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Chapter 16
Exploration of Genes Associated with  
Sponge Silicon Biomineralization in the  
Whole Genome Sequence of the Hexactinellid 
Euplectella curvistellata

Katsuhiko Shimizu, Hiroki Kobayashi, Michika Nishi, Masatoshi Tsukahara, 
Tomohiro Bito, and Jiro Arima

Abstract  Silicatein is the first protein isolated from the silicon biominerals and 
characterized as constituent of the axial filament in the silica spicules of the demo-
sponge Tethya aurantia, by significant sequence similarity with cathepsin L, an ani-
mal lysosomal protease, and as a catalyst of silica polycondensation at neutral pH 
and room temperature. This protein was then identified in a wide range of the class 
Demospongiae and in some species of the class Hexactinellida. Our attempt to iso-
late silicatein from the silica skeleton of Euplectella was unsuccessful, but instead 
we discovered glassin, a protein directing acceleration of silica polycondensation 
and sharing no significant relationship with any proteins including silicatein. The 
present study aims to verify the existence of silicatein by exploring the whole genome 
DNA sequence database of E. curvistellata with the sequence similarity search. 
Although we identified the sequences of glassin, cathepsin L and chitin synthetase, 
an enzyme synthesizing chitin, which has already been found in the silicon biominer-
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als in E. aspergillum, silicatein failed to be identified. Our result indicates that silica-
tein is not essential for poriferan silicon biomineralization in the presence of glassin.

Keywords  biosilicification · Silica · Silicatein · Glassin · Chitin

16.1  �Introduction

Silicon biominerals are produced by the living organisms through physiological 
activities in contrast to silicon-based manmade products, often manufactured 
through processes with high energy consumption and harsh impacts on the 
environment. Understanding of the mechanisms on silicon biomineralization is 
expected to offer the prospect of developing environmentally benign routes to 
synthesize silicon-based materials. Silicon biominerals generally contain a small 
amount of organic substances, which may help production of silicon biominerals at 
physiological conditions.

Phylum Porifera (sponges) consists of four classes, Hexactinellida (glass 
sponges), Demospongiae (demosponges), Calcarea (calcareous sponges), and 
Homoscleromorpha, among which Hexactinellida, Demospongiae, and 
Homoscleromorpha produce silica biominerals while calcium carbonate biominerals 
occur in Calcarea.

The demosponge Tethya aurantia produces a large quantity of silicon biomineral 
in a form of silica as needlelike structures or spicules, allowing us to isolate and 
analyze the organic molecules occluded in the biomineral. Silicatein, the first protein 
isolated from silicon biomineral and characterized, constitutes the axial filament in 
the spicules; shares significant sequence similarity with cathepsin L, an animal lyso-
somal protease; and catalyzes silica polycondensation at neutral pH and room tem-
perature (Shimizu et al. 1998; Cha et al. 1999). This protein and its gene were then 
identified in a wide range of the class Demospongiae (Krasko et al. 2000; Pozzolini 
et al. 2004; Funayama et al. 2005; Müller et al. 2007). In addition, PCR products 
encoding a partial silicatein sequences were amplified in the class Hexactinellida 
including Crateromorpha meyeri (Müller et al. 2008a), Monorhaphis chuni (Müller 
et  al. 2008b), and Euplectella aspergillum (unpublished data. The sequence was 
deposited to GenBank database by Müller et  al. in 2011. The accession number 
FR748156). Our attempt to isolate silicatein from the silica skeleton of the E. asper-
gillum and E. curvistellata was unsuccessful, but instead we discovered glassin as a 
protein directing acceleration of silica polycondensation (Shimizu et  al. 2015). 
Sequences encoding silicatein have not identified from the transcriptome analysis of 
Aphrocallistes vastus by Riesgo et al. (2015). Veremeichik et al. (2011) tried to iso-
late silicatein genes from Pheronema raphanus, Aulosaccus schulzei, and Bathydorus 
levis, resulting in only identification of Aulosaccus sp. silicatein-like sequence with 
cysteine at the catalytic residue instead of serine as seen in silicateins of other spe-
cies. Collectively, the existence of silicateins has been unsettled in Hexactinellida.

The present study aims to verify the existence of genetic information on silica-
tein by exploring the whole genome DNA sequence database of E. curvistellata 
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with the sequence similarity search and discusses on relationship of silicatein and 
glassin in silicon biomineralization of Porifera.

16.2  �Materials and Methods

Live specimens of E. curvistellata were collected at a depth of 236 m at 32°30 N, 
129°10 E in the East China Sea on March 4, 2012, as described previously (Shimizu 
et al. 2015) and then stored in ethanol at −20 °C. Genomic DNA was extracted 
from the specimen stored in ethanol with DNeasy Blood & Tissue Kit (QIAGEN, 
Hilden, Germany). The genomic DNA library was prepared from mechanically 
fragmented genomic DNA with TruSeq DNA prep kit (Illumina, San Diego, CA, 
USA). Then, the library was sequenced with MiSeq (Illumina) three times. The 
raw reads were trimmed and assembled using Genomics Workbench (CLC Bio 
Inc., Aarhus, Denmark). Sequence similarities were analyzed with NCBI BLAST 
program.

16.3  �Results and Discussion

16.3.1  �Construction of Whole Genome DNA Library of E. 
curvistellata

The library of E. curvistellata whole genome DNA was constructed with the 
next-generation DNA sequencer. Total three runs of sequencing gave rise to 
27,939,250 reads, being assembled to 442,583 contigs with the average length of 
427 and the median length of 420 (Table 16.1). The longest contig covers 145,960 
while the shortest is 18 nucleotides. Total number of the nucleotides reached to 
190,209,345. This number can be roughly considered as a genome size of the spe-
cies, with fairly matching to that of Amphimedon queenslandica, being 167 Mbp 
(Srivastava et al. 2010).

To evaluate the quality of the library, we run the blast program with Aphrocallistes 
vastus Cox3 gene (GenBank accession no. EU000309.1) (Rosengarten et al. 2008) 
as a query. As a result, we obtained the single contig_1075 containing not only 
Cox3 gene but also the whole mitochondrion DNA sequence, 19,700  bp. This 
result indicates that the library is qualitatively sound and can be useful for gene 
searching.

Table 16.1  Summary of whole genome sequencing and assembly

Reads
Number of 
contigs

Maximum 
contig (base)

Minimum 
contig (base)

N50 
(base)

Average 
length 
(base)

Total length 
(base)

27,939,250 442,583 145,960 18 420 427 190,209,345
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16.3.2  �Search for Silicatein Gene

The axial filament was obtained in the intact form by dissolving the silica spicules 
of T. aurantia (Shimizu et al. 1998). Although the axial filament was observed in the 
cross section of Euplectella silica spicules under the scanning electron microscope 
(Weaver et  al. 2007), the axial filaments or any filamentous materials were not 
obtained in our attempt. The extract contained proteins, but these proteins had no 
silicatein sequences as long as we examined. On the other hand, a partial silicatein 
cDNA from E. aspergillum was archived in DNA sequence database (FR748156) 
(Table 16.2). In addition, silicateins or silicatein-like sequences have been reported 
from the hexactinellid sponges Aulosaccus sp. (Veremeichik et al. 2011), C. meyeri 
(Müller et al. 2008a), and M. chuni (Müller et al. 2008b).

To verify the silicatein sequence in E. curvistellata genome, the local blast pro-
gram was executed with these hexactinellid silicatein sequences as well as T. auran-
tia silicateins as queries and E. curvistellata genomic DNA library as a database. 
For the partial silicatein cDNA from E. aspergillum, no contig with E values less 
than 10 was hit. Similarly, no hit was obtained when T. aurantia silicateins α 
(AF032117) and β (AF098670), Aulosaccus sp. silicatein-like (ACU86976),  
C. meyeri silicatein (CAP49202), and M. chuni silicatein (CAZ04880) were used as 
queries.

The amino acid sequence KNSWG was widely conserved in silicateins and 
cathepsin L; 296–300 of T. aurantia silicatein α (Shimizu et al. 1998, AF032117), 
296–300 of Suberites domuncula silicatein (Krasko et al. 2000, AJ272013), 292–

Table 16.2  Identification of the genes related to hexactinellid biosilica

Protein Previous description E. curvistellata genome search

Silicatein C. meyeri (Müller et al. 2008a; 
CAP49202)

No hit with queries as follows:
 � E. aspergillum (Müller et al. 2011; 

FR748156)
 � T. aurantia silicateins α and β (Shimizu 

et al. 1998; AF032117, and AF098670, 
respectively)

 � Aulosaccus sp. silicatein-like 
(Veremeichik et al. 2011; ACU86976)

 � C. meyeri (Müller et al. 2008a; 
CAP49202)

 � M. chuni (Müller et al. 2008b; 
CAZ04880)

M. chuni (Müller et al. 2008b; 
CAZ04880)
E. aspergillum (Müller et al. 2011; 
FR748156)
No silicatein gene in A. vastus (Riesgo 
et al. 2015)

Cathepsin 
L

The gene identified in A. vastus 
transcriptome data (Riesgo et al. 2015)

1343 bp (324 AAs) composed of four 
exons in contig_50860 (306 bp) and 
contig_7,117 (8869 bp)

Glassin A protein occluded in spicules of 
Euplectella (Shimizu et al. 2015)

1638 bp (546 AAs) in contig_14,569 
(2400 bp) and contig_22,997 (1331 bp)

Chitin Fluorescent dye staining, X-ray 
diffraction, chemical analysis (Ehrlich 
and Worch 2007)

Chitin synthase gene 4335 bp ORF (1445 
AAs) in contig_18,557 (12,682bp)
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296 of S. domuncula cathepsin L (Müller et  al. 2003, AJ784224), and 299–303 
human cathepsin L (Gal and Gottesman 1988, X12451). In the case of this sequence 
used as a query, contig_7,117 (8869 bp) was hit. The contig contains the stop codon, 
but not the first Met. The 5′ region, contig_50860, was obtained by running blast 
program with the contig_7,117 as a query. Total length of the coding region is 
1343 bp composed of 4 exons coding 324 amino acid residues and 3 introns. The 
predicted protein sequence is more similar to those of sponge and human cathepsin 
L than silicateins. In addition, cysteine at the position corresponding to the catalytic 
residue and the surrounding sequences in cathepsin L are conserved in the contig, 
indicating that the gene encodes cathepsin L but not silicatein. The boundaries of all 
the four exons in the cathepsin L of E. curvistellata are identical to those of exon 2/
exon 3, exon 3/exon 4, and exon 4/exon 5 in human cathepsin L gene consists of 
eight exons and seven introns (Chauhan et al. 1993), suggesting that the exon-intron 
structure of cathepsin L in E. curvistellata is conserved in the human gene.

The result of our blast search for silicatein in E. curvistellata genome is consis-
tent with the fact that the silicatein or silicatein-like proteins were not obtained in 
dissolution of silica spicules. Previous transcriptome analysis concluded that any 
silicatein gene was identified in the hexactinellid A. vastus (Riesgo et al. 2015). It is 
unlikely that silicatein exists in all species of the class Hexactinellida. However, 
further research should be performed using the hexactinellid species which have 
been reported to have the evidence for the existence of silicateins before the 
conclusion is drawn.

16.3.3  �Search of Genes Associated with Silicon 
Biomineralization

Genes for glassin were assigned by conducting the similarity research with glassin 
cDNA as a query. The two contigs 14,569 and 22,997 cover 5′ and 3′ regions of 
glassin gene, respectively, while overlapping each other. Some mismatches were 
observed in the overlapped and 3′ regions, indicating the assembly in complicated 
sequences including the repetitive sequences is incomplete. Therefore, further 
refinement on the library may be required.

Ehrlich and Worch (2007) reported chitin in E. aspergillum as an organic compo-
nent of their silicious skeletal systems. A gene encoding chitin synthase was 
searched using A. queenslandica chitin synthase2 and 3-like protein sequences 
(XP_011402997 and XP_003389565, respectively) as queries, and contig_18,557 
(12,682  bp) containing 4335  bp open reading flame encoding 1445 amino acid 
residues was obtained. Our result suggests that Euplectella is capable of chitin 
synthesis and thus is consistent with previous observation on occurrence of chitin in 
Euplectella.
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16.4  �Conclusion

The present study aims to verify the existence of genetic information on silicatein 
by exploring the whole genome DNA sequence database of E. curvistellata with the 
sequence similarity search. We identified the sequences of glassin, cathepsin L and 
chitin synthetase, an enzyme synthesizing chitin, which has already been found in 
the silicon biominerals in E. aspergillum (Ehrlich and Worch 2007). However, 
silicatein failed to be identified in the genome data consistent with the previous 
extraction experiment (Shimizu et  al. 2015). Although PCR products encoding 
partial silicatein sequences have been amplified in some hexactinellid sponges 
(Müller et al. 2008a, b), silicatein was not identified in the transcriptome analysis of 
A. vastus (Riesgo et al. 2015). Collectively, the existence of silicatein is not evident 
in Hexactinellid. At least, silicatein is not essential and glassin is responsible for 
silicon biomineralization in E. curvistellata. Therefore, the evidences imply that 
there are at least two ways for silicon biomineralization in Porifera in terms of usage 
of the protein for silica polymerization, silicatein or glassin, and that the selection 
of either protein depends on the species but not on the taxonomic classes.
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