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Abstract—In recent years, biometrics such as fingerprints
and iris scans has been used in authentication. However, con-
ventional biometrics is vulnerable to identity theft, especially
in user management systems. As a new biometric without
this vulnerability, we focused on brain waves. In this paper,
we show that individuals can be authenticated using evoked
potentials when they are subjected to ultrasound. We measured
the electroencephalograms (EEGs) of 10 experimental subjects.
Individual features were extracted from the power spectra of the
EEGs using the principle component analysis and verification
was achieved using the support vector machine. We found that
for the proposed authentication method, the equal error rate for
a single electrode was about 22-32 %. For a multi-electrode, the
equal error rate was 4.4 % using the majority decision rule.

Index Terms—Dbiometrics; brain wave; EEG; ultrasound;
evoked potential

I. INTRODUCTION

Biometrics has been studied as a method of authenticating
people [1]. Modalities such as fingerprints and facial images
have already been used in various applications. However,
conventional biometrics is used in one-time-only authenti-
cation. Therefore, especially in user management systems,
conventional biometrics have a vulnerability that unregistered
users can access the system after a registered user has logged
in. An effective way to prevent this type of identity theft is to
implement continuous authentication. In this type of authenti-
cation, the biometric data should be presented unconsciously
because the system should not be inconvenient to use. Also,
conventional biometrics, such as fingerprints and facial image
recognition, is based on information exposed on the surface of
the body, so that there is a risk of identity theft. For example,
a prosthetic produced from stolen biometric data could be
used for authentication. Therefore, we focus on brain waves
measured by electroencephalography (EEG), which records
the electrical signals produced by an active human brain. The
signals are always produced as long as the person is alive, so
this information can be measured continuously. Besides, since
brain waves are detectable only when the person is wearing
a brain-wave sensor, it is not possible for others to steal the
data covertly.

There are two types of brain waves. Spontaneous brain
waves always occur and induced ones are evoked by any
thoughts or external stimuli. We studied biometric authenti-

Takehiro Maruoka
Graduate School of Sustainability Sciences
Tottori University
Tottori, Japan
Email: m17J4052 @eecs.tottori-u.ac.jp

cation using spontaneous brain waves, but the accuracy was
not sufficient [2]. Therefore, here we focus on the uniqueness
of the induced brain waves evoked when someone is presented
with sound stimuli. However, since audible sound stimulation
is a conscious activity for the user, it is unsuitable for
continuous authentication. The stimuli must be unrecognizable
to the user. Therefore, we focus on ultrasounds. Ultrasounds
are high-frequency sounds that are inaudible to human beings.
The user is not distracted by this stimulus.

In recent years, to use the brain wave as biometrics has
been actively studied [3], [4], [5S]. However, almost all of them
evaluated authentication performance using spontaneous brain
waves when experimental subjects are relaxed with eye-closed.
Such a situation is not assumable in practical applications.
There are some researches which used visual stimulation [6].
However, visible stimulation is not suitable for continuous
authentication. The idea to use induced brain waves evoked
by inaudible stimulation as biometrics is our original.

In [9], we confirmed that the induced brain waves were
evoked by the ultrasounds, which were common stimulation to
all experimental subjects. In this paper, we introduce personal
stimulation which is an ultrasound in a music which is mem-
orable to each experimental subject. The personal stimulation
is expected to induce more different response in a brain
wave and improve authentication performance. We measure
the EEGs of the subjects when personal ultrasonic stimula-
tion are presented and examine authentication performance
using a support vector machine (SVM) for each electrode.
Furthermore, to improve the performance, the SVM results
are integrated on the basis of the majority rule.

II. PERSONAL ULTRASOUND STIMULI

The frequency range audible to human beings is generally
from 20 Hz to 20 kHz, and sounds beyond 20 kHz are
inaudible and called ultrasonic. However, an evoked potential
can occur when audible sounds are presented with ultrasounds
[7]. This is called the hypersonic effect. It is known that the «
band of brain waves is activated 20 s after the start of stimulus
presentation. On the other hand, there is also a report that a
similar phenomenon is caused only by ultrasounds [8], [9].

Stimuli that mean something to the person produce different
evoked potentials compared with random stimuli [10], [11].
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Fig. 1. The experimental environment.
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Fig. 2. Evoked responses for (a) personal ultrasonic stimulation and (b)
unrelated ultrasonic stimulation.

In this paper, we use sounds that mean something to the
individuals in order to generate more individuality in the
evoked potentials. However, as far as we are aware, all the
research into personal sound stimuli have used only audible
sound. It is unknown what type of potential is evoked when
personal stimuli are presented as ultrasound.

Therefore, we examined the EEGs of individuals when they
were presented with personal ultrasound stimuli. For this, we
used a memorable music for each individual. The memorable
music was selected using a questionnaire to experimental
subjects. The ultrasonic stimuli were made by filtering audible
elements from high-resolution sounds, of which sampling rate
was 96 kHz, and bit depth was 24 bits. The frequency range
of the speaker used for stimulus presentation was 48 Hz to
100 kHz.

Figure 1 shows the experimental environment. We placed a
recorder to confirm that the ultrasound stimuli were actually
presented. The sound level meter was for adjusting the levels
of the original sounds. To prevent artifacts due to eye blinking
or other movement, the lights in the room were turned off and
the subjects were instructed to keep still and to close their eyes.
The brain-wave sensor was EMOTIVE’s EPOC + premium,
which had 14 electrodes and the sampling frequency was 128
Hz.

Figure 2 compares the evoked potentials caused by (a)
personal and (b) unrelated ultrasonic stimulation. The EEGs
from the F3 electrode on the right frontal lobe were processed
with a fast Fourier transform (FFT) to obtain an EEG power
spectrogram. This was normalized using the content ratio,
which is the proportion of power spectral elements in a certain
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Fig. 3. A typical order of sound stimuli.

frequency band to that of all frequency bands. We identified
evoked potentials in high-frequency bands, such as the § and
~ bands (13-42 Hz), with personal ultrasonic stimulation but
not with an irrelevant stimulus.

III. VERIFICATION PERFORMANCE

We created a verification system using SVM models and
evaluated its performance. For this evaluation, we measured
EEGs from 10 subjects 10 times.

A. Measurement conditions

EEGs were measured in the same environment as Sect. II,
and we created the ultrasound samples in the same way. Note
that we presented three types of stimulation: personal stimuli
created from high-resolution sounds selected by subjects,
stimuli relevant to other subjects, and a stimulus common
to all subjects. The stimuli relevant to other subjects were
used to see what would happen with an identity imposter. The
common stimulus was used for comparison. Figure 3 shows
a typical order of sound stimuli. Each subject underwent 10
measurements, and the order of the stimuli was changed for
each measurement.

B. Pre-processing of EEG data

First, from the measured EEG data, we extracted a section
of data for the 30 s from the start to the end of each
stimulus. Then, the trend was found for each section using
the approximate straight line calculated using the least-squares
method. On the basis of visual observation, the sections that
were regarded as being obtained by failure measurement were
excluded from the database. Finally, the database consisted of
80 data (10 subjects x 8 sections).

C. Feature extraction

The feature used for authentication was based on the power
spectrum calculated by FFT. The window function was the
Hamming window. The power spectrum obtained (960 ele-
ments) was divided into 24 partitions, and the average value
was calculated for each partition. As a result, 40 average values
were obtained, which were processed by principal component
analysis (PCA). By extracting the top three principal com-
ponents, the number of dimensions was reduced to 3, which
were used as individual features. The cumulative contribution
was 80-90 %. We also found that applying the log scale to the
power spectrum improves the performance at some electrodes.
As observed in Fig. 2, there are evoked responses in the
higher frequency band, but they are weaker than those in the
lower frequency band, so that it is hard to extract them using
a normal power spectrum. The logarithmic transformation
enhances weak power spectral elements while it suppresses
large ones.
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Fig. 4. Verification procedure.

D. Classifier

In this study, we assume verification of users and used
SVMs for the verification. The verification procedure is shown
in Fig. 4. In the enrollment phase, we created a one-vs-all
SVM model to distinguish a user from other ones. In the
verification phase, an applicant is judged whether he/she is
genuine by a SVM model relevant for him/her. When learning
each SVM model, four genuine data and four imposter data
were used. The remaining data were used to evaluate the
method. The genuine data were the EEG data when personal
stimuli were presented to genuine users. The imposter data
were EEG data when the personal stimulus of each genuine
user was presented to other ones. We used the tool kit SVM-
light [12] developed by Cornell University to build the SVM
models. To create an SVM model, it is necessary to set kernel
functions (linear kernel, polynomial kernel, or radial basis
function kernel) and parameters. We found the optimal settings
with a grid search.

E. Evaluation

In an authentication system, the false acceptance rate (FAR)
that is the rate of accepting imposters and the false rejection
rate (FRR) that is the rate of rejecting genuine users are used
and there is a trade-off between these rates. Therefore, for
performance evaluation, we use the equal error rate (EER),
where FAR = FRR. In addition, in order to reduce the influence
of selecting data for enrollment and verification stages, we
introduce cross-validation into the selection based on a random
sampling method. The number of random sampling is 10.

Table I shows the EERs for the 14 electrodes. Their aver-
aged value was 26.2 %. The best performance was EER = 22.0
% for 02 and the EERs of ol and o2 are relatively smaller than
others. The ol and 02 are located on the occipital lobe which
mainly processes visual information. On the other hand, the

TABLE I
EERS (%) FOR THE 14 ELECTRODES.

Left
AF3| F7 F3 FC5| T7 P7 0O1
26.5 30.8| 26.5| 32.0| 32.0| 26.8| 22.6
Right
02 P8 T8 FC6| F4 F8 AF4
22.0( 249| 252| 236| 259| 252 223

Error Rate [%]

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Threshold

Fig. 5. Error rate curves when using the majority rule.

EERs of electrodes (02, P8, T8, FC6, F4, F8, AF4) in the right
hemisphere are relatively smaller than those (o1, P7, T7, FC5,
F3, F7, AF3) in the left hemisphere. There is a knowledge
that the right hemisphere is central for recognizing faces of
known persons. The personal ultrasounds were also known to
subjects. Such a condition might influence the above results
but further considerations are necessary.

FE. Majority decision using multiple electrodes

The EERs obtained by individual electrodes are inadequate.
Therefore, we introduce multichannel judgment using the
results from all electrodes. There are some approaches to
fuse multiple modalities for authentication: input-level fusion,
feature-level fusion, score-level fusion, and so on. In this
paper, we introduce the score-level fusion into the verification
procedure as shown in Fig. 4 since it is easier to implement
compared with other fusions, In score-level fusion, each
modality is separately judged, and a final judgment is based
on a logical operation of all judgment results. In this study,
the most common verdict among the 14 electrodes (genuine
or imposter) was adopted as the majority decision. Figure 5
shows the error rate curves when using the majority rule. The
horizontal axis (threshold) is the number of electrodes needed
to determine that the applicant is genuine. As a result, the EER
was 4.4 %.

For your information, the EERs are 59 % and 11.0 %
when using the results from electrodes in the right hemisphere
and the results from top three electrodes, respectively. The



verification performance was not improved. In this case, the
robustness increase by using more electrodes may gain an ad-
vantage over the accuracy improvement by selecting electrodes
with better performance.

IV. CONCLUSION

The purpose of this study is to authenticate individuals
using potentials evoked by ultrasound. We created personal
stimuli using memorable sounds. In this paper, we created a
verification system and evaluated its performance.

The feature used in the proposed system is the frequency
power spectrum. However, since low-frequency components
are more dominant than high-frequency ones in an EEG, it
is hard to incorporate the potentials evoked by ultrasounds
in feature extraction. Therefore, we introduced a logarithmic
scale. SVM was used as the classifier. However, in SVM, if
the number of features is larger than the number of learning
data points, there is a risk of over-learning. For this reason,
the dimension of the feature vector space was reduced to 3
using the average spectrum and principal component analysis.
Finally, the verdicts for all electrodes were integrated and the
final verdict was the majority decision. As a result, the EER
of the proposed system was 4.4 %.

EER when using fingerprints as biometrics is less than 1 %;
therefore, EER of 4.4 % is not great achievement. However,
it is very important that biometric authentication using evoked
potentials stimulated by personal ultrasound is feasible for the
first time.

To improve performance further, we are planning to inves-
tigate better ways to integrate the results of the electrodes. In
addition to score-level fusion, we will consider feature-level
fusion. Furthermore, we need to measure the brain waves of
more subjects. In addition, although music memorable to the
users was used as the personal stimuli in this study, there is
a risk that the same piece of music may be selected by some
users. Therefore, we are considering using highly personalized
stimuli, such as the person’s name.
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