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Abstract— In this study, we aim at the realization of 

authentication using evoked electroencephalogram (EEG) when 

presenting invisible  visual stimulation as biometrics 

authentication towards safer and continuous authentication. In 

the previous researches, the measured EEG signal was processed 

by fast Fourier transform (FFT), and the power spectrum 

obtained was used as an individual feature, but the equal error 

rate (EER) representing the verification rate was about 43%. 

Therefore, in this paper, we introduce wavelet transform, which 

is a time-frequency analysis method, and extract a new 

individual feature including temporal information to improve 

the verification rate. As a result of evaluating the verification 

performance, in the case of presenting an invisible visual 

stimulation, the verification rate averaged over all electrodes 

tends to be improved as temporal information is included. In 

addition, as a result of evaluating the verification performance 

with data in which the start time of presenting stimulation is 

synchronized, the EER is the best at 14.0%, which is greatly 

improved compared to the conventional verification rate. 

I. INTRODUCTION 

Recently, biometrics information (fingerprint, face, iris, 

etc.) has attracted attention as a means of person 

authentication when using smartphones and ATMs. However, 

because biological information such as fingerprints and faces 

are exposed on the body surface, it is easy for other people to 

steal the information. Once stolen, it cannot be changed or 

reissued like a password. In order to prevent this, it is 

necessary to use the information that exists in the body such 

as a vein. In addition, when a user uses a system, widely used 

biometrics authentication technology cannot cope with user's 

change after authentication because it assumes only one-time 

authentication. To achieve higher security against the above 

problem, it is desirable to continue authentication while using 

the system. To realize the continuous authentication, it is 

necessary to continuously acquire user's biometric 

information. Therefore, likely the biometric information that 

the user has to consciously present every authentication 

becomes less convenient. Hence, it is desirable that biological 

information can be presented unconsciously. 

Recently, researches using electroencephalogram (EEG) 

signals as biometrics have been actively conducted [1-7]. 

EEG is a variation in electric potential acquired by an 

electrode attached to the scalp and always occurred 

unconsciously from human beings as long as they live. 

Therefore, it is superior in data security. 

There are two kinds of EEG, one is EEG that responds to 

external stimulation such as light and sound, and the other is 

EEG that is constantly generated in the unconscious state [8]. 

Researches on EEG recognition using EEG induced by 

external stimulation focus mainly on event-related potentials 

(ERPs) and visual-evoked-potentials (VEPs). However, the 

stimulation is perceptible to users [1,2,6,7]. To realize 

continuous authentication, it is considered that the visible 

stimulation is an obstacle to the user when using a system. 

The stimulation needs to be invisible to the user. Nakanishi et 

al. [9] conducted a research on person identification using 

evoked EEG with invisible visual stimulation, but the error 

rate was 43% which was not a high authentication rate. 

Therefore, this study aims to improve the verification rate 

when using evoked EEG by invisible visual stimulation. 

The boundary at which a person can or cannot perceive a 

stimulation is called threshold and the unperceivable area is 

called subthreshold [10]. The researches of subthreshold 

stimulation have been mainly conducted to explore the 

perceptual threshold [11-15]. Focusing on visual stimulation, 

there are three ways to generate subthreshold stimulation: the 

first is a method of generating subthreshold stimulation by a 

high-speed frame rate and contrast change of the stimulation 

on a display [16]. The second is a method called continuous 

flash suppression (CFS). By presenting a different image to 

each eye, the subject image is masked by the other image and 

thus it becomes subthreshold stimulation [17]. The third is a 

method called posterior masking. The consciousness of the 

preceding stimulation is masked by the following stimulation 

and as a result the preceding stimulation becomes 

subthreshold stimulation [18]. By generalizing the findings 

from the above studies, ERP is not confirmed at the 

perceptual threshold, and the power spectrum in the alpha 

wave band (8-13 Hz) increases when an invisible stimulation 

is given especially in the area around the occipital region [16-

19]. 

II. PREVIOUS RESEARCH 

The outline of the previous research [9] of the person 

verification using the EEG induced by invisible visual 

stimulation is described below. 

EEG measurement was conducted with 20 subjects and 10 

times per subject. As shown in Fig. 1, a red fixation point was 

placed at the center of the white background. As visual 

stimulation, a black circle was presented above or below the 

point. The contrast of the visual stimulation was adjusted and 



the display time of the stimulation was about 8 ms. Figure 2 

shows the flow of stimulation presentation. First, an image 

with only the fixation point is presented for 5 seconds, and 

then a presentation cycle of 1 second (this is one set) in which 

there was an image with a black circle of 8 ms and images 

with only fixation point of 992 ms was repeated 55 times. The 

subjects remained at rest in a dark room. The EEG sensor 

used for the measurement was EMOTIV EPOC (14 electrodes, 

sampling rate: 128 Hz, bandwidth: 0.2-43 Hz). In addition, 

four stimuli with different contrasts were created. After the 

measurement, the subjects were asked whether the black 

circle was observable. Figure 1 shows four stimulation images 

of intensity 0%, 5%, 10% and 100%. In the study, the 

stimulation with stimulation intensity 5%, which were 

invisible to all subjects was regarded as an invisible visual 

stimulation. 

In feature extraction, the EEG data were processed by fast 

Fourier transform (FFT), and the power spectra in 8-13 Hz (α), 

13-20 Hz (low β), 20-30 Hz (high β) and 30-43 Hz (γ) were 

obtained. Euclidean distance was used for verification. As the 

verification performance evaluation, the false rejection rate 

(FRR) and the false acceptance rate (FAR) were obtained, and 

their intersection: equal error rate (EER) was obtained. The 

smaller the EER, the better the verification performance. 

Figure 3 shows FRR, FAR, and EER. As a result, even the 

best EER was 43% in alpha wave band, and high verification 

performance was not obtained.  

III. INTRODUCTION OF TIME FREQUENCY ANALYSIS 

In the previous research [9], the power spectra of the EEG 

signal obtained by FFT was considered as an individual 

feature. However, since the temporal change of frequency 

components cannot be analyzed by FFT, the temporal 

information was lost. So, in this study, we examine a new 

feature which includes temporal information by wavelet 

transform, which is well-known as a time-frequency analysis 

method. 

A. Continuous Wavelet Transform (CWT) 

A wavelet basis is defined as Eq. (1) by scaling and 

translating a localized basis wave  called analyzing 

wavelet or mother wavelet [20].     

 
(1) 

   The continuous wavelet transform is defined as Eq. (2) by 

convolving the signal x(t)with the wavelet basis 

 

(2) 

where a is called a scale parameter which corresponds to the 

inverse of a frequency and b is a shifting parameter which is a 

time index. The wavelet base is scaled by changing the value 

of a and translated by changing the value of b. The wavelet 

coefficients  are squared to obtain a scalogram which  

 
Fig. 1.  Stimulation images (stimulation intensity 0%, 5%, 10%, 

100% from the left) 

 

 
Fig. 2.  Flow of stimulation presentation 

 

 
Fig. 3.  Definition of FRR, FAR, and EER 

 

is used as a time-frequency feature with the time axis: b and 

the frequency axis: 1/a. When the scale parameter a is 

increased, the frequency resolution becomes finer but the time 

resolution becomes coarser and vice versa. In this way, CWT 

always makes the time and frequency resolution optimal 

according to a frequency band. 

B. Synchronization of scalograms 

Scalograms as individual feature include temporal 

information; therefore, To compare scalograms it is necessary 

to synchronize the presentation instants of visual stimulation. 

In this study, EEGs measured in Ref. [9] were used but in this 

data set, the electroencephalograph and the device for 

stimulation presentation were not be strictly synchronized. 



Therefore, we need to synchronize the moments of presenting 

visual stimulation. As described in Sec. Ⅱ, the visual 

stimulation is presented every one second. Therefore, it is 

certain that EEG data for one second include one evoked 

response. From a one-second EEG, a one-second scalogram is 

extracted. Based on a scalogram as a template, a scalogram of 

a verification EEG is cyclically shifted in the time direction 

and the correlation value is calculated at each shift. The 

correlation value is determined by the following equation. 

The shift value with the maximum correlation value is taken 

as a pseudo synchronization point. 

 

(3) 

where f and g are the power of two scalograms, I is the 

frequency range, J is the time range, and k is the shift sample 

value. 

Since this synchronization method does not require strict 

synchronization between the electroencephalograph and the 

stimulus presentation, it can be implemented in a simple 

measurement environment. On the other hand, since this 

method only calculates a shift value that gives the most 

similar distribution in two scalograms, accurate 

synchronization cannot be always achieved. 

IV. FLOW OF VERIFICATION  

Figure 4 shows the follow of verification. We used EEGs 

measured in the previous study [9]. However, EEGs which 

obviously include spike noise were excluded and as a result, 

eight EEGs were used per subject. Each EEG was divided 

into multiple one-second data, and all one-second data were 

ensemble averaged to obtain a one-second EEG. The one-

second averaged EEG was converted to a scalogram of 1-43 

Hz by CWT (Mother wavelet: Morlet, Center frequency: 1.0 

Hz) and normalized. The normalization is performed by 

adjusting the average of the total power amount to 0 and the 

standard deviation to 1.  

Next, the synchronization processing described in Sect. III 

is performed. After synchronization, α (8-13 Hz), low β (13-

20 Hz), high β (20-30 Hz), and γ (30-43 Hz) wavebands were 

extracted as an individual feature. Furthermore, to show the 

superiority of introducing temporal information, scalograms 

averaged in the time direction in four different resolutions 

were compared with an original scalogram. Those scalograms 

averaged in the time direction are shown in Fig. 5. Each 

frequency band of scalograms averaged at this time resolution 

was evaluated as a feature. Verification performance 

calculated Euclidean distance between the average of the 

template and the test data. A threshold is set, the test data with 

smaller distance than the threshold are regarded as genuine 

and otherwise are reject. 

V. RESULTS AND DISCUSSION 

A. Results of Verification performance evaluation 

 
Fig. 4.  Flow of verification 

 

 
Fig. 5.  Scalograms, an original one (a) and four different 

time-resolution ones (b)-(e). 

 

Among eight EEG data per subject, four were used for 

making a template and the remaining four as test data. A 

template was created by ensemble-averaging four scalograms 

synchronized to one of them. Figure 6 shows the evaluation 

results of the verification performance obtained by averaging 

EERs of all electrodes in the α (8-13 Hz) waveband at each 

stimulation intensity. When the stimulation intensity is 5%, 

that is, when invisible visual stimulation was presented, the 

EER decreased as the number of time resolutions increased. 

This means that the verification rate was improved by 

introducing temporal information. However, such 

improvement was about a few percent and insufficient. In 

addition, the increase in the number of time-resolutions did 

not improve the verification rate except at a stimulation 

intensity of 5%. The reason is considered as follows. There is 



no visual stimulation when the intensity was 0%, so there was 

no evoked response; therefore, there was no feature difference 

in individual responses even when the number of time 

resolutions was increased. In the cases of stimulation intensity 

10% and 100%, the stimulation could be perceived by several 

and all subjects, respectively. In this study, the spectrum in 

the α wave band which is effective in the case of presenting 

invisible stimulation was used as individual feature. Therefore, 

it was not effective in the case of visible stimulation. 

Moreover, in the case of low β, high β, and γ wavebands, the 

improvement of the verification rate by the increase in the 

number of time resolutions was not obtained. 

The EER of each electrode at intensity 5% is shown in Fig. 

7. EERs of time resolution 8 is smaller than those of time-

resolution 1 at thirteen electrodes. Therefore, the effect of 

introducing the time-frequency analysis was confirmed. 

 

B. Excluding of EEGs which could not be synchronized 

The verification performance was improved by including 

temporal information in the case of invisible visual 

stimulation, but it was still over 40%. This may be due to 

miss-synchronization before feature extraction. In this study, 

the synchronization of two scalograms compared is performed 

by calculating their correlation value in the time direction and 

sifting either scalogram by a value with the maximum 

correlation in a time-axis. However, this method cannot 

always perform complete synchronization. Therefore, we tried 

to achieve the synchronization of scalograms by our visual 

observation. As a result, there were several scalograms which 

could not be synchronized even by the visual observation. 

Examples of such scalograms are shown in Fig. 8 comparing 

with those in which synchronization by the visual observation 

is possible. Thus, after removing such scalograms, that is, 

EEGs, we re-evaluated verification performance using six 

EEGs per subject. Three data were used for making a 

template, and the remaining three data were used in the tests. 

Figure 9 shows EERs in different time-resolutions at an 

intensity of 5% and electrode O2. EER is improved by about 

10~20% as compared with those at the electrode O2 in Fig. 7. 

Especially, EER is the smallest at 14.0% when the time 

resolution is 2. Therefore, the verification performance was 

improved to 80%~85%. It is suggested that scalograms 

obtained by time-frequency analysis are more appropriate for 

verification than spectral features. In this study, we focused 

on only O2 because its position corresponds to the back of the 

head, which is considered to have the largest influence on 

EEGs by visual stimulation. However, the investigation using 

only O2 is not sufficient, so it is necessary to examine the 

results with other electrodes in the future. 

VI. CONCLUSIONS 

In this study, we aim at the realization of authentication 

using evoked EEG when presenting invisible visual  

 
Fig. 6.  EERs in four time-resolutions at each stimulation 

intensity 

 

 
Fig. 7.  EERs in four time-resolutions at each electrode in the 

case of stimulation intensity 5% 

 

 
Fig. 8. Examples of scalograms which could be synchronized: 

(a) and could not be synchronized: (b) 

 

 
Fig. 9.  EERs when excluding scalograms which were unable 

to be synchronized 



stimulation as biometrics towards safer and continuous 

authentication. In the previous research, power spectra were 

extracted as an individual feature, but a high verification rate 

was not obtained. In this paper, we introduced time-frequency 

analysis and evaluated the verification performance with 

features including temporal information. As a result, in case 

of presenting an invisible visual stimulation, the verification 

performance averaged over all electrodes was improved. 

However, the improvement of the verification rate was about 

several percents. Therefore, we eliminated scalograms which 

are difficult to synchronize by our visual observation, and 

then re- evaluated verification performance. As a result, EER 

of 14.0% was achieved when the number of time-resolution 

was 2. This suggests that more accurate synchronization of 

scalograms leaves the room of much improvement of 

verification performance. On the other hand, it is necessary to 

construct a measurement environment for scalograms can be 

always synchronized in the future. In addition, we select the 

stimulation that induces a specific response to the individual. 

It may increase the individualize of a feature and improve the 

verification performance. 
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