
Introduction of a Mutual Feature between
Electrodes into Support Vector Machine Based

Person Verification Using Evoked
Electroencephalogram by Ultrasound

1st Isao Nakanishi
Faculty of Engineering

Tottori Univerisity
Tottori, Japan

0000-0001-9533-9987

2nd Kotaro Mukai
Faculty of Sustainable Sciences

Tottori University
Tottori, Japan

Abstract—In user management, to realize continuous user
authentication, we study the use of an electroencephalogram
(EEG) evoked by ultrasound as biometrics. In previous studies,
using a spectrum and four nonlinear quantities in EEG as
individual features and a support vector machine (SVM) as a
verification method achieved an equal error rate (EER) of 0 %.
However, it required a large number of SVM models, wherein
considerable amount of computation regarding learning was
consumed. In this study, we introduce a mutual feature between
electrodes and confirm its effectiveness in achieving EER = 0 %
with a smaller number of SVM models.

Index Terms—biometrics, SVM, ultrasound, evoked brain
wave, mutual feature between electrodes, reduction of SVM
models

I. INTRODUCTION

Unlike conventional passwords and ID cards, biometrics
is a convenient user authentication method, which does not
require users to remember or to have anything. Fingerprints,
irises, and faces are well-known typical biometrics. However,
these are exposed body parts. Hence, there is high risk
that their information be stolen by an imposter and then an
authentication system be deceived by using imitated biometrics
made by the stolen information. In addition, these biometrics
often consider one-time-only authentications, whereby the
authentication is executed only at the beginning of system
use. Consequently, they cannot detect user replacement after
authentication (spoofing). Here, continuous authentication is
required to prevent spoofing.

In this study, we focused on a brain wave, which is
not exposed on the body surface. It is highly confidential
and suitable for contentious authentication. Particularly, we
proposed verifying users with brain waves evoked by ultra-
sound. We expected that individual differences existed between
stimulation responses and they were further increased owing
to individually related stimulation. In previous studies, the
verification performance was evaluated using a spectrum and
three nonlinear values (sample entropy, maximum Lyapunov

exponent, and permutation entropy) in brain waves as individ-
ual features. Additionally, a support vector machine (SVM)
as a verification method was used. An error rate of 0 % was
achieved by the majority voting of all features and electrodes
[1]. However, majority voting required 56 SVM models (4
features×14 electrodes), which required a long learning period
(computational time). Consequently, reducing the number of
SVM models needed to be solved. In Ref. [2], the fractal
dimension nonlinear feature was introduced. Provided the
electrodes used in each feature were identical, all combinations
of features and electrodes were examined. Consequently, the
number of SVM models were reduced to 24 while maintaining
an error rate of 0 %.

In this study, a mutual feature between electrodes was intro-
duced. It is considerably different from conventional features
and further reduces the number of SVM models.

II. SVM BASED PERSON VERIFICATION USING EVOKED
EEG BY ULTRASOUND

In this section, we introduce a person verification method
based on SVM using an evoked electroencephalogram (EEG)
generated by ultrasound [1], [2].

The continuous authentication of the system user is nec-
essary to prevent spoofing. However, if the stimulation for
inducing the brain wave is perceptible, it obstructs the original
work. When a person is working with a system, if perceptible
stimulation is provided to him/her, it interferes with the origi-
nal work. Thus, we focused on ultrasound because it is not per-
ceptible to human beings. The human ear audible range stands
at 20 Hz∼20 kHz and sounds higher than that are considered
to be ultrasounds. Ultrasounds are not perceptible. However,
there are hypersonic effects whereby brain waves are activated
in the α waveband by sounds, including ultrasounds [3]. It has
been reported that responses in the brain wave to voices calling
their own names and familiar voices differ from unrelated
voices [4]. Thus, in experiments that use subjects, a familiar
sound to each subject was used and called personal ultrasound.



Fig. 1. Electrode position

Before the experiments, the memorable sounds of all subjects
were investigated and personal ultrasounds were created by
eliminating frequency elements under 20 kHz from high-
resolution (192 kHz/24 bit) sources of the memorable sounds
using a sound editing software. The personal ultrasounds were
presented to the subjects who sat in a relaxed state with their
eyes closed, and their EEGs were measured for 120 s, eight
times per subject. The subjects were 10 university students
aged between 22 and 24 with no hearing abnormalities. We
confirmed whether they had enough sleep by interviewing in
advance. To reduce the influence of environmental sounds
on the EEG, the measurements were performed in a room
at the university. The room didn’t have many people in the
corridor; therefore, it was relatively quiet. To measure EEG,
a consumer brain wave sensor, Epoc+ produced by Emotive,
had 14 electrodes: AF3, F3, F7, FC5, T7, P7, O1, O2, P8, T8,
FC6, F8, F4, AF4 as shown in Fig. 1.

After pre-processing (eliminating a trend and spike noises,
bandpass filtering, and normalizing) the measured EEGs,
individual features were extracted. A total of five features
were extracted: a spectrum (SP), four nonlinear values (sample
entropy (SE)), maximum Lyapunov exponent (ML), permu-
tation entropy (PE), and fractal dimension (FD)). However,
nonlinear features are originally one-dimensional; however. it
is not suitable for classification. Thus, the EEG was divided
into several regions in the time domain or six bands in the
frequency domain and the nonlinear values in the regions or
bands were used as multidimensional features. Verification was
performed using SVM [5], which is a two-class classifier based
on learning aimed at achieving high verification performances.
In this study, SVMlight [6] was used. The most preferred
kernel function was selected from the linear, polynomial, and
radial basis function kernels. Other parameters were deter-
mined via a grid search (brute forcing).

The verification process is illustrated in Fig. 2. In the en-
rolment stage, EEGs from all users (subjects) were measured.
Pre-processing, feature extraction, and principal component
analysis (PCA) were performed on the measured EEG and
SVM models were created using learning extracted features
for all electrodes.

SVM is a two-class classifier; therefore, each SVM model is
learned to distinguish a user form another user. Consequently,

Fig. 2. Verification process.

the number of SVM models required depends on the number
of users. Let the number of users m (m×m−1) SVM models
be required for each feature and electrode. However, to discuss
the independent number of SVM model of users in this study,
it is assumed that one SVM model is prepared for each feature
and electrode.

In the verification stage, EEG is measured from an applicant
who claim to be a regular user, and his features are extracted
similarly to the processing in the enrolment stage. Using each
extracted feature, the applicant is verified as genuine using
learned SVM models, which are related to the regular user.
If the number of SVM models that deem an applicant as
genuine is larger than a threshold, the applicant is regarded as
genuine. A verification result is obtained for each feature and
electrode. The final decision is performed by majority voting
of all verification results.

In this study, an equal error rate (EER) was used to evaluate
verification performances. In biometrics, there are two errors:
genuine users be rejected and non-genuine users be mistakenly
accepted. The former is evaluated using the false rejection rate
(FRR), which is the ratio of rejected data of genuine users to
all genuine users’ data and the latter is evaluated as a false
acceptance rate (FAR), which is the ratio of accepted non-
genuine users’ data to all non-genuine users’ data. The FRR
and FAR have a trade-off relationship. Thus, when plotting
them in a vertical axis with the threshold in a horizontal axis,
their curves intersect at one point; that is, the FRR is equal to
the FAR, which is called EER. A smaller EER implies higher
verification performance.

EERs by the majority voting of 14 electrodes for each of the
five feature and those by the majority voting of 14 electrodes
and all features are summarized in Table I. When majority

TABLE I
EERS [%]

Feature EER
SP 4.4
ML 3.1
SE 5.1
PE 4.3
FD 5.3
All 0.0



voting was used for all electrodes and features, that is, 70
SVM models (5 features×14 electrodes), an EER of 0 % was
achieved.

However, learning 70 SVM models is a heavy computational
(processing) load for authentication systems. In fact, (m ×
m − 1) times, as many models were required. Consequently,
the reduction in SVM models (features and electrodes) was a
problem that had to be solved.

The most reliable method is to examine the verification
performance in all combinations of features and electrodes and
determine that which has the least SVM models while main-
taining an EER of 0 %. However, the number of combinations
is large, and learning SVM models in all combinations requires
unrealistic computational time. Hence, it is impossible to do
so. Thus, by accepting several conditions that could reduce
the number of combinations, the verification performance of
all the combinations was evaluated. Consequently, under the
condition that identical electrodes are used for each feature, the
number of SVM models was reduced to 24 while maintaining
an EER of 0 % [2].

III. INTRODUCTION OF MUTUAL FEATURE BETWEEN
ELECTRODES

To make the classification easier brings to effectively further
reduce SVM models. In general, increasing the number of
features increases the number of dimensions in the classifica-
tion space, thereby facilitating classification. However, at the
extreme, even if the same feature is introduced, the number
of dimensions increases, but classification does not become
easier.

In previous studies, a spectrum and four nonlinear features
extracted from the EEG for each electrode were used. Brain
waves arise from the activity of many nerve cells and interact
with each other. If such a relation is represented as a feature,
a different feature from conventional ones is obtained. Fusing
the feature with conventional ones can further reduce SVM
models.

A. Mutual Feature

Recently, studies on quantifying connectivity between elec-
trodes and regarding them as nodes have been actively con-
ducted and applied for estimating diseases, such as epilepsy
and schizophrenia [7], [8], as well as person authentication
[9].

The basic analysis procedure is as follows. The relationship
between the electrodes is quantified as a correlation value
using EEGs from N electrodes; subsequently a square matrix
of N×N is obtained. When assessing if there is a relationship
between electrodes (brain regions), the quantified values are
binarized using a threshold. The network metrics are calculated
from the matrix.

In this study, mean phase coherence (MPC) was used to
quantify the relationship between electrodes, and eigenvector
centrality (EC) was used as a network metric.

1) MPC: Mean phase coherence (MPC) is a scale used to
measure the degree of synchronization between signals [10].
The calculation of MPC is as follows: Let the two signals be
xa(t), xb(t) with the number of sampled data N , and their
phases ϕa(t), ϕa(t) are defined as:

ϕa(t) = arctan
x̃a(t)

xa(t)
, (1)

ϕb(t) = arctan
x̃b(t)

xb(t)
, (2)

where x̃a(t) and x̃b(t) are obtained using the Hilbert transform
of xa and xb, respectively. The phase difference ∆ϕ(t) at t is
presented as:

∆ϕ(t) = ϕa(t)− ϕb(t) (3)

MPC is defined as the average phase difference given by

MPC =

∣∣∣∣∣ 1N
N−1∑
t=0

ei∆ϕ(t)

∣∣∣∣∣ . (4)

Finally, by calculating the MPCs between all electrodes, a
square matrix of N×N is obtained. In the matrix, the diagonal
components are zero, assuming there is no influence between
similar electrodes.

2) EC: EC is an index for evaluating the importance of
each node (electrode) [11]. Let the component of ith column
and jth row be ai,j in matrix A, and the EC of ith column
would be defined as:

Ci =
1

λ

N∑
j=1

ai,jej , (5)

where λ is the maximum eigen value of the matrix A and
ej(j = 1, · · · , N) are eigen values.

3) Multi-dimensionalization: The EC is an index (feature)
of one dimension. When using EC in pattern classification, it
is necessary to multi-dimensionalize the EC. Thus, in addition
to the multi-dimensionalization of nonlinear features [1], EEG
is divided into several regions in the time domain or six
bands in the frequency domain and EC is calculated in each
region or band. ECs obtained in all regions or six bands are
regarded as multidimensional features. In this study, 1 ∼ 10
divisions were examined in the time domain. In the frequency
domain, six bands, δ, θ, α, low β, high β, γ, were examined.
Subsequently, the verification results were compared, and the
suitable division and domain was determined.

By using Euclidean distance matching rather than SVM, the
verification performance using multi-dimensionalized features
was evaluated. Table II summarizes the EERs of all electrodes
and their mean when using each multi-dimensionalization.
where T and F are the division methods in the time and
frequency domains, respectively. The values in parentheses are
the number of divisions.

When the number of divisions was changed in the time
domain, EER remained almost unchanged. EER by six divi-
sions in the frequency domain was slightly superior to that



TABLE II
EERS [%] OF ALL ELECTRODES AND THEIR MEAN WHEN USING EACH MULTI-DIMENSIONALIZATION

Method Electrode Ave.AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
T(1) 42.6 46.6 46.7 49.4 46.8 49.5 47.8 47.9 51.0 44.9 44.8 44.3 46.6 45.8 46.7
T(2) 43.8 47.3 45.8 48.6 47.0 48.1 46.3 45.1 47.8 46.5 47.3 43.9 45.9 45.8 46.4
T(3) 43.4 45.3 46.4 48.7 43.6 48.4 50.6 45.8 46.6 47.4 44.9 44.2 45.0 45.6 46.1
T(4) 43.6 45.6 47.5 50.3 48.8 48.4 51.8 46.4 47.4 48.8 47.4 43.6 45.6 45.3 47.2
T(5) 41.4 43.1 45.9 49.6 45.1 52.1 54.3 48.1 51.5 47.8 45.1 44.9 43.4 44.1 46.9
T(6) 42.6 46.9 47.9 47.3 45.4 49.5 53.6 47.3 49.9 49.1 44.3 44.8 44.3 43.4 46.9
T(7) 42.8 41.3 46.8 47.9 45.6 49.0 50.5 47.8 47.8 49.8 45.9 44.3 42.8 43.5 46.1
T(8) 45.6 44.0 45.8 50.0 40.7 50.0 53.1 46.6 47.9 50.7 45.7 43.8 43.4 42.4 46.4
T(9) 42.2 48.0 46.7 48.0 42.8 47.3 48.8 48.6 49.8 49.1 44.2 42.8 46.2 44.8 46.4

T(10) 44.2 45.4 46.7 47.9 45.6 50.9 47.7 45.6 48.5 48.5 45.6 43.8 46.1 43.9 46.5
F(6) 38.2 36.7 41.1 41.2 39.6 39.1 44.8 49.4 50.1 43.6 41.3 43.6 43.6 41.3 42.4

in the time divisions. Hence, we decided to apply multi-
dimensionalization in the frequency domain, as follows.

Next, the multi-dimensionalized EC feature in the frequency
domain was examined using SVM. The results are shown in
III, wherein the results of the majority voting of all electrodes
are also presented. Compared with EERs presented in Table
I, it is confirmed that the verification performance of the EC
feature is equivalent to that of conventional features.

4) Wavebands for Feature: Furthermore, we investigated
the individualities of each band because induced responses
were believed to be caused in some specified wavebands, as the
hypersonic effect activated the α waveband. Particularly, the
difference between variance in the data of all subjects (inter-
class variation) and that of each subject (intra-class variation)
was calculated. A difference of negative value suggests that
intra-class variations is larger than the inter-class variations.
Hence, the waveband with the difference is not suitable for
verification.

The results are listed in Table IV, where the values are
multiplied by 104 for convenience. Wavebands with positive
values are suitable for verification. For instance, wavebands of
more than five are shown in bold and are found for AF3, F7,
F3, FC6, F4, F8, AF4. These electrodes are localized at the
forehead. Thus, in future, the verification performance will be
improved by using only these electrodes.

In contrast, yellow-colored cells indicate that the differences
had negative values and are not suitable for verification. There
were several yellow-colored cells in δ waveband. Thus, the
verification performance was re-evaluated using five wave-
bands, excluding the δ waveband, and Euclidian distance
matching. These results are presented in Table V. Compared to
EERs using six wavebands, the average EER decreased, while
others increased.

Despite reducing the number of feature dimensions, the ver-
ification performance was improved. Consequently, excluding
the δ waveband was effective in improving the verification per-
formance. In the following, we use five wavebands, excluding
δ waveband, as an individual feature.

5) Normalization: The results presented in Table IV show
that the EC variance for each waveband is not equivalent.
If dimensions with wide variances are fused into a multi-

dimensional feature, they will become dominant and impair
the effect of multi-dimensionalization.

Thus, we proposed fusing ECs at five wavebands after nor-
malization. By applying the min-max method to EC data for
creating templates, all ECs were normalized within 0 ∼ 1. The
verification performance was evaluated after using normalized
ECs.

The results are summarized in Table VI. Compared to
the results presented in Table V, all EERs were reduced.
Consequently, the effect of normalizing ECs in wavebands was
confirmed.

Further, the verification performance was evaluated using
SVM. EERs are shown in VII, where EER by the majority
voting of all electrodes is described. Compared to the EERs
presented in Table III, although some EERs increased, the EER
by majority voting decreased. Thus, the effects of excluding
δ wavebands and normalization were confirmed.

IV. VERIFICATION USING FUSED FEATURES

In this section, we evaluate the verification performance of
the multi-dimensionalized and normalized EC features fused
with conventional features. However, the normalization of
dimensions, which was essential in the previous section, was
not introduced into the conventional features.

A. Applying Normalization to Conventional Features

Thus, normalization into the conventional features was
introduced and their verification performances were evaluated.

The results are summarized in Table VIII For reference, the
results without normalization are also shown. Features with
(N) depict normalized cases. The verification performances of
the conventional features were also improved using normal-
ization, whereas the EER in ML increased.

B. Fusing Features

The normalized EC feature was fused with the normalized
conventional features and used for user verification using SVM
and majority voting. The number of SVM models was 84 (6
features×14 electrodes).

The FAR–FRR curves are shown in Fig. 3, where a thresh-
old in a horizontal axis is for determining the number of



TABLE III
EERS [%] BY MULTI-DIMENSIONALIZED EC FEATURE FOR EACH ELECTRODE

Electrode Majority VotingAF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
27.8 30.5 27.1 26.9 31.7 29.7 27.6 27.3 32.6 30.9 26.8 28.1 31.2 27.0 3.9

TABLE IV
DIFFERENCE BETWEEN INTER-CLASS VARIATION AND INTRA-CLASS VARIATION

Waveband Electrode
AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4

δ 4.4 -0.1 0.2 -0.8 -0.1 -1.6 -0.1 -0.4 2.1 -2.0 1.1 0.0 3.8 6.3
θ 13.3 2.5 7.1 0.8 0.5 0.6 0.3 0.1 1.6 0.6 7.0 8.3 4.6 2.2
α 15.3 11.4 10.6 7.8 1.7 2.6 2.1 2.7 -0.1 4.3 7.4 8.7 2.2 6.8

Lowβ 2.9 0.7 1.8 1.0 0.5 0.4 0.0 0.6 03 0.4 6.5 8.3 2.2 0.9
Highβ 1.0 0.6 1.4 1.0 0.4 0.9 0.6 0.9 0.0 -0.1 12.7 10.8 6.7 1.3

γ 0.1 0.1 0.4 0.1 0.3 0.4 0.2 0.2 0.3 0.1 2.4 3.2 3.3 -0.4

TABLE V
EERS [%] OF EC IN 5 AND 6 WAVEBANDS USING EUCLIDIAN DISTANCE MATCHING

Number of Electrode Ave.Wavebands AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
5 36.5 37.2 38.6 39.8 40.9 39.9 43.1 44.3 44.7 37.5 38.0 45.2 40.1 42.5 40.6
6 38.2 36.7 41.1 41.2 39.6 39.1 44.8 49.4 50.1 43.6 41.3 43.6 43.6 41.3 42.4

TABLE VI
EERS [%] USING NORMALIZED ECS AND EUCLIDIAN DISTANCE MATCHING

Electrode Ave.AF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
32.0 39.8 37.3 34.8 39.6 38.5 37.9 41.6 37.3 33.8 34.3 37.6 33.9 36.8 36.8

Fig. 3. FAR-FRR curves when fusing 6 features and using SVM and majority
voting

majority. It is natural that EER = 0 % is achieved as the
number of features increases. Additionally, the threshold range
for achieving EER = 0 % expanded to 40 ∼ 49 and the
number of thresholds considerably increased to 10 compared
to 3 in conventional fusing of five features [2]. This is due to
the introduction of the EC feature, which is independent of

conventional features.

V. REDUCTION OF SVM MODELS

In this section, we investigated how many SVM models
could be reduced while maintaining EER = 0 % using a
method wherein the electrodes used are identical for all
features [2].

Consequently, the number of SVM models reduced to 16
(4 features×4 electrodes). Their combinations are shown in
Table IX. In Ref. [1], EER = 0 % was achieved using
the results from all features and electrodes (4 features×14
electrodes=56). In Ref. [2], a new nonlinear feature was
introduced and EER = 0 % was naturally achieved. In addition,
the threshold range for achieving EER = 0 % was expanded.
When using all features and electrodes, to increase the number
of features leads to facilitating the verification and expanding
the threshold range. However, the minimum number of SVM
models while maintaining EER = 0 % was the same as before
the introduction of the new feature [2]. To achieve EER = 0
% using the minimum number of SVM models, redundancy
must be eliminated and equivalent verification performance
achieved with a smaller number of SVM models (features
and electrodes). This must be an efficient fusion, not just an
increase in the number of features. The introduced EC feature
was based on the information between the electrodes, which is
different from and independent of the conventional spectrum



TABLE VII
EERS [%] OF NORMALIZED EC USING SVM

Electrode Majority VotingAF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
27.1 30.5 25.9 27.1 27.6 26.6 28.1 25.2 29.0 27.9 30.1 28.3 28.3 29.0 2.5

TABLE VIII
EERS [%] OF NORMALIZED CONVENTIONAL FEATURES USING SVM.

Feature Electrode Majority VotingAF3 F7 F3 FC5 T7 P7 O1 O2 P8 T8 FC6 F4 F8 AF4
SP 26.5 30.8 26.5 32.0 32.0 26.8 22.6 22.0 24.9 25.2 23.6 25.9 25.2 22.3 4.4

SP (N) 22.5 26.3 23.0 29.5 24.0 27.6 24.8 23.4 25.2 21.1 16.0 23.5 23.0 24.5 2.5
ML 30.7 32.3 26.1 28.7 31.1 30.0 34.3 29.3 33.5 30.9 29.5 30.7 32.1 28.3 3.1

ML (N) 30.4 30.7 25.8 28.3 28.8 30.2 29.9 29.0 29.5 31.8 28.1 31.2 30.5 27.6 4.3
SE 32.8 27.9 30.6 35.0 29.5 28.8 30.5 30.3 27.6 28.6 32.3 30.1 32.4 27.1 5.1

SE (N) 22.9 22.0 29.5 20.8 28.5 22.8 23.7 28.3 25.4 25.2 23.5 28.5 23.3 25.2 2.4
PE 35.5 32.8 30.0 32.8 30.2 27.1 29.7 29.0 34.3 29.3 31.2 32.8 30.0 32.1 4.3

PE (N) 25.7 27.7 26.6 32.0 30.7 28.5 28.5 27.8 30.2 27.3 27.3 30.0 28.5 29.0 3.0
FD 30.3 28.7 25.8 33.5 31.3 29.4 30.2 29.7 27.8 26.4 30.2 29.2 33.7 27.1 5.3

FD (N) 23.2 30.1 27.1 30.0 31.0 26.8 27.1 29.2 25.8 23.7 26.6 28.8 29.7 23.5 4.3

TABLE IX
COMBINATIONS OF FEATURES AND ELECTRODES WHEN USING 16 SVM

MODELS

Features Electrodes
SP, SE, PE, EC AF3, F3, P7, O2
SP, SE, PE, EC F7, P8, T8, F8

and nonlinear features. The minimum number of SVM models
was 24 even when the number of features increased from four
to five [2]. However, it could be reduced to 16 when EC was
introduced. Despite the increase in the number of features, the
minimum number of SVM models decreased. When fusing
features, fusing independent features was effective.

Let us consider the reason for taking the majority vote
in our daily lives as an example. In the majority vote, it is
meaningless if several people have similar opinion. In extreme
cases, if everyone has similar opinions at each judgement, it is
considered as one opinion. This never degrades the judgement
accuracy; however, it makes no sense to hear from many
people. The majority vote is not to improve the accuracy of
the judgement but to improve robustness. In the majority vote,
it is important that numerous people have different opinions. If
some people give a wrong opinion, others, who give the right
one, prevent from making a wrong decision. It is important
that individuals think independently without being influenced
by others. From the above, in this study (where majority
voting was performed at the decision level fusion), fusing
independent features improved the robustness of the decision,
thereby reducing the minimum number of SVM models.

VI. CONCLUSIONS

In SVM based person verification using evoked EEG by
ultrasound, reducing the number of SVM models while main-
taining EER = 0 % was challenging. Introducing a different
feature from the conventional ones was expected to effectively

solve the problem. Brain waves arise from the activity of sev-
eral nerve cells that interact with each other. To represent such
a relation as a feature, the EC feature was introduced. This was
obtained from the information between the electrodes. How-
ever, the original EC was a one-dimensional feature. Hence,
the EC was multi-dimensionalized in the time and frequency
domains. By evaluating their verification performance, multi-
dimensionalization in the frequency domain was confirmed
to be effective. Furthermore, by investigating the relationship
between the intra- and inter-class variations of EEG in the
frequency domain, it was confirmed that excluding δ wave-
band was effective in person verification. In addition, it was
confirmed that normalization in multi-dimensionalization as
regard introducing EC and conventional features was effective
in improving the verification performance. Finally, it was
confirmed that the minimum number of SVM models could be
reduced to 16, while maintaining EER = 0 %. This suggests
that fusing independent features in decision-making based on
majority voting is effective.

Based on the aforementioned concept, we intend on intro-
ducing another feature. For example, finding out how statistical
values in EEG, such as the mean, standard deviation, and
median, can further reduce the number of SVM models while
maintaining EER = 0 %.
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