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Abstract. Using the dx2
−y2+dz2 two orbital model of the high Tc cuprates obtained from

the first-principle calculation, we show that the material dependence of the Fermi surface shape
can be understood by the degree of the mixture between the dx2

−y2 and the dz2 orbitals.
We explain, through investigating the tightbinding hopping integrals, why some cuprates have
square shaped Fermi surface, while others have more rounded ones. From this viewpoint, we
explain the experimentally observed correlation between the curvature of the Fermi surface and
Tc.

1. Introduction

In the high Tc cuprates, the ’main band’ having strong Cu3dx2
−y2 orbital character constructs

the Fermi surface, and the single band model that considers only the main band has often
been adopted in the theoretical studies. Such single band or related models have provided
us many understandings, but there still remain unresolved problems. One of the issues often
discussed with controversy is the relationship between the curvature of the Fermi surface and the
critical temperature (Tc). It is well known that even within the single-layered cuprates, there is
significant difference of Tc, for example, the La compound with Tc ≃ 40K and the Hg compound
with Tc ≃ 90K. From the band structure point of view, the La cuprate has relatively square
shaped (diamond-like) Fermi surface, while the Hg material has a more round one. In fact, it
has been recognized that low Tc materials have square shaped Fermi surface, while high Tc ones
tend to have round Fermi surface[1, 2]. Although some phenomenological[3] or t−J model[4, 5]
studies describe such tendency, a number of Hubbard-type-model studies with realistic values of
the on-site U have not succeeded in reproducing such a tendency[6]. For example, the dynamical
cluster approximation studies that adopt a single band model [7], or a more realistic three band
model[8] that considers pσ orbitals show the opposite tendency.

To give insight into this long standing problem, we have constructed a dx2
−y2+dz2 two orbital

model that considers all the orbitals that have eg symmetry[9]. In this proceedings, we focus on
the relationship between the conventional single orbital model and the two-orbital model, and
explain the difference of the parameters that gives the material dependence.
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2. dx2
−y2 + dz2 two-orbital model

In Fig.1, we show the band dispersion of the two-orbital model constructed by exploiting
maximally localized Wannier orbitals,[10] which are obtained from the first-principles calculation
results[11]. The thickness of the lines represents the strength of the respective orbital character.
In the La compound, a significant amount of dz2 character is present in the main band around
the wave vector k = (π, 0)(0, π)(denoted as N in La and M in Hg), while in the Hg compound
such a mixture of the dz2 component is absent[12, 13, 14, 15].
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Figure 1. The band structure of the two orbital model for La2CuO4 (left) and
HgBa2CuO4(right). The insets depict the Fermi surfaces (for the total band filling n = 2.85).
The thickness of the lines represents the strength of the respective orbital character.

3. Comparison from the viewpoint of the hopping integrals

Let us now look into the hopping integrals of the models. In table I, the hopping integrals within
the dx2

−y2 orbitals of the two orbital model are displayed for the La and Hg compounds. For
comparison, we also show the values of the single band model obtained by the same method.
Conventionally, the difference of the Fermi surface curvature is represented by the value of the
second nearest neighbor hopping t2 and the third nearest hopping t3, where large |t2| and |t3|
gives more rounded Fermi surface. This tendency is in fact seen in the table.

Table 1. Hopping integrals within the dx2
−y2 orbital for the single and two-orbital models, and

∆E ≡ Ex2
−y2 − Ez2 .

Single-orbital Two-orbital
La Hg La Hg

t1[eV] -0.444 -0.453 -0.471 -0.456
t2[eV] 0.0284 0.0874 0.0932 0.0993
t3[eV] -0.0357 -0.0825 -0.0734 -0.0897

(|t2|+ |t3|)/|t1| 0.14 0.37 0.35 0.41
∆E[eV] - - 0.91 2.19

If we turn to the hopping integrals of the two orbital model, the values shown in Table
I is surprising in that the dx2

−y2 orbital has large |t2| and |t3| even for the La compound,
just as in the Hg compound. Namely, the curvature of Fermi surface is not governed by the
dx2

−y2 distant hoppings in the two orbital model that considers the dz2 orbital explicitly, and
another parameter plays an important role. In fact, the parameter is the on-site energy difference
∆E ≡ Ex2

−y2−Ez2 . In other words, ∆E in the two-orbital model determines the (|t2|+ |t3|)/|t1|
ratio in the effective single-orbital model. This can be understood as follows.
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Figure 2. A schematic image of the dx2
−y2 -dx2

−y2 diagonal hopping within the single (a) and
two-orbital(b) models. The left side of (b) shows the direct path, while the right side is the
indirect path via the dz2 orbital.

An electron can hop from a dx2
−y2 orbital to its second nearest neighbor mainly via the

direct diagonal dx2
−y2-dx2

−y2 path or the indirect dx2
−y2 → dz2 → dx2

−y2 path. The latter can
be considered as a second order perturbation process when the dz2 orbital degrees of freedom
is integrated out to obtain the effective single band model. As shown in table I, the value of
the direct hopping is nearly equal between the La and the Hg compound, so that the material
dependence comes from the indirect term.

The amplitude of the indirect term is generally large for smaller ∆E. In the La compound,
the relatively small ∆E mainly enhances the indirect path dx2

−y2 → dz2 → dx2
−y2 . From the

first-principles result, the direct hopping and the indirect term are found to have the opposite
sign, so the cancellation is strong when the amplitude of the indirect path is strong. As a result,
the small ∆E for the La compound gives the small effective t2 and t3.

The above analysis shows that the curvature of the Fermi surface in the La cuprate is
suppressed due to the large mixture between dx2

−y2 and dz2 orbitals. Therefore, the strong
dz2 mixture in the Fermi surface around the wave vectors (π, 0)/(0, π) is the origin of the weak
curvature.

4. The relationship between Fermi surface and Tc

Now, we finally discuss how ∆E affects the many body properties, especially d-wave
superconductivity. We consider a many body Hamiltonian that considers the on-site multiorbital
interactions with realistic values. In Fig.3, we plot the d-wave eigenvalue of the linearized
Eliashberg equation, where the Green’s functions are obtained within the fluctuation exchange
approximation[16, 17]. The eigenvalue reaches unity when T = Tc, so λ at a fixed temperature
(here T = 0.01[eV]) can be used as a qualitative measure for Tc. In the figure, the points indicated
by the arrows are the results of the model constructed from the experimentally determined lattice
parameters[18, 19]. This shows that the Hg compound has higher Tc than the La compounds, so
the result is consistent with the experiments. We also plot λ when ∆E is varied hypothetically in

the La system. Note that t
d
x2−y2

2
and t

d
x2−y2

3
are fixed because in the first principles calculation

they are not so much material dependent, as mentioned above. From Fig.3, it can be seen that
λ increases monotonically with ∆E, and comes close to the value of the Hg result. From this
result, we can say that ∆E governs both the shape of the Fermi surface (via the effective t2 and
t3) and Tc.



5. Conclusion

In conclusion, we have shown that the degree of the orbital mixture controls the shape of the
Fermi surface, and this gives the correlation between the Fermi surface shape and Tc. In this
picture, the parameter that largely contributes to the material dependence is ∆E, the on-
site level offset between the dx2

−y2 and dz2 Wannier orbitals. This picture also explains the
conventionally adopted material dependence of the second and third nearest neighbor hoppings
in the single band model.

 0.0

 0.5

 1.0

 0  1  2  3  4

 λ

 ∆E [eV]

Hg

La  original

Figure 3. The eigenvalue λ of
the Eliashberg equation for d-wave
superconductivity plotted against
∆E ≡ Ex2

−y2 − Ez2 . The points
with arrows are the results obtained
using the original lattice structure
(determined experimentally). Cir-
cles are the results obtained by hy-
pothetically varying ∆E in the La
system.
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