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Abstract—Speech separation based on auditory scene anal-
ysis (ASA) has been widely studied. We propose a sequential
processing model of computational ASA (CASA), in which a
mixed speech is sequentially decomposed into frequency signals
using modified Discrete Fourier Transform (DFT), four features
in ASA are extracted from the decomposed frequency signals,
the frequency signals are regrouped by examining the extracted
features, and each separated speech is obtained by recomposing
the frequency signals in a group. In this paper, we attempt to
separate speeches only using the harmonic structure, which is one
of the features and regarded as the backbone in our sequential
implementation model.
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I. INTRODUCTION

Speech separation based on auditory scene analysis (ASA)
[1] is widely studied. Human beings can hear a specific speech
in an environment where many people are simultaneously
speaking. This ability is famous as cocktail party effect.
ASA gives us a model which psychologically explains the
cocktail party effect. Concretely, speech separation is achieved
by extracting four features: common onset/offset, harmonic
structure, common change, and gradual change from a mixed
speech and then grouping frequency signals which have the
common features.

Computational ASA (CASA) is to implement ASA in com-
puter systems [2], which is generally based on time-frequency
analysis (like a spectrogram) obtained in block processing. In
addition, learning functions are recently installed for improving
the reproducibility of original speeches [3], [4], [5], [6], [7],
[8], [9], [10], [11], in which all features are extracted and
learned in advance of separation. However, these approaches
are not suitable for real-time processing.

Thus, we propose to sequentially implement CASA for
achieving real-time processing of ASA. Here, the “sequential”
means a processing at every sampled time. As far as I know,
this is the first approach to sequentially implement CASA. The
speech separation ability of the proposed method is certainly
limited since the information which can be obtained sample
by sample is less than the information obtained by block-
processing. On the other hand, the proposed method can be
achieved in a low computational complexity.

In the proposed approach, a mixture signal is sequentially
decomposed into frequency signals by using a modified DFT
(MDFT) [12]. Four features in ASA are sequentially extracted
from the decomposed frequency signals. By using the extracted
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Fig. 1. Single input model of ASA.

features, decomposed frequency signals which were assumed
to compose an unmixed signal are grouped. Original signals
are obtained by recomposing the grouped frequency signals.
In this paper, we attempt to separate a mixed speech only
using the harmonic structure, which is one of four features
and regarded as a backbone in our approach.

II. AUDITORY SCENE ANALYSIS

ASA psychologically explains the auditory mechanism of
human beings and gives us a framework for implementing the
auditory function of human beings in computational systems
[1], [2]. The single input model of ASA is illustrated in Fig.
1. From a mixed sound, four features: common onset/offset,
harmonic structure, common change, and gradual change, are
extracted and then grouping is achieved by using individual
feature. Total grouping is performed by considering the group-
ing results and generates separated sounds.

III. SEQUENTIAL PROCESSING OF ASA USING MDFT
PAIR

In order to implement ASA in real-time processing, we
adopt a modified DFT (MDFT) pair[12]. The MDFT pair is
obtained by simplifying an original DFT pair and defined as
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Fig. 2. Sequential implementation of ASA using MDFT pair.

where NN is the number of samples for DFT analysis and
assumed to be even hereafter. MDFT requires only real number
calculations and MIDFT is achieved by summing MDFT
outputs. In other words, MDFT sequentially decomposes an
input signal into frequency signals while maintaining their
phase differences; therefore, MIDFT is achieved, that is, the
input signal is recomposed only by adding the frequency
signals. Please refer to Ref. [12] about the details of a MDFT
pair.

Moreover, in the case of applying a window function,
MDFT is rewritten as [13]
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where n’ = n — N /2. This modification causes the delay of
N/2 in an output.

Sequential implementation of ASA using MDFT pair is de-
scribed in Fig. 2. A mixed sound z; is sequentially decomposed
into frequency signals by using MDFT. From the frequency
signals, four features of ASA are extracted by the Detectors.
In the Grouping Controller, it is determined which group each
frequency signal belongs to by using the extracted features.
The grouped frequency signals are composed in MIDFT and
a separated signal z}" is obtained.

It can be also performed to extract frequency signals from
a mixed signal by using a filter bank or a sinusoidal modeling.
However, it is important to guarantee linear phase in extracted
frequency signals. MDFT perfectly guarantees the linear phase
characteristic.

IV. DETECTION OF HARMONIC STRUCTURES

It is natural that frequency signals which compose a
speech have different amplitudes and phases. This fact greatly
influences on sequential detection of commonality features:
common onset/offset and common change; therefore, it is
expected that the detection accuracy of commonality features
is low.

Thus, we regard the harmonic structure of ASA features
as the backbone of the processing and supplementarily use
other features. This point greatly differs from the conventional
CASA based on block processing, and is first found by trying
to sequentially implement ASA. In this paper, we attempt to
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Fig. 3. Detection of spectral peaks.

separate a mixed speech only using the harmonic structure
feature.

A. Preprocessing of decomposed frequency signals

First, decomposed frequency signals are processed using a
moving average with 100 samples in order to simply suppress
noises. Sampling rate is assumed to be 8 kHz. Next, their
envelopes are extracted by using the signal level detector,
which had been proposed in Ref. [14].

B. Detection of spectral peaks

From the preprocessed frequency signals, spectral peaks
are sequentially detected. The detection method is not novel
and its concept is described in Ref. [15] for example. Since the
purpose of this research is to sequentially implement CASA, it
will be welcome to introduce other harmonics detectors with
high accuracy.

The procedure is explained using Fig. 3, where the horizon-
tal axis indicates frequency and the vertical axis is amplitude at
a sampling time. If the amplitude of an enveloped frequency
signal is larger than those of frequency signals at the both
adjacent frequencies, there assumed to be a spectral peak at
the frequency. However, we want to detect only discriminative
spectral peaks. By setting a threshold that is shown as the
dashed line, the spectral peaks with o mark that are larger than
the threshold are finally remained. Note that it is necessary for
us to adjust the threshold to the amplitude of an input.

C. Grouping by a harmonic structure

In general, a sound consists of a fundamental frequency
signal and its harmonics. By applying such relationship to
detected peaks, we can extract a harmonic structure.

Focusing on a detected spectral peak, it is examined
whether other spectral peaks exist on integral or fractional
multiple frequencies. The searching procedure is explained
using Fig. 4.

Getting the frequency of the first spectral peak as shown
in (a), the existence of other spectral peaks on its integral
multiple and fractional multiple frequencies is examined. In
this case, there are spectral peaks on twice, three times, and
four times the frequency. As a result, the frequency signals of
the first, second, fourth, and fifth peaks become candidates for
a harmonic structure.

The similar searching is performed on the second peak as
shown in (b). There are spectral peaks on half, 3/2 times,
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Fig. 4. Detection of harmonics structure.

and twice the frequency, and then the frequency signals of the
first, second, fourth, and fifth peaks become candidates for a
harmonic structure.

This searching is performed on all detected spectral peaks.
As a result, spectral peaks that are commonly candidates are
regarded as of a harmonic structure. In Fig. 4, frequency sig-
nals of the first, second, fourth, and fifth peaks are considered
to compose a harmonic structure.

However, if the number of spectral peaks that are regarded
to compose a harmonic structure is less than half number of
all detected peaks, the harmonic structure is not adopted. This
prevents the false detection of harmonic structures.

Frequency signals with a common harmonic structure are
grouped and then recomposed to generate a separated sound.
However, an original sound is never reconstructed by gathering
only harmonics. Frequency signals that are adjacent to the
harmonics are also necessary to reconstruct an original sound.
In this paper, adjacent frequency signals (k & 2) to harmonics
are grouped in total grouping.

V. EVALUATION IN A SIMULATION

In order to evaluate the ability of the proposed sequential
model of ASA, especially only by using the feature of har-
monic structure, we carried out a computer simulation.

We prepared two speeches (phonemes) pronounced by a
Japanese male and a Japanese female from a speech database.
By adding two speech signals, we obtained a mixed speech.
The speech signals and the spectra of the male, female and
mixed signal are shown in Fig. 5, 6, and 7, respectively.

The number of samples for MDFT was N = 768; there-
fore, the maximum frequency is N/2—1 = 383. The threshold
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Fig. 5. A male speech and its spectrum.
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Fig. 6. A female speech and its spectrum.

for extracting spectral peaks was set to 100 plus twice the mean
of the input spectrum. Considering the pitch of human voices,
the search range of a harmonic structure was k& > 7, which
was ~ 73 Hz. In general, the number of main harmonics is
approximately four in a human voice; therefore, the searching
range for the detection of harmonic structure was from 1/4 to
4. Concretely, integral multiple and fractional multiple values
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Fig. 7. A mixed speech and its spectrum.

for searching the harmonic structure was 1/4, 1/3, 1/2, 2/3, 3/4,
1,5/4, 4/3, 3/2,5/3,7/4, 2,9/4, 7/3,5/2, 8/3, 11/4, 3, 13/4, 10/3,
712, 11/3, 15/4, and 4.

Figures 8 and 9 show separated speeches and their spectra.
Comparing an unmixed speech in Fig. 5 or 6 with a separated
one in Fig. 8 or 9, respectively, it is confirmed that there was
the time-delay of approximately 400 samples. This is due to the
processing delay in MDFT and the preprocessing of frequency
signals.

Comparing the spectra of unmixed speeches with those of
separated speeches, it is confirmed that the spectral elements
could be roughly separated. However, there are some breaks in
the separated signals. In addition, it is noticeable that higher
harmonics than fourth were not reconstructed in the male case.
This is due to setting of the search range. In addition, spectral
peaks are detected in higher frequency range but their ampli-
tudes are greatly attenuated. In this paper, adjacent frequency
signals (k £ 2) to harmonics are automatically grouped in the
total grouping. Some adaptive method for controlling adjacent
frequency signals may solve the problem. Other features in
ASA which were not implemented in this paper are expected
to be applied to the method.

VI. CONCLUSIONS

We have studied to sequentially implement ASA. In our
model, a mixture signal is sequentially decomposed into fre-
quency signals in parallel by using MDFT, four features of
ASA are extracted from the decomposed frequency signals,
the decomposed frequency signals are grouped by using the
extracted features, and original signals are reconstructed by
composing the grouped frequency signals. In particular, the
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Fig. 9. The separated another speech and its spectrum.

harmonic structure becomes the backbone of processing and
other features are used supplementarily.

Thus, in this paper, we evaluated the reconstruction ability
of separated speeches only by using the harmonic structure
feature. As a result, it was confirmed that the spectral elements



of each speech could be roughly separated but there were some
breaks in the separated signals. There are many issues to be
re-considered.

Our challenge is quite primitive. To implement other fea-

ture extraction and to group using all features are also urgent
issues to be studied. After implementing all functions, we
will have to evaluate the speech separation performance using
various speeches.
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