.38 

** 

–0.36 

* 

–0.28 

ns 

–0.16 

ns 

–0.43 

** 

–0.33 

* 

TMIN -0.11 

ns 

-0.10 

ns 

-0.19 

ns 

-0.10 

ns 

–0.28 

ns 

–0.26 

ns 

0.18 

ns 

–0.10 

ns 

–0.15 

ns 

–0.17 

ns 

THD –0.16 

ns 

–0.21 

ns 

–0.19 

ns 

–0.18 

ns 

0.09 

ns 

0.12 

ns 

0.10 

ns 

0.11 

ns 

–0.31 

* 

–0.19 

ns 

THN –0.06 

ns 

–0.03 

ns 

0.07 

ns 

0.05 

ns 

–0.04 

ns 

–0.05 

ns 

–0.09 

ns 

–0.14 

ns 

–0.10 

ns 

–0.09 

ns 

Kassala State/ 

New Halfa 

TMAX –0.32 

* 

–0.28 

ns 

–0.23 

ns 

–0.19 

ns 

–0.41 

** 

–0.39 

** 

–0.23 

ns 

–0.19 

ns 

–0.42 

** 

–0.26 

ns 

TMIN –0.42 

** 

–0.54 

** 

–0.27 

ns 

–0.26 

ns 

–0.37 

* 

–0.37 

* 

–0.26 

ns 

–0.23 

ns 

–0.55 

** 

–0.54 

** 

THD –0.24 

ns 

–0.31 

* 

–0.18 

ns 

–0.15 

ns 

–0.35 

* 

–0.31 

* 

–0.22 

ns 

–0.22 

ns 

–0.42 

** 

–0.30 

ns 

THN –0.32 

* 

–0.41 

** 

–0.10 

ns 

–0.13 

ns 

–0.04 

ns 

–0.22 

ns 

–0.46 

** 

–0.41 

** 

–0.41 

** 

–0.51 

** 
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2.4. Discussion 

The Global Climate Report (NOAA 2020) reveals that 8 of the 10 warmest years at a global scale 

in the 140-year record have occurred since 2010; in Africa, the 5 warmest years have occurred 

since 2015, and the increasing trend in annual temperature since 1981 (0.31 °C per decade) has 

been more than twice that since 1910 (0.12 °C per decade). Our study showed increasing trends in 

annual TMAX and TMIN for the last five decades in three regions in Sudan (Figure 2.2). This is 

in line with the study by Elagib and Mansell (2000), who reported increasing trends in annual 

mean temperature in Sudan from the 1940s to the mid-1990s at a rate of 0.12 °C per decade at Wad 

Medani and 0.19 °C per decade at the Kassala meteorological station (15.47°N, 36.40°E, 500 m), 

which is located in the eastern region about 86 km east from New Halfa. Our findings are further 

supported by a study conducted in the Blue Nile–eastern Sudan region (Xu et al. 2010). 

Elagib and Mansell (2000) have reported no trend in annual mean temperature at Dongola, but we 

found temperature trends increasing at high rates, particularly annual TMIN, indicating that the 

warming progresses in the northern region of the country. Increasing temperature trends have been 

reported from neighboring countries. The east and south parts of the Upper Blue Nile River Basin 

in northwestern Ethiopia, which is adjacent to the eastern region of Sudan, had rising trends in 

both annual TMIN and TMAX in 1981–2010 at a rate of between 0.1 and 0.15 °C per decade 

(Mengistu et al. 2014). In East Africa (Kenya, Uganda, and Tanzania), annual temperature 

increased by 1.5 °C during 1951–2010 (Ongoma and Chen 2017). The highest daily TMAX (close 

to 50 °C) and TMIN (35 °C) at Dongola and the highest daily TMIN (> 32 °C) at Wad Medani and 

New Halfa were recorded after 2008. These recorded extremes also indicate that the study areas 

have been experiencing rapid warming in the last decade. 

 

In the study areas, high temperatures occur late in the hot season (March–May) or early in the wet 

season (June–October), and therefore, wheat is grown under cooler temperature in the dry season 

(Figure 2.3). Elagib (2010) has reported that the dry-season TMIN increased at a rate of 0.185 °C 

per decade at Wad Medani from the 1940s to the mid-2000s, but found no trend in TMAX, whereas 

we found no trend in TMIN but an increasing trend in TMAX (Figure 2.4). The trend rate of TMIN 

at New Halfa was, by and large, consistent with the previously reported rate at the Kassala 

meteorological station (0.357 °C per decade). For Dongola, we found increasing trends in both 

TMAX and TMIN, and the TMIN rate was more than double the TMAX rate, implying that rapid 
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warming is occurring in the nighttime during the growing season. In contrast, Elagib (2010) 

reported no increasing trend in dry-season (October–March) TMAX or TMIN at Dongola and even 

a decreasing trend in TMAX (− 0.166 °C per decade). This difference might be attributed to a 

difference in the data analysis between the studies, i.e., different study periods. 

 

The increasing trend rate of yield was around 20 kg/ha per year (Figure 2.5). This confirms the 

long-term improvement of spring wheat cultivars, which efficiently respond to nitrogen fertilizer, 

since 1960 (Tahir et al. 2020a). Meanwhile, the difference between the original and counterfactual 

yields was increasing (Figure 2.6) with increasing temperature (Figure 2.4). To avoid the 

confounding influence of increasing yield and temperature trends, we used the data detrending 

approach to analyze the relationship between yield and temperature variations. Consistent with 

previous reports (e.g., Asseng et al. 2017; Morgounov et al. 2018), we found negative relationships 

of wheat yields with TMAX and TMIN during the growing season (Table 2.2; Figure 2.7). Loss of 

pollen viability and shortened grain-filling period decrease grain number and weight, and hence 

yield (Ishag and Mohamed 1996; Prasad et al. 2008; Nuttall et al. 2018). The best indicator of the 

growing-season temperature for yield was THN in Northern State/Dongola and TMAX in Gezira 

State/Wad Medani, whereas all four indicators were significant in Kassala State/New Halfa. These 

findings imply that THN in northern areas, TMAX in central areas, and all four indicators in 

eastern areas can be used to detect the effect of high temperature on wheat production. Asseng et 

al. (2017) reported a negative relationship between yield and mean growing-season temperature in 

hot environments where spring wheat is grown under irrigated conditions, e.g., in northern India. 

Such relationships have also been reported for rainfed spring wheat in cool and warm regions in 

Canada, the USA, Russia, and Kazakhstan (Morgounov et al. 2018). A model simulation study by 

Lobell et al. (2005) showed the association of increasing yield with decreasing TMIN during 1988–

2002 in irrigated wheat production regions of northeast Mexico. 

 

High daytime temperature (≥ 35 °C) during anthesis decreases seed set and grain number 

(Narayanan et al. 2015; Nuttall et al. 2018). In the central and eastern regions of Sudan, wheat 

flowers mostly in January, which could partially explain the negative relationship between yield 

and January TMAX in Gezira State/Wad Medani and Kassala State/New Halfa (Table 2.2). In crop 

modeling, the negative effect of daily TMAX on wheat yield is demonstrated by setting an upper 
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temperature limit (e.g., 34 °C in APSIM) for calculating a heat-stress factor (Asseng et al. 2011). 

Here, 35 °C was set as the threshold temperature to calculate THD, but no specific monthly THD 

had a negative effect on yield, although Kassala State/New Halfa had a weak correlation of yield 

with November THD. The optimum temperature for wheat is around 20 °C (Porter and Gawith 

1999); therefore, daily TMIN should be below 20 °C. In this study, 20 °C was set as the threshold 

to calculate THN. Monthly minimum temperature indicators (THN and TMIN) in January and 

February (heading, flowering, and ripening period in central and eastern Sudan) had a negative 

effect on yield in Kassala State/New Halfa (Table 2.2). This is in line with the negative effect of 

the nighttime temperature ≥ 20 °C during grain filling on wheat grain number per spike and size 

(Prasad et al. 2008), and during anthesis on grain number and grain yield (Narayanan et al. 2015). 

In crop modeling, both the upper limit for daily TMAX and that for daily TMIN can be crucial for 

simulating the effect of high temperature on wheat yield in Sudan.  

 

Crop yield can be influenced by government policies such as socioeconomic transformation of 

agricultural industry (e.g., Hlavinka et al. 2009) and economic liberalization (e.g., Al-Feel and AL-

Basheer 2012). In Northern State, the sharp dropped yield in the 2007/08 season (Figure 2.5) might 

have happened because the government stopped support for agricultural inputs in wheat production 

in the mid-2000s, and accordingly the farmers might have minimized the use of the inputs such as 

fertilizers. 

 

2.5. Conclusions 

The yield–temperature relationship analysis is needed to understand wheat production in hot 

environments under changing climate. Using trend analyses of temperature indicators and wheat 

yields, we showed upward trends in both the annual and growing-season temperatures. In particular, 

nighttime temperature in the northern region (Dongola) is rapidly raising. The yields are negatively 

associated with both daytime and nighttime temperature indicators during the growing season, and 

the negative effect of raising temperature on yield has increased in recent years. Specifically, the 

yield deviation is associated with THN in the northern region, TMAX and THD in the central 

region, and TMAX, TMIN, THD, and THN in the eastern region. In the central and eastern regions, 

the temperature indicators in January (during the heading to flowering period) contribute the most 

to the yield deviation. Thus, Sudan is likely warming, which will adversely affect the country’s 
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breadbasket in coming decades. 
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Chapter 3 

Dynamical Downscaling of Climate Variables 

 

3.1. Introduction 

Previous studies have tested various physical options of the WRF model to identify the most 

suitable configurations for specific regions. For example, over the Middle East and North Africa 

(MENA), the climates of which are hot and dry, rainfall is sensitive mainly to cumulus 

parameterization physics such as the Kain–Fritsch scheme (KF) (Kain 2004), the Grell–Devenyi 

ensemble scheme (GD) (Grell and Dévényi 2002) and the Betts–Miller–Janjic scheme (BMJ) 

(Janjić 1994), whereas microphysics such as the Goddard scheme (GODDARD) (Tao et al. 1989) 

and the WRF Single-moment 6-class scheme (WSM6) (Hong and Lim 2006) significantly affect 

temperature deviations (Zittis et al. 2014). However, the model outputs are less sensitive to 

planetary boundary layer physics, such as the Mellor–Yamada–Janjic scheme (MYJ) (Janjić 1994) 

and the Yonsei University scheme (YSU) (Hong et al. 2006), than to cumulus parameterization 

physics and microphysics (Zittis et al. 2014a). In the case of shortwave and longwave radiation 

physics, the Community Atmosphere Model (CAM) (Collins et al. 2006) and Rapid Radiative 

Transfer Model for GCMs (RRTMG (Iacono et al. 2008) capture well the inter-annual variability 

and warming trends of temperature, but they are season- and location-dependent over MENA 

(Zittis and Hadjinicolaou 2017a). A previous study (Constantinidou et al. 2020) has further 

indicated that temperature is sensitive to land surface physics such as the Noah land surface model 

(NOAH) (Mitchell et al. 2005), NOAH with multi-parameterization (NOAHMP) (Niu et al. 2011), 

Community Land Model (CLM) (Bonan 1996), and the Rapid Update Cycle (RUC) (Smirnova et 

al. 1997). The following configuration of the WRF model has been recommended for MENA: 

CAM or RRTMG, NOAH, YSU, the WRF Single-moment 5-class scheme for microphysics 

(WSM5) or WSM6, and KF (Zittis et al. 2014; Zittis and Hadjinicolaou 2017b; Constantinidou et 

al. 2020). 

 

The sensitivity of the WRF model outputs to the physics options has been reported for the 

neighboring regions of MENA, i.e., the Nile River basin and the Eastern Nile basin. The 

configuration recommended for the Nile River basin is a combination of the Dudhia scheme for 

shortwave radiation (DUDHIA) (Dudhia 1989) and the Rapid Radiative Transfer Model for 
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longwave radiation (RRTM) (Mlawer et al. 1997), NOAH, MYJ, the WRF Single-moment 3-class 

scheme for microphysics (WSM3) (Hong et al. 2004), and KF (Tariku and Gan 2018). For the 

Eastern Nile basin, the climates of which are wetter than those of MENA, a set of CAM, NOAH, 

MYJ, WSM6, and BMJ is recommended (Abdelwares et al. 2018). In the case of rainfall, the WRF 

model outputs are very sensitive to the cumulus parameterization option (Zittis et al. 2014; Tariku 

and Gan 2018; Abdelwares et al. 2018; Ratna et al. 2014; Igri et al. 2018; Otieno et al. 2020). There 

are two types of cumulus parameterization options: adjustment and mass-flux. The BMJ is a typical 

adjustment type, whereas the GD and KF are examples of the widely used mass-flux type. The 

WRF model with the adjustment type does not simulate detailed processes of cumulus convection. 

Instead, it uses a simplified process that involves adjusting lapse rates of temperature and humidity. 

Compared with the adjustment type, the mass-flux type is complex because it involves cloud 

modelling for cumulus convective processes. The model performance with this type depends 

mainly on the reproduction of entrainment/detrainment and/or updrafts/downdrafts. The 

performance of WRF downscaling experiments has been reported from different regions of Africa. 

For example, the BMJ outperforms the GD in South Africa (Ratna et al. 2014), where it reproduces 

the intensity of summer rainfall anomalies, and the KF and GD over Central and Western Africa 

(Igri et al. 2018). Over East Africa, model simulation with the KT incorporating a moisture-

advection-based trigger function (KFT) as well as the KT and GD (Ma and Tan 2009) outperforms 

model simulation with the BMJ (Otieno et al. 2020). 

 

In Northeast Africa, drought and extremely high temperature events often occur and negatively 

affect crop production. Sudan is one of the countries vulnerable to such climate risks: droughts 

impact summer crops such as sorghum and pearl millet during the wet season from June to 

September in the relatively wet climate of the southern part (Elagib 2013), and high temperatures 

affect irrigated wheat during the dry season from November to February in the dry climate of the 

central and northern parts (Musa et al. 2021). Rainfall is a critical climate element in the wet season 

because summer crops are cultivated under rainfed conditions. Lack of rain results in crop failure, 

hence the economic loss. In the dry season, wheat is produced under irrigated conditions due to no 

rain falling in the cultivated areas, but the crop is often exposed to heat stress. Previous studies 

have shown that yields of the summer crops are positively associated with rainfall in the wet season 

(Elagib 2013), and irrigated wheat yield is negatively associated with temperature in the dry season 
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(Musa et al. 2021). The main objective of this study was therefore to identify a robust configuration 

of the WRF model for generating high-spatial-resolution climate data for crop growing seasons in 

Sudan. The focus was on wet season rainfall and dry season temperature. The specific objectives 

were (1) to compare downscaled rainfall and temperature data between cumulus parameterization 

schemes and (2) to determine cumulus parameterization schemes for specific growing seasons and 

climatic zones. 

 

3.2. Methods 

3.2.1. Study area 

Sudan is one of the most water-scarce countries in the world. Based on the aridity index (Middleton 

and Thomas 1992), the Sudan can be divided into three aridity zones, hyper-arid, arid, and semi-

arid. These zones are all characterized by hot, wet summers and relatively cold, dry winters. In 

general, northern Sudan receives less rainfall and experiences larger temperature changes between 

seasons than southern Sudan. For example, Dongola (19.17° N, 30.48° E) receives less than 15 

mm of annual rainfall, and the range of monthly mean temperatures is 17.6–34.5 °C; the annual 

rainfall at Wad Medani (14.40° N, 33.48° E) is about 300 mm, and the range of monthly mean 

temperatures is 23.6–33.1 °C; at Gedaref (14.03° N, 35.40° E), the annual rainfall is about 600 

mm, and the range of monthly mean temperatures is 25.9–32.7 °C. These sites are in the hyper-

arid, arid, and semi-arid zones, respectively (Elagib and Mansell 2000). The topography of Sudan 

is relatively flat, except in the southwestern part (Figure 3.1). 

 

3.2.2. Model configuration 

We used the WRF model version 4.2 (Advanced Research WRF). The BMJ scheme has been 

commonly selected in WRF downscaling experiments in the Nile River basin and the Eastern Nile 

basin (Abdelwares et al. 2018; Tariku and Gan 2018). The KFT scheme, the Tiedtke scheme 

(Tiedtke 1989), and the Grell–Freitas scheme (GF) (Grell and Freitas 2014) perform well to some 

extent in the neighboring regions of Sudan, i.e., East Africa (Mugume et al. 2017; Otieno et al. 

2020) and West Africa (Adeniyi 2019). However, to the best of our knowledge, the KFT, Tiedtke, 

and GF are never tested in the study area. Therefore, the following schemes were selected to 

evaluate the sensitivity of model outputs to cumulus parameterization: (a) BMJ (Janjić 1994), an 

adjustment type of the convection scheme introduced by Betts and Miller (1986); (b) KFT (Ma 
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and Tan 2009), an improved mass-flux scheme of Kain and Fritsch (1993) based on Fritsch and 

Chappell (1980) for a convective system of detrainment from clouds; (c) a modified Tiedtke (TDK) 

scheme (Zhang et al. 2011), a modification of the mass-flux scheme of Tiedtke (1989) with respect 

to entrainment and detrainment in cumulus convection; and (d) GF (Grell and Freitas 2014), a 

mass-flux scheme with the stochastic approach of Grell and Dévényi (2002) based on Grell’s 

original scheme (Grell 1993). The other four physics schemes selected for this study were the 

RRTMG, unified NOAH (Mukul Tewari et al. 2004), YSU, and WSM6 for shortwave and 

longwave radiation physics, land surface physics, planetary boundary layer physics, and 

microphysics, respectively. These were chosen based on recommendations found in previous 

studies of Northeast Africa (Zittis et al. 2014; Zittis and Hadjinicolaou 2017b; Abdelwares et al. 

2018; Tariku and Gan 2018; Constantinidou et al. 2020; Otieno et al. 2020). 

 

 

Figure 3.1 The domain of the Weather Research and Forecasting downscaling experiment with 

geographical locations of 24 meteorological stations in the hyper-arid, arid, and semi-arid zones 

of Sudan.  
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3.2.3. Model simulation 

A set of experiments was run to test these cumulus parameterization schemes using 6-hourly data 

from the National Centers for Environmental Prediction (NCEP-Climate Forecast System 

Reanalysis (CFSR)) at a horizontal resolution of 0.5° × 0.5° (Saha et al. 2010). The NCEP-CFSR 

dataset is available for the period 1979–2010 from the Research Data Archive of Computational 

and Information Systems Laboratory of the National Center for Atmospheric Research (ds093.0) 

(https://rda.ucar.edu) (accessed on 19 March 2021). In this study, the downscaling experiments 

were carried out for 10 years from 2000 to 2010 by running the model from May of each year to 

May of the following year. The NCEP-CFSR data were downscaled to 10 km horizontal resolution 

for a single domain centered over Sudan (Figure 3.1) using the WRF Preprocessing System version 

4 consisting of the 10 min surface topography data (slope category, terrain height, soil type, soil 

temperature) of the United States Geological Survey and the land use data (albedo, vegetation 

fraction, land use classification,) of the Moderate Resolution Imaging Spectroradiometer (MODIS 

(https://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html) (accessed on 20 

November 2020). 

 

3.2.4. Model validation 

Daily rainfall data and maximum and minimum temperatures (TMAX and TMIN, respectively) at 

24 meteorological stations (Figure 3.1) were obtained from the Sudan Meteorological Authority. 

Annual, seasonal, and monthly averages of daily rainfall, TMAX, and TMIN were used to evaluate 

model performance. For seasonal and monthly comparisons, wet season (June–September) and 

dry season (November–February) data were used for rainfall and temperature, respectively. TMAX 

was also used for the comparisons for the wet season in relation to heat stress to crops. Moreover, 

the number of rainy days (NRD) (daily rainfall ≥ 1 mm) in the wet season and the frequency of 

hot days (FHD) (daily TMAX > 35 °C) in the dry season were used as drought and extreme 

temperature indices, respectively. 

 

Model validation was performed using the data averaged over the meteorological stations located 

in each climatic zone. For statistical analysis of the downscaling experiments, a Taylor Diagram 

was used to depict the similarity between the experimental outputs and the corresponding observed 

data (10 years). The diagram showed the Pearson correlation coefficient (R), standard deviation 
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(SD), and root-mean-square error (RMSE) (Taylor 2001). The significance of the correlation 

coefficient was tested at p ≤ 0.05 (2-tailed). We normalized both the SD of the simulated data and 

the RMSE to the SD of the observed data. The spatial distributions of the simulated rainfall and 

temperature data were also compared with the 10-year average satellite-based reanalysis data, i.e., 

the Integrated Multi-Satellite Retrievals for GPM (IMERG) (Huffman et al. 2020) 

(https://gpm.nasa.gov) (accessed on 17 May 2021) for rainfall at a horizontal resolution of 0.1° × 

0.1° and the Modern-Era Retrospective analysis for Research and Applications, Version 2 

(MERRA2) (Celaro et al. 2017) (https://gmao.gsfc.nasa.gov) (accessed on 26 April 2021) for 

temperature at a horizontal resolution of 0.5° × 0.625°. The IMERG database has been developed 

since 2000, using the data collected with the TRMM/GPM onboard Dual-frequency Precipitation 

Radar and Microwave Imager together with other passive microwave radiometers such as GCOM-

W1 AMSR2 and NOAA-20 ATMS. The MERRA2 dataset (1980 to present) has been generated 

on a cubed-sphere grid with the GEOS General Circulation Model. 

 

3.3. Results 

3.3.1. Annual rainfall and temperature 

Figure 3.2a shows the spatial distribution of annual rainfall. The simulated data and the satellite-

based data were comparable in the central to northern part of the study area. The rainfall simulated 

with the BMJ scheme most closely agreed with the satellite-based data (IMERG) (Figure 3.2a, 

Table 3.1). Use of the KFT and GF schemes resulted in slight overestimates of rainfall in southern 

Sudan, and the rainfall simulated by the TDK was low in northern Sudan. In southeastern Sudan, 

the KFT-simulated rainfall was more-or-less in agreement with the satellite-based data. All four 

schemes produced results that were very strongly correlated with the satellite-based data (R = 0.92 

for BMJ, 0.96 for KFT, 0.93 for TDK, 0.97 for GF). The normalized SD for the BMJ scheme was 

close to unity. The BMJ scheme had the lowest RMSE, followed by the TDK and then the KFT 

scheme (Table 3.1). Figure 3.2b shows the spatial distribution of the annual TMAX. The 

distributions simulated with the BMJ, KFT, and TDK schemes were comparable with the 

MERRA2 data, except in the northeastern corner of Sudan, whereas the GF reproduced the low 

TMAX in the central to southern and central to eastern parts of the Sudan. All four schemes 

simulated temperatures that were strongly correlated with the satellite-based data, and the 

normalized SD was close to unity (Table 3.1). The RMSEs of the temperatures simulated by the 
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KFT and TDK were lower than the corresponding RMSEs of the BMJ and GF. Like TMAX, the 

simulated TMIN was strongly correlated with the satellite-based data, and the normalized SD was 

close to unity (Table 3.1). However, the RMSE was higher Atmosphere for TMIN than for TMAX 

in all four schemes. The simulated TMIN was higher than the satellite-based TMIN over the study 

area (Figure 3.2c). 

 

3.3.2. Wet season rainfall and temperature 

Figure 3.3a shows the spatial distribution of the wet season (June–September) rainfall. Like annual 

rainfall, the wet season rainfall simulated with the BMJ scheme was highly consistent with the 

IMERG data. The wet season rainfall simulated by all four schemes was very strongly correlated 

with the satellite-based rainfall (R = 0.91 for BMJ, 0.96 for KFT, 0.92 for TDK, 0.97 for GF). The 

RMSE of the wet season rainfall simulated by the BMJ was the lowest among the schemes. The 

variance of the BMJ rainfall was low, and its normalized SD was close to unity (Table 3.1). Figure 

3.4 shows Taylor diagrams of monthly and seasonal rainfall to allow comparisons between climatic 

zones. The seasonal rainfall simulated by all the schemes was significantly correlated with 

observed seasonal rainfall in the hyper-arid zone (R = 0.94 for BMJ, 0.85 for KFT, 0.93 for TDK, 

0.96 for GF). The simulated NRD also agreed with the observed data for TDK (R = 0.81) and GF 

(R = 0.68) (Table 3.2). The simulated monthly rainfall was also in agreement with the observed 

rainfall in June and July, and the GF-simulated rainfall was significantly correlated with the 

observed rainfall in August (Figure 3.4). In all months, both the SD and RMSE were higher for the 

GF-simulated rainfall than for the other schemes. In the arid zone, correlations were high between 

the seasonal rainfall simulated with the BMJ and GF schemes and the observed rainfall. The BMJ-

simulated NRD was also consistent with the observed data (R = 0.64), but no correlation was found 

between GF-simulated and observed NRDs (Table 3.2). There were significant correlations 

between observed and simulated monthly rainfall for all four schemes in July and September, 

except for the TDK in July, but there were no analogous correlations in June and August (Figure 

3.4). In general, the SD and RMSE were lower for the BMJ- and TDK-simulated rainfall than for 

the KFT- and GF-simulated rainfall. In the semi-arid zone, no correlations were found between 

simulated and observed seasonal rainfall, but KFT-simulated monthly rainfall was significantly 

correlated with observed rainfall in July and August. The BMJ- and GF-simulated rainfalls were 

consistent with the observed rainfall in July. In addition, the TDK-simulated NRD was 
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significantly correlated with the observed data (R = 0.71) (Table 3.2). The SD and RMSE of the 

simulated rainfall were relatively high in the semi-arid zone compared with the hyper-arid and arid 

zones (Figure 3.4). 

 

The seasonal TMAX simulated by all four schemes was very strongly correlated with the observed 

data in the hyper-arid zone (R > 0.8) (Table 3.2). In the arid and semi-arid zones, the simulated 

TMAX was also significantly correlated with the observed data. 

 

 Table 3.1 The Pearson correlation coefficient (R), normalized standard deviation (SD), root-

mean-square error (RMSE) and normalized RMSE for spatial distributions of annual and seasonal 

rainfall, maximum temperature (TMAX), and minimum temperature (TMIN). All correlation 

coefficients are significant at p ≤ 0.01. 

  Annual  Seasonal 

Scheme Statistics Rainfall TMAX TMIN  Rainfall TMAX TMIN 

BMJ R 0.92 0.76 0.88  0.91 0.93 0.94 

 Normalized SD 0.92 1.04 0.98  0.94 0.98 0.97 

 RMSE 113 mm 1.75°C 2.81°C  103 mm 1.80°C 3.20°C 

 Normalized RMSE 0.42 0.91 1.17  0.44 0.43 0.84 

KFT R 0.96 0.76 0.87  0.96 0.91 0.93 

 Normalized SD 1.53 0.98 0.98  1.46 0.71 0.84 

 RMSE 194 mm 1.59°C 2.70°C  141 mm 2.17°C 1.91°C 

 Normalized RMSE 0.72 0.83 1.13  0.61 0.52 1.24 

TDK R 0.93 0.76 0.85  0.92 0.94 0.94 

 Normalized SD 0.71 1.07 1.12  0.76 0.96 1.03 

 RMSE 160 mm 1.58°C 2.67°C  132 mm 1.54°C 3.43°C 

 Normalized RMSE 0.59 0.82 1.12  0.57 0.37 0.84 

GF R 0.97 0.76 0.88  0.97 0.93 0.94 

 Normalized SD 1.89 0.88 0.83  1.88 0.88 0.91 

 RMSE 336 mm 2.10°C 2.72°C  279 mm 1.84°C 3.03°C 

 Normalized RMSE 1.24 1.10 1.14  1.20 0.44 0.86 
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Figure 3.2 Spatial distributions of the 10-year average annual rainfall (mm) and maximum and 

minimum temperatures (°C) simulated with the Betts–Miller–Janjic (BMJ), improved Kain–

Fritch (KFT), modified Tiedtke (TDK), and Grell–Freitas (GF) schemes, and IMERG observed 

rainfall data and MERRA2 observed temperature data in Sudan. (a) Rainfall. (b) Maximum 

temperature. (c) Minimum temperature. 

 
(a) Rainfall 

 
(b) Maximum temperature 

 
(c) Minimum temperature 
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Figure 3.3 Spatial distributions of the 10-year seasonal (June–September) rainfall (mm) and 

seasonal (November–February) maximum and minimum temperatures (°C) simulated with the 

Betts–Miller–Janjic (BMJ), improved Kain–Fritch (KFT), modified Tiedtke (TDK), and Grell–

Freitas (GF) schemes, and IMERG observed rainfall data and MERRA2 observed temperature 

data in Sudan. 

 
(a) Rainfall 

 
(b) Maximum temperature 

 
(c) Minimum temperature 
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3.3.3. Dry season maximum temperature 

 Figure 3.3b shows the spatial distribution of the dry season (November–February) TMAX. The 

distributions simulated with the BMJ, TDK, and GF schemes were comparable to that of the 

MERRA2 data. The KFT-simulated TMAX values were relatively high, particularly in 

northwestern Sudan, and its RMSEs were higher than those of the other schemes (Table 3.1). The 

seasonal TMAX values were more highly correlated than the annual TMAX values with the 

MERRA2 data (R = 0.93 for BMJ, 0.91 for KFT, 0.94 for TDK, 0.93 for GF). The Taylor diagrams 

further showed that the simulated TMAX agreed with the observed data, except for KFT, in all 

three zones (Figure 3.5). Similarly, the FHDs simulated by all four schemes were strongly 

correlated with the observed data in all three zones (Table 3.2). The normalized SDs for BMJ and 

TDK were close to unity. The RMSEs were higher for the KFT and GF than for the BMJ and TDK 

schemes. The simulated monthly TMAX was significantly correlated with the observed data, 

except for the following schemes and months: KFT for December and January, TDK for November, 

and GF for November and January in the hyper-arid zone; KFT for January and GF for November 

and January in the arid zone; and BJM and TDK for November and KFT and GF for January in 

the semi-arid zone. 

 

3.3.4. Dry season minimum temperature 

Figure 3.3c shows the spatial distribution of the dry season TMIN. Like TMAX, the spatial 

distributions of the TMINs simulated with the BMJ, TDK, and GF schemes were comparable to 

those of the MERRA2 data, but the TMINs simulated by the KFT scheme were relatively high. 

The TMINs simulated by all four schemes were strongly correlated with the reanalysis data 

(MERRA2) (R = 0.94 for BMJ, 0.93 for KFT, 0.94 for TDK, 0.94 for GF), and the normalized 

SDs were near unity (Table 3.1). In contrast to the TMAX values, the RMSEs were relatively high, 

except for KFT. The Taylor diagrams also showed that the BMJ- and TDK-simulated seasonal 

TMINs were in agreement with the observed data in all three zones (Figure 3.6). However, the GF-

simulated TMINs were not correlated with the observed data in the hyper-arid zone, and the KFT-

simulated TMINs were correlated with the observed data only in the arid zone.  
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Figure 3.4 Normalized Taylor diagrams (obs: normalized standard deviation of observations) for 

monthly and seasonal rainfall during the wet season (June–September) in the hyper-arid, arid, 

and semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–Janjic, improved 

Kain–Fritch, modified Tiedtke, and Grell–Freitas schemes, respectively. (a) June. (b) July. (c) 

August. (d) September. (e) June–September 
 

  
(a) June  (b) July 

  
(c) August (d) September 

 

 

(e) June - September  
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The RMSEs associated with the seasonal TMIN data were relatively high compared to the RMSEs 

of the TMAX data. The normalized SDs were close to unity in the arid zone but lower than unity 

in the hyper-arid and semi-arid zones. The monthly TMINs simulated by all four schemes were in 

agreement with the observed TMIN in February in all three zones, December in the hyper-arid  

zone, and November in the arid zone. In addition, the TMINs simulated with the following schemes 

and months were significantly correlated with the observed TMINs in the arid and semi-arid zones: 

BMJ in December, TDK in November and December, and GF in December and January. 

 

Table 3.2 The Pearson correlation coefficient (R) for seasonal maximum temperature (TMAX) 

and the number of rainy days (NRD) (daily rainfall ≥ 1 mm) in the wet season (June–September), 

and the frequency of hot days (FHD) (daily TMAX > 35 °C) in the dry season (November–

February). All correlation coefficients are significant at p ≤ 0.05, and ns denotes no significance.  

  Wet Season Dry Season 

Zone Scheme TMAX NRD FHD 

Hyper-arid BMJ 0.85 ns 0.82 

 KFT 0.81 ns 0.74 

 TDK 0.89 0.81 0.85 

 GF 0.87 0.68 0.80 

Arid BMJ 0.79 0.64 0.96 

 KFT 0.74 0.65 0.90 

 TDK 0.84 ns 0.91 

 GF 0.89 ns 0.92 

Semi-arid BMJ 0.69 ns 0.95 

 KFT 0.80 ns 0.88 

 TDK 0.71 0.71 0.94 

 GF 0.90 ns 0.87 
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Figure 3.5 Normalized Taylor diagrams (obs: normalized standard deviation of observations) for 

monthly and seasonal maximum temperature during the dry season (November–February) in the 

hyper-arid, arid, and semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–

Janjic, improved Kain–Fritch, modified Tiedtke, and Grell–Freitas schemes, respectively. (a) 

November. (b) December. (c) January. (d) February. (e) November–February  

 

  
(a) November  (b) December 

  
(c) January (d) February 

 

 

(e) November - February  
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Figure 3.6 Normalized Taylor diagrams (obs: normalized standard deviation of observations) for 

monthly and seasonal minimum temperature during the dry season (November–February) in the 

hyper-arid, arid, and semi-arid zones of Sudan. BMJ, KFT, TDK, and GF are the Betts–Miller–

Janjic, improved Kain–Fritch, modified Tiedtke, and Grell–Freitas schemes, respectively. (a) 

November. (b) December. (c) January. (d) February. (e) November–February 

  
(a) November  (b) December  

  
(c) January (d) February 

 

 

(e) November - February  
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3.4. Discussion 

Our modeling experiments revealed that different cumulus parameterization schemes of the WRF 

model led to different model performance for Sudan. The adjustment type scheme (BMJ) 

performed better than the mass-flow type schemes (KFT, TDK, and GF) (Figure 3.2a and Figure 

3.3a). This result was not consistent with the results of previous studies in the Nile River basin 

(Tariku and Gan 2018) and the MENA (Zittis et al. 2014a), where the KF outperformed the BMJ.  

This difference could be attributed to differences in landscapes as well as land cover between these 

regions. In addition, the fact that the KFT outperformed the BMJ scheme in southeastern Sudan 

indicates that mass-flux schemes could be used for downscaling over regions of relatively high 

rainfall in the study area. In the case of the spatial distribution of temperature, the model outputs 

of both annual and seasonal temperatures were less sensitive to the cumulus parameterization 

option in the study area (Figure 3.2b,c and Figure 3.3b,c). This conclusion agrees with the results 

of previous studies of the Nile River basin (Tariku and Gan 2018) and MENA (Zittis et al. 2014a). 

 

Comparisons between climatic zones revealed that the model performance differed between the 

cumulus parameterization schemes for wet season rainfall (Figure 3.4.). The BMJ outperformed 

the other schemes for wet season rainfall in the hyper-arid and arid zones. In the semi-arid zone, 

all four schemes performed relatively poorly for seasonal rainfall, but the mass-flow (KFT) scheme 

performed better for the main months of the growing season (July and August). This result is 

consistent with the results of a previous study of cumulus parameterization options for seasonal 

rainfall in East Africa (Otieno et al. 2020). That study considered the same physics options as this 

study, and the results showed that mass-flow schemes (KF, KFT, and GD) performed better than 

the adjustment-type scheme (BMJ). In the case of dry season temperature, the BMJ and TDK 

schemes outperformed the KFT and GF schemes for TMAX in all three zones (Figure 3.5). In the 

arid and semi-arid zones, the GF performed better for TMIN during the growing season and its 

main months (December and January), but the BMJ and TDK outperformed the GF for the seasonal 

TMIN in the hyper-arid zone (Figure 3.6). This result is partly consistent with the results of a 

previous study in the Eastern Nile basin, which considered different schemes of the two other 

physics options (CAM for radiation and MYJ for planetary boundary layer). In that study, the BMJ 

outperformed the KF and GD schemes (Abdelwares et al. 2018). These results indicate that the 

model outputs are sensitive to the types of cumulus parameterization options, and the best option 
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depends on the other physics options considered. Previous studies of WRF downscaling for 

Northeast Africa (Abdelwares et al. 2018; Tariku and Gan 2018; Otieno et al. 2020) have indicated 

that the best WRF configuration depends on the type of climate and confirms that the best cumulus 

parameterization scheme is region-dependent for both rainfall and temperature in the study area. 

The schemes that performed best for downscaling rainfall during the wet season were the BJM for 

the hyper-arid and arid zones and the KFT for the semi-arid zone. In the case of dry season 

temperature, the BMJ and TDK should be used in all climatic zones, but the GF can be selected 

for TMIN in the arid and semi-arid zones. 

 

3.5. Conclusions 

This study evaluated cumulus parameterization options of the WRF model to determine the most 

robust configuration for a relatively small domain centered over Sudan. The downscaling of the 

NCEP-CFSR data was sensitive to four schemes, i.e., BMJ, KFT, TDK, and GF. This physics 

option should be carefully selected for generating high-spatial-resolution climate data in the study 

area. The major production areas of summer crops lie in the semi-arid zone, whereas irrigated 

wheat is cultivated mostly in the arid and hyper-arid zones. As rainfall and temperature are 

determinants of the climatic conditions for summer crops and irrigated wheat, respectively, the 

recommended schemes for cumulus parameterization are therefore the KFT for wet season rainfall 

in the semi-arid zone, and either the BMJ or TDK for the dry season temperature in the hyper-arid 

and arid zones, except for the dry season TMIN in the arid zone, for which the GF is recommended. 

The cumulus parameterization scheme thus needs to be selected separately for each climatic zone 

in Sudan. 
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Chapter 4 

Forecasting Yield Anomaly with Statistical Model 

4.1. Introduction 

An operational system that provides information about crop responses to weather is necessary for 

early warnings of climate-related crop failure in any country. Crop yield estimates are useful for 

implementing appropriate agricultural policies (Prasad et al. 2006); in other words, crop yield 

forecasting in advance of harvest is crucial for the risk management of national food security. For 

example, yield forecasting helps government decision-makers to relieve food shortages due to 

weather and climate disasters by organizing international food trade and calling for international 

aid in advance. Yield forecasting with a long lead time also provides essential information for food 

trade and commodity markets (Hansen et al. 2004). 

 

Temperature plays an essential role in wheat yield production while precipitation, 

evapotranspiration, and soil moisture also have an unignorable influence on wheat yield. The 

warming is slowing yield gains at a majority of wheat-growing areas worldwide and global wheat 

production is estimated to fall by 6% for each degree of further temperature increase and become 

more variable over space and time, based on the 30 different crops from Agricultural Model Inter-

comparison and Improvement Project (AgMIP) (Asseng et al. 2016). Lobell et al. (2012) found 

that the increasing of temperature alone, especially the hot extreme, accelerates the senescence of 

wheat and thus leads to the decrease in the production of wheat in India. A number of the previous 

studies indicate the increasing of temperature has a strong influence on wheat yield production, 

especially in the hot and dry environments (Lobell et al. 2008, 2012; Asseng et al. 2016). 

 

While a process-oriented crop growth model has been widely used to estimate the yields of 

different crops, a simple statistical model is useful for yield forecasting due to the large uncertainty 

of crop growth model output (Asseng et al. 2015, 2016). In contrast, a simple statistical model can 

capture the relationship between crop production and climatic driving variables such as 

temperature (Lobell and Burke 2010). Similar findings were reported from different regions with 

different statistical models. For instance, simple correlation, multiple linear regression, and other 

statistical methods are used to analyze wheat yield in Saudi Arabia (Leilah and Al-Khateeb 2005). 

Multiple regression has been used to identify the significant climate variables for winter wheat 
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yield prediction in Oklahoma, U.S.A. (Zhang et al. 2017) and employed for wheat yield forecasting 

in Punjab, India (Bal et al. 2004). Musa et al. (2021) reported that the monthly and seasonal 

(November–February) temperature indicators, including maximum temperature (TMAX), 

minimum temperature (TMIN), and frequencies of hot days (maximum temperature above 35 °C) 

(THD and hot nights (minimum temperature above 20 °C) (THN), show significant relationships 

with wheat yields in Sudan, and these temperature indicators can be used to develop a multiple 

regression model for the yield estimates. 

 

While statistical models based on climate-related indicators can be utilized for yield forecasting 

(Agrawal and Mehta 2007), several models developed for different countries are not satisfactory 

for their operational use (Bal et al. 2004). One of the reasons is the poor quality of climate data 

(e.g. coarse spatial resolution). Hence, it is imperative to downscale the climate data (e.g. a 0.5-

degree grid) to a higher spatial resolution, and then the downscaled data can be used for yield 

forecasting as inputs of the statistical models. The WRF model is widely used for this purpose as 

it provides multiple physics configurations for different regions with different climate backgrounds. 

For this study region, i.e. Sudan, the best performing configurations have been identified in the 

previous study (Musa et al. 2022), which provides reliable driving data for yield forecasting. 

 

The main objective of this study was to investigate the feasibility of wheat yield forecasting with 

a statistical model in Sudan. The specific objectives were (1) to develop a statistical model to 

estimate the yield anomaly that is solely dependent on temperature, and (2) to evaluate the model 

performance for the yield estimated using climate forecast data. 

 

4.2. Methods 

4.2.1. Datasets 

The detrended anomaly of the observed data of the wheat yield in Northern State, Gezira State, 

and Kassala State for 1970/71–2017/18 and the temperature indicators in Dongola, Wad Medani, 

and New Halfa for 1970–2018 over the growing season were used for model development. The 

details of the datasets were described in Musa et al. (2021). 

 

Climate forecast data is generated by using the WRF model, which is driven with seasonal forecast 
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data from the National Centers for Environmental Prediction-Climate Forecast System Version 2 

(CFSv2) Operational Forecasts (https://www.ncei.noaa.gov/access/metadata/landing-

page/bin/iso?id=gov.noaa.ncdc:C00877) (Yuan et al. 2011). These data (~ 1° x 1°) for 2011–2018 

were downscaled to 10 km horizontal resolution using the WRF model configured with the 

RRTMG, unified NOAH, YSU, and WSM6 schemes, respectively, corresponding to shortwave 

and longwave radiation physics, land surface physics, planetary boundary layer physics, and 

microphysics. The cumulus parameterization scheme varies over different climatic zones and 

specific temperature index indicators (cf. Chapter 3 and Musa et al. (2022) for the detailed 

information). With the assumption that the time-series data of the forecasts have the same trend 

(regression) lines as those of the observations, anomalies of the downscaled data were calculated 

for model evaluation (cf. Chapter 2 and Musa et al. (2021) for the detrending method). 

 

4.2.2. Model development 

A statistical model that estimates the yield (a dependent variable) from the temperature indicators 

(independent variables) was developed using the backward stepwise regression method. A 10% 

significance level (p = 0.1) was used to eliminate the variables. The regression analysis for each 

study location (the northern region: Northern State/Dongola, the central region: Gezira State/Wad 

Medani, and the eastern region: Kassala State/New Halfa) was carried out using the observed data. 

The independent variables used for the regression analysis were the January, February, and 

growing-season temperature indicators (TMAX, TMIN, THD, and THN). These two months were 

included in statistical modeling because of the critical stages of crop growth and development, i.e. 

heading to flowering in January and ripening in February. The ratio (percentage) data, i.e. THD 

and THN, were transformed using the logarithm base 10 (log10). The analysis was conducted in 

SPSS v. 25 software. 

 

4.2.3. Model evaluation 

The regression model to be developed was evaluated on a basis of classified yield. The yield 

anomaly data were classified into three categories: above-normal (the top one-third), near-normal 

(the middle one-third), and below-normal (the bottom one-third). First, the observed yield was 

compared with the estimated yield as calculated with the model using the observed temperature 

data for the 48 crop seasons. Then, the forecasted yield as calculated with the model using the 
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downscaled temperature data for the seven crop seasons was compared with both the observed and 

estimated yields for the same period. 

 

The confusion matrix of the three yield classes was used for model evaluation (Table 4.1). The 

accuracy of the model [the rate of correctly classifying the yield categories] was calculated as (Aa 

+ Nn +Bb) / TOTAL, where TOTAL is the total cases (= Aa + An +Ab +Na +Nn +Nb +Ba + Bn + 

Bb). The accuracy of the forecasted yield to the observed yield was also calculated to evaluate 

model performance. 

 

Table 4.1 Confusion matrix of three yield categories (above-normal, near-normal, and below-

normal) 

 Estimated yield 

Above-normal (a) Near-normal (n) Below-normal (b) 

Observed 

yield 

Above-normal (A) Aa An Ab 

Near-normal (N) Na Nn Nb 

Below-normal (B) Ba Bn Bb 

 

 

4.3. Results and discussion 

4.3.1. Northern Region (Northern State/Dongola) 

The regression analysis showed that the growing-season THN (THNGS) and February TMAX 

(TMAXFEB) as predictors of the yield (YIELD) have high impacts on yield production in the 

northern region (Table 4.2). It can be described as the following multiple linear model: 

 

Yield = 13.189 – 5306.096·THNGS – 77.200·TMAXFEB   (1) 

 

About 27% of the variance for the yield was explained by the two temperature indicators [R2 = 

0.268, F (2,40) = 7.32, p = 0.02].  

Anomalies of the observed yield against the estimated and forecasted yields are shown in Figure 

4.1. The accuracy of the estimated yield to the observed yield was 0.50, which was calculated 
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based on the confusion matrix (Table 4.3). For the period 2012 to 2018, the forecasted anomalies 

were higher than the observed anomalies (Figure 4.1). The accuracy of the forecasted yield to the 

observed yield was relatively high (0.43). 

 

The results show that the growing-season THN and February TMAX are the best predictors of the 

yield prediction model in the northern region of the study area. This agrees with the findings of 

Musa et al. (2021), which showed that these two temperature indicators were significantly 

correlated with the yield. The model, which is temperature-dependent, overestimated the yield 

anomalies for the period 2012 to 2018 (Figure 4.1). This low observed yield, which remarkably 

decreased after 2007, was due to the change of the government policy on wheat production (Musa 

et al. 2021). In addition, the predictor TMAX in February, which is the ripening period, should be 

highlighted because of the critical growth stage. This is supported by the study of Ishag and 

Mohamed (1996), who emphasized the negative effect of high temperature during grain-filling on 

wheat grain weight. 

 

Table 4.2 Coefficients of the independent variables (predictors) and their 90% confidence interval 

(lower and upper bounds) of the regression models for the northern, central, and eastern regions 

of Sudan (Northern State/Dongola, Gezira State/Wad Medani, and Kassala State/New Halfa, 

respectively). 

Region Variable Coefficient p-value Lower Upper 

Northern Constant    13.189 0.865  –116.969   143.346 

 THNGS –5306.096 0.008 –8493.382 –2118.810 

 TMAXFEB   –77.200 0.033  –136.178   –18.221 

Central Constant    22.053 0.669   –64.151   108.257 

 TMAXGS  –160.021 0.007  –255.245   –64.797 

Eastern Constant    67.932 0.074  –130.352    –5.512 

 TMINJAN  –112.525 0.001  –166.722   –58.328 

 THNFEB –40.260 0.004   –62.551   –17.970 
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Figure 4.1 Observed, estimated, and forecasted wheat yield from 1971 to 2018 in the northern, 

central, and eastern regions of Sudan (Northern State/Dongola, Gezira State/Wad Medani, and 

Kassala State/New Halfa, respectively). WRF-BMJ and WRF-GF were the cumulus 

parameterization schemes of the WRF model, which were used to downscale the seasonal 

forecast data (CFSv2). 
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Table 4.3 Confusion matrices of the observed and estimated yields in the northern, central, and 

eastern regions of Sudan (Northern State/Dongola, Gezira State/Wad Medani, and Kassala 

State/New Halfa, respectively). 

 Estimated yield 

Northern Region Above-normal Near-normal Below-normal 

Observed 

yield 

Above-normal 13 0 3 

Near-normal 10 1 5 

Below-normal 6 0 10 

Central Region Above-normal Near-normal Below-normal 

Observed 

yield 

Above-normal 3 12 1 

Near-normal 4 10 1 

Below-normal 2 12 1 

Eastern Region Above-normal Near-normal Below-normal 

Observed 

yield 

Above-normal 7 10 1 

Near-normal 3 11 1 

Below-normal 1 7 7 

 

4.3.2. Central Region (Gezira State/Wad Medani) 

A significant regression model for the central region was found with one variable (predictor), i.e. 

the growing-season TMAX (TMAXGS) (Table 4.2), which explains only 17% of the variance for 

the yield [R2 = 0.171, F (1,39) = 8.02, p = 0.007]. The estimated yield was less variable than the 

observed yield, and so does the forecasted (WRF-BMJ) yield (Figure 4.1). The accuracy of the 

estimated yield to the observed yield was low (0.30) (Table 4.3). The model produced a low 

variation of the forecasted yield data (Figure 4.1), resulting in the data being classified into a 

specific yield category, i.e. the near-normal yield. 

 

The growing-season TMAX only identified among the twelve variables is consistent with the result 

of the correlation analysis in Musa et al. (2021). The low coefficient of determination (R2) indicates 

that the yield can be explained by other essential factors such as agronomic management. For 

instance, Al Zayed et al. (2015) reported that 44% of wheat yield was positively associated with 
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the total amount of irrigation supply to the cropland in the Gezira Scheme for the period 1970 to 

2006. This suggests that irrigation water management is an exoplanetary factor that can be included 

in the statistical model.  

 

4.3.3 Eastern Region (Kassala State/New Halfa) 

The predicters identified for the eastern region were January TMIN (TMINJAN) and February THN 

(THNFEB) (Table 4.2), explaining about 41% of the variance for the yield [R2 = 0.408, F (2,38) = 

13.12, p < 0.001] with the following multiple linear model: 

 

YIELD = 67.932 – 112.525·TMINJAN – 40.260·THNFEB   (2) 

 

The variation of the observed yield over the period 1971 to 2018 was relatively agreed with that 

of the estimated yield (Figure 4.1). The accuracy of the estimated yield to the observed yield was 

0.52 (Table 4.3). The accuracy of the model for the eastern region was better than that for the 

central region and equivalent to that for the northern region. The accuracy of the forecasted yield 

to the observed yield for the eastern region was high (0.86), compared with that for the other two 

regions. 

 

The predictors of the model to estimate the yield in the eastern region are January TMIN and 

February THN. This is supported by the study of Musa et al. (2021), which reported that the two 

predictors were significantly correlated with the yield. The crop is sensitive to minimum 

temperatures in January and February when the crop is expected to be at the heading, flowering, 

and ripening stages. This result is supported by Narayanan et al. (2015) and Prasad et al (2008), 

who reported that high TMIN during flowering and high THN during ripening respectively 

decrease wheat yield. 

 

4.4. Conclusions 

The statistical modeling of the relationship of crop yield with climate variables is useful for 

developing an operational yield forecast system to reduce risks associated with climate-related 

hazards. Using the backward stepwise method of multivariate analysis, we developed the statistical 

models for the yield–temperature relationship in the three wheat-producing areas. The 2-variable 
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linear regression models were determined for Northern State/Dongola and Kassala State/New 

Halfa. The variables (predictors) selected by the stepwise regression were the growing-season 

THN and February TMAX in the northern region, and January TMIN and February THN in the 

eastern region. The accuracy of the model is moderate; the temperature indicators explain up to 

about 40% of the variance for the yield. For the central region (Gezira State/Wad Medani), only 

one predictor (the growing-season TMAX) was selected, hence the low accuracy of the model. 

Statistical modeling is a potential technique to estimate wheat yield, but additional exoplanetary 

factors (predictors) such as irrigation water supply will improve the statistical models of irrigated 

wheat yield prediction in Sudan. 
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Chapter 5 

General Conclusion 

5.1. Study findings 

As the world's population has increased since the Industrial Revolution, more food is requested to 

assure food security. In the meantime, climate change leads to its negative effects on crop 

production in countries vulnerable to increasing climate variability, hence the food crisis. Crop 

yield outlook is essential for government decision-makers to formulate agricultural policies and 

climate change adaptation measures. High spatial and temporal resolution data of seasonal weather 

forecasts are crucial for crop yield prediction. In the study area (Sudan), high temperature during 

the dry season in wheat-producing areas is a matter of concern. This thesis, therefore, has addressed 

the statistical analysis of the yield–temperature relationship (Chapter 2), explored the use of the 

WRF model to generate high resolution climate data (Chapter 3), and conducted statistical 

modeling for wheat yield estimation from the climate data (Chapter 4). 

 

Similar to global warming in other parts of the world, temperatures are rising in Sudan's wheat 

production areas, especially in the northern region (Northern State/Dongola) where the minimum 

temperature (TMIN) is rising rapidly. Wheat yields are negatively affected by the growing-season 

TMIN and maximum temperature (TMAX). Specifically, they are related to THN (the frequency 

of hot nights having minimum temperatures above 20 °C) in the northern region, TMAX and THD 

(the frequency of hot days having maximum temperatures above 35 °C) in the central region 

(Gezira State/Wad Medani), and TMAX, TMIN, THD, and THN in the eastern region (Kassala 

State/New Halfa). In addition, temperatures in January, which coincide with the flowering period 

in the central and eastern regions, have a great impact on the yields. Thus, global warming is 

progressing in Sudan and will have a negative impact on wheat production in the future. 

 

The optimal configuration of WRF physics options has been identified to generate high spatial 

resolution data of reanalysis data for specific regional climates in the study area. The model output 

with the BMJ and TDK schemes produces better downscaled data than that with the other schemes 

for both TMAX and TMIN during the dry season (wheat growing season) in the hyper-arid zone 

of Sudan, including the wheat-producing area of the northern region. For the arid zone, including 

the wheat-producing areas of the central and eastern regions, either the BMJ or TDK scheme can 
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be used for TMAX, and the GF scheme overperforms for TMIN. In addition, rainfall in the semi-

arid region has relatively reproducible with the KFT scheme. Thus, high attention should be paid 

to selecting the cumulus parameterization scheme for each climatic zone and season in Sudan. 

 

Based on the above-mentioned findings, a stepwise regression model for the yield–temperature 

relationship has been proposed for each wheat-producing area. The growing-season THN and 

February TMAX are selected as variables (predictors) of the statistical model for the northern 

region. For the central region, only one predictor, i.e. the growing-season TMAX, is selected; 

hence, the low accuracy of the model. For the eastern region, the predictors are January TMIN and 

February THN, which explain about 40% of the variance for the yield. When model performance 

is evaluated by classifying the yields into the above-normal, near-normal, and below-normal 

categories, the accuracy of the forecasted yield to the observed yield is relatively high (86%). Thus, 

statistical modeling using the stepwise method of multivariate analysis is useful for wheat yield 

outlook with seasonal forecasts. 

 

The findings of this thesis are summarized as follows: (1) Irrigated wheat yield over the past half-

century in the hot environments of Sudan shows an increasing trend and is negatively associated 

with the growing season temperature; (2) Specific configurations (i.e. cumulus parameterization 

schemes) of the WRF model are needed for specific seasons and climatic zones; and (3) 

Temperature-based modeling is a useful method for wheat yield estimation. All in one, the 

approach for the climate forecast–crop yield modeling based on the historical relationship of wheat 

yield with temperature can be utilized for developing an early warning system for reducing risks 

associated with high temperature in the breadbasket of Sudan. 

 

5.2. Future study 

While some reliable physics configurations of the WRF model have been identified for the study 

area, a more extensive model simulation for the sensitivity analysis would be very helpful in a 

comprehensive configuration for the reliable seasonal forecast. The sensitivity of the WRF model 

outputs to the choice of physics options has been reported from Northeast Africa. For example, the 

WSM6 performs better than other microphysics schemes such as GODDARD, WSM3, and WSM5 

(Zittis et al. 2014a; Abdelwares et al. 2018), and NOAH performs better than other land surface 
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schemes such as NOAHMP, CLM, and RUC (Tariku and Gan 2018; Constantinidou et al. 2020). 

In the case of the planetary boundary layer option, MYJ performs better than YSU over the Nile 

River basin (Tariku and Gan 2018) and the Eastern Nile basin (Abdelwares et al. 2018), whereas 

the latter performs better than the former over MENA (Zittis et al. 2014). In the case of the radiation 

physics option, a set of DUDHIA and RRTM performs better than CAM over the Nile River basin 

(Tariku and Gan 2018), whereas the latter performs better than the former over the Eastern Nile 

basin (Abdelwares et al. 2018). The performance of the radiation physics schemes (CAM and 

RRTMG) for temperature varies from location to location and from season to season over MENA 

(Zittis and Hadjinicolaou 2017a). In Chapter 3, the other physics options have been fixed to test 

the cumulus parameterization options. Accordingly, further downscaling experiments for the study 

area (Sudan) are recommended to evaluate the radiation physics and planetary boundary layer 

options in particular; for example, RRTMG and YSU can be compared with CAM and MYJ, 

respectively. 

 

While Chapter 2 has investigated the impact of temperature on wheat yield, it is imperative further 

to understand the combined effect of climate and agronomic management on irrigated wheat. The 

government of Sudan has provided large-scale public irrigation schemes (e.g., the Gezira Scheme) 

with irrigation facilities, fertilizers, pesticides, and improved seeds, but such services are not 

available for small-scale irrigation schemes scattered along the Nile River in Northern State 

(Elsheikh et al. 2015). The amount of irrigation water applied to the crop field may be another 

explanatory factor that can be considered for the yield–temperature relationship in Sudan; for 

example, the yield of wheat in the Gezira Scheme is correlated with total irrigation water supply 

from the Sennar Dam (Al Zayed et al. 2015). However, detailed information on irrigation water 

allocation to wheat is not available; hence, the relationship with the yield remains unknown. 

Therefore, future study is needed to clarify whether the irrigation information is a key to the yield–

temperature relationship analysis. Accordingly, the approach for temperature-based modeling for 

wheat yield prediction can be improved by incorporating irrigation information in the hot 

environments of Sudan. 
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Summary  

 

Sudan is one of the most vulnerable countries to climate variability and change. In particular, 
agriculture is affected by climate hazards such as drought in the wet season and extremely high 
temperatures in the dry season. To cope with such hazards, farmers need timely and reliable 
climate information for agronomic management, including seed planting, fertilizer application, 
and irrigation scheduling. Crop yield prediction can help in coping with climate-related risks of 
yield reduction by taking mitigation measures. For that, the interpretation of seasonal climate 
forecasts is important as a way to predict crop yield before the growing season. Further, crop yield 
estimation is required for the process of decision-making in food policy on a regional scale. For 
example, the outlook for cereal production prior to harvest is crucial for the government decision-
makers to plan grain imports beforehand in case of shortages. Thus, early warning systems for 
climate risk management in crop production have gained worldwide attention. However, the 
current spatial resolution of the climate forecast data is not high enough for operational use in 
estimating crop yield, and also high spatial resolution climate data are required for local-scale 
impact assessments of climate variability. The outputs of general circulation models (GCMs) are 
not sufficient for such local-scale studies, and therefore regional climate models (RCMs), which 
incorporate detailed specifications of the earth’s surface such as land use and water bodies, have 
been broadly applied to satisfy this requirement. Weather Research and Forecasting (WRF) is a 
well-known RCM used for many purposes such as operational forecasting and dynamical 
downscaling. As local climates are regulated by global atmospheric circulations with RCM’s initial 
and boundary conditions and further constrained by land surface conditions, the WRF model can 
be configured with multiple physics options such as cumulus parameterization schemes to satisfy 
region-dependent climate conditions. 

 

Wheat is one of the most important grains in the world and contributes significantly to food 
security in many countries. The demand for wheat production is increasing due to the increase of 
the world’s population, and so does Sudan. In Sudan, wheat is cultivated under irrigation during 
the hot and dry season, but high temperature has a negative impact on the crop growth. While 
improving the heat tolerance of cultivars is one of the reliable measures to adapt to climate change, 
a yield outlook system with high spatial resolution data of seasonal forecasts is a valuable tool to 
cope with climate variability. The aim of this thesis was therefore to develop an approach for crop 
yield prediction with regard to the impact of high temperature on wheat production. The main 
objectives were (1) to investigate the regional-scale relationship of wheat yields with temperature 
for the last five decades, (2) to identify a robust configuration of the WRF model for generating 
high-spatial-resolution climate data for crop growing seasons, and (3) to study the feasibility of 
wheat yield forecasting. 

 

First, the association between yield of irrigated wheat in hot drylands of Sudan and temperature 
during the growing season (November–February) was determined. Regional-scale yield data in 
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three major wheat-producing areas (Northern State, Gezira State, and Kassala State) in 48 crop 
seasons (1970/71–2017/18) were used to determine the correlation of yield with maximum 
(TMAX) and minimum temperatures (TMIN) at representative meteorological stations (Dongola, 
Wad Medani, and New Halfa, respectively). Frequencies of days with maximum temperature 
above 35 °C (THD) and minimum temperature above 20 °C (THN) were also used for correlation 
analysis. In all three areas, regression analysis detected upward trends in the growing-season 
temperature. The increase in temperature was particularly evident at Dongola, although no such 
trend has been reported previously. The yields were negatively correlated with the growing-season 
temperature, particularly THN in Northern State, TMAX in Gezira State, and TMIN in Kassala 
State. These results confirm that the recent increase in the growing-season temperature might have 
reduced the yield to some extent in the breadbasket of Sudan. 

 

Second, robust configurations of the WRF model, especially cumulus parameterization schemes, 
for different climatic zones of Sudan were identified, focusing on wet season (June–September) 
rainfall and dry season (November–February) temperature, which are determinants of summer 
crop and irrigated wheat yields, respectively. Downscaling experiments were carried out to 
compare the following schemes: Betts–Miller–Janjic (BMJ), improved Kain–Fritch (KFT), 
modified Tiedtke (TDK), and Grell–Freitas (GF). Results revealed that the BMJ performed better 
for wet season rainfall in the hyper-arid and arid zones; KFT performed better for rainfall in July 
and August in the semi-arid zone where most summer crops are cultivated. For dry season 
temperature, the BMJ and TDK outperformed the other two schemes in all three zones, except that 
the GF performed best for the minimum temperature in December and January in the arid zone 
(Gezira State/Wad Medani and Kassala State/New Halfa), where irrigated wheat is produced, and 
in the semi-arid zone. Specific cumulus parameterization schemes of the WRF model therefore 
need to be selected for specific seasons and climatic zones of Sudan. 

 

Third, statistical models for the yield–temperature relationship in the three wheat-producing areas 
were developed using the backward stepwise regression method. The 2-variable linear regression 
models were determined for the northern and eastern regions  (Northern State/Dongola and Kassala 
State/New Halfa, respectively). The variables (predictors) selected by the stepwise regression were 
the growing-season THN and February TMAX in the northern region, and January TMIN and 
February THN in the eastern region, explaining up to about 40% of the variance for the yield. For 
the central region (Gezira State/Wad Medani), only one predictor (the growing-season TMAX) 
was selected, hence the low accuracy of the model. For the eastern region, when model 
performance was evaluated by classifying the yields into the above-normal, near-normal, and 
below-normal categories, the accuracy of the forecasted yield to the observed yield was relatively 
high (86%). Thus, statistical modeling using the stepwise method of multivariate analysis is a 
useful method for wheat yield outlook with seasonal forecasts. 

 



 

56 
 

The findings of this thesis are summarized as follows: (1) Irrigated wheat yield over the past half-
century in the hot environments of Sudan shows an increasing trend and is negatively associated 
with the growing season temperature; (2) Specific configurations (i.e. physics options) of the WRF 
model in spatial downscaling of climate data are needed for specific seasons and climatic zones; 
and (3) Temperature-based statistical modeling is a useful method for wheat yield estimation in 
the irrigation areas of Sudan. Based on these findings, it was concluded that the yield outlook prior 
to the growing season is possible by incorporating high spatial resolution climate forecasts into the 
statistical model for yield estimation. Accordingly, the approach developed in this thesis 
contributes to developing an early warning system for reducing risks associated with high 
temperature in the wheat production areas of Sudan. 
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Summary in Japanese 

 

スーダンは、気候変化および気候変動に脆弱な国の一つである。特に、スーダン国内の

農業は雨季の干ばつや乾季の極端な高温などの気候ハザードに大きく影響を受ける。こ

のようなハザードに対処するために、農家は、播種、施肥、灌漑計画など、栽培管理の

ためのタイムリーで信頼性の高い気候情報を必要としている。気候関連の収量減少リス

クへの緩和策を講じるには、収量予測が有用であり、生育期前に収量を予測する方法と

して季節予報の解釈が重要である。さらに、作物収量の推定は、地域規模での食糧政策

の意思決定プロセスにおいて重要な役割を担っている。たとえば、政府の意思決定者が

食糧不足に備えて穀物の輸入を計画するためには、収穫期前に穀物生産量の見通しを立

てておくことが必要となる。このような理由から、作物生産における気候リスク管理の

ための早期警報システムは世界的に注目を集めている。ただし、現在の気候予測データ

の空間解像度は、作物収量の推定に活用するには十分でなく、また気候変動影響を地域

規模で評価するには、高空間解像度の気候データが必要である。大気大循環モデル

（GCMs）の出力は、このような地域規模研究への適用には不十分であるため、土地利

用や水域などの地表の詳細な仕様を組み込み、不足を補うことができる領域気候モデル

（RCMs）が広く適用されている。Weather Research and Forecasting（WRF）は、運用予

測や動的ダウンスケーリングなどの多くの目的で使用される広く知られた RCMであ

る。局地気候は RCMの初期条件および境界条件が地球規模の大気循環によって制御さ

れ、地表条件により更に制約されるため、WRFモデルは、地域に依存する気候条件を

満たす積雲パラメータ化スキームといった複数の物理過程オプションを設定することが

できる。 
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多くの国において食料安全保障に大きく影響するコムギは、世界で最も重要な穀物の一

つであるが、世界人口の増加により、スーダンを含む世界各国で生産の需要が高まって

いる。スーダンにおいてコムギは、高温で乾燥した時期に灌漑で栽培されているが、高

温はコムギの生育に負の影響を及ぼす。品種の耐暑性を向上することは、気候変化への

適応において有効であるが、高空間解像度の気候予測を用いた収量見通しシステムは、

増大する気候変動への対処に有効である。したがって、本研究は、コムギ生産における

高温の影響を反映した作物収量予測の手法を開発することを目的とした。具体的には、

（1）地域規模における過去 50年間のコムギ収量と気温の関係を調査し、（2）作物生

育期の高空間解像度の気候データを生成するための堅牢なWRFモデルの構成を特定

し、（3）コムギ収量予測の実現可能性を検討した。 

 

第一に、スーダンの高温乾燥地における灌漑栽培コムギの収量と生育期にあたる 11月

から 2月の気温との関係を明らかにした。スーダンの主要なコムギ生産地である北部

州、ゲジラ州、およびカッサラ州の３地域において、1970/71年から 2017/18年の 48年

間の地域規模収量データを用いて、主要な気象観測地点であるドンゴラ、ワドメダニ、

ニューハルファそれぞれの収量と最高気温（TMAX）および最低気温（TMIN）の相関

分析を行った。この際、最高気温が 35℃以上となった日の発生頻度（THD）および最

低気温が 20℃以上となった日の発生頻度（THN）も考慮した。回帰分析の結果、３つ

の全ての地域で、生育期の気温の上昇傾向が検出された。気温の上昇はドンゴラにおい

て特に顕著であったが、過去にそのような傾向は報告されてない。収量は生育期の気温

と負の相関を示し、特に北部州の THN、ゲジラ州の TMAXおよびカッサラの TMINと
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の相関が顕著であった。これらの結果から、スーダンの穀倉地帯のコムギ収量の低下

は、近年の生育期における気温上昇に起因する可能性があるということが示唆された。 

 

第二に、スーダンの異なる気候帯における、夏作物の収量の決定要因である雨期（6月

～9月）の降雨量および、灌漑栽培コムギの収量決定要因である乾季（11月～2月）の

気温について、WRFモデルにおいて最適な積雲パラメータ化スキームを選定した。ダ

ウンスケール実験では、Betts–Miller–Janjic（BMJ）、改良型 Kain–Fritch（KFT）、修正

型 Tiedtke（TDK）、および Grell–Freitas（GF）の各スキームを比較した。その結果、

極乾燥地帯および乾燥地帯の雨季の降雨に対して BMJがより良いパフォーマンスを示

し、 KFTは夏作物のほとんどが栽培される半乾燥地帯の 7月と 8月の降雨量に対して

より良いパフォーマンスを示した。乾季の気温については、BMJと TDKは３つの地域

すべてで他の２つのスキームより良いパフォーマンスを示した。しかし、半乾燥地帯お

よび、ゲジラ州ワドメダニやカッサラ州ニューハルファの灌漑栽培コムギが生産される

乾燥地帯における 12月および 1月の最低気温のダウンスケールでは GFが最高のパフ

ォーマンスを示した。したがって、スーダンの特定の季節と気候帯に対しては、特定の

積雲パラメータ化スキームを選択する必要があるといえる。 

 

第三に、３つのコムギ生産地域における収量と気温の関係について、後退型ステップワ

イズ回帰法を用いて統計モデルを開発した。北部州ドンゴラを含む北部地域およびカッ

サラ州ニューハルファを含む東部地域については、2変数線形回帰モデルが選択され

た。ステップワイズ回帰により、北部地域では生育期の THNと 2月の TMAX、東部地

域では 1月の TMINと 2月の THNが変数（予測子）として選択された。この変数は収
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量分散の最大約 40％を説明することができた。ゲジラ州ワドメダニを含む中央地域で

は、唯一生育期の TMAXが予測子として選択されたため、モデルの精度が低かった。

東部地域では、モデルのパフォーマンスを、平年以上、平年並み、平年以下の収量カテ

ゴリに分類して評価した場合、実際の収量に対する予測収量の精度は 86%と比較的高

かった。したがって、多変量解析のステップワイズ法を用いた統計モデリングは、季節

予報によるコムギの収量見通しに有用であるといえる。 

 

本研究では、（1）スーダンの高温環境において、過去半世紀にわたり灌漑栽培コムギ

の収量が増加傾向を示し、生育期の気温と負の関係にあること、（2）気候データの空

間的ダウンスケーリングにおいて、特定の季節および気候帯により、WRFモデルに特

定の物理過程オプションを選択する必要があること、（3）スーダンの灌漑地における

コムギの収量推定において、気温ベースの統計モデリング手法が有用であることが明ら

かになった。これらの結果から、高空間解像度の気候予測を収量推定の統計モデルに組

み込むことにより、生育期前の収量見通しが可能であると結論付けられた。したがっ

て、本研究で開発された手法は、スーダンのコムギ生産地における高温に伴うリスクを

軽減するための早期警戒システムの開発に寄与する。 
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