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General Introduction 
 

Wheat represents one of the most important crops with considerable contribution to nutrients 

required in human diets (Curtis et al. 2002). Increase in wheat global demand is expected as a 

consequence of population growth which expected to reach 9 billion by 2050 (Figueroa et al. 2018). 

Therefore, improving wheat production is essential but hindered by climate change and biotic 

stresses obstacles. Wheat yield reduction under high temperature was reported in previous 

literature (Mitchell et al. 1993; Stone and Nicolas, 1995; Semenov and Halford, 2009; 

Schittenhelm et al. 2020; Matsunaga et al. 2021a). 

Understanding wheat’s metabolomic response to heat stress will facilitate developing new 

heat tolerant varieties. Various tools for investigating metabolome are available such as liquid 

chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-

MS). Fourier transform infrared (FTIR) excels other metabolomics techniques by the capability to 

detect macrobiomolecules (Liu et al. 2021; Kljun et al. 2011; McCann et al. 1992).  

In the light of the above-mentioned information, the objective of this thesis was to understand 

metabolomic response of common wheat to heat stress through: 

• Establishment of FTIR spectroscopic protocol that fingerprints wheat metabolomic 

response under heat stress. 

 

• Applying the established FTIR protocol to wheat genotypes with different heat 

tolerance level to identify potential metabolomic heat markers. 

 

 

The first objective, which was detailed in Chapter 1 of this thesis, was achieved and published 

in International Journal of Molecular Science (Osman et al. 2022a). The second objective (Chapter 

2) was also achieved and published in Agriculture (Osman et al. 2022b).
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                                                      CHAPTER 1       

Characterization of Heat Stress Responses in the Leaves of Common 
Wheat by Fourier Transform Infrared Spectroscopy     

                                                                               
1.1. Introduction  
 

Wheat (Triticum aestivum L.) is one of the most important crops globally. Together with rice, 

maize, and soybean, these crops supply more than half of the calories that are required for the 

world population (Zhao et al. 2017). Wheat yield is adversely affected by heat stress, and an 

approximately 6% loss in global yield is estimated with each Celsius degree increase in 

temperature caused by future global warming. The negative effects of heat stress on wheat yield 

are dependent upon the growth stages (Prasad and Djanaguiraman, 2014; Matsunaga et al. 2021a), 

and even a short duration of heat reduced wheat yield (Talukder et al. 2014). Therefore, the 

development of new climate change adaptation measures that include the optimization of wheat 

cultivation practices and breeding of heat-tolerant wheat varieties is essential for the thermo-

stressed regions of the globe (Iizumi et al. 2021). Understanding the physiological and 

morphological responses to heat stress is essential for genetic and/or agronomic improvement in 

wheat. 

Metabolome techniques have provided an important tool for understanding environmental 

stress tolerance mechanisms in plants (Ghatak et al. 2018; Hamany Djande et al. 2020; Thomason 

et al. 2018), and these techniques provide mining tools for analyzing the phenotypic/agronomic 

variations influenced by the environment. Metabolome-based chemical fingerprinting has been 

employed as a selection tool for desirable traits in crops (Hamany Djande et al. 2020). Different 

detection tools are available in the field of metabolomics, and multiple technologies are often 

required to gain comprehensive knowledge regarding the biochemical changes in each biological 

system (Ghatak et al. 2018). Among the various metabolomic platforms, liquid chromatography-

mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) are the 

commonly used technologies to date. These methodologies have been successfully used for the 

characterization of complex metabolic responses in wheat, including changes under post-anthesis 
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heat stress (Thomason et al. 2018), growth-stage-specific metabolic responses to heat (Matsunaga 

et al. 2021a), and the effects of post-anthesis heat stress on the metabolic profile of the grain (De 

Leonardis et al. 2015). Although LC-MS- and GC-MS-based metabolomics provide the 

advantages of higher capacities for the detection and identification of metabolites, applications of 

these techniques are limited to compounds possessing smaller molecular weights, and destructive 

samples preparation are required prior to analyses. In contrast, other metabolomic platforms, such 

as nuclear magnetic resonance (NMR) and Fourier transform infrared (FTIR) spectroscopy, 

possess the advantage of analyzing supramolecular structures such as cell walls with little pre-

treatments requirements (Ghatak et al. 2018; McCann et al. 1992; Liu et al. 2021). FTIR 

spectroscopy excels other techniques by potential applicability to in vivo imaging of biological 

materials (Bouyanfif et al. 2017; Munz et al. 2017) and remote sensing (Li et al. 202). The FTIR 

spectroscopic technique has been used to study metabolic responses of plants to various 

environmental stresses, such as the salinity response in the beauty leaf tree (Calophyllum 

inophyllum) (Westworth et al. 2019), and differential metabolic behaviors of roots and leaves in a 

halophyte Sesuvium portulacastrum under salt stress (Nikalje et al. 2017). The FTIR spectroscopic 

technique has also been applied to different aspects of wheat such as metabolite distributions in 

the leaves under nitrate limiting conditions (Allwood et al. 2015), the oxidative-stress response of 

wheat roots (Zhao et al. 2013), and structural changes in gluten (Georget and Belton, 2006), as 

well as for phylogenetic research examining cultivated and wild wheat species (Demir et al. 2015). 

However, to our knowledge, no previous study has utilized this technique to detect metabolomic 

changes under heat stress in wheat. Therefore, the objective of the study in Chapter 1 was to 

establish a protocol for fingerprinting and developing chemical biomarkers that characterize the 

molecular responses of common wheat to heat stress. 

1.2. Materials and Methods  
1.2.1. Plant Materials and Growth Conditions 

 Non-sterilized seeds for the common wheat cultivar ‘Norin 61’ were put on a filter paper 

(qualitative filter paper No. 2, Advantec, Tokyo, Japan) that was trimmed to an approximately 85-

mm diameter in a Petri dish (88-mm diameter), and the seeds were watered by applying 6 mL of 

tap water to the dish so that the paper became evenly wet. Twelve seeds were placed per dish and 

the seed/water mass ratio was 1:15. The dish was capped by a transparent lid to prevent water 
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evaporation, and the seeds were imbibed for three days at room temperature (25◦C) under a 

fluorescent room lamp illumination (a light intensity of approximately 10 µmol m−2 s −1) from 9 

a.m. to 5 p.m. The germinated seeds were then transferred to pots (a height of 10 cm and diameter 

of 5 cm) containing 120 g of commercial horticulture soil a brand “Oishii Yasaiwo Sodateru 

Baiyoudo”, Cainz, Honjo, Saitama, Japan) containing composted bark, granular clay-like mineral, 

pumice, peat moss, perlite, and vermiculite. The soil was autoclaved at 121 ◦C for 30 min before 

planting. Pots were shifted to a growth chamber with a 14/10 h day/night regime, a relative 

humidity setting of 50%, a light intensity of approximately 500 µmol m−2 s −1, and a temperature 

setting of 22/18◦C. Soil moisture level was maintained at 80–90% of field capacity (FC) (Assouline 

and Or, 2014) in duration of the experiment. The 100% FC was determined as described previously 

(Xu and Zhou, 2006). At the three-leaf stage and the length of the third leaf exceeded that of the 

second leaf samples were taken from plants and designated as C0. Six seedlings were kept in 

control chamber for three days (hereafter designated as C3 plants). At three-leaf stage, another six 

seedlings were transferred to a heat chamber with a daily maximum temperature of 42◦C and 

exposed to heat for three days (hereafter designated as H3 plants). In this heat chamber, the night 

temperature was 18◦C for 10 h, and the temperature setting was increased gradually by 5◦C per 

hour from the beginning of the light regime for 3 h to a maximum temperature of 42◦C and 

maintained for 6 h. The temperature was then dropped to 33◦C for 1 h and then decreased stepwise 

by 5◦C per h to 18◦C during the next 3 h.  

1.2.2 Measurements of Plant Growth and Physiology 

 Physiological measurements were performed at three different conditions, including initial 

measurements on the day that treatment started (C0) and measurements at three days after the 

treatment for control (C3) and heat stress (H3) conditions. Canopy temperature assessment was 

carried out using FLIR-C2 thermal camera (FLIR system, Tallinn, Estonia). FLIR Tools software 

(v6.4.18039.1003) was exploited to estimate leaf surface temperature at 5 h after the beginning of 

the light regime. For leaf relative water content measurement, the third leaf was harvested at 5 h 

after the beginning of the light regime, and a 2 cm leaf segment was excised from the middle of 

the leaves. The fresh weight of the leaf segment was immediately measured using an electric 

balance, and turgid weight was measured after soaking the leaf segments in distilled water for 24 

h at room temperature (25◦C). Tissue paper was used to dry leaf surfaces before the turgid weight 



6 

measurement. The leaf segments were transferred to an oven (EI-450B, ETTAS, AS-ONE, Osaka, 

Japan) at 70◦C to achieve complete dryness, and the dry weight was measured. Following formula 

was applied to calculate relative water content (McCann and Huang, 2007):  

100 × ((Fw − Dw)/(Tw − Dw))  

where Fw, Dw, and Tw refer to the fresh weight, dry weight, and turgid weight of the leaf 

segment, respectively. For the total of leaf length measurement, all leaves were harvested from the 

plants and scanned using a scanner (type DCP-J572N, Brother Industries, Nagoya, Japan). Leaf 

length was measured using ImageJ version 1.80 (ImageJ Home Page, Version 1.80. Available 

online: https://imagej.nih.gov/ij/index.html). In case of biomass measurement, all aboveground 

tissues of the individual plants were dried in an oven at 70◦C until complete dryness. Their weights 

were taken after the samples were completely dried.  

1.2.3. FTIR Measurement  

The third leaf was harvested from the control and heat-treated plants and separately dried in 

an oven at 70◦C till complete dryness. The dried leaves were powdered using an agate mortar and 

pestle. The ground samples (approximately 10 mg) were mixed with powdered KBr (IR grade, 

Nakalai, Kyoto, Japan) at a gravimetric ratio of 1:100, and approximately 10 mg of the mixture 

was placed into a dice of 7 mm diameter in a hydraulic press (Pixie Hydraulic Pellet Press, PIKE 

Technologies, Madison, WI, USA). A thin disk was formed by applying a pressure of 2.5 t cm−2. 

Ten disks were generated from a single plant. FTIR absorbance spectra were obtained using a 

PerkinElmer Spectrum 65 spectrometer (Waltham, MA, USA) equipped with spectrum software 

version 10.4.2. Spectrum data were collected from the mid-infrared wavenumber range from 4000 

to 400 cm−1 with a resolution of 1 cm−1 and 16 scans per measurement. Number of spectral 

measurements replications were three times per disk, with an exception of one disk from the heat 

stressed sample in which the measurement was performed only once. Data were collected from 60 

disks where each was derived from six plants each from control and heat stressed plants, and 180 

and 178 spectral data were obtained for control and heat stressed leaves, respectively.  

1.2.4. Chemometrics of Spectral Data  
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FTIR spectra were baseline-corrected using a linear gradient of absorbance values at 4000 and 

400 cm−1, and the absorbance values were normalized to obtain a total value of 1 million for each 

spectrum. A principal component analysis (PCA) was applied using the prcomp function in the 

stat package (v3.6.2) in R Statistical Software (R Core Team, 2020), and ggplot function in the 

ggplot2 package (version 3.3.5) in R was utilized to draw the score plot and loading plot. For LDA, 

the 358 spectral datasets in the range from 3600 to 400 cm−1 wavenumber were randomly split into 

a training and test set at a ratio of 60% to 40% using the sample function in the base package 

(v3.6.2) in R and then calculated using the lda function in the MASS package (v7.3–54). For the 

development of spectral Fm biomarkers, a tailor-made R script was written to scan the two-

candidate anchor point wavelengths in the 300 cm−1 range spanning the target wavenumber and 

for calculating the Fm values and p value in the student’s t-test. The Fm values were calculated 

using the following formula:  

Fm = (A target − Aanchor1)/ (A anchor2 – A anchor1) 

 where A target, A anchor1, and A anchor2 denote the normalized absorbance values for the 

target, and anchors 1 and 2, respectively. The R scripts were presented in appendix-1.  

1.2.5. Statistical Analysis  

The t.test function in the stats package (v3.6.2) was used for Student’s t-test. Tukey’s test was 

performed using the Astatsa.com online web statistical calculator (Astatsa. Complex Online Web 

Statistics Calculator. Available online: https://astatsa.com). 

1.3. Results   
1.3.1. Effect of heat stress in wheat growth and physiology 

The common wheat cultivar ‘Norin 61’ was grown up to the three-leaf stage at a daily 

temperature of 22◦C and then exposed to heat stress at a daily temperature of 42◦C for three days. 

A significantly higher canopy temperature of 37.1◦C ± 1.8 was observed in heat stressed plants 

(H3 plants) in comparison to 23.5 ± 1.9◦C in unstressed control plants of the same age (C3 plants) 

and to 21.5 ± 2.0◦C in the initial stage and before heat treatment (C0 plants) (Figure 1-1A). The 

relative water content of the leaves was comparable between (C3) and (H3) plants (81.3 ± 9.8% 

and 77.4 ± 7.6%, respectively), and these values were not significantly different compared to that 
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of (C0) plants (85.9 ± 2.5%) (Figure 1-1B). Although the total leaf length increased from 72.8 ± 

6.6 cm in the (C0) plants to 88.2 ± 9.4 cm in (H3) plants, it was significantly less than that in C3 

plants (102.0 ± 3.2 cm) (Figure 1-1C). Shoot biomass showed a similar trend, where the value for 

(H3) plants (0.120 ± 0.019 g) was decreased by 17.7% in comparison to that in (C3) plants (0.146 

± 0.009 g) (Figure 1-1 D) 

 

Figure 1-1. Impact of heat stress on wheat growth and physiology. (A) The canopy temperature, 

(B) relative water content, (C) total leaf length, and (D) shoot biomass of plants prior to heat (C0), 

of control plants after three days (C3), and of plants subjected to heat stress for three days (H3) 

are presented. Values are the average and standard deviation for 18–31 measurements from 5–6 

plants in “(A)” and for 5–6 plants in “(B–D)”. Statistical analysis was carried out by Tukey’s range 

test (p < 0.05) and different letters (a, b, and c) were used to indicate significant differences 

between treatments. 

1.3.2. FTIR and chemometric analysis: Principal Component Analysis:  
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The fully expanded third leaves of C3 and H3 plants were powdered, pressed with potassium 

bromide (KBr) to form pellets, and analyzed using FTIR spectroscopic technique. Figure (1-2) 

presents a typical example of the FTIR spectrum of each plant. These spectra presented largely 

similar patterns with a characteristic broad peak in the range of 2700–3700 cm−1, a number of 

sharper peak signals at approximately 2900 cm−1, complex contours in the 900–1800 cm−1 range, 

and relatively minor peak signals at approximately 400–800 cm−1 (Figure 1-2). The broad peak at 

approximately 2700–3700 cm−1 can be assigned as O–H, C– H, and N–H stretching, while the 

sharper peak signals at approximately 2900 cm−1 can be interpreted as C–H stretching bands from 

aliphatic compounds (Stuart, 2004). In the so-called “finger-printing” region ranging from 400–

1800 cm−1 (Kamnev et al. 2018), multiple peak signals are recognizable that largely overlapped 

and formed complex patterns. At least 12 peaks were recognized in the spectra from both C3 and 

H3 plants, which can be assigned to various functional groups as shown in (Table 1-1). However, 

it is noteworthy that the pre-measurements sample preparation conditions employed in this study, 

such as drying the leaf tissues at 70°C, grinding, and the usage of a KBr matrix, might affect the 

wavenumber positions of maxima of some polar functional groups of biomolecules. Previous 

reports have demonstrated that the employment of a KBr matrix and grinding resulted in the shifts 

of some FTIR vibrational bands by up to 15 cm−1, which might influence the band energies, affect 

ion exchange, and induce crystallization of metastable amorphous biopolymers (Kamnev et al. 

2018; Kamnev et al. 2021). However, from visual inspection, it was not easy to identify 

distinguishable features between C3 and H3 plants, and this suggested that the use of chemometric 

techniques is required for spectral analysis.  

                

 



10 

 

 

 Figure 1-2. Representative FTIR spectra from the leaves of control (C3) and heat stressed (H3) 

wheat. 
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Table 1-1. Major FTIR peaks observed and their assignment to probable functional groups in 

wheat leaves 

No.  Wavenumber                 

        (cm-1) 

Probable Functional Groups  

   

1        3293                O-H stretching, N-H stretching.  

2        2960  C-H stretching in -CH3 (antisymmetric).  

3        2925  C-H stretching in -CH2-(antisymmetric).  

4        2852 C-H stretching in -CH2- (symmetric).  

5        1651 C=C stretching, C= O stretching (amide), N-H bending (amide I).  

6        1541  C=C stretching (aromatic), N-H bending (amide II), C- N stretching.   

7        1385  C-H bending (antisymmetric), = C-H in-plain bending.  

8        1241 C-O stretching, In-plain C-H bending (aromatic), aliphatic C-O 

stretching, P=O stretching (aliphatic) 

 

9        1158 C-O stretching, C-N stretching (aliphatic), In-plain C-H bending 

(aromatic), aliphatic C-O stretching. 

 

10      1106 C-O stretching, C-N stretching (aliphatic), In-plain C-H bending 

(aromatic), aliphatic C-O stretching. 

   

 

11     1055 C-O stretching, C-N stretching (aliphatic), In-plain C-H bending 

(aromatic). 

    

 

12     618 =C-H out-of-plane bending, =C-H bending, C-S stretching.   

                     Assignment of wavenumbers to probable functional group are according to (Kamnev et 

al. 2021; Stuart, 2004; Talari et al. 2016) 

Subsequently, a principal component analysis (PCA) was applied to characterize the spectral 

differences between C3 and H3 plants. Figure 1-3A provides the PCA score plot of 358 spectra 

(180 and 178 spectra from (C3) and (H3) plants, respectively) that was based upon the variables 

of 3601 data points (normalized absorbance values from 400 to 4000 cm-1 with 1 cm-1 resolution) 

for each spectrum. The PC1-PC2 space in the plot explained 81.1% of the total variance (Figure 
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1-3A and Figure 1-4). Consequently, spectra from (C3) and (H3) plants were mostly clustered on 

the PC2-positive and negative half planes, respectively, suggesting the presence of distinct spectral 

features between (C3) and (H3). Loading plots of the PCA showed complex patterns (Figure 1-

3B–D); regions for PC2 loading over 0.5 were observed in wavenumbers of 459–484, 564–607, 

610–614, 622–665, 670–752, 1177–1344, and 1351–1471 cm-1, whereas PC2 loading below -0.5 

were seen in the regions of 2736–2897 and 2977–3082 cm-1 (Figure 1-3D), indicating that 

absorbance of these specific positive and negative regions tended to influence separation of (C3) 

and (H3) plants. However, considerable numbers of (C3) and (H3) spectra were mixed in the 

central origin of the score plot (Figure 1-3A), suggesting that the PCA alone was not sufficient to 

distinguish the spectral features in heat-stressed wheat leaves. 

 

 

Figure 1-3. Principal component analysis of FTIR spectra. (A) A score plot showing overlapping 

distribution between (C3) and (H3) plants. (B) A two-dimensional loading plot. Assignment of a 
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color gradient to respective wavenumbers are the same as those presented in (C, D). (C–D) One-

dimensional loading column plots for (C) PC1 and (D) PC2. The loading for each wavenumber is 

expressed using a color gradient image along their x-axis. 

 

Figure 1-4. Variance explained by the first 9 components in principal component analysis. 

 

1.3.3. Linear Discriminant Analysis 

 A linear discriminant analysis (LDA) was utilized to improve the discrimination of heat 

stressed leaves. The 358 FTIR spectra that consisted of 180 and 178 spectra from (C3) and (H3) 

leaves, respectively, were randomly divided into two groups at a ratio of 60:40%. The 60% group 

was used as a training set in the supervised machine learning process to build a linear discriminant 

model. The LDA algorithm successfully distinguished the training dataset into the heat stressed 

leaves from the controls in the histogram (Figure 1-5, where the FTIR spectra with positive and 

negative LD1 scores corresponded to those taken from H3 and C3 leaves, respectively. The 

remaining 40% of the test dataset was then applied to the model for validation, and the results 

presented a slightly broader frequency distribution for both C3 and H3 in the histogram compared 

to those in the training set, while essentially confirming a clear discrimination between heat-

stressed and control leaves (Figure 1-5B). Therefore, the FTIR spectral fingerprint coupled with 
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the LDA approach was demonstrated to be effective in detecting discriminatory biochemical 

information in heat-stressed wheat leaves.  

To detect which parts of the spectra were more contributing to discriminating between heat 

stressed and control leaves in LDA, the LDA loadings were studied. A plot of LDA loadings versus 

wavenumber revealed that several spectral regions, under a threshold of absolute loading intensity 

over 0.15, were more important in regard to the discrimination ability (Figure 1-6. The plot showed 

two strong positive loading peaks at 1465 cm−1 (loading intensity of 0.398) and 1729 cm−1 (0.176) 

that provide the highest LDA score in the H3 leaves, and four strongly negative loading minimum 

points of 1251 cm−1 (loading intensity of −0.318), 576 cm−1 (−0.250), 1502 cm−1 (−0.224), and 

482 cm−1 (−0.183) that gives the lower LDA score in the C3 leaves. These six spectral points were 

in position within the multiple peaks overlapping region at 400–1800 cm−1 in the FTIR spectra 

(Figure 1-2) and corresponded to the finger-printing region (Stuart, 2004). These spectral regions 

may reveal changes in the chemical compositions and/or structures under heat stress that can 

potentially serve as spectral biomarkers for diagnosing heat-stress exposure in wheat leaves. 
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Figure 1-5. Two group histograms of the training (A) and the test (B) sets for FTIR spectra based 

on the LD1 score in the linear discriminant analysis, demonstrating classification performance 

between control and heat-stressed leaves. 
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Figure 1-6. Identification of the discriminatory spectral region. Loading plot of the LDA results 

that were used for the classification of (H3) and (C3) leaves. Wavenumbers for the major peaks 

and minimum turning points are indicated by red fonts. 

 

1.3.4. Spectral Biomarkers for Heat Stress Response  

To probe the possibility of developing spectral biomarkers specific for the heat stress response, 

the spectral regions that were identified as the major discriminants in the LDA loading plot 

presented in (Figure 1-5) were further evaluated. To achieve this goal, two anchor points that 

encompass the target wavenumber were set, and a new term “Fm” (FTIR marker) that functions 

as a normalized target absorbance indicator was defined according to the compensate absorbance 

values of the first and second anchors as 0 and 1, respectively (described in the Materials and 

Methods section 1.2.4.). The two anchor points were scanned in the surrounding of the target 

wavenumber and selected according to the following criteria: (i) the distance between the anchor 

point and target was within 150 cm-1; (ii) statistical significance (p-value) of difference by 

Student’s t-test for Fm values between heat stress and control is below 0.0001; (iii) anchor points 

are preferably located at visually obvious landmarks such as spectral peaks and minimum or 
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inflection points within the spectral curves. The Fm values for the target wavenumber were 

calculated using 358 FTIR spectra data from (C3) (180 spectra) and (H3) (178 spectra) plants. 

Accordingly, anchor-1 and -2 were chosen as shown in (Table 1-2). A comparison of the averaged 

FTIR spectra between (C3) and (H3) plants in the magnified views showed that the target 

wavenumbers were mostly situated in the middle of spectral slopes (Figure 1-7). The normalized 

absorbance at the target wavenumbers were somewhat, but consistently, higher in Fm1465 and 

Fm1729 (Figure 1-7A, B), and lower in Fm1251, Fm576, Fm1502, and Fm482 (Figure 1-7C–F). 

Although knurl-like noises were detected in the FTIR spectra in the wavenumber range around 

405–480 cm-1, a difference of absorbance at the target wavenumber of 482 cm-1 was obviously 

larger than the fluctuation of the noises (Figure 1-7F). Box plots exhibited that the biomarkers 

Fm1465 and Fm1729 presented significantly higher Fm values in (H3) plants compared to those 

in (C3) plants (Figure 1-8A, B, Table 1-2), while the other biomarkers (Fm1251, Fm576, Fm1502, 

and Fm482) possessed statistically less Fm values in (H3) plants compared to those in (C3) plants 

(Figure 1-8C–F, Table 1-2). This was consistent with the positive and negative LDA loading 

values (Figure 1-5), respectively. 

 

Table 1-2. Characteristics of spectral biomarkers. 

Target Anchor 

1

Anchor 

2

C3 H3

Fm1465 1465 1480 1399 0.398 0.345 0.381 1.104 2.1 x 10-61

Fm1729 1729 1768 1703 0.176 0.559 0.588 1.052 3.8 x 10-80

Fm1251 1251 1241 1358 -0.318 -0.0428 -0.112 2.607 3.1 x 10-26

Fm576 576 648 542 -0.25 1.436 0.899 0.626 1.1 x 10-4

Fm1502 1502 1480 1615 -0.224 0.335 0.294 0.879 4.4 x 10-75

Fm482 482 401 501 -0.183 0.741 0.666 0.899 7.9 x 10-21

Marker 

name

1 Loading score of LDA at the target wavenumber.
2 H3/C3 ratio of median Fm values.
3 Probability by t -test. 

Wavenumber (cm-1)

Loading*1

Median Fm value H3/C3 

ratio *2 P  *3
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Figure 1-7. Magnified view of averaged FTIR spectra in the vicinity of Fm biomarkers. 

Normalized spectra for (C3) (cyan) and (H3) (orange) plants in the vicinity of (A) Fm1465, (B) 

Fm1729, (C) Fm1251, (D) Fm576, (E) Fm1502, and (F) Fm482 markers are shown. Red, magenta, 

and blue vertical lines designate the locations of wavenumbers for the target, anchor-1, and -2, 

respectively. 
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Figure 1-8. Box plots presenting the comparison of spectral biomarker values between (C3) and 

(H3) plants. Plots for the spectral biomarkers (A) Fm1465, (B) Fm1729, (C) Fm1251, (D) Fm576, 

(E) Fm1502, and (F) Fm482 are provided. The 180 and 178 spectra were used for the (C3) and 

(H3) plots, respectively. Asterisks represent statistically significant differences at p < 0.001. 

 

1.4. Discussion   
 

1.4.1. Sensitivity of FTIR Spectral Response in Heat-Stressed Wheat Leaves  
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In the current study, the FTIR spectroscopic technique was successfully applied to 

discriminate heat-stressed wheat leaves from those of control plants, thus revealing that this 

technique can serve as an analytical tool for tracing chemical changes during heat stress in wheat. 

The heat stress applied in this study led to delayed leaf growth and biomass production (Figure 1-

1C, D), and this was similar to the observations reported in previous studies (Keles and Önce, 

2002; Gupta et al. 2013) where shoot growth was persisted to some degree under stress, thus 

indicating that the intensity of the heat stress employed in this study was not at a lethal level. The 

relative water content in the leaves was statistically unchanged by heat stress in this study, unlike 

previously reported cases of heat-induced reduction in wheat leaves length (Ramani et al. 2017; 

Sattar et al. 2020). This further indicated that the stress intensity in this study was relatively modest. 

However, significant spectral differences were detected by FTIR spectroscopy, thus suggesting 

that FTIR-based fingerprinting was sensitive enough to characterize changes in the chemical 

constituents of wheat under nonlethal heat-stress conditions.  

1.4.2. Chemometrics Using FTIR Spectra  

As the FTIR spectra from heat-stressed and control plants were similar upon initial inspection 

(Figure 1-2), the application of chemometric methods was indispensable for obtaining a better 

interpretation of the FTIR spectra. Chemometric methods are commonly used to fetch more 

information from the obtained FTIR spectroscopic data (Allwood et al. 2015; Johnson et al. 2003; 

Giang et al. 2020; Rohman et al. 2020). As PCA alone was not capable to fully interpret the spectra 

(Figure 1-3), additional chemometric methods were included. We applied LDA, which 

successfully discriminated between heat stressed and control leaves, and we demonstrated the 

potency of the FTIR-based chemometric approach for diagnosing plant heat stress status. Many 

previous literatures have applied various chemometric methods. Johnson et al. (2003) utilized PCA 

in combination with genetic algorithms to fingerprint salt-stressed tomato varieties. Recently, 

Nikalje et al. (2019) applied PCA for characterizing metabolic responses of roots and leaves in a 

halophyte S. portulacastrum, demonstrating that FTIR spectroscopy differentiated different tissues 

and stress intensity in the PC1-PC2 plane. Cortizas and López-Costas (2020) used PCA coupled 

with structural equation models to study the compositional and archaeological changes in human 

bone collagen. Grunert et al.(2020) used PCA for factor extraction, and this was followed by the 

use of two types of supervised machine learning methods (PCA-LDA and PCA-Mahalanobis 
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discriminant analysis) for the classification of peritoneal dialysis effluent. Chemometric 

interpretation of FTIR spectra using the combination of PCA-LDA was capable to differentiate 

embryonic stem cell in murine models (Ami et al. 2010) and for the identification of spectral 

markers for putative stem cell regions of human intestinal crypts (Walsh et al. 2008). In harmony 

with these previous studies, the LDA applied in the present study successfully discriminated 

between heat-stressed and control leaves (Figure 1-4), thus revealing the potency of the FTIR-

based chemometric approach for diagnosing plant heat-stress status.  

1.4.3. FTIR-Based Biomarker for Chemical Changes under Heat Stress  

The development of FTIR-based biomarkers has proven to be an effective analytical method 

in various scientific fields, including medical diagnosis (Grunert et al. 2020), food quality control 

(Giang et al. 2020; Rohman et al. 2020), and forensic analysis of cosmetic compounds (Sharma et 

al. 2019). In this study, we developed FTIR-based spectral biomarkers that were based on the LDA 

loading intensity at specific wavenumbers (Figure 1-5). The developed biomarkers successfully 

discriminate heat stressed leaves from controls (Table 1-1; Figure 1-7). Among the six biomarkers 

developed, Fm1465 and Fm1729 showed an increase under heat stress, while Fm1251, Fm576, 

Fm1502, and Fm482 reduced under heat stress. Among the biomarkers that increased under heat 

stress, the wavenumber for the marker Fm1465 was located in the major region reported as a broad 

and poorly resolved C–H bending and C–O stretching region (Stuart, 2004) that has been reported 

as a region for suberin/cutin in plant extracellular space (Stewart, 1996; Lammers et al. 2009). The 

peak at 1465 cm−1 is also located close to reported assigned signals of 1463 cm−1 for CH2 

scissoring and 1460 cm−1 for CH3 asymmetric bending in lipids (Stuart, 1997) and the C–H signal 

in cell wall polysaccharides (Stuart, 2004; Gorgulu et al. 2007). Modifications of these candidate 

compounds in heat-stressed plants have been previously studied, including the complex regulation 

of leaf lipid composition in wheat (Narayanan et al. 2016) and heat stress-induced changes of cell-

wall components in the leaves of coffee (Lima et al. 2013) and wheat (Zhang et al. 2010). Another 

biomarker which increased under heat stress in the current study was Fm1729. This wavenumber 

region can be interpreted as stretching vibrations of ester C=O groups, which (along with the 

aforementioned bending C–H vibrations) are typical for lipids (Kamnev et al. 2021; Stuart, 2004; 

Talari et al. 2016). Similar rise in peak intensity around this region were detected in pea pollen 

grains under heat stress (Lahlali et al. 2014), which may indicate quantitative/qualitative regulation 
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of the pollen exine layer under the stress. The increase in the Fm1729 value in wheat leaves in the 

present study may, therefore, explain the adaptive alteration of lipid composition under heat stress. 

Alternatively, the increase in the Fm1729 value may indicate heat-induced injury in leaf lipids. 

Malondialdehyde (MDA), a main product of lipid peroxidation as a consequence of oxidative 

stress, has a characteristic FTIR signal around 1700–1750 cm−1 (Oleszko et al. 2015). An increase 

of MDA was documented in wheat seedlings subjected to heat stress (Savicka and Škute, 2010). 

Among down-regulated Fm markers, the wavenumber of the Fm1251 marker was in a position in 

the vicinity of the previously assigned signals of 1240 cm−1 for hemicellulose and 1260 cm−1 for 

pectin (Stuart, 2004; Mascarenhas et al. 2000). Pectin substances in the extracellular matrix have 

been detected to function as a major adapting factor for cell wall porosity in soybean cells (Baron-

Epel et al. 1988), thus supporting the hypothesis that adaptation to the heat environment may 

involve chemical rearrangement of pectins and foliar heat conductivity (Lima et al. 2013). Other 

Fm markers that reduced under heat stress included Fm1502. A previous study by Kurian et al. 

(Kurian et al. 2015) interpreted the wavenumber regions 1502–1600 cm−1 as aromatic skelet al. 

vibration of lignin. Lima et al. (2013) detected modification of lignin monomer composition after 

three days of heat stress in coffee leaves, suggesting that plant responses to the heat environment 

may include the structural modulation involving lignocellulose supramolecular structure. 

Nevertheless, assignments of the proposed Fm biomarkers to any specific compounds are currently 

premature due to the intrinsic nature of overlapping signals in FTIR spectra and cumulative steric 

and/or electronic effects in a given molecule that can potentially lead to a large shift in spectral 

signals (Stuart, 2004). To identify the molecular entities for these Fm biomarkers, further future 

biochemical and/or genetic studies are anticipated that may combine multifaceted approaches, 

including biomass fractionation, mass spectrometry, and genetic mapping.  

1.4.4. Application of FTIR-Based Metabolome Profiling on Agronomy  

The present study suggests that FTIR-based chemical fingerprinting can serve as a versatile 

tool for diagnosing plant physiological condition under various environmental conditions, 

including heat stress. Metabolomics has been used as a powerful analytical tool to understand the 

association between agronomic performance and the underlying molecular mechanisms (Ghatak 

et al. 2018; Hamany Djande et al. 2020; Thomason et al. 2018; Razzaq et al. 2019). The versatility 

of FTIR spectroscopy has been demonstrated in previous studies in regard to discriminating 
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genotype differences in cultivated and wild wheat species (Demir et al. 2015) and rice varieties 

(Giang et al. 2020). Moreover, FTIR spectroscopy provides high-throughput measurements 

(Shapaval et al. 2010; Ba ˘gcıo˘glu et al. 2017), promising that it can be used for chemo-typing 

heat stress responses in crop breeding programs. Unsophisticated setup of FTIR spectroscopic 

facilities in comparison to that of other metabolomic platforms may also be beneficial for applying 

this technology to field metabolome studies (Mandrone et al. 2021; Galleni et al. 2021). Nowadays, 

FTIR-based remote sensing technologies have emerged as a new tool for monitoring the surface 

properties of land (Li et al. 2021, Yalkun et al. 2019), and this may further broaden the possibility 

of developing spectrum-based plant diagnoses for crop production and breeding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



24 

                                                CHAPTER 2 

Investigation of Differential Metabolome Responses among Wheat Genotypes 
to Heat Stress using FTIR Chemical Fingerprinting 
 

2.1. Introduction 
 

     Wheat (Triticum aestivum L.) is one of the most important staple crops that enrich humans’ 

diets with an important source of nutrients (Shewry and Hey, 2015). Wheat, with other cereals and 

soybean contribute to more than 50 percent of the calories required by the global population (Zhao 

et al. 2017). Among several abiotic stresses that restrict wheat production, heat stress remains one 

of the major challenges. The reduction in wheat yield at high temperatures is intensively studied 

(Mitchell et al. 1993; Stone and Nicolas, 1995; Semenov and Halford, 2009; Schittenhelm et al. 

2020; Matsunaga et al. 2021). This is expected to be further deteriorated in the light of ensuing 

climate change. Severe global warming with a fast rate of global temperature increases of up to 

5°C is predicted by the end of this century (Solomon et al. 2007). Therefore, understanding the 

heat response of wheat is crucial to facilitate the development of new heat-tolerant varieties. 

Wheat genetic resources and their diversity have been investigated extensively (Reif et al. 

2005; Gorafi et al. 2018; Balfourier et al. 2019), and wide variation in heat stress sensitivity among 

genotypes has been reported (Tadesse et al. 2019; Qaseem et al. 2019). Chinese Spring has been 

reported as a heat-sensitive genotype (Wang et al. 2018; Qin et al. 2008), whereas Norin 61 

revealed heat tolerance in hot arid regions in Sudan in field studies (Elbashir et al. 2017a; Elbashir 

et al. 2017b). The genetic makeup of these two genotypes have been previously reported 

(Walkowiak et al. 2020). Imam is a heat-tolerant cultivar widely grown in Sudan, which is 

considered as the world’s hottest wheat growing environment (Iizumi et al. 2021) and has been 

used as a reference genotype for detecting heat tolerance in other varieties (Elbashir et al. 2017a).  

Metabolomics is one of the omics tools used to study the molecular responses of plants and 

has been utilized to trace metabolic responses in plants under various stresses (Ghatak et al. 2018; 

Hamany Djande et al. 2020; Matsunaga et al. 2021). Metabolomics has been applied to plant 

breeding programs because the metabolome is arguably more closely related to the phenotype than 

other "omics" data (Sakurai, 2022). Among the several technical platforms of metabolomics, 
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Fourier transform infrared (FTIR) spectroscopy is unique in that it renders  an opportunity to study 

biological samples in vivo in a non-destructive manner (Bouyanfif et al. 2017; Munz et al. 2017; 

Petrou et al. 2018), is compatible with remote sensing in the field (Li et al. 2021; Yalkun et al. 

2019), and facilitates the analysis of complex biomacromolecules such as cell wall components 

(McCann et al. 1997; Liu et al. 2021). FTIR spectroscopy has been applied to study the 

metabolome response of plants to various environmental stresses (Zhao et al. 2013; Lahlali et al. 

2014; Westworth et al. 2019; Nikalje et al. 2019). In the study explained in chapter 1, the utilization 

of FTIR combined with chemometrics successfully identified spectral changes that distinguished 

heat-stressed and control leaves in the bread wheat genotype” Norin 61” (Osman et al. 2022a). 

Therefore, the aim of the current study was to test whether the FTIR spectroscopic technique is 

useful for characterizing the metabolome diversity of wheat genotypes with variable heat tolerance 

abilities. To reach this goal, three wheat genotypes, ‘Chinese Spring’, ‘Imam’, and ‘Norin 61’, 

with different heat tolerance capabilities, were used in this study.  

 

2.2. Materials and Methods  
 

2.2.1. Plant Growth Condition  

 Seeds of wheat genotypes Chinese Spring and Imam were kindly provided by Dr. Hiroyuki 

Tanaka (Faculty of Agriculture, Tottori University, Tottori, Japan). Seeds of wheat genotype Norin 

61 was kindly provided by Dr. Yasir Serag Alnor Gorafi (Arid Land Research Center, Tottori 

University, Tottori, Japan). Total of twelve seeds each of the three wheat genotypes were 

distributed on top of an 85-mm diameter filter paper (Filter paper type-2, Advantec, Tokyo, Japan) 

in a Petri dish of 90-mm diameter and drained by adding 6 ml of tap water. The Petri dish was 

covered by a transparent lid and incubated for three days at room temperature (25°C). Germinated 

seedlings were individually transferred to pots containing 120 g of commercial horticulture soil (a 

brand “Oishii Yasaiwo Sodateru Baiyoudo,” Cainz, Honjo, Saitama, Japan). Pots were placed in a 

growth chamber with light/dark regimes set at 14/10 h, light intensity of approximately 500 µmol 

m–2 s–1, relative humidity 81 setting at 50%, and temperatures at 22/18°C for light/dark regimes. 

When the length of the third leaf become longer than that of the second leaf, half of the pots were 

shifted to a heat chamber with a daily temperature setting of 42/18°C under light/dark regimes. In 
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this heat chamber, the temperature was set to ascend stepwise from 18°C at the beginning of the 

light regime by 5°C/h for 3 h, then raised to the maximum temperature of 42°C and stabilized for 

6 h. The temperature was then decreased to 33°C for 1 h and then decreased stepwise by 5°C/h to 

18°C in the next 3 h. Heat treatment was applied for three days, and the plants were subjected to 

the analyses described below.  

2.2. Measurement of Canopy Temperature and Plant Growth  

For the measurement of canopy temperatures, the leaf surface temperature of wheat plants at 

5 h after the starting of the light regime of the day was measured using a thermal camera as 

mentioned previously (Osman et al. 2022a). To measure leaf length, all attached leaves of an 

individual plant were measured using a ruler, and the values were averaged. To measure shoot 

biomass, the aerial parts of individual plants were collected and completely dried in an oven (EI-

450B, ETTAS, AS-ONE, Osaka, Japan) at 70°C for three days, and the dry weight was measured.  

 2.3. FTIR spectroscopy  

Fully expanded third leaves of both the unstressed and heat-treated plants were collected and 

completely dried in an oven at 70°C. The whole dried leaf (approximately 0.16g per leaf) was 

placed into a 15 ml of plastic tube containing three stainless beads with different sizes one with 

10- and the other two with 5-mm diameter, respectively, and shifted to a pre-chilled aluminum 

block in a shaker homogenizer (Shake Master Auto, Bio Medical Science, 105 Tokyo, Japan). To 

obtain fine powder the machine was set at 1,100 rpm for 30 min. The powdered samples 

(approximately 10 mg) were mixed with 1 g of powdered KBr (IR grade, Nakalai, Kyoto, Japan), 

and approximately 10 mg of the mixture was transferred to a dice of 7 mm diameter in a hydraulic 

press (Pixie Hydraulic Pellet Press, PIKE Technologies, Madison, WI, USA). A thin disk was 

generated by applying a pressure of 2.5 t cm–2. Three disks were made from a single plant. FTIR 

spectra were measured in absorbance mode using PerkinElmer Spectrum 65 (Perkin Elmer, 

Waltham, MA, USA) attached with Spectrum software (version 10.4.2., Perkin Elmer). The 

measurements were taken at mid-infrared wavenumbers from 4000 to 400 cm–1, with 

wavenumbers interval of 1 cm–1, and 16 scans were recorded and averaged for each measurement. 

Measurement was repeated twice for each disk; therefore, six spectra were obtained from a single 
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plant. Six plants were used for each genotype and environmental condition; therefore, 36 spectral 

data points were gained for each genotype-environment combination.  

 2.4. Chemometrics of FTIR Spectra and Statistical Analyses  

Obtained spectrum data was subjected to baseline correction and normalization prior to 

analysis as described previously (Osman et al. 2022a). Chemometric analysis of the FTIR spectra 

were performed using R statistical software (R Core Team, 2020), applying a set of custom-made 

R scripts that were provided in Appendix-2. Briefly, principal component analysis (PCA) was 

applied to the wavenumber region between 3600 and 400 cm–1 using the prcomp function in the 

stat package (version 3.6.2) in R. To develop Fm biomarkers calculation of pair of anchor points 

for generating offset absorbance values was performed as described previously (Osman et al. 

2022a). For linear discriminant analysis (LDA), the wavenumber region between 3600 and 400 

cm–1 in the 216 spectral dataset made of 36 spectra each from six genotype-environment 

combinations (3 genotypes × 2 environment) was utilized for the development of an equation 

model using the lda function in the MASS package (v7.3-54) in R. Presentation of the resultant 

dataset, such as the score and loading plots in PCA, box plots in Fm biomarkers, LD1-LD2 biplot, 

and their scaling plots in LDA, were generated using the ggplot2 package (v3.3.5) in R. The 

Student’s t-test was performed using the t.test function in the stat package in R. One-way ANOVA 

with post-hoc Tukey HSD test was performed using the Astatsa.com online statistical calculator 

(p < 0.05) (Astatsa. Complex Online Web Statistics Calculator. Available online: 

https://astatsa.com).  

 

 2.3. Results and Discussion  
 

2.3.1. Impact of Heat Stress on Growth of Three Wheat Genotypes  

Wheat genotypes ‘Chinese Spring’ (CS), ‘Imam’, and ‘Norin 61’ (N61) were grown till it 

reach the three-leaf stage, at a daily temperature of 22°C, and then subjected to heat stress at a 

daily maximum temperature of 42°C for three days. Canopy temperatures were significantly higher 

under heat stress in all three genotypes (Figure 2-1A, Table 2-1.); the median temperatures on day 

0 (hereafter referred to as C0) were in the range of 23.0°C–26.6°C for the three genotypes and 
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elevated to the range of 36.6°C–37.1°C on day 3 under heat stress (H3). As a result, large 

differences in canopy temperatures between C3 and H3 were noticed in these genotypes; the 

difference in the median temperature was 12.2, 16.3, and 13.1 in CS, Imam, and N6, respectively. 

Total leaf length was strongly reduced under heat stress (Figure 2-1B, Table 2-2.), in which the 

mean values of total leaf length were suppressed by 26.9, 19.7, and 13.3% in H3 plants for CS, 

Imam, and N61, respectively, in comparison to their C3 counterparts. Shoot biomass also 

significantly decreased under stress (Figure 2-1C, Table 2-3). The mean biomass values decreased 

by 29.8, 25.8, and 15.7% in H3 plants for CS, Imam, and N61, respectively, in comparison to their 

C3 counterparts. Although the N61 genotype showed a minimum degree of biomass loss, Imam 

genotype still showed the highest shoot biomass on day 3 of heat stress. Similarly, high biomass 

production by the Imam genotype in a high temperature environment was reported in four field 

environments in Sudan (Elbashir et al. 2017b). These observations indicating that although the 

degree of heat impact differed among genotypes, all genotypes showed similar growth trends as a 

consequence of three days of heat stress. These growth responses were in agreement with those of 

previous studies. Gupta et al. (2013) observed that heat stress resulted in the reduction of shoot 

length in wheat seedlings. Another study (Keleş and Öncel, 2002) showed different degrees of 

reduction in shoot length under high day and night temperatures in different wheat seedlings. 
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Figure 2-1. Effect of heat stress on the growth of wheat genotypes Chinese Spring (CS), Imam, 

and Norin 61 (N61). (A) Canopy temperature, (B) total leaf length, and (C) shoot biomass for (C0) 

before heat treatment, (C3) control plants after three days, and (H3) plants exposed to heat for 

three days are shown. The six plants each were used for the measurements. One-way ANOVA 

with post-hoc Tukey HSD test (p < 0.05) was carried out for statistical analysis within a given 

genotype. 
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Table 2-1. One-way ANOVA with post-
hoc Tukey HSD test on canopy 
temperature. 

Category Pair 

Tukey 
HSD  

Q 
statistic 

Tukey 
HSD  

p-value 
*1  

CS C0 vs C3 0.5469 0.7194  
 C0 vs H3 11.0873 0.001  
 C3 vs H3 14.0014 0.001  

Imam C0 vs C3 1.1828 0.4225  
 C0 vs H3 26.2122 0.001  
 C3 vs H3 11.2751 0.001  

N61 C0 vs C3 0.113 0.85  
 C0 vs H3 17.9206 0.001  
 C3 vs H3 24.0925 0.001  
         
     

C0 CS vs 
Imam 1.662 0.2671  

 CS vs N61 1.066 0.4683  

 Imam vs 
N61 0.6218 0.6823  

C3 CS vs 
Imam 1.722 0.2513  

 CS vs N61 0.6856 0.6507  

 Imam vs 
N61 1.427 0.3368  

H3 CS vs 
Imam 2.052 0.1775  

 CS vs N61 0.5831 0.7014  

  Imam vs 
N61 1.701 0.2567  

1 The p-values <0.5 and >0.5 are labelled 
with light green and pink colors, 
respectively 
 
  

 



31 

Table 2- 2. One-way ANOVA with post-
hoc Tukey HSD test on leaf length. 

Category Pair 

Tukey 
HSD  

Q 
statistic 

Tukey 
HSD  

p-value 
*1  

CS C0 vs C3 8.557 0.001  
 C0 vs H3 2.236 0.145  
 C3 vs H3 5.801 0.0021  

Imam C0 vs C3 8.495 0.001  
 C0 vs H3 8.495 0.001  
 C3 vs H3 3.845 0.0216  

N61 C0 vs C3 19.3 0.001  
 C0 vs H3 6.28 0.0013  
 C3 vs H3 4.856 0.0064  
      
     

C0 CS vs 
Imam 2.743 0.0811  

 CS vs N61 3.002 0.06  

 Imam vs 
N61 0.0964 0.85  

C3 CS vs 
Imam 3.465 0.0342  

 CS vs N61 5.815 0.0021  

 Imam vs 
N61 1.778 0.2372  

H3 CS vs 
Imam 0.0239 0.85  

 CS vs N61 0.7883 0.6  

  Imam vs 
N61 1.404 0.3443  

1 The p-values <0.5 and >0.5 are labelled 
with light green and pink colors, 

respectively. 
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Table 2-3. One-way ANOVA with post-
hoc Tukey HSD test on biomass. 

Category Pair 

Tukey 
HSD  

Q 
statistic 

Tukey 
HSD  

p-value 
*1  

CS C0 vs C3 0.001 0.001  
 C0 vs H3 3.567 0.0302  
 C3 vs H3 4.158 0.0148  

Imam C0 vs C3 7.614 0.001  
 C0 vs H3 8.352 0.001  
 C3 vs H3 3.384 0.0378  

N61 C0 vs C3 10.51 0.001  
 C0 vs H3 4.279 0.0143  
 C3 vs H3 4.233 0.0135  
          

C0 CS vs 
Imam 2.679 0.0874  

 CS vs N61 0.1965 0.8929  

 Imam vs 
N61 0.1965 0.8929  

C3 CS vs 
Imam 1.107 0.4518  

 CS vs N61 3.033 0.0576  

 Imam vs 
N61 4.147 0.015  

H3 CS vs 
Imam 3.2572 0.0861  

 CS vs N61 0.5501 0.9  

 Imam vs 
N61 3.8073 0.0417  

1 The p-values <0.5 and >0.5 are labelled 
with light green and pink colors, 

respectively. 
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2.3.2. FTIR trace  

FTIR spectra were taken from the fully expanded third leaves of C3 and H3 plants of each 

genotype. The representative spectra are shown in (Figure 2-2). The patterns of these spectra were 

largely similar; a broad major peak (3100–3600 cm–1) was commonly visible in both the control 

and heat environments, which can be interpreted as O–H and/or N–H stretching bands (Osman et 

al. 2022a; Stuart, 2004; Talari et al. 2016; Kamnev et al. 2021). Sharper peaks were detected at 

wavenumbers of approximately 2960 and 2925 cm–1, which can be assigned to –CH3 and –CH2– 

antisymmetric signals, respectively. No clear peaks were observed in the 2000–2500 cm–1 region. 

A major peak was observed at approximately 1658 cm–1, which can be attributed to C=C stretching, 

C=O stretching (amide), and N–H bending (amide I) in proteins in all genotypes in both the control 

and heat stress environments. All genotypes showed another major peak at approximately 1056 

cm–1, which represent signals for C–O stretching, C–N stretching (aliphatic), and in-plane C–H 

bending (aromatic). All genotypes exhibited another broad peak at approximately 618 cm–1, which 

can be interpreted as =C–H out-of-plane bending, =C–H bending, or C–S stretching signals. 

However, as presented in (Figure 2-2), obvious differences between genotypes and environments 

were not evident to the naked eye, inducing application of further chemometrics analysis to FTIR 

data, as in the previous studies (Osman et al. 2022a; Ami et al. 2010; Christou et al. 2018; 

Tarapoulouzi et al. 2020). 
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Figure 2-2. Representative FTIR spectra in the leaves of wheat genotypes Chinese Spring (CS), 

Imam, and Norin 61 (N61). Spectra drawn in blue and red color series represent those for control 

(C3) and heat stress environments (H3), respectively.  

 

2.3.3. Principal Component Analysis  

To characterize the spectral patterns of the three wheat genotypes under the C3 and H3 

environments, principal component analysis (PCA) was applied. The PC1–PC2 score plot, which 

explained 76.2% of total variation (Figure 2-3), exhibited partial separation between genotypes 

and environments (Figure 2-4). For instance, the C3–CS spectra were mostly clustered in the PC2 

negative range from −25 to −50, whereas the H3–CS counterparts tended to position at higher PC2 

values. The C3–Imam spectra were widely scattered in the PC1 positive range of +40 to +100, 

whereas their H3 counterparts were mostly located at lower PC1 values between –20 and +30. The 

C3–N61 spectra were mostly positioned in the PC1 range between −80 and +20, and PC2 ranged 

between −10 and +20, while their H3 counterparts were mostly scattered around the −130 to +10 

PC1 range and −10 to +45 PC2 range. Their loading plots represent a complex pattern over the 

entire range of 400–3600 cm–1 (Figure 2-3). However, overlapping patterns of different genotypes 
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and environmental conditions in the PC1–PC2 score plot were also evident, supporting the 

necessity of applying other chemometrics techniques to characterize their spectral features. 
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Figure 2-3. PCA of FTIR spectra. (A)Variance explained by the first nine components in PCA. 

(B) Two-dimensional PC1-PC2 loading plot. (C, D) One dimensional loading plot for (C) PC1 

and (D) PC2. The colors of the vectors in panel (B) are the same as those in the panels (C) and 

(D). 
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Figure 2-4. Score plot of principal component analysis showing the distribution of FTIR spectra 

for three wheat genotypes under two environmental conditions. Symbols for three genotypes and 

two environments are shown at the right of the panel. 

 

2.3.4. Trends of FTIR biomarkers  

In the study presented in chapter 1 (Osman et al. 2022a), six FTIR-based biomarkers, Fm482, 

Fm 576, Fm1251, Fm1465, Fm1502, and Fm1729 (Table 2-4) were generated to distinguish 

between control and heat-stressed leaves in N61 genotype. These markers were calculated based 

on the offset absorbance values at specific wavenumbers using the absorbance of the two anchor 

wavenumbers in the vicinity of the target wavenumber. Applying these markers to the FTIR 

spectra in this study showed similar responses for some markers between different genotypes 

(Figure 2-5). Markers Fm482 and Fm1502 were ramped in all genotypes (Figure 2-4, E), 

suggesting a similar chemical change between these genotypes. The wavenumber 482 cm–1, a 

target wavenumber for the marker Fm482, was positioned outside of the” fingerprinting region” 

and was related to methoxy group (472/475 cm–1) (Talari et al. 2016) and S–S stretching (450–550 

cm–1) (Stuart, 2004). The latter may be related to the heat-induced of protein disulfide isomerase 

in a wheat genotype Jing411 (Zhang et al. 2017), which stimulate covalent cross-linking of 

sulfhydryl groups of cysteine residues, leading to stabilizing structure of the cellular proteins under 
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heat stress. The Fm1502 was interpreted as lignin (Kurian et al. 2015; Lima et al. 2013), suggesting 

that physicochemical regulations in the cell wall components may occur under heat stress by same 

trend in these wheat genotypes, as has been reported in coffee leaves (Lima et al. 2013). Other 

markers, in contrast, showed contrasting behaviors between genotypes. The Fm1465 marker, 

which may be linked with suberin/cutin, lipids, and/or cell wall polysaccharides (Osman et al. 

2022a; Stuart, 2004; Stewart, 1996; Lammers et al. 2009; Gorgulu et al. 2007), increased under 

heat stress in CS and N61, but reduced in Imam genotype (Figure 2-5D). The Fm576 marker 

elevated under heat stress in CS, but decreased in N61, and was statistically unchanged in Imam 

(Figure 2-5B). Information on the assignments of the wavenumber 576 cm–1 to chemical structures 

has remained relatively rare (Talari et al. 2016), except for carbon–halogen stretching (400–800 

cm–1), P=S stretching (500–850 cm–1), and P–Cl stretching (300–600 cm–1) (Stuart, 2004). Though, 

these observations suggested that biochemical responses to heat stress may be largely different 

between these genotypes. Interestingly, behaviors of the markers Fm1251 and Fm1729 were 

contrasting between heat-tolerant and susceptible genotypes (Figure 2-5C, F). The Fm1251 marker, 

which is related to hemicellulose and/or pectin (Osman et al. 2022a; Stuart, 2004; Mascarenhas et 

al. 2000), was decreased under heat stress in the heat tolerant Imam and N61 genotypes, while an 

increase was detected in the heat-sensitive CS genotype (Figure 2-5C). These notifications may 

suggest that chemical modulations in the extracellular matrix, which potentially work as a 

regulator for cell wall porosity and heat conductance (Lima et al. 2013; Baron-Epel et al. 1988), 

are oppositely different between heat tolerant and susceptible genotypes. The Fm1729 marker, 

which is located in the carbonyl ester region (1720–1760 cm–1) and/or their oxidized derivatives 

(Lahlali et al. 2014; Osman et al. 2022a; Stuart, 2004; Talari et al. 2016; Kamnev et al. 2021; Sowa 

et al. 1991; Oleszko et al. 2015), was increased under heat stress in heat tolerant Imam and N61 

genotypes, whereas the value was unchanged in heat susceptible CS genotype (Figure 2-5F). This 

spectral region gives information on the polar interfacial regions of pectin or membrane lipids 

(Lahlali et al. 2014; Sowa et al. 1991). The latter is similar to previous report showed that heat 

tolerant and susceptible genotypes showed differential lipidome responses under the stress in 

wheat (Narayanan et al. 2016). Therefore, the markers Fm1251 and Fm1729 may potentially serve 

as a tool for discriminating heat tolerant and susceptible wheat genotypes. 
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Figure 2-5. Comparison of FTIR-based biomarkers under heat stress between three wheat 

genotypes tested. Boxplots for (A) Fm482, (B) Fm576, (C) Fm1251, (D) Fm1465, (E) Fm1502, 

and 254 (F) Fm1729 are shown for CS, Imam, and N61 genotypes under C3 and H3 environments. 

The 36 spectra were used in each genotype–environment combination. Asterisks represent 

statistically significant differences at p < 0.01. 
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Table 2-4. Characteristics of spectral markers.                     

Marker 

Wavenumber (cm-1)*1  CS  Imam  N61 

Target Anchor 1 Anchor 2 

 Median Fm value 
p*3 

 Median Fm value 
p*3 

 Median Fm value 
p*3 

  C3 *2 H3 *2   C3 *2 H3 *2   C3 *2 H3 *2 

Fm482 482 401 501  0.8587 0.7629 2.0 × 10-9  0.8186 0.7788 4.3 × 10-7  0.7401 0.6601 1.9 × 10-9 

Fm576 576 648 542  1.0621 1.3538 7.1 × 10-5  1.1481 1.1231 8.8 × 10-2  1.3327 0.9074 9.0 × 10-8 

Fm1251 1251 1241 1358  -0.1770  -0.0309 1.6 × 10-7  -0.0473 -0.0915 1.6 × 10-3  -0.0416 -0.1318 1.0 × 10-7 

Fm1465 1465 1480 1399  0.2921 0.3351 3.8 × 10-3  0.4268 0.3806 1.9 × 10-4  0.3463 0.3817 2.5 × 10-13 

Fm1502 1502 1480 1615  0.3381 0.2770  1.2 × 10-18  0.3151 0.3115 1.8 × 10-4  0.3328 0.2919 4.4 × 10-15 

Fm1729 1729 1768 1703   0.6291 0.6217 1.8 × 10-1   0.5861 0.6040  1.1 × 10-6   0.5615 0.5895 2.0 × 10-16 

1 Wavenumbers for the target and the flanking two anchors, that were used for the Fm value calculation as described previously (Osman et al.., 2022a). 
2 Fm value in either C3 (control day 3) or H3 (heat day 3) condition. 
3 Significance between C3 and H3 conditions by t-test.  
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2.3.5. Linear Discriminant Analysis  

Linear discriminant analysis (LDA) was performed to further characterize the FTIR spectral 

differences between the different genotypes. The FTIR spectra consisting of six classes (three 

genotypes × two environments) were used to create the LDA model. The proportion of trace values 

for the resultant five discriminant functions (LDs) declared that the first two LDs (LD1 and LD2) 

accounted for 48.2 and 24.5% of total variance, respectively (Figure 2-6). The first two LDs were 

used to draw a graphical distribution of each spectrum, which exhibited six distinct clusters for 

each ‘genotype × environment’ class in the scatter plot (Figure 2-7). The plot presented a typical 

feature of LDA, which maximizes between class variance while minimizing within class variance 

(Xanthopoulos et al. 2013; Harrison et al. 2018). The following features were extrapolated from 

the LD1–LD2 scatter plot: (i) Classes for the same genotypes were located close to each other, for 

example, two classes (C3 and H3) for the Imam genotype were positioned in the region spanning 

from –28 to 6 for LD1 and from – 42 to –21 for LD2 coordinates (Figure 2-7), which may suggest 

the presence of particular genotype features in the FTIR spectra. The ability of FTIR to distinguish 

between different genotypes is not unique to this study, and has been reported previously in many 

studies, including grapevine genotypes (Álvarez et al. 2020) and geographical classification of 

coffee (Bona et al. 2017). (ii) In all genotypes, clusters for the heat stress environment were located 

in higher LD1 ranges in comparison to their control counterparts, indicating that LD1 may be 

linked with the presence/absence of heat stress. (iii) In CS and N61 genotypes, the LD2 values for 

heat stress clusters were moved downward from their control counterparts, whereas an opposite 

upward shift of the heat cluster was detected in Imam genotype, suggesting that LD2 may partially 

reflect genotype-specific heat responses. 
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Figure 2-6. Values for proportions of trace linear discriminant analysis. 

 

Figure 2-7. Scatter plot of LD1 and LD2 derived from the linear discriminant analysis (LDA). The 

LDs are the discriminate functions of the LDA model. Each point represents the LD1–LD2 

coordinate for each FTIR spectrum. Symbols for three genotypes and two environmental 

conditions are shown at the right of the panel. Green ellipses denote the location of each wheat 

genotype. 
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To gather more information on the influential wavenumber regions in the FTIR spectra for 

discriminating different genotypes and environmental conditions, the coefficients of the LDs for 

each wavenumber were studied. The coefficient of LDs, or scaling value, indicates the weight or 

contribution of each wavenumber to the LD function in such a way that higher absolute values of 

coefficients potentially show a greater degree of contribution to the discrimination (Setser et al. 

2018). A two-dimensional scatter plot of the coefficients presented that most of the wavenumbers 

were weakly clustered in the origin of LD1–LD2 plain, whereas considerable numbers of 

‘characteristic’ wavenumbers were deviated from the center (Figure 2-8A). One-dimensional plots 

of coefficients for either LD1 or LD2 versus wavenumbers showed that several spectral regions, 

i.e., 400–800 cm–1, 1200–1300 cm–1 295 1, 1450–1550 cm–1, and 1700–1800 cm–1 regions, had 

strong absolute values for either LD1 or LD2 (Figure 2-8B, C), indicating that these regions may 

have major participation to the spectral discrimination of different genotypes and environmental 

conditions. These regions contained the 600–1500 cm–1 region that has been called “fingerprinting” 

region in which infrared absorption are cumulatively influenced by small steric or electronic 

effects based on the nature of the molecules (Stuart, 2004). The most ’characteristic’ wavenumbers 

that deviated from the origin of the LD1–LD2 plain (Figure 2-8A) were predominantly positioned 

in the ranges of 400–500 cm–1 and 1200–1300 cm–1. Among these two regions, the 400–500 cm–1 

range was located in the ascending curve from the spectral margin of 400 cm–1 which was exploited 

for baseline correction, thus showing less absorbance values (hence, should have a lower 

contribution for discrimination). Moreover, this region suffers from a jaggy shape of spectral curve, 

which was probably caused by noise (Figure 2-9). Therefore, in the subsequent analysis, we 

focused on the 1200–1300 cm–1 region, which is within the fingerprinting region and rich by 

signals from multiple functional groups, such as C–O stretching, in-plane C–H bending (aromatic), 

and aliphatic C–O stretching (Stuart, 2004; Talari et al. 2016). 
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Figure 2-8. Relationships between the coefficients of the first two linear discriminants (LD1 and 

LD2) and wavenumbers in linear discriminant analysis (LDA). (A) Two-dimensional scatter plot 

for the coefficients of linear discriminant LD1 and LD2. Respective points represent the 

wavenumbers from 400 to 4000 cm–1. Assignment of a color gradient to respective wavenumbers 

are the same with those presented in (B, C). Numbers in black font in the vicinity of respective 

color points designate wavenumbers for characteristic data points with higher absolute coefficient 

values. (B, C) One-dimensional column plots showing relationships between wavenumbers and 

coefficients of (B) LD1 and (C) LD2. The coefficient values for each wavenumber are expressed 

using a rainbow color gradient along their x-axes. 
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Figure 2-9. Magnified view of averaged FTIR spectra in the wavenumber ranges from 400 to 510 

cm–1 that detected strong discriminatory variable wavenumbers in LDA. Averaged spectra for 6 

genotypes × environment combinations were drawn as the color legend as depicted in the right of 

the panel. Colored vertical straight lines and their numbers on top of the panel denote the 

characteristic wavenumbers that were detected as strong discriminatory variable in LDA. 

To shed light into the features of the 1200–1300 cm–1 region, averaged FTIR spectral curves 

for this region were compared among genotypes and environments (Figure 2-10). This region 

consists of four characteristic wavenumbers: 1222 cm–1 (LD1 coefficient of +0.247), 1256 cm–1 

(LD1 coefficient of –0.262), 1204 (LD2 coefficient of +0.184), and 1290 cm–1 (LD2 coefficient 

of –0.235) (Figure 2-8A). The averaged FTIR curves revealed that the wavenumbers 1222 cm–1 

and 1256 cm–1 were situated in the middle of the ascending and descending curves, respectively, 

to/from a peak centered at 1241 cm–1, which has been tentatively interpreted as C–O stretching, 

in-plane C–H bending (aromatic), and aliphatic C–O stretching signals (Osman et al. 2022a). The 

absorbance values at these wavenumbers for the six environments × genotype combinations were 

in the descending order of C3–CS, C3–Imam, H3–CS, H3–Imam, C3–N61, and H3–N61 (Figure 

2-7), which showed link with the ascending order of LD1 scores in LDA (Figure 2-7). This was 

consistent with the negative LD1 coefficient value for the wavenumber of 1256 cm–1 but showed 

contrasting trend with the positive LD1 coefficient for the wavenumber 1222 cm–1. Although the 

reason for this discrepancy is currently unknown, one possibility for the 1222 cm–1 variable may 
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counteract the 1256 cm–1 variable to minimize the within-class variance in the LDA scores, which 

is a basic characteristic of LDA (Xanthopoulos et al. 2013; Harrison et al. 2018). Another possible 

explanation is that each wavenumber may exert rather small effects, and cumulative actions of 

multiple wavenumbers would be required for the final discrimination. Similar phenomenon were 

observed for the wavenumbers 1204 cm–1 (positive LD2 coefficient) and 1290 cm–1 (negative LD2 

coefficient), in which the absorbance values were only partially correlated with the LD2 score 

(Figure 2-8 and Figure 2-10). In a conclusion, these observations suggest that further studies are 

required to fully elucidate the spectral behavior and underlying biochemical changes during heat 

stress in a variety of wheat genotypes. 

In the current study, utility of FTIR-based chemical fingerprinting in association with a 

chemometrics was demonstrated, for characterizing metabolome responses to heat stress in the 

three genotypes of bread wheat with different heat tolerance. Expanding this technique to other 

types of climate change-related environmental stress responses in various genotypes will be 

expected in the future studies, such as drought stress and drought/heat combination, which led to 

large reduction of wheat yield worldwide (Zampieri et al. 2017; Qaseem et al. 2019).  
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Figure 2-10. Magnified view of averaged FTIR spectra in the wavenumber ranges from 1200 to 

1300 cm–1 for what strong discriminatory variable wavenumbers were detected in LDA. Averaged 

spectra for six wheat genotypes × environment combinations are shown, according to the legend 

on the right side. Colored vertical straight lines and their numbers on top of the panel denote the 

characteristic wavenumbers that were detected as strong discriminatory variables in LDA. 

 

The PCA, spectral biomarker assays, and LDA of FTIR spectra declared the existence of 

common and distinct metabolic responses between the three genotypes of bread wheat with 

different heat tolerance. The spectral biomarker assay showed that Fm1251 and Fm1729 markers 

potentially distinguish heat tolerant and susceptible genotypes, suggesting that these markers may 

work as a selection tool for heat-tolerant genotypes. Analysis of the coefficient values in LDA 

indicated the presence of potential discriminatory spectral regions that were associated with 

genotype specific metabolic responses. The current study demonstrates the versatility and potential 

of the FTIR fingerprinting technique for illustrating the diversity of metabolic behaviors among 

diverse plants.  
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Summary of the study 
 

        Wheat (Triticum aestivum L.) is one of the most important crops globally. It contributes 

with rice, maize, and soybean to two-thirds of calories required for world population. Wheat is 

very sensitive to heat stress. An increase of 1oC temperature is estimated to reduce wheat yield by 

6.0%. Therefore, understanding wheat response to heat stress is crucial for facilitating the 

development of new heat tolerant varieties. 

       In this study, metabolomic approach was chosen because it is arguably more closely 

related to the phenotypes than other “omics” data. Metabolomics is one of the omics tools used to 

analyze the molecular responses of plants, and has been utilized to study metabolic responses in 

plants under various stresses and genotypes differentiation. There are various tools to study plants 

metabolome. Among them Fourier transform infrared spectroscopy (FTIR) spectroscopy is unique 

in that it provides an opportunity to study biological samples in vivo in a non-destructive manner, 

is compatible with remote sensing in the field, and allows the analysis of complex 

biomacromolecules such as cell wall components. To our knowledge FTIR was not applied before 

to examine heat stress effects in wheat metabolome.  

    Therefore, sequences of studies were carried out starting by establishing a protocol to detect 

FTIR capability to characterize chemical changes of wheat metabolome under heat stress 

(chapter1) utilizing a genotype Norin 61 (N61). Subsequently, the established protocol was applied 

to wheat genotypes possessing different heat tolerance capabilities (chapter 2). Three genotypes 

were used in this study: Chinese Spring (CS) has been identified as a heat-sensitive genotype. 

Imam is a heat-tolerant cultivar widely grown in Sudan, which is regarded as the world’s hottest 

wheat growing environment. N61 showed heat tolerance in hot regions in Sudan in field studies. 

         In the present studies, plants were grown in normal condition in control chamber in 18◦C 

for the night temperature for 10 h and the daily temperature of 22oc. Heat stress was applied when 

the plants reached the three-leaf stage and the length of the third leaf exceeded that of the second 

leaf. Under the heat stress condition, the seedlings were transferred to a heat chamber with a daily 

maximum temperature of 42◦C. The obtained FTIR spectra from the leaves did not show visually-

prominent discriminating peaks between heat stress and control conditions. Therefore, coupling 

the FTIR analysis with chemometric analysis was indispensable.  
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     In the first chapter, visual inspection of FTIR spectra and their principal component 

analysis showed partially overlapping features between heat-stressed and control leaves in N61 

genotype. In contrast, supervised machine learning through linear discriminant analysis (LDA) of 

the spectra demonstrated clear discrimination of heat-stressed leaves from the controls. Analysis 

of LDA loading suggested that several wavenumbers in the fingerprinting region (400–1800 cm−1) 

contributed significantly to their discrimination. Six novel spectrum-based biomarkers, designated 

as Fm482, Fm576, Fm1251, Fm1465, Fm1502, and Fm1729, were developed using these 

discriminative wavenumbers, which enabled successful diagnosis of heat-stressed leaves.  

In chapter 2, the metabolome responses of heat-tolerant genotypes, Imam and N61, and 

susceptible genotype CS were comparatively analyzed using FTIR in combination with 

chemometric data mining techniques. Similar to the chapter 1, principal component analysis of the 

FTIR data showed partially overlapping spectral feature between the three genotypes. However, 

the six FTIR-based markers developed in the study presented in chapter 1, together with LDA data 

detected contrasting metabolome behaviors between the three genotypes, demonstrating the 

capacity of FTIR-chemometrics approach in differentiating genotypes, environment, and their 

combination thereof.   

 The FTIR-chemometrics described above showed a wide range of metabolome changes in 

wheat leaves under heat stress; some of them were commonly observed in three wheat genotypes, 

while others were genotype-specific. The former example includes the markers Fm482 and 

Fm1502, which were reduced in all genotypes, indicating similar chemical response between these 

genotypes. Wavenumber 482 cm-1, a target wavenumber for the marker Fm482, was positioned 

outside the” fingerprinting region” and was related to a methoxy group (472/475 cm-1) and S–S 

stretching (450–550 cm-1). The latter annotation may be related to a previously reported heat-

induced protein disulfide isomerase, which promotes covalent cross-linking of sulfhydryl groups 

of cysteine residues, leading to stabilization of the structure of cellular proteins under heat stress. 

The Fm1502 marker is potentially annotated to lignin, suggesting that physicochemical 

modifications in cell wall compositions may occur under heat stress in these wheat genotypes.  

This study identified several FTIR markers that showed differential behaviors between 

genotypes. The Fm1465 marker, which may be associated with suberin/cutin, lipids, and/or cell 

wall polysaccharides, elevated under heat stress in CS and N61, but reduced in the Imam genotype. 
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The Fm576 marker increased under heat stress in CS, but decreased in N61, and was statistically 

unchanged in Imam. No sufficient information on the assignment of the wavenumber 576 cm-1 to 

chemical structures are available, except for carbon halogen stretching (400–800 cm-1), P=S 

stretching (500–850 cm-1), and P–Cl stretching (300–600 cm-1). These observations suggested that 

biochemical responses to heat stress may be largely different between these genotypes. 

It noteworthy that, the markers Fm1251 and Fm1729 showed different responses between 

heat-tolerant and -susceptible genotypes. The Fm1251 marker, which is related to hemicellulose 

and/or pectin, decreased under heat stress in the heat-tolerant Imam and N61 genotypes, while it 

increased in the heat-sensitive CS genotype.  Those signs may indicate that chemical modification 

in the extracellular matrix, which potentially functions as a controller for cell wall porosity and 

heat conductance, are contrastingly different between heat-tolerant and susceptible genotypes. The 

Fm1729 marker, which is located in the carbonyl ester region (1720–1760 cm-1) and/or its oxidized 

derivatives, was increased under heat stress in heat-tolerant Imam and N61 genotypes, whereas the 

value was unchanged in the heat-susceptible CS genotype. This spectral region provides 

information on the polar interfacial regions of pectin or membrane lipids. Thus, the markers 

Fm1251 and Fm1729 may potentially serve as tools for distinguishing heat-tolerant and 

susceptible wheat genotypes. 

 Overall, in the present study, an FTIR-based fingerprint technique was applied to characterize 

the metabolome response of wheat leaves to heat stress. Application of chemometrics techniques 

to the FTIR spectral data, especially the LDA technique, revealed specific spectral regions that 

may reflect metabolome changes in wheat leaves under heat stress. Several spectral biomarkers 

were developed that correctly reflected the heat-stress status of the leaves. Application of the 

developed markers to wheat genotypes with different heat tolerance abilities showed common and 

differential metabolomic response among genotypes. Among these biomarkers; Fm1251 and 

Fm1729 markers potentially discriminate heat-tolerant and -susceptible genotypes, suggesting that 

these markers may serve as a selection tool for heat-tolerant genotypes. Overall, the present study 

suggests the potential of FTIR spectroscopy, coupled with chemometrics analysis, for studying the 

heat-stress response and tolerance mechanisms in wheat. 
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Japanese Summary of the study 
 

コムギ（Triticum aestivum L.）は、世界的に最も重要な作物の一つである。米、トウモロコシ、

大豆とともに、世界人口に必要なカロリーの 3 分の 2 を占めている。コムギは熱ストレスに非

常に敏感である。気温が 1℃上昇すると、コムギの収量は 6.0％減少すると推定されている。し

たがって、コムギの熱ストレスに対する応答を理解することは、新しい耐熱性品種の開発を促

進するために非常に重要である。 

本研究では、他のオミックスデータと比較して、より表現型に近いと考えられるメタボロミ

クスによる研究アプローチを選択することにした。メタボロミクスは植物の分子応答を解析す

るためのオミクスツールの一つであり、様々なストレスや遺伝子型の違いによる植物の代謝応

答を研究するために利用されてきた。植物のメタボロームを研究するための手法には様々なも

のがある。その中でもフーリエ変換赤外分光法（FTIR）は、生体試料を非破壊で調べられるこ

と、野外でのリモートセンシングに対応できること、細胞壁成分などの複雑な生体高分子の分

析が可能であることが特徴である。私たちの知る限り、コムギのメタボロームにおける熱スト

レスの影響を調べるために FTIRが適用されたことはこれまで報告されていなかった。 

そこで本研究では、熱ストレス下におけるコムギのメタボロームの化学変化を FTIR で検出す

る実験手法を、人工気象器での実験による環境制御下で農林 61 系統 (N61)を用いて確立するた

めの一連の実験を行った（第 1 章）。次に、耐暑性の異なるコムギ品種に本実験手法を適用し

た（第 2 章）。本研究では、3 種類のコムギ系統を用いた。Chinese Spring (CS)は高温感受性の

遺伝子型として知られているものである。Imamは、世界で最も暑いコムギ栽培環境とされるス

ーダンで広く栽培されている耐暑性品種である。N61 は、スーダンの高温乾燥地帯における圃

場試験で耐暑性を示した系統である。 

         本研究において，植物はまず人工気象器内で夜温 18℃で 10時間、そして日中の温度 22℃

の通常状態で栽培された。植物が 3葉の段階に達し、3葉の長さが 2葉の長さを超えたときに、

苗を日最高気温が 42℃の高温の人工気象器に移すことで熱ストレスを付与した。得られた葉の

FTIR スペクトルには、熱ストレス条件と対照条件との間で視覚的には顕著なスペクトル差は確

認されなかったため、FTIR 分析とケモメトリックス分析を組み合わせることが不可欠であった。 

第 1章では、FTIRスペクトルの目視での検査とその主成分分析では、N61系統の熱ストレス

葉と対照葉の間に部分的に重複した特徴があることが示された。一方、線形判別分析(LDA)に

よる教師ありの機械学習では、熱ストレス葉と対照葉の間で明確な判別が示された。LDA の負
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荷の分析により、指紋領域（400-1800 cm-1）内のいくつかの波長が、その識別に大きく寄与し

ていることが示唆された。これらの波長を用いて、Fm482, Fm576, Fm1251, Fm1465, Fm1502, 

Fm1729と名付けた 6つの新規スペクトルベースのバイオマーカーを開発し、熱ストレス葉を診

断することに成功した。 

第 2章では、耐暑性系統である Imamと N61、および感受性系統である CSのメタボローム応

答を、FTIRとケモメトリックデータマイニング技術を併用して比較解析した。第 1章と同様に、

FTIR データの主成分分析では、3 つの遺伝子型の間でスペクトルの特徴が一部重複しているこ

とが示された。しかし、第 1章で開発した 6つの FTIRベースマーカーと LDAデータを組み合

わせることで、3 つの遺伝子型間で対照的なメタボロームの挙動が検出され、遺伝子型、環境、

およびそれらの組み合わせを識別する FTIR-ケモメトリックスアプローチの能力が実証された。  

以上のように、FTIR とケモメトリックスは、熱ストレス下のコムギの葉において、3 種の系

統に共通するメタボローム挙動に加え、各系統に特異的な挙動も存在することを明らかにした。

前者の例としては、Fm482 と Fm1502 というマーカーがあり、これらはすべての系統において

減少しており、これらの系統で共通して同種の化学反応が起こっていることが示唆された。こ

のうち Fm482 のターゲット波数である 482cm-1 は、指紋領域の外に位置し、メトキシ基

（472/475 cm-1）または S-S結合の伸縮（450-550 cm-1）に関連することが示唆された。後者の注

釈は、以前に報告されたタンパク質ジスルフィドイソメラーゼの高温下での誘導に関連してい

ると考えられ、システイン残基のスルフヒドリル基の共有結合による架橋を促進し、熱ストレ

ス下で細胞内タンパク質の構造の安定化に寄与する可能性が考えられた。Fm1502マーカーはリ

グニンの化学挙動と関連する可能性があり、これらのコムギ系統において熱ストレス下で細胞

壁組成の物理化学的変化が起こっている可能性が示唆された。 

本研究では、コムギ系統間で異なる挙動を示すいくつかの FTIR マーカーが同定された。

Fm1465 マーカーは、suberin/cutin、脂質、細胞壁多糖類などに関連すると考えられ、CS と N61

では熱ストレス下で上昇したが、Imam遺伝子型では低下した。Fm576マーカーは熱ストレス下

で CSでは増加したが、N61では減少し、Imamでは統計的に変化しなかった。波数 576 cm-1 の

化学構造へのアノテーションについては、炭素ハロゲン伸縮 (400-800 cm-1)、P=S 伸縮 (500-850 

cm-1)、P-Cl 伸縮 (300-600 cm-1) を除いて、十分な情報が得られていない。しかし、これらの観察

から、熱ストレスに対するコムギの生化学的応答は、これらの系統間で大きく異なる可能性が

示唆された。 

また，Fm1251 マーカーと Fm1729 マーカーでは，耐暑性遺伝子と耐暑性遺伝子の間で異なる

応答を示した。ヘミセルロースやペクチンに関連するマーカーである Fm1251 は、耐熱性の 
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Imam や N61 では熱ストレス下で減少したが、耐熱性の CS では増加した。 これらの結果は、

細胞壁の空隙率や熱伝導率の制御因子として機能する可能性のある細胞外マトリクスの化学修

飾が、耐熱性遺伝子型と感受性遺伝子型で対照的に異なることを示している可能性がある。カ

ルボニルエステル領域（1720-1760cm-1）およびその酸化誘導体のシグナル領域に存在する

Fm1729マーカーは、耐熱性 Imamおよび N61遺伝子型では熱ストレス下で増加したが、耐熱性

CS 遺伝子型では値は変化しなかった。このスペクトル領域は、ペクチンや膜脂質の極性界面領

域の情報を提供する。したがって、マーカーFm1251と Fm1729は、耐熱性コムギと感受性コム

ギの遺伝子型を区別するためのツールとなる可能性がある。 

総括すると、本研究では、熱ストレスに対するコムギ葉のメタボローム応答を特徴付けるた

めに、FTIRを基盤とした識別技術を適用した。FTIRスペクトルデータに対して、特に LDA技

術に代表されるケモメトリクス手法を適用することで、高温ストレス下のコムギ葉内で起こっ

ている代謝変動を反映するスペクトル領域を明らかにすることができた。また、葉の熱ストレ

ス状態を反映する複数のスペクトル・バイオバイオマーカーが開発された。開発されたバイオ

マーカーを耐熱性の異なるコムギの系統群に適用したところ、系統間で共通するメタボローム

応答と、異なる応答が見られた。開発した 6 種類のバイオマーカーのうち、Fm1251 と Fm1729

は耐熱性・感受性を識別している可能性があり、これらのマーカーは耐熱性遺伝子の選抜ツー

ルになる可能性が示唆された。本研究は、FTIR 分光法とケモメトリックス解析を組み合わせた

手法が、コムギの熱ストレス応答および耐性メカニズムを研究する上で潜在的価値が高いこと

を示唆するものである。 
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Appendix-1 

 
R-scripts for the processing of FT-IR data 

Script code 1: FTIR-spectra processing  

#salma_a2_spec_processing_ftir_211213.r  

#import necessary libraries  

library(conflicted)  

library(dplyr)  

library(ggplot2)  

library(readr)  

#clean up the R's brain  

rm(list=ls())  

#obtain date information  

today <- Sys.Date()  

yr <- substr(today, 3,4)  

mo <- substr(today, 6,7)  

day <- substr(today, 9,10)  

today2 <- paste(yr, mo, day, sep="")  

#obtain desktop folder information for the windows user  

#change the string within "xxx" below according to your computer  

desktopfolder <- "akash"  

#create column names for output dataframe  

wnlist <- seq(4000, 400, length=3601)  

columnname <- c("filename", "condition", "genotype", "identifier", wnlist)  

#name the column labels for spec data  

specpile <- as.data.frame(t(columnname))  

names(specpile) <- columnname  

specpile <- slice(specpile, -1) 

#set working directory  

#setwd("C:/Users/akash/desktop/inputfolder") 

#input data from .asc file that are generated by Perkin-Elmer 

#obtain the filename 
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#obtain the list of filenames for all csv files, 

 #which are transiently stored in "ftir_spec_input" folder in your desktop 

pathname_inputfolder <- paste("C:/Users/",desktopfolder, "/desktop/", "ftir_spec_input",  

sep="") 

filelist <- list.files(path = pathname_inputfolder,  

 pattern = "*.asc", 

 full.names = T) 

#count the number of files 

fileno <- length(filelist) 

#starting a loop for processing data 

for (i in 1:fileno){ 

#obtain the new filename  

 filename <- basename(filelist(i)) 

#obtain dataframe 

#skip first 25 lines 

#the 26th line does not have variable names 

 rawspec <- read.table(filelist(i), skip = 25) 

#quick summary 

# summary(rawspec) 

  

#plot the spectrum 

# ggplot(rawspec, aes(x = V1,y = V2)) + 

# geom_point() 

  

#save the wn column for later plotting 

 wn_column <- dplyr::select(rawspec, V1) 

  

#exchange rows and columns 

#(optional)keep the type as data.frame 

 rawspec2 <- as.data.frame(t(rawspec)) 

  

#split the rows into wn and spec 

 wn_axis <- as.data.frame(rawspec2(1,)) 
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 rawspec3 <- as.data.frame(rawspec2(2,)) 

  

#name the column labels for spec data 

 names(rawspec3) <- wn_axis 

 #smoothing of the spectrum trace 

 #below to fill in, but currently skip it 

  

 #obtain the baseline anchors 

 #this is a version to take only 4000 and 400 

 #the relationships between wn and column_no. is 

 #column_no = -wn +4001 

 raw400 <- rawspec3(1,3601) 

 raw4000 <- rawspec3(1,1) 

  

 #create a baseline data 

 #following is the 1st version 

 #line is drawn between 4000 to 400 

 baseline <- seq(raw4000, raw400, length=3601) 

 #subtract the baseline 

 spec4_baselined <- (rawspec3 - baseline) 

  

 #draw the baseline-corrected spectrum 

 #1st, exchange the rows and columns 

 spec4_tall <- t(spec4_baselined) 

 #combine the wn and spec columns 

 spec4_tall <- cbind(wn_column, spec4_tall) 

 #plot the baseline-corrected spectrum 

 #ggplot(spec4_tall, aes(x = V1,y = V2)) + 

 # geom_point(size=0.3) 

 #normalization of spec 

 #1st, sum of current spec is calculated 

 sum_signal_original <- sum(select(spec4_tall, V2)) 

 #2nd, new column is generated in the spec 



57 

 #spec values in ppm is calculated 

 spec5_tall <- dplyr::mutate(spec4_tall, ABS = V2*1000000/sum_signal_original) 

 #draw the normalized spectrum 

 #ggplot(spec5_tall, aes(x = V1,y = ABS)) + 

 # geom_point(size=0.3) 

 #row-column conversion 

 spec5 <- as.data.frame(t(spec5_tall)) 

  

 #remove original data from spec5 

 spec6 <- dplyr::slice(spec5, 3) 

 #rownames(spec6) <- filename 

  

 #create one column at the top 

 #add dataname to the 1st column 

 spec7 <- mutate(spec6, dataname=filename, .before="4000") 

  

 #judge the treatment condition 

 #and add to the 2nd column 

 condition_id <- substring(filename, 1, 2) 

 spec8 <- mutate(spec7, condition=condition_id, .after="dataname") 

 #judge the genotype 

 #and add to the 3rd column 

 genotype_id <- substring(filename, 3, 5) 

 spec9 <- mutate(spec8, genotype=genotype_id, .after="condition") 

  

 #setup the identifier for later analyses 

 #and add to the 4rd column 

 identifier_column <- substring(filename, 1, 5) 

 spec10 <- mutate(spec9, identifier=identifier_column, .after="genotype") 

  

 #compiling the data  

 specpile <- rbind(specpile, spec10)  

 } 
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#export the data as csv 

#data is baseline-corrected, normalized spec 

filename_specpile_processed <- paste(today2, "_", "specpile_processed.csv", sep="") 

filename2_specpile_processed <- paste("C:/users/",desktopfolder,"/desktop/",  

filename_specpile_processed, sep="") 

write.csv(specpile,  

 filename2_specpile_processed, row.names=FALSE) 

#prepare long-format as well, and export 

#row-column conversion 

long_specpile <- as.data.frame(t(specpile)) 

#create new column at the top 

long_specpile <- mutate(long_specpile,  

 variable=c("dataname","condition", "genotype", "identifier", 

 seq(from=4000, to=400, by=-1)), 

 .before=ABS) 

#export the data as csv 

#data is baseline-corrected, normalized spec 

filename_specpile_processed_longformat <- paste(today2, "_",  

"specpile_processed_longformat.csv", sep="") 

filename2_specpile_processed_longformat <- paste("C:/users/",desktopfolder,"/desktop/",  

filename_specpile_processed_longformat, sep="") 

write.csv(long_specpile,  

 filename2_specpile_processed_longformat, row.names=FALSE) 

#End of script 

Script code 2: Principal component analysis  

#salma_a3_pca_ftir_211213.r 

#ftir_PCA for salma's paper 1 

#this is a version to analyze differences in c3-h3 samples 

#imput file should be in csv format, 

#typically, "specpile_processed.csv" would be selected 

#1st column should be the names of original spec files 

#2nd col should be treatment ID such as c0, h3, c3 

#3rd col should be genotype such as n61, ima, 



59 

#4th col should be "identifier" such as c0n61, which is used for grouping 

#then followed by abs values from 4000 to 400 

#import necessary libraries 

library(conflicted) 

library(dplyr) 

library(ggplot2) 

library(readr) 

library(psych) 

#clean up the R's brain 

rm(list=ls()) 

#obtain desktop folder information for a windows user 

#you must change the string within "xxx" below according to your computer 

desktopfolder <- "akash" 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#invoke a file-opening window, specify the file, 

#input data from .csv file 

#data has to be baseline-corrected and normalized 

#obtain the filename 

inputfile <- file.choose() 

filename <- basename(inputfile) 

rawspecs <- read.csv(inputfile,  

 header = T) 

filename 

#extract values used for calculation to a new df specmatrix 

#values for wn4000 and 400 (zero values) should be removed 

specmatrix <- dplyr::select(rawspecs, -(3605:3605)) 

specmatrix <- dplyr::select(specmatrix, -(1:5)) 

#separate "identifier" column (category info) 
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id_1 <- dplyr::select(rawspecs, (4:4)) 

#further trimming of values in the range of wn3600-4000 

specmatrix <- dplyr::select(specmatrix, -(1:399)) 

#perform pca analysis using prcomp 

#prcomp is standard but one of the oldest 

pc = prcomp(specmatrix, scale =T) 

#using the new 'principal()' in psych package 

#pc <- psych::principal(specmatrix, nfactors=3601,  

# rotate='none') 

#display the summary 

summary(pc) 

#preparation of score data output 

pc1_score <- pc$x(,1) 

pc2_score <- pc$x(,2) 

scoreonly <- as.data.frame(pc$x) 

score <- cbind(id_1, scoreonly) 

#export the score data as csv 

#data is PC1-PC2 score 

filename_PC12_score <- paste(today2, "_", "PC12_score.csv", sep="") 

filename2_PC12_score <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_PC12_score, sep="") 

write.csv(score,  

 filename2_PC12_score, row.names=FALSE) 

#export rotation data as csv file 

rotationonly <- as.data.frame(pc$rotation) 

filename_pca_rotation <- paste(today2, "_", "pca_rotation.csv", sep="") 

filename2_pca_rotation <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_rotation, sep="") 

write.csv(rotationonly,  

 filename2_pca_rotation, row.names=FALSE) 

#export sdev data as csv file 

sdevonly <- as.data.frame(pc$sdev) 

filename_pca_sdev <- paste(today2, "_", "pca_sdev.csv", sep="") 
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filename2_pca_sdev <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_sdev, sep="") 

write.csv(rotationonly,  

 filename2_pca_sdev, row.names=FALSE) 

#calculate the loadings, and export as csv file  

loadingdata <- sweep(pc$rotation, MARGIN=2, pc$sdev, FUN="*") 

filename_pca_loading <- paste(today2, "_", "pca_loading.csv", sep="") 

filename2_pca_loading <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_loading, sep="") 

write.csv(loadingdata,  

 filename2_pca_loading, row.names=FALSE) 

#draw the pc1_pc2 scoreplot 

#size of the dots in the plot can be changed  

 #by modifying the location of "geom_point(size=)  

dev.new() 

pca_scoreplot <- ggplot(score, aes(x = PC1,y = PC2,  

 color = identifier)) + 

 geom_point(size=2) + 

 scale_color_manual(values=c("deepskyblue", "salmon")) + 

 theme_bw()  

print(pca_scoreplot) 

#save the plot as png format 

#you can change to .jpeg, .tiff, etc 

#unit is in inch 

filename_pca_scoreplot <- paste(today2, "_", "pca_scoreplot.csv", sep="") 

filename2_pca_scoreplot <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_scoreplot, ".png", sep="") 

ggsave(file = filename2_pca_scoreplot, 

 plot = pca_scoreplot, dpi=100, 

 width=7.2, height=4.8) 

#extract contribution data 

contribution <- as.data.frame(t(summary(pc)$importance)) 

names(contribution) <- 
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c("standard_deviation","proportion_of_variance","cumulative_proportion") 

contri_rownames <- as.data.frame(rownames(contribution)) 

names(contri_rownames) <- "PC" 

contribution <- cbind(contribution, contri_rownames) 

#save the contribution data as csv file 

#write.csv(contribution, "C:/Users/akash/desktop/contribution.csv") 

filename_pca_contribution <- paste(today2, "_", "pca_contribution.csv", sep="") 

filename2_pca_contribution <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_contribution, sep="") 

write.csv(contribution,  

 filename2_pca_contribution, row.names=FALSE) 

#extract top 9 from the contribution data, and save as a png file 

top9_contribution <- dplyr::slice(contribution, 1:9) 

contribution_plot <- ggplot(top9_contribution, aes(x = PC, y = proportion_of_variance)) + 

 geom_bar(stat="identity", fill="forestgreen") + 

 theme_bw() 

print(contribution_plot) 

#ggsave(file = "C:/Users/akash/desktop/contribution_plot.png",  

# plot = contribution_plot, dpi = 100,  

# width = 3.6, height = 2.4) 

filename_pca_contribution_plot <- paste(today2, "_", "pca_contribution_plot.csv", sep="") 

filename2_pca_contribution_plot <- paste("C:/users/",desktopfolder,"/desktop/",  

 filename_pca_contribution_plot, ".png", sep="") 

ggsave(file = filename2_pca_contribution_plot, 

 plot = contribution_plot, dpi=100, 

 width=7.2, height=4.8) 

#End of script 

Script code 3: Linear Discriminant Analysis  

#salma_a4_lda_ftir_211220.r 

#a4_lda_ftir 

 #linear discriminant analysis of ftir spectra 

#clear the brain 

rm(list=ls()) 
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#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 

#you must change the string within "xxx" below according to your computer 

desktopfolder <- "akash" 

#assemble path info 

pathinfo <- paste("C:/users/",desktopfolder,"/desktop/", sep="") 

#import the compiled ftir csv data 

#the file to choose is normally "ftir_specpile_processed.csv" 

spec1 <- file.choose() 

spec2 <- read.csv(spec1,  

 header = T) 

#remove genotype and dataname info 

specmatrix <- dplyr::select(spec2, -(1:3)) 

#remove values at wavenumbers 4000 and 400,  

#which were used for baseline anchors 

#then remove those at 3999-3601, the noisy region 

specmatrix <- dplyr::select(specmatrix, -3602) 

specmatrix <- dplyr::select(specmatrix, -2) 

specmatrix <- dplyr::select(specmatrix, -(2:400)) 

#treatment <- dplyr::select(rawspecs, (2:2)) 

#set the seednumber for randomness  
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set.seed(101) 

#split the samples into train(60%) and test(40%) 

training_sample <- sample(c(TRUE, FALSE), nrow(specmatrix), replace = T, prob = c(0.6,  

0.4)) 

trainspec <- specmatrix(training_sample, ) 

testspec <- specmatrix(!training_sample, ) 

#perform linear discriminant analysis 

lda_spec_train <- lda(identifier ~ ., trainspec) 

lda_spec_train 

#training results check 

#1st, transform them to the values 

#then one dimensional histograms 

#"mar" is the margin of bottom, left, top, right 

lda_spec_train_results <- predict(lda_spec_train) 

dev.new() 

par("mar"=c(1,1,1,1)) 

trainhistogram1 <- ldahist(lda_spec_train_results$x(,1), g=trainspec$identifier) 

print(trainhistogram1) 

#save the histogram values for the training set as csv file 

class_lda_spec_train <- as.data.frame(lda_spec_train_results$class) 

x1_lda_spec_train <- as.data.frame(lda_spec_train_results$x(,1)) 

value_lda_spec_train <- cbind(class_lda_spec_train, x1_lda_spec_train) 

names(value_lda_spec_train) <- c("identifier", "LD1") 

filename_value_lda_spec_train <- paste(today2, "_", "value_lda_spec_train.csv", sep="") 

filename2_value_lda_spec_train <- paste(pathinfo,"/", filename_value_lda_spec_train,  

sep="") 

write.csv(value_lda_spec_train,  

 filename2_value_lda_spec_train, row.names=FALSE) 

#draw histogram of train results for publication 

dev.new() 

lda_train_histogram2 <- ggplot(value_lda_spec_train,  

 aes(x = LD1, fill =identifier)) + 

 geom_histogram(position="identity",  
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 colour = "black", size=0.3, 

 breaks=seq(from=-80, to=60, by=2)) + 

 scale_fill_manual(values=c("deepskyblue", "salmon")) + 

 theme_bw()  

print(lda_train_histogram2) 

#save the plot as png format 

#you should change the path according to your system 

#you can change to .jpeg, .tiff, etc 

#unit is in inch 

filename_lda_train_histogram2 <- paste(today2, "_", "lda_train_histogram2.png", sep="") 

filename2_lda_train_histogram2 <- paste(pathinfo,"/", filename_lda_train_histogram2,  

sep="") 

ggsave(file = filename2_lda_train_histogram2, 

 plot = lda_train_histogram2, dpi=100, 

 width=7.2, height=3.6) 

#test set check 

#1st, transform them to the values 

#then one dimensional histograms 

lda_spec_test_results <- predict(lda_spec_train, testspec) 

dev.new() 

par("mar"=c(1,1,1,1)) 

testhistogram1 <- ldahist(lda_spec_test_results$x(,1), g=testspec$identifier) 

print(testhistogram1) 

#save the histogram values for the test set as csv file 

class_lda_spec_test <- as.data.frame(lda_spec_test_results$class) 

x1_lda_spec_test <- as.data.frame(lda_spec_test_results$x(,1)) 

value_lda_spec_test <- cbind(class_lda_spec_test, x1_lda_spec_test) 

names(value_lda_spec_test) <- c("identifier", "LD1") 

filename_value_lda_spec_test <- paste(today2, "_", "value_lda_spec_test.csv", sep="") 

filename2_value_lda_spec_test <- paste(pathinfo,"/", filename_value_lda_spec_test, sep="") 

write.csv(value_lda_spec_test,  

 filename2_value_lda_spec_test, row.names=FALSE) 

#draw histogram of test results for publication 
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dev.new() 

lda_test_histogram2 <- ggplot(value_lda_spec_test,  

 aes(x = LD1, fill =identifier)) + 

 geom_histogram(position="identity",  

 colour = "black", size=0.3, 

 breaks=seq(from=-80, to=60, by=2)) + 

 scale_fill_manual(values=c("deepskyblue", "salmon")) + 

 theme_bw()  

print(lda_test_histogram2) 

#save the plot as png format 

#you should change the path according to your system 

#you can change to .jpeg, .tiff, etc 

#unit is in inch 

filename_lda_test_histogram2 <- paste(today2, "_", "lda_test_histogram2.png", sep="") 

filename2_lda_test_histogram2 <- paste(pathinfo,"/", filename_lda_test_histogram2,  

sep="") 

ggsave(file = filename2_lda_test_histogram2, 

 plot = lda_test_histogram2, dpi=100, 

 width=7.2, height=3.6) 

#extract LD1 loading  

scalingdata <- lda_spec_train$scaling 

#transform LD1 loading to dataframe 

#add wavenumber info 

scalingdf <- as.data.frame(t(scalingdata)) 

wnlist <- seq(3600, 401, length=3200) 

wnlist2 <- as.data.frame(t(wnlist)) 

colnames(scalingdf) <- c(seq(3600, 401, length=3200)) 

colnames(wnlist2) <- c(seq(3600, 401, length=3200)) 

scalingdf2 <- rbind(wnlist2, scalingdf) 

scalingdf3 <- as.data.frame(t(scalingdf2)) 

names(scalingdf3)(1) <- "wavenumber" 

#change the wavenumber in ascending order, and save it as csv  

scalingdf4 <- arrange(scalingdf3, wavenumber) 
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filename_scalingdf4 <- paste(today2, "_", "LD1_loading.csv", sep="") 

filename2_scalingdf4 <- paste(pathinfo,"/", filename_scalingdf4, sep="") 

write.csv(scalingdf4,  

 filename2_scalingdf4, row.names=FALSE) 

#plot LD1 contribution, scatter plot version 

dev.new() 

lda_loading_scatterplot <- ggplot(scalingdf4, aes(x = wavenumber, y = LD1)) + 

 geom_point(size=0.5) + 

 theme_bw() 

print(lda_loading_scatterplot) 

filename_lda_loadingscatterplot <- paste(today2, "_", "LDA_Loading_ScatterPlot.png",  

sep="") 

filename2_lda_loadingscatterplot <- paste(pathinfo,"/", filename_lda_loadingscatterplot,  

".png", sep="") 

ggsave(file = filename2_lda_loadingscatterplot,  

 plot = lda_loading_scatterplot, dpi = 100,  

 width = 7.2, height = 4.8) 

#plot LD1 contribution, line plot version 

dev.new() 

lda_loading_lineplot <- ggplot(scalingdf4, aes(x=wavenumber, y=LD1))+ 

 geom_line(size=0.2)+ 

 theme_bw() 

print(lda_loading_lineplot) 

filename_lda_loadinglineplot <- paste(today2, "_", "LDA_Loading_LinePlot.png", sep="") 

filename2_lda_loadinglineplot <- paste(pathinfo,"/", filename_lda_loadinglineplot, ".png",  

sep="") 

ggsave(file = filename2_lda_loadinglineplot,  

 plot = lda_loading_lineplot, dpi = 100,  

 width = 7.2, height = 4.8) 

#pick up peak candidate in LD1 plot 

#that are higher than the threshold of 0.15 

peakcandidate1 <- dplyr::filter(scalingdf4, LD1>0.15) 

#check that the candidate is the higher than the neighboring wavenumbers 
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ncandidate <- nrow(peakcandidate1) 

peakcandidate2 <- data.frame(matrix(rep(NA,8),nrow=1))(numeric(0),) 

colnames(peakcandidate2) <- 

 c("wavenumber","LD1","LD1m1","LD1p1","peak", "GoFurther","LargerWnBoundary",  

"SmallerWnBoundary") 

for(i in 1:ncandidate){ 

 peakcandidate_tempo <- data.frame(matrix(rep(NA,8),nrow=1))(numeric(0),) 

 colnames(peakcandidate_tempo) <- 

 c("wavenumber","LD1","LD1m1","LD1p1","peak","GoFurther","LargerWnBoundary",  

"SmallerWnBoundary") 

 wn_quest <- peakcandidate1(i,1) 

 wn_quest_m1 <- wn_quest - 1 

 wn_quest_p1 <- wn_quest + 1 

 peakcandidate_tempo(1,1) <- wn_quest 

 peakcandidate_tempo(1,2) <- scalingdf4(wn_quest-400,2) 

 peakcandidate_tempo(1,3) <- scalingdf4(wn_quest_m1-400,2) 

 peakcandidate_tempo(1,4) <- scalingdf4(wn_quest_p1-400,2) 

 if(peakcandidate_tempo(1,2)>peakcandidate_tempo(1,3)  

 & peakcandidate_tempo(1,2)>peakcandidate_tempo(1,4)){ 

 peakcandidate_tempo(1,5) <- 1 

 }  

 peakcandidate2 <- rbind(peakcandidate2, peakcandidate_tempo) 

} 

#save the peak candidate as csv file 

#change the wavenumber in descending order of LD1, and save it as csv  

peakcandidate3 <- dplyr::filter(peakcandidate2, peak==1) 

peakcandidate3 <- arrange(peakcandidate3, desc(LD1)) 

filename_peakcandidate <- paste(today2, "_", "PeakCandidateList.csv", sep="") 

filename2_peakcandidate <- paste(pathinfo,"/", filename_peakcandidate, sep="") 

write.csv(peakcandidate3,  

 filename2_peakcandidate, row.names=FALSE) 

#pick up valley candidate in LD1 plot 

#that are lower than the threshold of -0.15 
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valleycandidate1 <- dplyr::filter(scalingdf4, LD1 < -0.15) 

#check that the candidate is the higher than the neighboring wavenumbers 

n_valleycandidate <- nrow(valleycandidate1) 

valleycandidate2 <- data.frame(matrix(rep(NA,8),nrow=1))(numeric(0),) 

colnames(valleycandidate2) <- 

 c("wavenumber","LD1","LD1m1","LD1p1","valley","GoFurther","LargerWnBoundary",  

"SmallerWnBoundary") 

for(i in 1:n_valleycandidate){ 

 valleycandidate_tempo <- data.frame(matrix(rep(NA,8),nrow=1))(numeric(0),) 

 colnames(valleycandidate_tempo) <- 

 c("wavenumber","LD1","LD1m1","LD1p1","valley","GoFurther","LargerWnBoundary",  

"SmallerWnBoundary") 

 wn_quest <- valleycandidate1(i,1) 

 wn_quest_m1 <- wn_quest - 1 

 wn_quest_p1 <- wn_quest + 1 

 valleycandidate_tempo(1,1) <- wn_quest 

 valleycandidate_tempo(1,2) <- scalingdf4(wn_quest-400,2) 

 valleycandidate_tempo(1,3) <- scalingdf4(wn_quest_m1-400,2) 

 valleycandidate_tempo(1,4) <- scalingdf4(wn_quest_p1-400,2) 

 if(valleycandidate_tempo(1,2) < valleycandidate_tempo(1,3)  

 & valleycandidate_tempo(1,2) < valleycandidate_tempo(1,4)){ 

 valleycandidate_tempo(1,5) <- 1 

 }  

 valleycandidate2 <- rbind(valleycandidate2, valleycandidate_tempo) 

} 

#save the valley candidate as csv file 

#change the wavenumber in ascending order of LD1, and save it as csv  

valleycandidate3 <- dplyr::filter(valleycandidate2, valley==1) 

valleycandidate3 <- arrange(valleycandidate3, LD1) 

filename_valleycandidate <- paste(today2, "_", "ValleyCandidateList.csv", sep="") 

filename2_valleycandidate <- paste(pathinfo,"/", filename_valleycandidate, sep="") 

write.csv(valleycandidate3,  

 filename2_valleycandidate, row.names=FALSE) 
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#End of script 

Script code 4: Quest anchors for Fm-markers  

#salma_a5_quest_anchors_lda_211220.r 

#quest anchors for LDA peaks 

 #for identifying the most effective pair of anchor points  

 #that show peaks in LDA contribution plot 

#this is for Salma's data on N61 c3-h3 chamber comparison. 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 

#you must change the string within "xxx" below according to your computer 

desktopfolder <- "akash" 

#assemble path info 

pathinfo <- paste("C:/users/",desktopfolder,"/desktop/", sep="") 

#import a "xxxxxx_PeakCandidateXXXX.csv" 

#that is modified from PeakCandidateList2.csv 

#the import file is a dataframe, and it contains following 8 columns 

#"wavenumber, LD1, LD1m1, LD1p1, peak, GoFurther, LargerWnBoundary,  

SmallerWnBoundary" 

#1st row is the column name, and data is in 2nd row 
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#the last two typically set at 150 larger and smaller than the target wavenumber 

print("Please specify xxxxxx_a4_PeakCandidateXXXX.csv") 

PeakCandidateInput <- file.choose() 

PeakCandidateInput2 <- read.csv(PeakCandidateInput,  

 header = T) 

#import LDA-peak and boundary information 

lda_peak_wn <- PeakCandidateInput2(1,1) 

lda_LargerWnBoundary_wn <- PeakCandidateInput2(1,7) 

lda_SmallerWnBoundary_wn <- PeakCandidateInput2(1,8) 

#modify peak_wn variable to the style of column name 

lda_peak_wn_string <- as.character(lda_peak_wn) 

lda_peak_wn_colname <- paste("X",lda_peak_wn_string, sep="") 

#import the compiled ftir csv data 

#the file to choose is normally "a2_specpile_processed.csv" 

print("Please specify xxxxxx_a2_specpile_processed.csv") 

spec1 <- file.choose() 

specmatrix <- read.csv(spec1,  

 header = T) 

#separate the data into c3 and h3 

c3matrix <- dplyr::filter(specmatrix, identifier == "c3n61") 

h3matrix <- dplyr::filter(specmatrix, identifier == "h3n61") 

#now, the matrix data should have 223 columns 

#consist of first 2 factorial data, followed by 221 wn data columns 

#sum of wn and column number equals to 663 

#thus, wn576 correspond to column 87. 

#extract the wn576 data from each group 

c3peakabs <- dplyr::select(c3matrix, lda_peak_wn_colname) 

h3peakabs <- dplyr::select(h3matrix, lda_peak_wn_colname) 

totalpeakabs <- dplyr::select(specmatrix, lda_peak_wn_colname) 

#2: An empty output dataframe generated. 

#rep(NA, 27) is a function to generate NA for 47 times.  

quest_anchor_summary <- data.frame(matrix(rep(NA, 47), nrow=1))(numeric(0), ) 

colnames(quest_anchor_summary) <- c("wn1and2", "wn1", "wn2",  
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 "h3a_HigherMedian", "h3b_HigherMedian", "a_h_c_ratio", "b_h_c_ratio", "p_a", "p_b",  

 "hih3_a_score_boxplot", "hih3_b_score_boxplot",  

 "loh3_a_score_boxplot", "loh3_b_score_boxplot",  

 "sand_score_a", "sand_score_b",  

 "hih3_a_BoxSeparated", "hih3_c3a_med_under_h3a1stQ",  

"hih3_c3a3rdQ_under_h3a_med",  

 "hih3_b_BoxSeparated", "hih3_c3b_med_under_h3b1stQ",  

"hih3_c3b3rdQ_under_h3b_med",  

 "loh3_a_BoxSeparated", "loh3_c3a_med_over_h3a3rdQ", "loh3_c3a1stQ_over_h3a_med",  

 "loh3_b_BoxSeparated", "loh3_c3b_med_over_h3b3rdQ", "loh3_c3b1stQ_over_h3b_med",  

 "sand_c3a_median", "sand_c3a_1stQ", "sand_h3a_median", "sand_h3a_1stQ",  

 "sand_c3b_median", "sand_c3b_1stQ", "sand_h3b_median", "sand_h3b_1stQ",  

 "c3a_1stQ", "c3a_median", "c3a_3rdQ", "h3a_1stQ", "h3a_median", "h3a_3rdQ",  

 "c3b_1stQ", "c3b_median", "c3b_3rdQ", "h3b_1stQ", "h3b_median", "h3b_3rdQ") 

#3: Outward looping start 

#loop should be from 100-higher wn from the peak, i.e., lda_LargerWnBoundary_wn, 

#to 10-higher wn from the peak 

#loop value is specified by column number, i.e., wn4000 is in col5, wn3999 is in col6 

 #the sum of wn"xxxx" and col"x" is 4005. 

 #thus, col number for lda_LargerWnBoundary_wn should be "4005- 

lda_LargerWnBoundary_wn 

 #col number for lda_peak_wn is "4005-Lda_peak_wn" 

 #col number for 10-higher wn from the peak is "3995-lda_peak_wn" 

#modify the line below to  

 #"i_startpoint:i_startpoint" for pilot test, 

 #and "i_startpoint:i_endpoint" for full calculation 

#for (i in i_startpoint:i_endpoint){  

i_startpoint <- 4005 - lda_LargerWnBoundary_wn 

i_endpoint <- 3995 - lda_peak_wn 

for (i in i_startpoint:i_endpoint){ 

 #4: Setting the anchor1 value. 

 c3anchor1 <- dplyr::select(c3matrix, i) 

 h3anchor1 <- dplyr::select(h3matrix, i) 
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 anchor1total <- dplyr::select(specmatrix, i) 

  

 #5: Inward looping start. 

 #loop should be from 10-step downstream from the peak, 

 #col number for lda_peak_wn is "4005-Lda_peak_wn" 

 #thus col number for 10-step downstream is "4015-lda_peak_wn" 

 #the loop is stopped at "lda_SmallerWnBoundary_wn" 

 #col number for "lda_SmallerWnBoundary_wn" is "4005-lda_SmallerWnBoundary_wn" 

 #modify the line below to  

 #"j_startpoint:j_startpoint" for pilot test, 

 #and "j_startpoint:j_endpoint" for full calculation 

 #for (j in (j_startpoint:j_endpoint)){ 

 j_startpoint <- 4015 - lda_peak_wn 

 j_endpoint <- 4005 - lda_SmallerWnBoundary_wn 

 for (j in j_startpoint:j_endpoint){  

 c3anchor2 <- dplyr::select(c3matrix, j) 

 h3anchor2 <- dplyr::select(h3matrix, j) 

 anchor2total <- dplyr::select(specmatrix, j) 

  

 #set up a temporary df for the results 

 tempo_anchor_results <- data.frame(matrix(rep(NA, 47), nrow=1))(numeric(0), ) 

 tempo_candidate_hih3_wn1base <- data.frame(matrix(rep(NA, 44),  

nrow=1))(numeric(0), ) 

 tempo_candidate_hih3_wn2base <- data.frame(matrix(rep(NA, 44),  

nrow=1))(numeric(0), ) 

 tempo_candidate_loh3_wn1base <- data.frame(matrix(rep(NA, 44),  

nrow=1))(numeric(0), ) 

 tempo_candidate_loh3_wn2base <- data.frame(matrix(rep(NA, 44),  

nrow=1))(numeric(0), ) 

  

 #record the anchors info 

 wn1 <- colnames(specmatrix)(i) 

 wn2 <- colnames(specmatrix)(j) 
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 wn1and2 <- paste(as.character(wn1), as.character(wn2), sep="and") 

 #define formula for ftir-marker(fm) 

 #set the wn1 as basepoint, calculate marker "a" value 

 #set the wn2 as basepoint, calculate marker "b" value 

 c3fma <- (c3peakabs-c3anchor1)/(c3anchor2-c3anchor1) 

 h3fma <- (h3peakabs-h3anchor1)/(h3anchor2-h3anchor1) 

 c3fmb <- (c3peakabs-c3anchor2)/(c3anchor1-c3anchor2) 

 h3fmb <- (h3peakabs-h3anchor2)/(h3anchor1-h3anchor2) 

  

 #6: Calculate the key statistics  

 c3a_summary <- summary(c3fma(,1)) 

 c3a_1stQ <- as.numeric(c3a_summary)(2) 

 c3a_median <- as.numeric(c3a_summary)(3) 

 c3a_3rdQ <- as.numeric(c3a_summary)(5) 

 h3a_summary <- summary(h3fma(,1)) 

 h3a_1stQ <- as.numeric(h3a_summary)(2) 

 h3a_median <- as.numeric(h3a_summary)(3) 

 h3a_3rdQ <- as.numeric(h3a_summary)(5) 

 c3b_summary <- summary(c3fmb(,1)) 

 c3b_1stQ <- as.numeric(c3b_summary)(2) 

 c3b_median <- as.numeric(c3b_summary)(3) 

 c3b_3rdQ <- as.numeric(c3b_summary)(5) 

 h3b_summary <- summary(h3fmb(,1)) 

 h3b_1stQ <- as.numeric(h3b_summary)(2) 

 h3b_median <- as.numeric(h3b_summary)(3) 

 h3b_3rdQ <- as.numeric(h3b_summary)(5) 

 #test 1  

 #judge whether the h3a_median is higher  

 #(in theory, it is NOT for the valley marker) 

 if(h3a_median > c3a_median){ 

 h3a_HigherMedian <- 1 

 } else { 

 h3a_HigherMedian <- 0 
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 } 

 #judge whether the h3b_median is lower  

 #(in theory, it is NOT for the valley marker) 

 if(h3b_median > c3b_median){ 

 h3b_HigherMedian <- 1 

 } else { 

 h3b_HigherMedian <- 0 

 } 

  

 #test 2 

 #judge whether boxplot is separated and not overlapped 

 #when h3_median is higher than c3_median 

 if(c3a_3rdQ < h3a_1stQ){ 

 hih3_a_BoxSeparated <- 1 

 } else { 

 hih3_a_BoxSeparated <- 0 

 } 

  

 if(c3a_3rdQ < h3a_1stQ){ 

 hih3_b_BoxSeparated <- 1 

 } else { 

 hih3_b_BoxSeparated <- 0 

 } 

 #when h3_median is lower than c3_median 

 if(c3a_1stQ > h3a_3rdQ){ 

 loh3_a_BoxSeparated <- 1 

 } else { 

 loh3_a_BoxSeparated <- 0 

 } 

 if(c3b_1stQ > h3b_3rdQ){ 

 loh3_b_BoxSeparated <- 1 

 } else { 

 loh3_b_BoxSeparated <- 0 
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 } 

  

 #test 3 

 #partial overlap of boxplot 

 #judge whether boxplot is more than 50%-separated 

 #test 3-1 and 3-2 

 #when h3_median is higher than c3_median 

 #test 3-1.  

 #median<1rdQ check 

 if(c3a_median < h3a_1stQ){ 

 hih3_c3a_med_under_h3a1stQ <- 1 

 } else { 

 hih3_c3a_med_under_h3a1stQ <- 0 

 } 

  

 if(c3b_median < h3b_1stQ){ 

 hih3_c3b_med_under_h3b1stQ <- 1 

 } else { 

 hih3_c3b_med_under_h3b1stQ <- 0 

 } 

  

 #test 3-2.  

 #3rdQ<median check 

 if(c3a_3rdQ < h3a_median){ 

 hih3_c3a3rdQ_under_h3a_med <- 1 

 } else { 

 hih3_c3a3rdQ_under_h3a_med <- 0 

 } 

  

 if(c3b_3rdQ < h3b_median){ 

 hih3_c3b3rdQ_under_h3b_med <- 1 

 } else { 

 hih3_c3b3rdQ_under_h3b_med <- 0 
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 } 

  

 #test 3-3 and 3-4 

 #when h3_median is lower than c3_median 

 #test 3-3.  

 #median>3rdQ check 

 if(c3a_median > h3a_3rdQ){ 

 loh3_c3a_med_over_h3a3rdQ <- 1 

 } else { 

 loh3_c3a_med_over_h3a3rdQ <- 0 

 } 

  

 if(c3b_median > h3b_3rdQ){ 

 loh3_c3b_med_over_h3b3rdQ <- 1 

 } else { 

 loh3_c3b_med_over_h3b3rdQ <- 0 

 } 

 #test 3-4.  

 #1stQ>median check 

 if(c3a_1stQ > h3a_median){ 

 loh3_c3a1stQ_over_h3a_med <- 1 

 } else { 

 loh3_c3a1stQ_over_h3a_med <- 0 

 } 

  

 if(c3b_1stQ > h3b_median){ 

 loh3_c3b1stQ_over_h3b_med <- 1 

 } else { 

 loh3_c3b1stQ_over_h3b_med <- 0 

 } 

 #test 3 summary 

 #the xxh3_x_score_boxplot is a score that the two boxes in the plot is fully or partially  

separated. 
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 #the full score is 3. 

 hih3_a_score_boxplot <- hih3_a_BoxSeparated + hih3_c3a_med_under_h3a1stQ +  

hih3_c3a3rdQ_under_h3a_med 

 hih3_b_score_boxplot <- hih3_b_BoxSeparated + hih3_c3b_med_under_h3b1stQ +  

hih3_c3b3rdQ_under_h3b_med 

 loh3_a_score_boxplot <- loh3_a_BoxSeparated + loh3_c3a_med_over_h3a3rdQ +  

loh3_c3a1stQ_over_h3a_med 

 loh3_b_score_boxplot <- loh3_b_BoxSeparated + loh3_c3b_med_over_h3b3rdQ +  

loh3_c3b1stQ_over_h3b_med 

  

 #test 4 

 #sandwich status of the target between wn1 and wn2 

 #when it is, the fm value should be between 0 and 1 

 if(0 < c3a_median & c3a_median < 1){ 

 sand_c3a_median <- 1 

 } else { 

 sand_c3a_median <- 0 

 } 

 if(0 < c3a_1stQ & c3a_1stQ < 1){ 

 sand_c3a_1stQ <- 1 

 } else { 

 sand_c3a_1stQ <- 0 

 } 

 if(0 < h3a_median & h3a_median < 1){ 

 sand_h3a_median <- 1 

 } else { 

 sand_h3a_median <- 0 

 } 

  

 if(0 < h3a_1stQ & h3a_1stQ < 1){ 

 sand_h3a_1stQ <- 1 

 } else { 

 sand_h3a_1stQ <- 0 
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 } 

  

 #summary of sandwich status 

 #the full mark is 4, but it is not the absolute requirement 

 sand_score_a <- sand_c3a_median + sand_c3a_1stQ + sand_h3a_median +  

sand_h3a_1stQ 

  

 if(0 < c3b_median & c3b_median < 1){ 

 sand_c3b_median <- 1 

 } else { 

 sand_c3b_median <- 0 

 } 

  

 if(0 < c3b_1stQ & c3b_1stQ < 1){ 

 sand_c3b_1stQ <- 1 

 } else { 

 sand_c3b_1stQ <- 0 

 } 

  

 if(0 < h3b_median & h3b_median < 1){ 

 sand_h3b_median <- 1 

 } else { 

 sand_h3b_median <- 0 

 } 

  

 if(0 < h3b_1stQ & h3b_1stQ < 1){ 

 sand_h3b_1stQ <- 1 

 } else { 

 sand_h3b_1stQ <- 0 

 } 

  

 sand_score_b <- sand_c3b_median + sand_c3b_1stQ + sand_h3b_median +  

sand_h3b_1stQ 
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 #8: Calculate the p value by t-test 

 a_ttest <- t.test(c3fma(,1), h3fma(,1), var.equal=T) 

 p_a <- a_ttest$p.value 

 b_ttest <- t.test(c3fmb(,1), h3fmb(,1), var.equal=T) 

 p_b <- b_ttest$p.value 

  

 #calculate the c3/h3 ratio 

 a_h_c_ratio <- h3a_median/c3a_median 

 b_h_c_ratio <- h3b_median/c3b_median 

  

 #9: Record the results to the output dataframe 

 tempo_anchor_results <- as.data.frame(t(c(wn1and2, wn1, wn2,  

 h3a_HigherMedian, h3b_HigherMedian, a_h_c_ratio, b_h_c_ratio, p_a, p_b,  

 hih3_a_score_boxplot, hih3_b_score_boxplot,  

 loh3_a_score_boxplot, loh3_b_score_boxplot,  

 sand_score_a, sand_score_b,  

 hih3_a_BoxSeparated, hih3_c3a_med_under_h3a1stQ,  

hih3_c3a3rdQ_under_h3a_med,  

 hih3_b_BoxSeparated, hih3_c3b_med_under_h3b1stQ,  

hih3_c3b3rdQ_under_h3b_med,  

 loh3_a_BoxSeparated, loh3_c3a_med_over_h3a3rdQ, loh3_c3a1stQ_over_h3a_med,  

 loh3_b_BoxSeparated, loh3_c3b_med_over_h3b3rdQ, loh3_c3b1stQ_over_h3b_med,  

 sand_c3a_median, sand_c3a_1stQ, sand_h3a_median, sand_h3a_1stQ,  

 sand_c3b_median, sand_c3b_1stQ, sand_h3b_median, sand_h3b_1stQ,  

 c3a_1stQ, c3a_median, c3a_3rdQ, h3a_1stQ, h3a_median, h3a_3rdQ,  

 c3b_1stQ, c3b_median, c3b_3rdQ, h3b_1stQ, h3b_median, h3b_3rdQ))) 

 colnames(tempo_anchor_results) <- c("wn1and2", "wn1", "wn2",  

 "h3a_HigherMedian", "h3b_HigherMedian", "a_h_c_ratio", "b_h_c_ratio", "p_a",  

"p_b",  

 "hih3_a_score_boxplot", "hih3_b_score_boxplot",  

 "loh3_a_score_boxplot", "loh3_b_score_boxplot",  

 "sand_score_a", "sand_score_b",  
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 "hih3_a_BoxSeparated", "hih3_c3a_med_under_h3a1stQ",  

"hih3_c3a3rdQ_under_h3a_med",  

 "hih3_b_BoxSeparated", "hih3_c3b_med_under_h3b1stQ",  

"hih3_c3b3rdQ_under_h3b_med",  

 "loh3_a_BoxSeparated", "loh3_c3a_med_over_h3a3rdQ",  

"loh3_c3a1stQ_over_h3a_med",  

 "loh3_b_BoxSeparated", "loh3_c3b_med_over_h3b3rdQ",  

"loh3_c3b1stQ_over_h3b_med",  

 "sand_c3a_median", "sand_c3a_1stQ", "sand_h3a_median", "sand_h3a_1stQ",  

 "sand_c3b_median", "sand_c3b_1stQ", "sand_h3b_median", "sand_h3b_1stQ",  

 "c3a_1stQ", "c3a_median", "c3a_3rdQ", "h3a_1stQ", "h3a_median", "h3a_3rdQ",  

 "c3b_1stQ", "c3b_median", "c3b_3rdQ", "h3b_1stQ", "h3b_median", "h3b_3rdQ") 

  

 #merge the generated data into output dataframe 

 quest_anchor_summary = rbind(quest_anchor_summary, tempo_anchor_results) 

 #10: Inward looping going out and iterate 

 } 

 #11: Outward looping going out and iterate 

} 

  

#12: Save the output dataframe 

#write.csv(quest_anchor_summary,  

# "C:/users/akash/desktop/anchor_all_data.csv", row.names=FALSE) 

filename_quest_anchor_summary <- paste(today2, "_a5_quest_anchor_alldata_",  

lda_peak_wn_string, ".csv", sep="") 

filename2_quest_anchor_summary <- paste(pathinfo,"/", filename_quest_anchor_summary,  

sep="") 

write.csv(quest_anchor_summary,  

 filename2_quest_anchor_summary, row.names=FALSE) 

#split the data into 4 category of high or low h3, and a- or b-basepoint 

hih3_a_all_data <- dplyr::filter(quest_anchor_summary, h3a_HigherMedian==1) 

hih3_b_all_data <- dplyr::filter(quest_anchor_summary, h3b_HigherMedian==1) 

loh3_a_all_data <- dplyr::filter(quest_anchor_summary, h3a_HigherMedian==0) 
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loh3_b_all_data <- dplyr::filter(quest_anchor_summary, h3b_HigherMedian==0) 

#select significant candidates 

#select p<0.05 

hih3_a_candidate <- dplyr::filter(hih3_a_all_data, as.numeric(p_a)<0.05) 

hih3_b_candidate <- dplyr::filter(hih3_b_all_data, as.numeric(p_b)<0.05) 

loh3_a_candidate <- dplyr::filter(loh3_a_all_data, as.numeric(p_a)<0.05) 

loh3_b_candidate <- dplyr::filter(loh3_b_all_data, as.numeric(p_b)<0.05) 

#select more than 1.5 fold absolute difference in ch_ratio 

#anchor_candidate2 <- dplyr::filter(anchor_candidate1,  

# a_ch_ratio>1.5|a_ch_ratio<0.75|b_ch_ratio>1.5|b_ch_ratio<0.75) 

#convert the type of score_boxplot to numeric 

hih3_a_candidate$hih3_a_score_boxplot <- 

as.numeric(hih3_a_candidate$hih3_a_score_boxplot) 

hih3_b_candidate$hih3_b_score_boxplot <- 

as.numeric(hih3_b_candidate$hih3_b_score_boxplot) 

loh3_a_candidate$loh3_a_score_boxplot <- 

as.numeric(loh3_a_candidate$loh3_a_score_boxplot) 

loh3_b_candidate$loh3_b_score_boxplot <- 

as.numeric(loh3_b_candidate$loh3_b_score_boxplot) 

#14: Sort them according to the ranking 

#sorting 

#if you wish to sort in the descending order, replace "p" to "desc(p)" 

hih3_a_candidate2 <- arrange(hih3_a_candidate, desc(hih3_a_score_boxplot)) 

hih3_b_candidate2 <- arrange(hih3_b_candidate, desc(hih3_b_score_boxplot)) 

loh3_a_candidate2 <- arrange(loh3_a_candidate, desc(loh3_a_score_boxplot)) 

loh3_b_candidate2 <- arrange(loh3_b_candidate, desc(loh3_b_score_boxplot)) 

#eliminate unnecessary columns for the output 

hih3_a_candidate3 <- dplyr::select(hih3_a_candidate2, wn1and2, wn1, wn2, 

 h3a_HigherMedian, a_h_c_ratio, p_a, hih3_a_score_boxplot, sand_score_a,  

 hih3_a_BoxSeparated, hih3_c3a_med_under_h3a1stQ, hih3_c3a3rdQ_under_h3a_med,  

 sand_c3a_median, sand_c3a_1stQ, sand_h3a_median, sand_h3a_1stQ,  

 c3a_1stQ, c3a_median, c3a_3rdQ, h3a_1stQ, h3a_median, h3a_3rdQ)  

hih3_b_candidate3 <- dplyr::select(hih3_b_candidate2, wn1and2, wn1, wn2, 
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 h3b_HigherMedian, b_h_c_ratio, p_b, hih3_b_score_boxplot, sand_score_b,  

 hih3_b_BoxSeparated, hih3_c3b_med_under_h3b1stQ, hih3_c3b3rdQ_under_h3b_med,  

 sand_c3b_median, sand_c3b_1stQ, sand_h3b_median, sand_h3b_1stQ,  

 c3b_1stQ, c3b_median, c3b_3rdQ, h3b_1stQ, h3b_median, h3b_3rdQ)  

loh3_a_candidate3 <- dplyr::select(loh3_a_candidate2, wn1and2, wn1, wn2,  

 h3a_HigherMedian, a_h_c_ratio, p_a, loh3_a_score_boxplot, sand_score_a,  

 loh3_a_BoxSeparated, loh3_c3a_med_over_h3a3rdQ, loh3_c3a1stQ_over_h3a_med,  

 sand_c3a_median, sand_c3a_1stQ, sand_h3a_median, sand_h3a_1stQ,  

 c3a_1stQ, c3a_median, c3a_3rdQ, h3a_1stQ, h3a_median, h3a_3rdQ)  

loh3_b_candidate3 <- dplyr::select(loh3_b_candidate2, wn1and2, wn1, wn2,  

 h3b_HigherMedian, b_h_c_ratio, p_b, loh3_b_score_boxplot, sand_score_b,  

 loh3_b_BoxSeparated, loh3_c3b_med_over_h3b3rdQ, loh3_c3b1stQ_over_h3b_med,  

 sand_c3b_median, sand_c3b_1stQ, sand_h3b_median, sand_h3b_1stQ,  

 c3b_1stQ, c3b_median, c3b_3rdQ, h3b_1stQ, h3b_median, h3b_3rdQ)  

#14: Save the output dataframe 

#write.csv(hih3_a_candidate3,  

# "C:/users/akash/desktop/hih3_a_candidate3.csv", row.names=FALSE) 

filename_hih3_a_candidate <- paste(today2, "_a5_hih3_a_candidatefm_",  

lda_peak_wn_string, ".csv", sep="") 

filename2_hih3_a_candidate <- paste(pathinfo,"/", filename_hih3_a_candidate, sep="") 

write.csv(hih3_a_candidate3,  

 filename2_hih3_a_candidate, row.names=FALSE) 

#write.csv(hih3_b_candidate3,  

# "C:/users/akash/desktop/hih3_b_candidate3.csv", row.names=FALSE) 

filename_hih3_b_candidate <- paste(today2, "_a5_hih3_b_candidatefm_",  

lda_peak_wn_string, ".csv", sep="") 

filename2_hih3_b_candidate <- paste(pathinfo,"/", filename_hih3_b_candidate, sep="") 

write.csv(hih3_b_candidate3,  

 filename2_hih3_b_candidate, row.names=FALSE) 

#write.csv(loh3_a_candidate3,  

# "C:/users/akash/desktop/loh3_a_candidate3.csv", row.names=FALSE) 

filename_loh3_a_candidate <- paste(today2, "_a5_loh3_a_candidatefm_",  

lda_peak_wn_string, ".csv", sep="") 
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filename2_loh3_a_candidate <- paste(pathinfo,"/", filename_loh3_a_candidate, sep="") 

write.csv(loh3_a_candidate3,  

 filename2_loh3_a_candidate, row.names=FALSE) 

#write.csv(loh3_b_candidate3,  

# "C:/users/akash/desktop/loh3_b_candidate3.csv", row.names=FALSE) 

filename_loh3_b_candidate <- paste(today2, "_a5_loh3_b_candidatefm_",  

lda_peak_wn_string, ".csv", sep="") 

filename2_loh3_b_candidate <- paste(pathinfo,"/", filename_loh3_b_candidate, sep="") 

write.csv(loh3_b_candidate3,  

 filename2_loh3_b_candidate, row.names=FALSE) 

#End of script 

Script code 5: Evaluation of Fm-anchor candidates  

#salma_a6_anchor_candi_evalu_211225.r 

#anchor candidate evaluation 

 #for selecting the most effective pair of anchor points  

 #for the potential ftir markers 

#this is for Salma's data on N61 c3-h3 chamber comparison. 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 
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#you must change the string within "xxx" below according to your computer 

desktopfolder <- "akash" 

#assemble path info 

pathinfo <- paste("C:/users/",desktopfolder,"/desktop/", sep="") 

#import the Peak/Valley CandidateXXXX.csv" 

print("Please select xxxxxx_a4_PeakCandidateXXXX.csv file") 

print("Or, please select xxxxxx_a4_ValleyCandidateXXXX.csv file") 

print("Please make sure that the cols 7 and 8 for search boundary is filled") 

print("Typically, set the value 150 larger and smaller than the target") 

print("Please select xxxxxx_a5_PeakCandidateXXXX.csv file") 

print("Or, please select xxxxxx_a5_ValleyCandidateXXXX.csv file") 

PeakCandidateInput <- file.choose() 

PeakCandidateInput2 <- read.csv(PeakCandidateInput,  

 header = T) 

#extract LDA-peak and boundary information 

lda_peak_wn <- PeakCandidateInput2(1,1) 

lda_LargerWnBoundary_wn <- PeakCandidateInput2(1,7) 

lda_SmallerWnBoundary_wn <- PeakCandidateInput2(1,8) 

#modify peak_wn variable to the style of column name 

lda_peak_wn_string <- as.character(lda_peak_wn) 

lda_peak_wn_colname <- paste("X",lda_peak_wn_string, sep="") 

#import the 2nd "xxxxxx_a5_xxh3_x_candidatefmxxxx.csv" data 

print("Please select xxxxxx_a5_xxh3_x_candidatefmXXXX.csv file") 

candi1 <- file.choose() 

candi2 <- read.csv(candi1,  

 header = T) 

#import the 3rd "xxxxxx_a1_specmean.csv" data 

print("Please select xxxxxx_a1_specmean.csv file") 

spec1 <- file.choose() 

twospec <- read.csv(spec1,  

 header = T) 

#arrange the spectra 

twospec2 <- dplyr::select(twospec, -(c(1:1))) 
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colnames(twospec2) <- seq(from=4000, to=400, by=-1) 

wnlist1 <- as.data.frame(t(seq(from=4000, to=400, by=-1))) 

colnames(wnlist1) <- seq(from=4000, to=400, by=-1) 

twospec3 <- rbind(wnlist1, twospec2) 

longspec3 <- as.data.frame(t(twospec3)) 

colnames(longspec3) <- c("wn", "c3", "h3") 

dev.new() 

ggplot(longspec3, aes(x = wn ,y = c3)) + 

geom_point(size=0.3) 

theme.bw() 

#narrow down the candidate 

#according to the number of candidate,  

#mask/unmask the filtering with scores  

names(candi2)(7) <- "score_boxplot" 

names(candi2)(8) <- "sand_score" 

candi4 <- dplyr::filter(candi2, score_boxplot==3) 

#candi4 <- dplyr::filter(candi4, sand_score ==4) 

candi4$wn1 <- as.numeric(substr(candi4$wn1,2,5)) 

candi4$wn2 <- as.numeric(substr(candi4$wn2,2,5)) 

#trim down the spectral data  

cutsite1 <- 4002 - lda_SmallerWnBoundary_wn 

cutsite2 <- 4000 - lda_LargerWnBoundary_wn 

spec4 <- dplyr::select(twospec3, -c(cutsite1:3601)) 

spec4 <- dplyr::select(spec4, -c(1:cutsite2)) 

longspec4 <- as.data.frame(t(spec4)) 

colnames(longspec4) <- c("wn", "c3", "h3") 

longspec4 <- transform(longspec4, target=0) 

longspec4 <- transform(longspec4, scoreL=0) 

longspec4 <- transform(longspec4, scoreS=0) 

longspec4 <- transform(longspec4, lower_abs_anchor=0) 

longspec4 <- transform(longspec4, higher_abs_anchor=0) 

longspec4 <- transform(longspec4, suffix=NA) 

#normalize the spectra 
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longspec4$c3 <- (longspec4$c3-min(longspec4$c3))/(max(longspec4$c3)- 

min(longspec4$c3)) 

longspec4$h3 <- (longspec4$h3-min(longspec4$h3))/(max(longspec4$h3)- 

min(longspec4$h3)) 

#mark the target wavenumber 

#mark the hih3_a_score_boxplot 

nrow_longspec4 <- nrow(longspec4) 

nrow_candi4 <- nrow(candi4) 

for (i in 1:nrow_longspec4){ 

 if(longspec4(i,1)==lda_peak_wn){ 

 longspec4(i,4) <- 0.1 

 } 

  

 for (j in 1:nrow_candi4){ 

 temp_wn1 <- candi4(j,2) 

 temp_wn2 <- candi4(j,3) 

 if(longspec4(i,1)==temp_wn1){ 

 longspec4(i,5) <- longspec4(i,5)+0.01 

 } 

 if(longspec4(i,1)==temp_wn2){ 

 longspec4(i,6) <- longspec4(i,6)+0.01 

 } 

 } 

} 

#save the longspec4 as csv  

filename_specanchor <- paste(today2, "_a6_", "specanchor_", lda_peak_wn_string, ".csv",  

sep="") 

filename2_specanchor <- paste(pathinfo,"/", filename_specanchor, sep="") 

write.csv(longspec4,  

 filename2_specanchor, row.names=FALSE) 

#draw the anchor points 

dev.new() 

plotanchor4 <- ggplot(longspec4) + 
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 theme_light()+ 

 geom_line(aes(x=wn, y=c3),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=wn, y=h3), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=wn, y=target), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=wn, y=scoreL), 

 colour="black", size=0.3)+ 

 geom_line(aes(x=wn, y=scoreS), 

 colour="black", size=0.3) 

print(plotanchor4) 

#save the plot as png format(you can change to .jpeg, .tiff, etc) 

#unit is in inch 

filename_plotanchor4 <- paste(today2, "_a6_", "plotanchor4.png", sep="") 

filename2_plotanchor4 <- paste(pathinfo,"/", filename_plotanchor4, sep="") 

ggsave(file = filename2_plotanchor4,  

 plot = plotanchor4, dpi = 100,  

 width = 7.2, height = 4.8) 

#End of script 

Script code 6: Boxplot analysis of Fm markers  

#salma_a7_ftir_marker_boxplot_211225a.r 

#a7_ftir marker boxplot 

#for salma's 1st paper 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 
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#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 

#you must change the string within "xxx" below according to your computer 

desktopfolder <- "akash" 

#assemble path info 

pathinfo <- paste("C:/users/",desktopfolder,"/desktop/", sep="") 

#import the 1st, compiled ftir csv data 

print("Please specify xxxxxx_a2_specpile_processed.csv") 

specpile1 <- file.choose() 

specpile2 <- read.csv(specpile1,  

 header = T) 

#change the variable types of "condition" and "genotype" 

#to factor format  

specpile2$condition <- factor(specpile2$condition) 

specpile2$genotype <- factor(specpile2$genotype) 

#import the "a6_specanchor_xxxx_v2.csv" file 

 #integer of "1" should be input at col 7 and 8 

print("Please specify a6_xxxxxx_specanchor_xxxx_v2.csv") 

specanchor1 <- file.choose() 

specanchor2 <- read.csv(specanchor1,  

 header = T) 

#extract wavenumber info for target and anchors 

n_specanchor2 <- nrow(specanchor2) 

for(i in 1:n_specanchor2){ 

 if(specanchor2(i,4)==0.1){ 

 wn_target <- specanchor2(i,1) 

 } 

 if(specanchor2(i,7)==1){ 
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 wn_lower_abs_anchor <- specanchor2(i,1) 

 } 

 if(specanchor2(i,8)==1){ 

 wn_higher_abs_anchor <- specanchor2(i,1) 

 suffix_ancpair <- specanchor2(i,9)  

 } 

} 

wn_target_col <- 4005-wn_target 

wn_lower_anchor_col <- 4005-wn_lower_abs_anchor 

wn_higher_anchor_col <- 4005-wn_higher_abs_anchor 

wn_target_chr <- as.character(wn_target) 

#calculate fm value 

specpile3 <- mutate(specpile2, fm_numerator=(specpile2(,wn_target_col) - 

specpile2(,wn_lower_anchor_col))) 

specpile3 <- mutate(specpile3, fm_denominator=(specpile2(,wn_higher_anchor_col) - 

specpile2(,wn_lower_anchor_col))) 

specpile3 <- mutate(specpile3, fm=(fm_numerator/fm_denominator)) 

specpile3 <- mutate(specpile3, target_abs=specpile2(,wn_target_col)) 

specpile3 <- mutate(specpile3, lower_abs_anchor_abs=specpile2(,wn_lower_anchor_col)) 

specpile3 <- mutate(specpile3, higher_abs_anchor_abs=specpile2(,wn_higher_anchor_col)) 

specfm1 <- dplyr::select(specpile3, c(1, 2, 3606, 3607, 3608, 3609, 3610, 3611)) 

#save the fm info as csv 

filename_specfm1 <- paste(today2, "_a7_specfm1_", wn_target_chr, suffix_ancpair, ".csv",  

sep="") 

filename2_specfm1 <- paste(pathinfo,"/", filename_specfm1, sep="") 

write.csv(specfm1,  

 filename2_specfm1, row.names=FALSE) 

#save the second cv 

specpile4 <- dplyr::select(specpile2, c(wn_target_col, wn_higher_anchor_col,  

wn_lower_anchor_col)) 

filename_specpile4 <- paste(today2, "_a7_specpile4_", wn_target_chr, suffix_ancpair, ".csv",  

sep="") 

filename2_specpile4 <- paste(pathinfo,"/", filename_specpile4, sep="") 
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write.csv(specpile4,  

 filename2_specpile4, row.names=FALSE) 

#Reverse version 

#calculate fm value for reverse version 

specpile3rev <- mutate(specpile2, fm_numerator=(specpile2(,wn_target_col) - 

specpile2(,wn_higher_anchor_col))) 

specpile3rev <- mutate(specpile3rev, fm_denominator=(specpile2(,wn_lower_anchor_col) - 

specpile2(,wn_higher_anchor_col))) 

specpile3rev <- mutate(specpile3rev, fm=(fm_numerator/fm_denominator)) 

specpile3rev <- mutate(specpile3rev, target_abs=specpile2(,wn_target_col)) 

specpile3rev <- mutate(specpile3rev,  

lower_abs_anchor_abs=specpile2(,wn_lower_anchor_col)) 

specpile3rev <- mutate(specpile3rev,  

higher_abs_anchor_abs=specpile2(,wn_higher_anchor_col)) 

specfm1rev <- dplyr::select(specpile3rev, c(1, 2, 3606, 3607, 3608, 3609, 3610, 3611)) 

#save the fm info as csv 

filename_specfm1rev <- paste(today2, "_a7_specfm1rev_", wn_target_chr, suffix_ancpair,  

".csv", sep="") 

filename2_specfm1rev <- paste(pathinfo,"/", filename_specfm1rev, sep="") 

write.csv(specfm1rev,  

 filename2_specfm1rev, row.names=FALSE) 

#save the second cv 

specpile4rev <- dplyr::select(specpile2, c(wn_target_col, wn_higher_anchor_col,  

wn_lower_anchor_col)) 

filename_specpile4rev <- paste(today2, "_a7_specpile4rev_", wn_target_chr, suffix_ancpair,  

".csv", sep="") 

filename2_specpile4rev <- paste(pathinfo,"/", filename_specpile4rev, sep="") 

write.csv(specpile4rev,  

 filename2_specpile4rev, row.names=FALSE) 

#make a boxplot 

#in the following, "x" should be the grouping variable, 

#usually in the category variable, such as condition  

#"y" should be numerical variable such as fm. 
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#xlab("xxx") is for the label of figure 

#for color pallet, check the following 

# http://sape.inf.usi.ch/quick-reference/ggplot2/colour 

wn_target_label <- paste("fm", wn_target_chr, suffix_ancpair, sep="") 

dev.new() 

fm_boxplot <- ggplot(specfm1, aes(x = condition, y = fm, fill=condition)) + 

 stat_boxplot(geom = "errorbar", width = 0.3)+ 

 geom_boxplot(outlier.size=1) + 

 scale_fill_manual(values=c("deepskyblue", "salmon")) + 

 # geom_point(size=0.3, color='lightgray', alpha=0.5) + 

 xlab("Condition") + 

 ylab(wn_target_label) + 

 #if you change the range of y-axis, use the follow line 

 # ylim(-20, 20)+ 

 theme_bw() 

print(fm_boxplot) 

#save the same fm_boxplot as png file in the desktop 

filename_fm_boxplot <- paste(today2, "_a7_", wn_target_label, "_boxplot.png", sep="") 

filename2_fm_boxplot <- paste(pathinfo,"/", filename_fm_boxplot, sep="") 

ggsave(file = filename2_fm_boxplot,   

 plot = fm_boxplot, dpi = 100,  

 width = 2.4, height = 2.4) 

#reverse version 

wn_target_label_rev <- paste("fm", wn_target_chr, suffix_ancpair, "_rev", sep="") 

dev.new() 

fmrev_boxplot <- ggplot(specfm1rev, aes(x = condition, y = fm, fill=condition)) + 

 stat_boxplot(geom = "errorbar", width = 0.3)+ 

 geom_boxplot(outlier.size=1) + 

 scale_fill_manual(values=c("deepskyblue", "salmon")) + 

 # geom_point(size=0.3, color='lightgray', alpha=0.5) + 

 xlab("Condition") + 

 ylab(wn_target_label_rev) + 

 #if you change the range of y-axis, use the follow line 
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 # ylim(-20, 20)+ 

 theme_bw() 

print(fmrev_boxplot) 

#save the same fm_boxplot as png file in the desktop 

filename_fmrev_boxplot <- paste(today2, "_a7_", wn_target_label_rev, "_boxplot.png",  

sep="") 

filename2_fmrev_boxplot <- paste(pathinfo,"/", filename_fmrev_boxplot, sep="") 

ggsave(file = filename2_fmrev_boxplot,  

 plot = fmrev_boxplot, dpi = 100,  

 width = 2.4, height = 2.4) 

#End of script 
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Appendix-2 
 

R-scripts for the processing of FT-IR data 

Script code 1: FTIR-spectra processing 

#salma c2.1a spec processing with wn400-4000 offset baseline 

#import necessary libraries 

library(conflicted) 

library(tidyverse) 

#clean up the R's brain 

rm(list=ls()) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

# !!! system check required, 1 out of 2 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx" according to your computer 

username <- "akash" 

#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_specpile/", sep=""))){ 

 dir.create(paste(today2, "_specpile/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_specpile/", sep="") 

# !!! system check required, 2 out of 2 

#prepare input data folder 

#subfolder below the "rawdata" will be ignored  

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/rawdata/220330_FTIR_rawdata_c3_h3/") 

#setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salm 
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a_testdata/paper3/rawdata/220327_ftir_rawdata_5dates/") 

#setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salm 

a_testdata/paper3/rawdata/01_selected") 

#setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salm 

a_testdata/paper3/rawdata/02_newdata") 

pathname_inputfolder <- getwd() 

pathname_inputfolder 

#create column names for output dataframe 

wnlist <- seq(4000, 400, length=3601) 

columnname <- c("filename", "condition", "genotype", "identifier", wnlist) 

#name the column labels for spec data 

specpile <- as.data.frame(t(columnname)) 

names(specpile) <- columnname 

specpile <- slice(specpile, -1) 

#prepare dataframe for NG spec 

NGspec <- specpile 

#input data from .asc file that are generated by Perkin-Elmer 

#obtain the filename 

#obtain the list of filenames for all csv files, 

 #which are stored in the aforementioned "rawdata" folder  

filelist <- list.files(path = pathname_inputfolder,  

 pattern = "*.asc", 

full.names = T) 

#count the number of files 

fileno <- length(filelist) 

#starting a loop for processing data 

for (i in 1:fileno){ 

#for (i in 1:1){ 

#obtain the new filename  

 filename <- basename(filelist(i)) 

#obtain dataframe 

#skip first 25 lines 

#the 26th line does not have variable names 
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 rawspec <- read.table(filelist(i), skip = 25) 

#quick summary 

# summary(rawspec) 

  

#plot the spectrum 

# ggplot(rawspec, aes(x = V1,y = V2)) + 

# geom_point() 

  

#save the wn column for later plotting 

 wn_column <- dplyr::select(rawspec, V1) 

  

#exchange rows and columns 

#(optional)keep the type as data.frame 

 rawspec2 <- as.data.frame(t(rawspec)) 

  

#split the rows into wn and spec 

 wn_axis <- as.data.frame(rawspec2(1,)) 

 rawspec3 <- as.data.frame(rawspec2(2,)) 

  

#name the column labels for spec data 

 names(rawspec3) <- wn_axis 

 #smoothing of the spectrum trace 

 #below to fill in, but currently skip it 

  

 #obtain the baseline anchors 

 #this is a version to take only 4000 and 400 

 #the relationships between wn and column_no. is 

 #column_no = -wn +4001 

 raw400 <- rawspec3(1,3601) 

 raw4000 <- rawspec3(1,1) 

  

 #create a baseline data 

 #following is the 1st version 
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 #line is drawn between 4000 to 400 

 baseline <- seq(raw4000, raw400, length=3601) 

 #subtract the baseline 

 spec4_baselined <- (rawspec3 - baseline) 

  

 #draw the baseline-corrected spectrum 

 #1st, exchange the rows and columns 

 spec4_tall <- t(spec4_baselined) 

 #combine the wn and spec columns 

 spec4_tall <- cbind(wn_column, spec4_tall) 

 #plot the baseline-corrected spectrum 

 #ggplot(spec4_tall, aes(x = V1,y = V2)) + 

 # geom_point(size=0.3) 

 #normalization of spec 

 #1st, sum of current spec is calculated 

 sum_signal_original <- sum(dplyr::select(spec4_tall, V2)) 

 #2nd, new column is generated in the spec 

 #spec values in ppm is calculated 

 spec5_tall <- dplyr::mutate(spec4_tall, ABS = V2*1000000/sum_signal_original) 

 #draw the normalized spectrum 

 #ggplot(spec5_tall, aes(x = V1,y = ABS)) + 

 # geom_point(size=0.3) 

 #row-column conversion 

 spec5 <- as.data.frame(t(spec5_tall)) 

  

 #remove original data from spec5 

 spec6 <- dplyr::slice(spec5, 3) 

 #rownames(spec6) <- filename 

  

 #create one column at the top 

 #add dataname to the 1st column 

 spec7 <- mutate(spec6, dataname=filename, .before="4000") 
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 #extract treatment condition info, and add to the 2nd column 

 condition_info <- substring(filename, 1, 2) 

 spec8 <- mutate(spec7, condition=condition_info, .after="dataname") 

 #extract genotype info, and add to the 3rd column 

 genotype_info <- substring(filename, 3, 5) 

 spec9 <- mutate(spec8, genotype=genotype_info, .after="condition") 

  

 #setup the identifier for later analyses 

 #and add to the 4th column 

 identifier_info <- paste(condition_info, genotype_info, sep="") 

 spec10 <- mutate(spec9, identifier=identifier_info, .after="genotype") 

  

 #eliminate, if any, NG data taken by transmission-mode,  

 #and maintain only OK data with absorption-mode 

 #the OK data has higher absorbanse at wn3400 than at wn1800 

 #these wn correspond to col607 and col2207, respectively, in spec10 

 #if(spec10(1,607)>spec10(1,2207)){ 

 #compiling the data  

 specpile <- rbind(specpile, spec10)  

 #} else { 

 # NGspec <- rbind(NGspec, spec10) 

 #} 

  

 } 

#export the data as csv 

#data is baseline-corrected, normalized spec 

setwd(OutputPath) 

a <- getwd() 

a 

filename_specpile_processed <- paste(today2, "_c2.1a_specpile_offsetbaselined.csv", sep="") 

write.csv(specpile,  

 filename_specpile_processed, row.names=FALSE) 

#export NG data as well 
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filename_NGspec_processed <- paste(today2, "_c2.1a_NGspecpile_offsetbaselined.csv", sep="") 

write.csv(NGspec,  

 filename_NGspec_processed, row.names=FALSE) 

#prepare long-format as well, and export 

#row-column conversion 

long_specpile <- as.data.frame(t(specpile)) 

long_NGspec <- as.data.frame(t(NGspec)) 

#create new column at the top 

long_specpile <- mutate(long_specpile,  

 variable=c("dataname","condition", "genotype", "identifier", 

 seq(from=4000, to=400, by=-1)), 

 .before=ABS) 

long_NGspec <- mutate(long_NGspec,  

 variable=c("dataname","condition", "genotype", "identifier", 

 seq(from=4000, to=400, by=-1)), 

 .before=ABS) 

#export the data as csv 

#data is baseline-corrected, normalized spec 

filename_specpile_processed_longformat <- paste(today2, "_c2.1a_speclong_offsetbaselined.csv",  

sep="") 

write.csv(long_specpile,  

 filename_specpile_processed_longformat, row.names=FALSE) 

filename_NGspec_processed_longformat <- paste(today2,  

"_c2.1a_NGspeclong_offsetbaselined.csv", sep="") 

write.csv(long_NGspec,  

 filename_NGspec_processed_longformat, row.names=FALSE) 

Script code 2: Averaging spectra 

#c3.1a spec averaging ftir 

 #for averaging the spectra 

 #This version of script is specific to salma-3 paper 

 #for genotype comparison in c3 and h3 condition. 

#input file is offset-baselined "specpile_processed.csv" 

#import necessary libraries 
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library(conflicted) 

library(tidyverse) 

library(psych) 

#clean up the R's brain 

rm(list=ls()) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

# !!! system check required, 1 out of 2 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx" according to your computer 

username <- "akash" 

#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_drawspec/", sep=""))){ 

 dir.create(paste(today2, "_drawspec/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_drawspec/", sep="") 

# !!! system check required, 2 out of 2 

#prepare input data folder 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/") 

a <- getwd() 

a 

#import the 1st, compiled ftir csv data 

print("Please specify c2.1a_specpile_offsetbaselined.csv") 

specpile1 <- file.choose() 

specpile2 <- read.csv(specpile1, header = T) 

#split the data according to their identifiers 
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c3chs_specpile2 <- dplyr::filter(specpile2, identifier == 'c3chs') 

c3ima_specpile2 <- dplyr::filter(specpile2, identifier == 'c3ima') 

c3n61_specpile2 <- dplyr::filter(specpile2, identifier == 'c3n61') 

h3chs_specpile2 <- dplyr::filter(specpile2, identifier == 'h3chs') 

h3ima_specpile2 <- dplyr::filter(specpile2, identifier == 'h3ima') 

h3n61_specpile2 <- dplyr::filter(specpile2, identifier == 'h3n61') 

#separate the identifier column (category info) 

c3chs_id_1 <- dplyr::select(c3chs_specpile2, (1:4))  

c3ima_id_1 <- dplyr::select(c3ima_specpile2, (1:4))  

c3n61_id_1 <- dplyr::select(c3n61_specpile2, (1:4))  

h3chs_id_1 <- dplyr::select(h3chs_specpile2, (1:4))  

h3ima_id_1 <- dplyr::select(h3ima_specpile2, (1:4))  

h3n61_id_1 <- dplyr::select(h3n61_specpile2, (1:4))  

#extract values used for averaging 

c3chs_specmatrix <- dplyr::select(c3chs_specpile2, -(1:4))  

c3ima_specmatrix <- dplyr::select(c3ima_specpile2, -(1:4))  

c3n61_specmatrix <- dplyr::select(c3n61_specpile2, -(1:4))  

h3chs_specmatrix <- dplyr::select(h3chs_specpile2, -(1:4))  

h3ima_specmatrix <- dplyr::select(h3ima_specpile2, -(1:4))  

h3n61_specmatrix <- dplyr::select(h3n61_specpile2, -(1:4))  

#averaging 

c3chsmean <- as.data.frame(t(apply(c3chs_specmatrix, 2, mean))) 

c3imamean <- as.data.frame(t(apply(c3ima_specmatrix, 2, mean))) 

c3n61mean <- as.data.frame(t(apply(c3n61_specmatrix, 2, mean))) 

h3chsmean <- as.data.frame(t(apply(h3chs_specmatrix, 2, mean))) 

h3imamean <- as.data.frame(t(apply(h3ima_specmatrix, 2, mean))) 

h3n61mean <- as.data.frame(t(apply(h3n61_specmatrix, 2, mean))) 

specmean <- rbind(c3chsmean, c3imamean, c3n61mean,  

 h3chsmean, h3imamean, h3n61mean) 

rownames(specmean) <- c("c3chs", "c3ima", "c3n61",  

 "h3chs", "h3ima", "h3n61") 

#save the specmean as csv file 

setwd(OutputPath) 
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tempa <- getwd() 

tempa 

filename_specmean <- paste(today2, "_c3.1a_specmean_offset.csv", sep="") 

write.csv(specmean,  

 filename_specmean, row.names=TRUE) 

#save a long-format of specmean as csv file 

specmeanlong <- as.data.frame(t(specmean)) 

wn <- seq(from=4000, to=400, by=-1) 

wn_col <- as.data.frame(wn) 

specmeanlong2 <- cbind(wn_col, specmeanlong) 

filename_specmeanlong <- paste(today2, "_c3.1a_specmeanlong_offset.csv", sep="") 

write.csv(specmeanlong2,  

 filename_specmeanlong, row.names=TRUE) 

Script code 3: Drawing entire spectra 

#salma_c3.2_draw_spec 

#this is to draw averaged or representative spectra for genotype paper 

#import necessary libraries 

library(conflicted) 

library(tidyverse) 

library(caret) 

library(ggpubr) 

#clean up the R's brain 

rm(list=ls()) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

# !!! system check required, 1 out of 2 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx" according to your computer 

username <- "akash" 
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#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_drawspec/", sep=""))){ 

 dir.create(paste(today2, "_drawspec/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_drawspec/", sep="") 

# !!! system check required, 2 out of 2 

#prepare input data folder 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/") 

pathname_inputfolder <- getwd() 

pathname_inputfolder 

#invoke a file-opening window, specify the input file, 

#the input data should be in .csv format, 

 #and has to be long-format, with baseline-corrected and normalized 

#obtain the filename 

print("Please specify xxxxxx_c3.1a_specmeanlong_offset.csv") 

print("or, xxxxxx_c3.1b_specmeanlong_piecewise.csv") 

print("or, xxxxxx_c3.1a_specrepresentativelong_offsetbaselined.csv") 

longinputfile <- file.choose() 

filename <- basename(longinputfile) 

speclong6 <- read.csv(longinputfile,  

 header = T, row.names="X") 

filename 

#Session 1 

#drawing 18 spectra in a single panel 

#arrange the spectra data 

#twospec2 <- dplyr::select(twospec, -(c(1:1))) 

#colnames(twospec2) <- seq(from=4000, to=400, by=-1) 

#wnlist1 <- as.data.frame(t(seq(from=4000, to=400, by=-1))) 

#colnames(wnlist1) <- seq(from=4000, to=400, by=-1) 

#twospec3 <- rbind(wnlist1, twospec2) 
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#c3id <- twospec(1,6) 

#h3id <- twospec(2,6) 

#longspec3 <- as.data.frame(t(twospec3)) 

#colnames(longspec3) <- c("wn", "c3", "h3") 

#draw the overlapped spec 

dev.new() 

plotspec6 <- ggplot(speclong6) + 

 theme_bw()+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,2)),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,3)),  

 colour="dodgerblue", size=0.3)+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,4)),  

 colour="dodgerblue4", size=0.3)+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,5)), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,6)), 

 colour="salmon3", size=0.3)+ 

 geom_line(aes(x=speclong6(,1), y=speclong6(,7)), 

 colour="orangered4", size=0.3)+ 

 xlab("wavenumber")+ 

 ylab("ABS")+ 

 ggtitle(paste(today2,"_6spec",sep="")) 

print(plotspec6) 

#save the plot as png format(you can change to .jpeg, .tiff, etc) 

setwd(OutputPath) 

b <- getwd() 

b 

filename_plotspec6 <- paste(today2, "_c3.2_6spec.png", sep="") 

ggsave(file = filename_plotspec6, 

 plot = plotspec6, dpi=100, 

 width=7.2, height=2.4) 

#Session 2 
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#draw the upward-stacked spec 

speclong6a <- speclong6 

speclong6a <- dplyr::mutate(speclong6a, c3chs=c3chs+400) 

speclong6a <- dplyr::mutate(speclong6a, c3ima=c3ima+800) 

speclong6a <- dplyr::mutate(speclong6a, c3n61=c3n61+1200) 

speclong6a <- dplyr::mutate(speclong6a, h3chs=h3chs+1600) 

speclong6a <- dplyr::mutate(speclong6a, h3ima=h3ima+2000) 

speclong6a <- dplyr::mutate(speclong6a, h3n61=h3n61+2400) 

#draw the stacked spec 

dev.new() 

plotspec6a <- ggplot(speclong6a) + 

 theme_bw()+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,2)),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,3)),  

 colour="dodgerblue", size=0.3)+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,4)),  

 colour="dodgerblue4", size=0.3)+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,5)), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,6)), 

 colour="salmon3", size=0.3)+ 

 geom_line(aes(x=speclong6a(,1), y=speclong6a(,7)), 

 colour="orangered4", size=0.3)+ 

 xlab("wavenumber")+ 

 ylab("ABS")+ 

 ggtitle(paste(today2,"_6stacked_spec",sep="")) 

print(plotspec6a) 

#save the plot as png format(you can change to .jpeg, .tiff, etc) 

setwd(OutputPath) 

b <- getwd() 

b 

filename_plotspec6a <- paste(today2, "_c3.2_6spec_stacked.png", sep="") 
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ggsave(file = filename_plotspec6a, 

 plot = plotspec6a, dpi=100, 

 width=7.2, height=7.2) 

#instruction on the change of output filenames 

print("For c3.1a_offsetbaselined data, add letter-a after c3.2 to be c3.2a") 

print("For c3.1b_pairwisebaselined data, add letter-b after c3.2 to be c3.2b") 

Script code 4: PCA 

#c4.1a PCA_total_ftir offset for salma's genotype paper 

#imput file should be in csv format, 

#typically, "xxxxxx_c2.1a_specpile_offset.csv" would be selected 

#1st column should be the names of original spec files 

#2nd col should be treatment either c3 or h3 

#3rd col should be genotype, either chs, ima, or n61 

#4th col should be identifier, which combines the 2nd and 3rd 

#then followed by normalized abs values from 4000 to 400 

#input data should have 4+3601=3605 columns. 

#import necessary libraries 

library(conflicted) 

library(tidyverse) 

library(psych) 

#clean up the R's brain 

rm(list=ls()) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain the directory info for R script location 

#ScriptPath <- getwd() 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx"according to your computer 

username <- "akash" 
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#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_pca/", sep=""))){ 

 dir.create(paste(today2, "_pca/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_pca/", sep="") 

#invoke a file-opening window, specify the input file, 

 #the input data should be in .csv format, 

 #and has to be baseline-corrected and normalized 

#obtain the filename 

print("Please specify xxxxxx_c2.1a_specpile_offsetbaselined.csv") 

inputfile <- file.choose() 

filename <- basename(inputfile) 

rawspecs <- read.csv(inputfile,  

 header = T) 

filename 

#extract values used for calculation to a new df specmatrix 

#columns with zero values (wn4000, wn2600, wn2000, and wn400) should be removed 

 #in "rawspecs", wn400 corresponds to col3605, thus the sum becomes 4005 

 #thus, wn2000, wn2600, and wn4000 correspond to col 

specmatrix <- dplyr::select(rawspecs, -(3605:3605)) #wn400 

specmatrix <- dplyr::select(specmatrix, -(1:5)) #id and wn4000  

#separate "identifier" column (category info) 

id_2 <- dplyr::select(rawspecs, c(1,4)) 

#further trimming of values in the range of wn3600-4000 

specmatrix <- dplyr::select(specmatrix, -(1:399)) 

#perform pca analysis using prcomp 

#prcomp is standard but one of the oldest 

pc = prcomp(specmatrix, scale =T) 

#using the new 'principal()' in psych package 

#pc <- psych::principal(specmatrix, nfactors=3601,  

# rotate='none') 
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#display the summary 

summary(pc) 

#preparation of score data output 

pc1_score <- pc$x(,1) 

pc2_score <- pc$x(,2) 

scoreonly <- as.data.frame(pc$x) 

score <- cbind(id_2, scoreonly) 

#export the score data as csv into the OutputPath 

#data is PC1-PC2 score 

setwd(OutputPath) 

filename_PC12_score <- paste(today2,"_c4.1a_PCA_total_score_offset.csv", sep="") 

write.csv(score,  

 filename_PC12_score, row.names=FALSE) 

#export rotation data as csv file 

rotationonly <- as.data.frame(pc$rotation) 

filename_pca_rotation <- paste(today2, "_c4.1a_pca_total_rotation_offset.csv", sep="") 

write.csv(rotationonly, filename_pca_rotation, row.names=FALSE) 

#export sdev data as csv file 

sdevonly <- as.data.frame(pc$sdev) 

filename_pca_sdev <- paste(today2, "_c4.1a_pca_total_sdev_offset.csv", sep="") 

write.csv(sdevonly, filename_pca_sdev, row.names=FALSE) 

#calculate the loadings, and export as csv file  

loadingdata <- sweep(pc$rotation, MARGIN=2, pc$sdev, FUN="*") 

filename_pca_loading <- paste(today2, "_c4.1a_pca_total_loading_offset.csv", sep="") 

write.csv(loadingdata,  

 filename_pca_loading, row.names=FALSE) 

#draw the pc1_pc2 scoreplot 

#size of the dots in the plot can be changed  

 #by modifying the location of "geom_point(size=)  

#color info can be seen in the following website 

#http://sape.inf.usi.ch/quick-reference/ggplot2/colour 

#point shape can be seen in the following website 

#http://www.sthda.com/english/wiki/ggplot2-point-shapes 
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dev.new() 

pca_total_scoreplot <- ggplot(score, aes(x = PC1,y = PC2,  

 shape = identifier, color = identifier)) + 

 geom_point(size=1) + 

 scale_color_manual(values=c("deepskyblue","dodgerblue","dodgerblue4", 

 "salmon","salmon3","orangered")) + 

 scale_shape_manual(values=c(1,2,4,1,2,4))+ 

# scale_size_manual(values=c(10,1,1,10,1,1,10,1,1,10,1,1,10,1,1))+ 

 theme_bw()  

print(pca_total_scoreplot) 

#save the plot as png format 

#you can change to .jpeg, .tiff, etc 

#unit is in inch 

filename_pca_total_scoreplot <- paste(today2, "_c4.1a_PCA_total_scoreplot_offset.png", sep="") 

ggsave(file = filename_pca_total_scoreplot, 

 plot = pca_total_scoreplot, dpi=600, 

 width=7.2, height=4.8) 

#Section 2: contribution check 

#extract contribution data 

contribution_total <- as.data.frame(t(summary(pc)$importance)) 

names(contribution_total) <- 

c("standard_deviation","proportion_of_variance","cumulative_proportion") 

contri_total_rownames <- as.data.frame(rownames(contribution_total)) 

names(contri_total_rownames) <- "PC" 

contribution_total <- cbind(contribution_total, contri_total_rownames) 

#save the contribution data as csv file 

filename_pca_total_contribution <- paste(today2, "_c4.1a_pca_total_contribution_offset.csv",  

sep="") 

write.csv(contribution_total,  

 filename_pca_total_contribution, row.names=FALSE) 

#extract top 9 from the contribution data, and save as a png file 

top9_contribution_total <- dplyr::slice(contribution_total, 1:9) 

contribution_total_plot <- ggplot(top9_contribution_total, aes(x = PC, y =  
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proportion_of_variance)) + 

 geom_bar(stat="identity", fill="forestgreen") + 

theme_bw() 

print(contribution_total_plot) 

#save the contribution graph 

filename_pca_contribution_total_plot <- paste(today2,  

"_c4.1a_PCA_contribution_total_offset.png", sep="") 

ggsave(file = filename_pca_contribution_total_plot, 

 plot = contribution_total_plot, dpi=100, 

 width=7.2, height=4.8) 

#Section 3: Loading plot for all the 6 groups 

#prepare data for loading plot 

pc_loading <- data.frame(t(cor(pc$x,specmatrix))) 

pc_score <- data.frame(pc$x) 

#draw the 2D-loading plot using ggplot 

#color info can be seen in the following website 

#http://sape.inf.usi.ch/quick-reference/ggplot2/colour 

g0 <- ggplot() 

g0 <- g0 + geom_segment(data=pc_loading, 

 aes(x=0,y=0,xend=(PC1*1),yend=(PC2*1)), 

colour=rainbow(3200),alpha=0.2,size=0.5) 

g0 <- g0 + xlab("PC1") 

g0 <- g0 + ylab("PC2") 

g0 <- g0 + theme_bw() 

print(g0) 

filename_pca_loading2d_plot <- paste(today2, "_c4.1a_PCA_loading2d_plot_offset.png", sep="") 

ggsave(file = filename_pca_loading2d_plot, 

 plot = g0, dpi=300, width=6.0, height=6.0) 

#draw the 1D-loading barplot 

#prepare x-axis data 

wn_x_axis <- as.data.frame(seq(3600,401, by=-1)) 

names(wn_x_axis) <- c("wn") 

pc_loading2 <- cbind(wn_x_axis, pc_loading) 
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#draw the PC1 loading barplot 

g1 <- ggplot(data=pc_loading2,  

 aes(x=wn, y=PC1)) 

g1 <- g1 + geom_bar(stat="identity", col=rainbow(3200)) 

g1 <- g1 + theme_bw() 

print(g1) 

filename_pca_PC1_loadingplot <- paste(today2, "_c4.1a_PCA_PC1_loadingplot_offset.png",  

sep="") 

ggsave(file = filename_pca_PC1_loadingplot, 

 plot = g1, dpi=300, width=6.0, height=1.5) 

#draw the PC2 loading barplot 

g2 <- ggplot(data=pc_loading2,  

 aes(x=wn, y=PC2)) 

g2 <- g2 + geom_bar(stat="identity", col=rainbow(3200)) 

g2 <- g2 + theme_bw() 

print(g2) 

filename_pca_PC2_loadingplot <- paste(today2, "_c4.1a_PCA_PC2_loadingplot_offset.png",  

sep="") 

ggsave(file = filename_pca_PC2_loadingplot, 

 plot = g2, dpi=300, width=6.0, height=1.5) 

Script code 5: FTIR marker boxplot 

#c5.1_ftir marker boxplot 

 #for salma's genotype paper 

 #the 6 markers from the 1st paper are applied to the genotype data 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 
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library(ggpubr) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx"according to your computer 

username <- "akash" 

#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_MarkerBoxplot/", sep=""))){ 

 dir.create(paste(today2, "_MarkerBoxplot/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_MarkerBoxplot/", sep="") 

#redirect working directory and import the compiled ftir csv data 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/") 

print("Please specify xxxxxx_specpile_offsetbaselined.csv") 

specpile1 <- file.choose() 

specpile2 <- read.csv(specpile1,  

 header = T) 

#change the variable types of "condition" and "genotype" 

#to factor format  

specpile2$condition <- factor(specpile2$condition) 

specpile2$genotype <- factor(specpile2$genotype) 

specpile2$identifier <- factor(specpile2$identifier) 

#import the "a6_anchorinfo.csv" file 

 #integer of "1" should be input at col 7 and 8 

print("Please specify anchor_info.csv") 

specanchor1 <- file.choose() 
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specanchor2 <- read.csv(specanchor1,  

 header = T) 

#obtain info on number of target markers 

n_specanchor2 <- nrow(specanchor2) 

#(section 0): separation of each spec pair 

#extract values used for calculation to a new df specmatrix 

#in "specpile2", wn400 corresponds to col3605, thus the sum becomes 4005 

#thus, wn4000 correspond to col 

#split the data according to their identifiers 

c3chs_specpile2 <- dplyr::filter(specpile2, identifier == 'c3chs') 

c3ima_specpile2 <- dplyr::filter(specpile2, identifier == 'c3ima') 

c3n61_specpile2 <- dplyr::filter(specpile2, identifier == 'c3n61') 

h3chs_specpile2 <- dplyr::filter(specpile2, identifier == 'h3chs') 

h3ima_specpile2 <- dplyr::filter(specpile2, identifier == 'h3ima') 

h3n61_specpile2 <- dplyr::filter(specpile2, identifier == 'h3n61') 

#combine the c3-h3 pairs 

chs_spec <- rbind(c3chs_specpile2, h3chs_specpile2) 

ima_spec <- rbind(c3ima_specpile2, h3ima_specpile2) 

n61_spec <- rbind(c3n61_specpile2, h3n61_specpile2) 

#make list of id-dataframe and id-name 

list_spec_pair <- list(chs_spec, ima_spec, n61_spec) 

list_chr_pair <- list("chs", "ima", "n61") 

#make empty output dataframe 

fmpileall <- data.frame(matrix(rep(NA, 8), nrow=1))(numeric(0),) 

colnames(fmpileall) <- c("dataname", "identifier", "fm_numerator", "fm_denominator",  

 "fm", "abs_target", "abs_anchor1", "abs_anchor2") 

#i-loop for different Fm markers 

#for(i in 1:1){ 

for(i in 1:n_specanchor2){  

  

 target_wn <- specanchor2(i,1) 

 anchor1_wn <- specanchor2(i,2) 

 anchor2_wn <- specanchor2(i,3) 
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 ylim_min <- specanchor2(i,7) 

 ylim_max <- specanchor2(i,8) 

 #specpile2 has 6 chr col before wn4000 

 #thus, wn4000 corresponds to col7, 

 #and wn400 corresponds to col3607 

 #sum of these two becomes 4007 

 col_target_wn <- 4005 - target_wn 

 col_anchor1_wn <- 4005 - anchor1_wn 

 col_anchor2_wn <- 4005 - anchor2_wn 

  

 #prepare list for plots 

 bplotlist <- list() 

  

 #make empty output dataframe 

 fmpilesub <- data.frame(matrix(rep(NA, 8), nrow=1))(numeric(0),) 

 colnames(fmpilesub) <- c("dataname", "identifier", "fm_numerator", "fm_denominator",  

 "fm", "abs_target", "abs_anchor1", "abs_anchor2") 

  

 #j-loop for different genotype 

 for(j in 1:3){ 

 #for(j in 1:1){ 

  

 #calling working tissue data 

 wspecpile <- list_spec_pair(j) 

 wspecpile <- as.data.frame(wspecpile) 

 wpairchr <- list_chr_pair(j) 

 wpairchr <- unlist(wpairchr) 

  

 #calculate fm value 

 wspecpile2 <- dplyr::mutate(wspecpile, fm_numerator=(wspecpile(,col_target_wn) - 

wspecpile(,col_anchor1_wn))) 

 wspecpile2 <- dplyr::mutate(wspecpile2, fm_denominator=(wspecpile2(,col_anchor2_wn) - 

wspecpile2(,col_anchor1_wn))) 
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 wspecpile2 <- dplyr::mutate(wspecpile2, fm=(fm_numerator/fm_denominator)) 

 wspecpile2 <- dplyr::mutate(wspecpile2, abs_target=wspecpile2(,col_target_wn)) 

 wspecpile2 <- dplyr::mutate(wspecpile2, abs_anchor1=wspecpile2(,col_anchor1_wn)) 

 wspecpile2 <- dplyr::mutate(wspecpile2, abs_anchor2=wspecpile2(,col_anchor2_wn)) 

 #colnames(specpile3)((3608:3613)) <- c("fm_numerator", "fm_denominator", "fm" 

 # "abs_target",xxxxxx) 

 wspecpile3 <- dplyr::select(wspecpile2, c(1, 4, 3606, 3607, 3608, 3609, 3610, 3611)) 

  

 fmpileall <- rbind(fmpileall, wspecpile3) 

 fmpilesub <- rbind(fmpilesub, wspecpile3) 

  

 #save the wspecpile3 as csv 

 filename_wspecpile3 <- paste(today2, "_c5.1_fm", target_wn, "_", wpairchr, ".csv", sep="") 

 setwd(OutputPath) 

 atemp <- getwd() 

 atemp 

 write.csv(wspecpile3,  

 filename_wspecpile3, row.names=FALSE) 

  

 #make a boxplot 

 #in the following, "x" should be the grouping variable, 

 #usually in the category variable, such as condition  

 #"y" should be numerical variable such as fm. 

 #xlab("xxx") is for the label of figure 

 #for color pallet, check the following 

 # http://sape.inf.usi.ch/quick-reference/ggplot2/colour 

 boxplot_title <- paste("fm", target_wn, "_", wpairchr, sep="") 

 #dev.new() 

 fm_boxplot <- ggplot(wspecpile3, aes(x = identifier, y = fm, fill=identifier)) + 

 stat_boxplot(geom = "errorbar", width = 0.3)+ 

 geom_boxplot(outlier.size=1) + 

 scale_fill_manual(values=c("deepskyblue", "salmon")) + 

 # geom_point(size=0.3, color='lightgray', alpha=0.5) + 
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 xlab("Condition") + 

 ylab(boxplot_title) + 

 #if you change the range of y-axis, use the follow line 

 # ylim(-20, 20)+ 

 theme_bw() 

 #print(fm_boxplot) 

  

 #save the same fm_boxplot as png file 

 filename_fm_boxplot <- paste(today2, "_c6.1a_", boxplot_title, "_boxplot.png", sep="") 

 setwd(OutputPath) 

 atemp <- getwd() 

 atemp 

 ggsave(file = filename_fm_boxplot,  

 plot = fm_boxplot, dpi = 100,  

 width = 2.4, height = 2.4) 

  

 bplotlist((j))<- fm_boxplot 

  

 #end of j-loop 

 } 

  

 #k-loop for assembling 9 boxplots in 3x3 format in 1 figure 

 for (k in 1:9){ 

 allplot <- ggarrange(plotlist=c(bplotlist(1), 

 bplotlist(2), bplotlist(3),  

bplotlist(4), bplotlist(5), 

bplotlist(6), bplotlist(7), 

bplotlist(8), bplotlist(9)), 

 nrow=3, ncol=3, align="hv") 

  

 # print allplot 

 setwd(OutputPath) 

 tempa <- getwd() 
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 tempa 

 filename_allplot <- paste(today2, "_c5.1_fm", target_wn,  

 "_9boxplot.png", sep="") 

 ggsave(file = filename_allplot, 

 plot = allplot, dpi=100, 

 width=14.4, height=7.2) 

  

 #draw 3 subsets in one horizontal plot 

 boxplot_title <- paste("fm", target_wn, sep="") 

 fmpilesub2 <- transform(fmpilesub, identifier=factor(identifier,  

 levels=c("c3chs", "h3chs", "c3ima","h3ima", "c3n61", "h3n61"))) 

 #dev.new() 

 fm_horizonplot <- ggplot(fmpilesub2, aes(x = identifier, y = fm, fill=identifier)) + 

 stat_boxplot(geom = "errorbar", width = 0.3)+ 

 geom_boxplot(outlier.size=1) + 

 scale_fill_manual(values=c("deepskyblue", "salmon",  

 "dodgerblue", "salmon2", "dodgerblue4", "salmon4")) + 

 # geom_point(size=0.3, color='lightgray', alpha=0.5) + 

 xlab("Condition") + 

 ylab(boxplot_title) + 

 #if you change the range of y-axis, use the follow line 

 ylim(ylim_min, ylim_max)+ 

 theme_bw() 

 #print(fm_horizonplot) 

  

 #save the same fm_boxplot as png file 

 filename_fm_horizonplot <- paste(today2, "_c5.1_", boxplot_title, "_HorizonPlot.png", sep="") 

 setwd(OutputPath) 

 atemp <- getwd() 

 atemp 

 ggsave(file = filename_fm_horizonplot,  

 plot = fm_horizonplot, dpi = 100,  

 width = 7.2, height = 4.8) 
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 #end of k-loop 

 } 

  

} 

Script code 6: t-test for FTIR marker 

#c5.2_t-test for ftir marker 

 #for salma's genotype paper 

 #results from c5.1_ftir_marker_boxplot are used 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

library(ggpubr) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx"according to your computer 

username <- "akash" 

#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_t-test/", sep=""))){ 

 dir.create(paste(today2, "_t-test/", sep=""), recursive=T) 
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} 

OutputPath <- paste(DesktopPath, today2, "_t-test/", sep="") 

#redirect working directory and import the compiled ftir csv data 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/ttest/") 

print("Please specify xxxxxx_c5.1_fmxxx_genotype.csv") 

df1 <- file.choose() 

df2 <- read.csv(df1, header = T) 

#perform t-test 

t.test(fm ~ identifier, data=df2) 

Script code 7: LDA 

#c6.1 lda 2D genotype with offset baseline(400-4000) spec 

 #linear discriminant analysis of ftir spectra 

 #train-test sets were not prepared, and all data is used for modeling. 

 #calculation using c3-h3 data in three genotypes 

#this is a version for single baseline data 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

library(psych) 

library(maptools) 

library(ggrepel) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 
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today2 <- paste(yr, mo, day, sep="") 

# !!! system check required, 1 out of 2 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx" according to your computer 

username <- "akash" 

#prepare output folder and its path 

DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_lda2d/", sep=""))){ 

 dir.create(paste(today2, "_lda2d/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_lda2d/", sep="") 

# !!! system check required, 2 out of 2 

#prepare input data folder 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3/") 

tempa <- getwd() 

tempa 

#invoke a file-opening window, specify the input file, 

#the input data should be in .csv format, 

 #and has to be baseline-corrected and normalized 

#obtain the filename 

print("Please specify xxxxxx_c2.1a_specpile_offsetbaselined.csv") 

spec1 <- file.choose() 

specpile <- read.csv(spec1,  

 header = T) 

#extract values used for calculation to a new df specmatrix 

#columns with zero values (wn400, 4000) should be removed 

#moreover, data around noisy region of wn4000-3600 is also removed 

#in "specpile", wn400 corresponds to col3605, thus the sum becomes 4005 

#likewise, wn4000 correspond to col5 

specpile2 <- dplyr::select(specpile, -(3605:3605)) #wn400 

#specpile2 <- dplyr::select(specpile2, -(2007:2007)) #wn2000 
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#specpile2 <- dplyr::select(specpile2, -(1407:1407)) #wn2600 

specpile2 <- dplyr::select(specpile2, -(5:405)) #wn4000-3600  

#separate the identifier column (category info) 

id_1 <- dplyr::select(specpile2, (1:4))  

#extract values used for lda 

specmatrix <- dplyr::select(specpile2, -(1:3))  

#set the seednumber for randomness  

set.seed(101) 

#perform linear discriminant analysis 

lda_specmatrix <- lda(identifier ~ ., specmatrix) 

  

#calculate results 

#1st, transform them to the values 

#then one dimensional histograms 

#"mar" is the margin of bottom, left, top, right 

lda_specmatrix_results <- predict(lda_specmatrix) 

#convert the $x score data to dataframe 

ld_score <- data.frame(identifier=id_1(,4), lda=lda_specmatrix_results$x) 

#draw 2D scatter plot using LD1-LD2 plain 

dev.new() 

g1 <- ggplot(ld_score, aes(x=lda.LD1, y=lda.LD2, colour=identifier, shape=identifier))+ 

 geom_point()+ 

 scale_color_manual(values=c("deepskyblue","dodgerblue","dodgerblue4", 

 "salmon","salmon3","orangered")) + 

 scale_shape_manual(values=c(1,2,4,1,2,4))+ 

 theme_bw() 

print(g1) 

#save the plot as png format 

setwd(OutputPath) 

atemp <- getwd() 

atemp 

filename_lda2d <- paste(today2, "_c6.1_LDA2D.png", sep="") 

ggsave(file = filename_lda2d, 
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 plot = g1, dpi=600, 

 width=4.2, height=3.2) 

#save the score data as csv file 

ld_scoreonly <- dplyr::select(ld_score, -(1:1)) 

ld_score2 <- cbind(id_1, ld_scoreonly) 

filename_ld_score2 <- paste(today2, "_c6.1_lda_score.csv", sep="") 

setwd(OutputPath) 

atemp <- getwd() 

atemp 

write.csv(ld_score2,  

 filename_ld_score2, row.names=FALSE) 

  

#extract LDA scalingdata  

scaling1 <- lda_specmatrix$scaling 

  

#transform LDA scaling to dataframe 

#add wavenumber info 

scaling2 <- as.data.frame(t(scaling1)) 

wnlist <- seq(from=3599, to=401, by=-1) 

# wnlist_frag1 <- seq(from=3599, to=2601, by=-1) 

# wnlist_frag2 <- seq(from=2599, to=2001, by=-1) 

# wnlist_frag3 <- seq(from=1999, to=401, by=-1) 

# wnlist <- c(wnlist_frag1, wnlist_frag2, wnlist_frag3) 

wnlist2 <- as.data.frame(t(wnlist)) 

  

colnames(scaling2) <- wnlist 

colnames(wnlist2) <- wnlist 

  

scaling3 <- rbind(wnlist2, scaling2) 

scaling4 <- as.data.frame(t(scaling3)) 

names(scaling4)(1) <- "wavenumber" 

  

#change the wavenumber in ascending order, and save it as csv  
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scaling5 <- arrange(scaling4, wavenumber) 

filename_scaling5 <- paste(today2, "_c6.1_lda_scaling.csv", sep="") 

write.csv(scaling5,  

 filename_scaling5, row.names=FALSE) 

  

#plot LD1 scaling, scatter plot version 

dev.new() 

lda_scaling_LD1_scatterplot <- ggplot(scaling5, aes(x = wavenumber, y = LD1)) + 

 geom_point(size=0.5) + 

 theme_bw() 

 print(lda_scaling_LD1_scatterplot) 

  

 filename_lda_scaling_LD1_scatterplot <- paste(today2, "_c6.1_Scaling_LD1_ScatterPlot.png",  

sep="") 

 ggsave(file = filename_lda_scaling_LD1_scatterplot,  

 plot = lda_scaling_LD1_scatterplot, dpi = 300,  

 width = 7.2, height = 2.4) 

  

#plot LD1 scaling, rainbow line plot version 

 dev.new() 

 gscale_ld1_rb <- ggplot(data=scaling5,  

 aes(x = wavenumber, y = LD1)) 

 gscale_ld1_rb <- gscale_ld1_rb + geom_bar(stat="identity", col=rainbow(3199)) 

 gscale_ld1_rb <- gscale_ld1_rb + theme_bw() 

 print(gscale_ld1_rb) 

  

 filename_gscale_ld1_rb <- paste(today2, "_c6.1_Scaling_LD1_RainbowLinePlot.png", sep="") 

 ggsave(file = filename_gscale_ld1_rb,  

 plot = gscale_ld1_rb, dpi = 300,  

 width = 7.2, height = 2.4) 

  

#plot LD2 scaling, scatter plot version 

dev.new() 
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lda_scaling_LD2_scatterplot <- ggplot(scaling5, aes(x = wavenumber, y = LD2)) + 

 geom_point(size=0.5) + 

 theme_bw() 

 print(lda_scaling_LD2_scatterplot) 

  

 filename_lda_scaling_LD2_scatterplot <- paste(today2, "_c6.1_Scaling_LD2_ScatterPlot.png",  

sep="") 

 ggsave(file = filename_lda_scaling_LD2_scatterplot,  

 plot = lda_scaling_LD2_scatterplot, dpi = 300,  

 width = 7.2, height = 2.4) 

  

#plot LD2 scaling, rainbow line plot version 

 dev.new() 

 gscale_ld2_rb <- ggplot(data=scaling5,  

 aes(x = wavenumber, y = LD2)) 

 gscale_ld2_rb <- gscale_ld2_rb + geom_bar(stat="identity", col=rainbow(3199)) 

 gscale_ld2_rb <- gscale_ld2_rb + theme_bw() 

 print(gscale_ld2_rb) 

  

 filename_gscale_ld2_rb <- paste(today2, "_c6.1_Scaling_LD2_RainbowLinePlot.png", sep="") 

 ggsave(file = filename_gscale_ld2_rb,  

 plot = gscale_ld2_rb, dpi = 300,  

 width = 7.2, height = 2.4) 

  

 #plot LD1-LD2 scaling 2D plot 

 dev.new() 

 g2d <- ggplot() 

 g2d <- g2d + geom_point(data=scaling5,  

 aes(x = LD1, y = LD2), 

 colour=rainbow(3199), 

 alpha=0.8, size=2) 

 g2d <- g2d + labs() 

 g2d <- g2d + theme_bw() 
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 print(g2d) 

  

#save the plot as png format 

 filename_g2d <- paste(today2, "_c6.1_Scaling_2D_LD12_ScatterPlot.png", sep="") 

 ggsave(file = filename_g2d, 

 plot = g2d, dpi=600, 

 width=7.2, height=4.8) 

Script code 8: Drawing magnified spectra in the vicinity of Fm marker 

#drawspec_markervicinity for salma's genotype paper 

 #for drawing spectrum in the vicinity of ftir-marker  

 #this is for Salma's data on c3-h3 chamber comparison. 

#input file is "specmean.csv" 

#clear the brain 

rm(list=ls()) 

#library to register 

#ggplot2 and dplyr are in tidyverse 

library(conflicted) 

library(tidyverse) 

library(MASS) 

library(klaR) 

library(caret) 

library(ggpubr) 

#obtain date information 

today <- Sys.Date() 

yr <- substr(today, 3,4) 

mo <- substr(today, 6,7) 

day <- substr(today, 9,10) 

today2 <- paste(yr, mo, day, sep="") 

# !!! system check required, 1 out of 2 

#obtain desktop folder information for a windows user 

#you must change the string below within "xxx" according to your computer 

username <- "akash" 

#prepare output folder and its path 
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DesktopPath <- paste("C:/users/",username,"/desktop/", sep="") 

setwd(DesktopPath) 

if(!dir.exists(paste(today2, "_drawspec_markervicinity/", sep=""))){ 

 dir.create(paste(today2, "_drawspec_markervicinity/", sep=""), recursive=T) 

} 

OutputPath <- paste(DesktopPath, today2, "_drawspec_markervicinity/", sep="") 

# !!! system check required, 2 out of 2 

#prepare input data folder 

setwd("d:/1_DataFolder/Intel/i04_Informatics_Statistics/i04b_R/trainingdata/ftir_testdata/salma 

_testdata/paper3") 

a <- getwd() 

a 

#import a pair of spec ftir data 

 #it should be 3602 cols, 1st col is an identifier, then wn4000-400 

print("Please specify xxxxxx_c3.1a_specmean.csv") 

specpile1 <- file.choose() 

sixspec <- read.csv(specpile1,  

 header = T) 

#import the 2nd, "xxxxxx_newmarker_info.csv" file 

print("Please specify xxxxxx_newmarker_info.csv") 

anchor_info <- file.choose() 

newmarker_info2 <- read.csv(anchor_info,  

 header = T) 

#arrange the spectra 

sixspec2 <- dplyr::select(sixspec, -(c(1:1))) 

colnames(sixspec2) <- seq(from=4000, to=400, by=-1) 

wnlist1 <- as.data.frame(t(seq(from=4000, to=400, by=-1))) 

colnames(wnlist1) <- seq(from=4000, to=400, by=-1) 

sixspec3 <- rbind(wnlist1, sixspec2) 

longspec3 <- as.data.frame(t(sixspec3)) 

colnames(longspec3) <- c("wn", "c3chs", "c3ima", "c3n61", 

 "h3chs", "h3ima", "h3n61") 

#draw the entire spec 
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#color info can be seen in the following website 

#http://sape.inf.usi.ch/quick-reference/ggplot2/colour 

dev.new() 

glongspec3 <- ggplot(longspec3) + 

 theme_bw()+ 

 geom_line(aes(x=wn, y=c3chs),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=wn, y=c3ima),  

 colour="springgreen3", size=0.3)+ 

 geom_line(aes(x=wn, y=c3n61),  

 colour="dodgerblue4", size=0.3)+ 

 geom_line(aes(x=wn, y=h3chs), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=wn, y=h3ima), 

 colour="deeppink", size=0.3)+ 

 geom_line(aes(x=wn, y=h3n61), 

 colour="orangered4", size=0.3) 

 print(glongspec3) 

#save the plot as png format(you can change to .jpeg, .tiff, etc) 

setwd(OutputPath) 

b <- getwd() 

b 

filename_glongspec3 <- paste(today2, "_c7.1_longspec3.png", sep="") 

ggsave(file = filename_glongspec3, 

 plot = glongspec3, dpi=100, 

 width=3.6, height=1.2) 

#set the target and anchor wavenumbers 

nrow_newmarker_info2 <- nrow(newmarker_info2) 

#prepare list for plots 

plotrawtrace <- list() 

plotlistnorm <- list() 

plotlistnorm2 <- list() 

#i-loop for drawing respective trace around target wavenumbers 



128 

 #in the parameters below, wn_anchor1 and 2 are  

 #the ones with lower and higher absorbance (or valley and peak) 

for (i in 1:nrow_newmarker_info2){ 

#for (i in 1:1){ 

 wn_target1 <- newmarker_info2(i,1) 

 wn_target2 <- newmarker_info2(i,2) 

wn_target3 <- newmarker_info2(i,3) 

 wn_target4 <- newmarker_info2(i,4) 

 wn_anchor1 <- newmarker_info2(i,5) 

 wn_anchor2 <- newmarker_info2(i,6) 

 wn_Ledge <- newmarker_info2(i,7) 

 wn_Hedge <- newmarker_info2(i,8) 

  

 #obtaining row numbers for the target and its frame edges in longspec3 

 row_target1 <- 4001 - wn_target1 

 row_target2 <- 4001 - wn_target2 

 row_target3 <- 4001 - wn_target3 

 row_anchor1 <- 4001 - wn_anchor1 

 row_anchor2 <- 4001 - wn_anchor2 

 row_Ledge <- 4001 - wn_Ledge 

 row_Hedge <- 4001 - wn_Hedge 

 # (Option 1) raw trace without anchoring 

 #slice the rows for the magnified frame 

 specmag <- dplyr::slice(longspec3, row_Hedge:row_Ledge) 

  

 #save the specmag data as csv 

 setwd(OutputPath) 

 b <- getwd() 

 b 

 filename_specmag <- paste(today2, "_c7.1_specraw_", wn_target1, "_", wn_target2, ".csv",  

sep="") 

 write.csv(specmag, filename_specmag, row.names=FALSE) 

 #draw the sliced region of the spec 
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 dev.new() 

 plotspecmag <- ggplot(specmag) + 

 theme_bw()+ 

 geom_line(aes(x=wn, y=c3chs),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=wn, y=c3ima),  

 colour="springgreen3", size=0.3)+ 

 geom_line(aes(x=wn, y=c3n61),  

 colour="dodgerblue4", size=0.3)+ 

 geom_line(aes(x=wn, y=h3chs), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=wn, y=h3ima), 

 colour="deeppink", size=0.3)+ 

 geom_line(aes(x=wn, y=h3n61), 

 colour="orangered4", size=0.3)+ 

 geom_vline(xintercept=wn_target1,  

 colour="orange",size=0.3)+ 

 geom_vline(xintercept=wn_target2,  

 colour="green",size=0.3)+ 

 geom_vline(xintercept=wn_target3,  

 colour="blue",size=0.3)+ 

 geom_vline(xintercept=wn_target4,  

 colour="magenta",size=0.3)+ 

 # geom_vline(xintercept=wn_anchor1, 

# colour="magenta", size=0.3)+ 

# geom_vline(xintercept=wn_anchor2, 

# colour="blue", size=0.3)+ 

 theme(axis.text.x=element_text(angle=45, hjust=1)) 

 print(plotspecmag) 

 plotrawtrace((i)) <- plotspecmag 

 #save the plot as png format 

 setwd(OutputPath) 

 b <- getwd() 
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 b 

 filename_plotspecmag <- paste(today2, "_c7.1_specraw_",wn_target1, "_", wn_target2, ".png",  

sep="") 

 ggsave(file = filename_plotspecmag, 

 plot = plotspecmag, dpi=300, 

 width=3.6, height=3.6) 

 # (Option 2) normalized trace using 2 anchors 

  

 #extract the values for anchors 1 and 2 

 abs_c3chs_anchor1 <- longspec3(row_anchor1,2) 

 abs_c3chs_anchor2 <- longspec3(row_anchor2,2) 

 abs_c3ima_anchor1 <- longspec3(row_anchor1,3) 

 abs_c3ima_anchor2 <- longspec3(row_anchor2,3) 

 abs_c3n61_anchor1 <- longspec3(row_anchor1,4) 

 abs_c3n61_anchor2 <- longspec3(row_anchor2,4) 

 abs_h3chs_anchor1 <- longspec3(row_anchor1,5) 

 abs_h3chs_anchor2 <- longspec3(row_anchor2,5) 

 abs_h3ima_anchor1 <- longspec3(row_anchor1,6) 

 abs_h3ima_anchor2 <- longspec3(row_anchor2,6) 

 abs_h3n61_anchor1 <- longspec3(row_anchor1,7) 

 abs_h3n61_anchor2 <- longspec3(row_anchor2,7) 

  

 #calculate the normalized absorbance (nabs) using Fm formula 

 #the formula is (A_target - A_anchor1)/(A_anchor2 - A_anchor1) 

  

 specmag2 <- mutate(specmag, nabs_c3chs=(c3chs-abs_c3chs_anchor1)/(abs_c3chs_anchor2- 

abs_c3chs_anchor1)) 

 specmag2 <- mutate(specmag2, nabs_c3ima=(c3ima-abs_c3ima_anchor1)/(abs_c3ima_anchor2- 

abs_c3ima_anchor1)) 

 specmag2 <- mutate(specmag2, nabs_c3n61=(c3n61-abs_c3n61_anchor1)/(abs_c3n61_anchor2- 

abs_c3n61_anchor1)) 

 specmag2 <- mutate(specmag2, nabs_h3chs=(h3chs-abs_h3chs_anchor1)/(abs_h3chs_anchor2- 

abs_h3chs_anchor1)) 
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 specmag2 <- mutate(specmag2, nabs_h3ima=(h3imaabs_h3ima_anchor1)/(abs_h3ima_anchor2-
abs_h3ima_anchor1)) 

 specmag2 <- mutate(specmag2, nabs_h3n61=(h3n61- 

abs_h3n61_anchor1)/(abs_h3n61_anchor2-abs_h3n61_anchor1)) 

 #save the specmag2 data as csv 

 setwd(OutputPath) 

 b <- getwd() 

 b 

 filename_specmag2 <- paste(today2, "_c7.1_specmag2_", wn_target1, "_", wn_target2, ".csv",  

sep="") 

 write.csv(specmag2, filename_specmag2, row.names=FALSE) 

  

 #draw the normalized spec 

 dev.new() 

 plotspecmag2n <- ggplot(specmag2) + 

 theme_bw()+ 

 geom_line(aes(x=wn, y=nabs_c3chs),  

 colour="deepskyblue", size=0.3)+ 

 geom_line(aes(x=wn, y=nabs_c3ima),  

 colour="deepskyblue2", size=0.3)+ 

 geom_line(aes(x=wn, y=nabs_c3n61),  

 colour="deepskyblue4", size=0.3)+ 

 geom_line(aes(x=wn, y=nabs_h3chs), 

 colour="salmon", size=0.3)+ 

 geom_line(aes(x=wn, y=nabs_h3ima), 

 colour="salmon2", size=0.3)+ 

 geom_line(aes(x=wn, y=nabs_h3n61), 

 colour="salmon4", size=0.3)+ 

 geom_vline(xintercept=wn_target1,  

 colour="orange",size=0.3)+ 

 geom_vline(xintercept=wn_target2,  

 colour="green",size=0.3)+ 

 geom_vline(xintercept=wn_target3,  

 colour="blue",size=0.3)+ 
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 geom_vline(xintercept=wn_target4,  

 colour="magenta",size=0.3)+ 

 theme(axis.text.x=element_text(angle=45, hjust=1)) 

 print(plotspecmag2n) 

 plotlistnorm((i)) <- plotspecmag2n 

 #save the plot as png format 

 setwd(OutputPath) 

 b <- getwd() 

 b 

 filename_plotspecmag2n <- paste(today2, "_c7.1_specmag2n_",wn_target1, "_", wn_target2,  

".png", sep="") 

 ggsave(file = filename_plotspecmag2n, 

 plot = plotspecmag2n, dpi=300, 

 width=3.6, height=3.6) 

 #this is the end of magnification option 2 

  

} # this is an end of the i-loop 
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