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Copyright © 2009 AHCIn intact adult mammalian brains, there are two neurogenic regions: the subependymal zone

and the subgranular layer of the hippocampus. Even outside these regions, small numbers

of proliferating precursors do exist. Many studies suggest that the majority of these are oligo-

dendrocyte precursors that express NG2, a chondroitin sulfate proteoglycan, and most of the

residual proliferating cells seem to be endothelial cells. However, it is still unclear whether

NG2-immunonegative proliferating precursors are present, because previous studies have

neglected their possible existence. In this study, we systematically analyzed the phenotypes

of the proliferating cells in the intact adult rat cortical gray matter. We improved our tech-

niques and carefully characterized the proliferating cells, because there were several prob-

lems with identifying and quantifying the proliferating cells: the detection of NG2-expressing

cells was dependent on the fixation condition; there were residual proliferating leukocytes in

the blood vessels; and two anti-NG2 antibodies gave rise to different staining patterns. More-

over, we used two methods, BrdU and Ki67 immunostaining, to quantify the proliferating

cells. Our results strongly suggest that in the intact adult cerebral cortical gray matter, there

were only two types of proliferating cells: the majority were NG2-expressing cells, including

pericytes, and the rest were endothelial cells.
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I. Introduction

There are two neurogenic sites in the adult mammalian

brain, the subependymal zone (SEZ) around the lateral ven-

tricle and the subgranular layer of the hippocampal dentate

gyrus (SGL) [26]. Although normally there is no neurogen-

esis in the adult cerebral cortical gray matter, recently it has

been suggested that neurogenesis can be induced under spe-

cial conditions, i.e. animal models with specific lesions [25],

animal models of ischemia [3, 27], and even in normal

animals [9, 11, 15]. However, the presence of neurogenesis

under normal conditions is still controversial [18, 19]. In

animal models of stroke, at least some newborn neurons

might be recruited from the SEZ [37], but it is possible that

there are other sources of new neurons in the brain paren-

chyma [3].

There are proliferating cells in the parenchyma in the

normal adult mammalian brain. The majority of them are

oligodendrocyte precursors that express NG2, one of the

chondroitin sulfate proteoglycans [8, 14]. Normally, NG2

immunopositive (+)-cycling cells differentiate into mature

oligodendrocytes over a long period of time [34, 35]. Almost

all adult cortical NG2(+) cells express Olig2 [23], a basic

helix-loop-helix transcription factor and a critical gene for

oligodendrocyte development [24, 33, 39].

In normal adult brains, endothelial cells also proliferate,

but they comprise a much smaller population than NG2(+)

cells [36]. It is still not clear what proportion of proliferating

cells are NG2(+) or endothelial cells. Dawson et al. [8]

reported that about 77% of proliferating cells in the adult

cerebral cortex were NG2(+), and the majority of the residu-
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al proliferating cells were endothelial cells. Other studies

suggest that more than 90% of all proliferating cells are

NG2(+) [1, 9]. Tamura et al. [35] found that more than 95%

of proliferating cells were NG2(+), with the exception of

vascular cells. These findings are consistent with the idea

that the majority of proliferating cells are NG2(+) cells, but

there is the possibility that NG2-immunonegative (−) prolif-

erating cells are also present. Indeed, Buffo et al. [6] report-

ed that about 25% of proliferating cells are NG2(−) and un-

identified cells. Also, in the adult basal ganglia and spinal

cord, about 50-90% of cells were 5-bromo-2’-deoxyuridine

(BrdU)-incorporated NG2(+) cells and endothelial cells [12,

13, 36]. It has also been suggested that unidentified cycling

cells exist in dissociated adult brain cultures [10]. Stem cells

always comprise a small proportion of the cells in various

types of adult tissue [21, 22], but a perfect marker for stem

cells is not yet available. Do unidentified proliferating cells

exist in the normal brain? If there are small numbers of un-

identified proliferating precursors in the brain parenchyma,

it is possible that NG2(+) cells may make up a subpopula-

tion of oligodendrocyte precursors: unidentified proliferating

cells can be derived from NG2(+) cells, and vice versa; or,

alternatively, the cells could make up an independent popu-

lation, such as neural precursors. Indeed, neural precursors

have been isolated from adult brain parenchyma [29].

The purpose of this study was to systematically charac-

terize the proliferating cells in the intact brain parenchyma

by optimizing tissue fixation and immunostaining condi-

tions, testing antibody specificity, and establishing criteria

for proliferating cells in the brain parenchyma.

II. Materials and Methods

Subjects

Eight-week-old male Wistar rats and 6-week-old male

C57BL/6 mice were used. All experimental protocols were

approved by the animal ethics committee of Kansai Medical

University and were performed in accordance with the

Principles of Laboratory Animal Care (NIH publication

no. 85-23, revised 1985).

BrdU administration

BrdU (Sigma, St. Louis, MO, USA) was used to detect

proliferating cells. BrdU is a thymidine analogue which is

incorporated into the genomic DNA of proliferating cells

during the S phase. To label the maximum number of prolif-

erating cells and to achieve maximal labeling intensity in the

short-term pulse labeling paradigm, 50 mg/Kg of BrdU was

injected intraperitoneally (IP) every hour for 5 hours (total

250 mg/Kg) and animals were sacrificed 1 hour after the last

injection. We adopted this time frame because the G2 and M

phases of the glial precursors in the adult mouse brain were

reported to be about 5 hours long [20, 31]. Under this BrdU

administration protocol, almost all of the BrdU(+) cells in

the cortical gray matter were single cells, and 2.70±0.85%

(mean±S.E.M., n=3) of all the BrdU(+) cells were twin cells.

Thus, virtually all the BrdU(+) cells highlighted using this

administration protocol were in the cell cycle. Twin BrdU(+)

cells were counted as single cells, because it is reasonable

that they were just exiting the cell cycle [15]. In the long-

term pulse labeling paradigm, 50 mg/Kg of BrdU was in-

jected by IP 3 times a day (9:00 A.M., 15:00 P.M., and

21:00 P.M.) for either 3 days or 7 days, and the animals

were sacrificed 5 hours following the last injection.

Histological procedure

For histological analysis, rats were deeply anesthetized

with pentobarbital (50 mg/Kg), and then they were perfused

transcardially with ice-cold phosphate buffered saline (PBS)

followed by formaldehyde in PBS. To optimize fixation

condition, 1, 2, 3, or 4% of formaldehyde in PBS were used

(Fig. 1). The brains were removed and further fixed with the

same fixative overnight, then cryo-protected with 20%

sucrose in PBS. Brains were embedded in O.C.T. com-

pound (Sakura Finetek, Tokyo, Japan), snap frozen in dry

ice, sectioned at 30 μm with a cryostat, and processed for

immunohistochemistry.

Free floating sections were labeled using the following

primary antibodies: rat anti-BrdU (1:200, Abcam, Cam-

bridge, UK); rabbit anti-Ki67 (1:1,000, Novocastra, New-

castle, UK); rabbit anti-NG2 (1:500, Chemicon, Temecula,

CA, USA); mouse anti-NG2 (1:200, Chemicon); mouse

anti-RECA-1 (1:2,000, Serotec, Oxford, UK); rabbit anti-

Iba-1 (1:1,000, Wako, Osaka, Japan); rabbit anti-glutamine

synthetase (1:20,000, Sigma); mouse anti-S100β (1:1,000,

Sigma); mouse anti-CD45 (1:3,000, Biolegend, San Diego,

CA, USA); goat anti-Olig2 (1:400, Santa Cruz Biotechnolo-

gy, Santa Cruz, CA, USA); and mouse anti-NeuN antibody

(1:6,000, Chemicon). Primary antibodies were detected by

species-specific donkey secondary antibodies conjugated

to Cy2, Cy3, or Cy5 (1:200, Jackson ImmunoResearch,

West Grove, PA, USA), or Alexa488 (1:400, Invitrogen,

Fig. 1. Photomicrographs showing NG2 immunopositive cells in

the intact adult mouse cortex. Intact adult mice were fixed with 1%

(A), 2% (B), 3% (C), and 4% (D) formaldehyde (FA), and labeled

with rabbit polyclonal anti-NG2 antibody. Images were taken

with a epifluorescence microscope in the cortical gray matter.

Bar=0.2 mm.
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Carlsbad, CA, USA). After staining, sections were mounted

on glass slides with a medium containing 100 mM DTT,

50% glycerol, and 5 μg/ml Hoechst 33258 to visualize

nuclei. 0.3% PBST (PBS containing 0.3% Triton-X 100)

was used for antibody dilution and to wash sections. For

BrdU immunohistochemistry, sections were pre-treated

with 2 N HCl for 30 min at room temperature, followed

by neutralization with 0.1 M boric acid. We compared two

methods for double-staining combining the anti-BrdU anti-

body with another antibody. First, after pre-treatment, sec-

tions were incubated with anti-BrdU antibody and another

primary antibody simultaneously, followed by incubation of

a secondary antibody cocktail (one-step staining). Second,

sections were incubated with another primary antibody

followed by a secondary antibody, fixed with 4% formalde-

hyde in PBS, pre-treated, and incubated with anti-BrdU

antibody followed by an anti-rat secondary antibody (two-

step staining) [16]. Fluorescence images were acquired

using a confocal microscope (LSM510-Meta, Carl Zeiss,

Oberkochen, Germany).

Quantification

Cell counting analysis was performed using an epi-

fluorescence microscope with a ×40 objective (Eclipse-

E1000M, Nikon, Japan). Coronal brain sections were select-

ed between +0.2 mm to −2.8 mm from the bregma, and

quantification was performed from layers 1 to 6 in the neo-

cortical gray matter of the motor cortex, somatosensory cor-

tex, and insular cortex, but excluding the cingulate cortex

and piriform cortex.

III. Results

Improvement and optimization of histochemical analysis

Before quantifying the proliferating cells, in order to

acquire precise data we examined and improved on the

following four technical points described below. First, we

found that NG2 immunostaining was very sensitive to the

concentration of formaldehyde used during perfusion. When

the concentration of formaldehyde was reduced, NG2

immunostaining was dramatically improved, especially in

the adult mouse brains (Fig. 1). Even in the adult rat brains,

this staining problem sometimes happened. Because of this,

in this study rats were also fixed with a mild fixative (2%

formaldehyde).

Second, we established quantification criteria for pro-

liferating cells. We found some residual proliferating leuko-

cytes inside the blood vessels even after rats were perfused

(Fig. 2). In the intact adult brains, proliferating NG2(+) cells

were few. Although the absolute number of proliferating

leukocytes was small, these were excluded from quantifica-

tion to acquire precise data. We used anti-BrdU antibody

raised in rats to detect proliferating cells in the rat brain. This

was an advantage, because a subset of the rat leukocytes was

non-specifically labeled by anti-rat secondary antibody, and

these were easily recognized by the staining patterns. Non-

specific stained cells appeared larger than their nuclei, and

this staining pattern was also detected on the negative con-

trol sections incubated with only anti-rat secondary anti-

body. Most of these cells were clearly located inside the

blood vessels. Sometimes they appeared to be enclosed by

the nuclei of endothelial cells with tubular morphology

(Fig. 2), and their nuclei had a very complex morphology,

with several segments and/or foldings. We characterized

these as leukocytes using anti-CD45 antibody, a marker for

pan-leukocytes [32] (Fig. 2).

Third, we examined the double immunostaining proce-

dure, which combines anti-BrdU antibody with another anti-

body. Several research groups claim that a two-step staining

method is required to minimize the reduced signal intensity

of another antigen by pre-treating sections with HCl [16,

30], but other studies have used a one-step staining method

[8, 35]. When we compared these two staining methods dur-

ing double staining with anti-BrdU antibody and anti-Ki67

antibody (a marker for proliferating cells), Ki67 immunore-

activity was clearly lost during the one-step staining method

(Table 1). Because all the BrdU(+) cells were cycling cells

under our short-term pulse labeling protocol, all of these

should be Ki67(+). However, when we characterized the

phenotype of BrdU(+) cells using cell type-specific makers,

we did not find a significant difference in the number of

NG2(+) cells that were labeled by rabbit polyclonal anti-

NG2 (rb-NG2) antibody, but found a slight improvement in

the numbers of RECA-1(+) endothelial cells, Iba-1(+)

microglia, and glutamine synthetase/S100β(+) astrocytes

(Table 1). To detect astrocytes, a cocktail of anti-glutamine

synthetase antibody and anti-S100β antibody was used,

Fig. 2. Single optical confocal microscopy images showing exam-

ples of proliferating leukocytes in the blood vessels. A Ki67(+)

proliferating cell (A) expressing CD45 (B) (arrows in A–C) was

clearly visible inside the blood vessel. (C) indicates the nuclei

stained by Hoechst 33258. The arrowhead in (C) shows the nucleus

of an endothelial cell with tubular morphology. Bar=10 μm.
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because astrocytes are highly heterogeneous, and a single

marker cannot label all astrocytes [17].

Fourth, we tested the specificity of two anti-NG2 anti-

bodies. We found clear differences in staining intensity in

the pericytes when we compared rb-NG2 antibody and

mouse anti-NG2 (ms-NG2) antibody. Pericytes have fewer

processes and extend their processes along the blood vessels,

and NG2 is one of the markers for pericytes [28]. Pericytes

were poorly stained by rb-NG2 antibody, but both anti-

bodies equally stained the majority of NG2(+) cells with

stellate morphology, which are known as synantocytes [7]

(Fig. 3A–C). When we compared the quantification results

for the BrdU(+) cells between the rb-NG2 and ms-NG2

antibodies in the two-step staining protocol, the ratio of

Table 1. Phenotypes of BrdU(+) proliferating cells in the intact cortical gray matter of the adult rat brain

% of BrdU(+) Ki67(+) rb-NG2(+) ms-NG2(+) RECA-1(+) Iba-1(+) GS/S100β(+) Olig2(+)

One-step staining 92.39±1.15 89.56±1.43 N.A. 5.42±0.08 0 0 95.39±1.91

Two-step staining 100 89.02±0.68 91.78±1.78 8.28±1.82 0.51±0.51 0.93±0.93 93.83±0.82

All data were collected from 3 rats (n=3). Data are reported as mean±S.E.M. N.A.=not analyzed; GS=glutamine synthetase.

Fig. 3. Single optical confocal microscopy images showing differential signal intensities in pericytes between polyclonal and monoclonal anti-

NG2 antibodies. (A) Pericytes (arrows) were only poorly stained by rabbit polyclonal anti-NG2 antibody (rb-NG2, green), but were stained

intensely by mouse monoclonal anti-NG2 antibody (ms-NG2, red). A merged image is shown. (B–G) To detect Ki67(+)/rb-NG2(−)/ms-NG2(+)

pericytes, a cocktail of anti-Ki67/rb-NG2/ms-NG2 antibodies was used. Ki67 and rb-NG2 were visualized in green and ms-NG2 in red. (B, C)

Rb-NG2 and ms-NG2 antibodies equally labeled Ki67(+) proliferating cells with stellate morphology. (B) and (C) show a Ki67(+)/rb-NG2(+)/

ms-NG2(+) cell (arrows). Note that the Ki67 protein localizes to the nucleus (B), but the NG2 signal is localized to the surface of the cell, and

is not present in the nucleus (C). (D–G) An example of a small number of rb-NG2(−)(green)/ms-NG2(+) (red) pericytes in the cell cycle

(Ki67(+), green; arrows). The arrowheads indicate the processes of another NG2(+) cell with stellate morphology. Bars=20 μm.
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BrdU(+)/ms-NG2(+) cells was slightly higher than that of

BrdU(+)/rb-NG2(+) cells (Table 1). This result was sup-

ported by the results of the quantification of the number

of ms-NG2(+) or RECA-1(+) cells among the Ki67(+) cells

(Table 2). These results suggest that a few proliferating

pericytes were present. Indeed, we were able to detect

Ki67(+)/rb-NG2(−)/ms-NG2(+) proliferating pericytes (Fig.

3D–G). This finding of the presence of a small number of

proliferating pericytes is consistent with another previous

report [36].

Quantification and characterization of proliferating cells

After we optimized and improved these conditions, we

were not able to find NG2(−) proliferating cells except pro-

liferating endothelial cells in the intact adult cortical gray

matter (Tables 1 and 2). The sum of proliferating NG2(+)

cells, including pericytes and proliferating RECA-1(+) cells,

corresponded to the overall number of proliferating cells. To

confirm this, we examined Olig2 expression in the prolifer-

ating cells. The ratio of Olig2(+) proliferating cells was

almost the same as the ratio of NG2(+) proliferating cells

(Table 1). The morphology of any residual Olig2(−) prolif-

erating cells resembled either pericytes or endothelial cells

(Fig. 4).

Finally, we analyzed the phenotypes of the precursors

and their descendants in long-term BrdU pulse-labeled

brains. After 3 days, in BrdU-labeled rat brains most of the

BrdU(+) cells were twins, suggesting that one precursor had

divided into two cells. The number of the BrdU(+) cells that

were NG2(+) was not markedly different from that found in

the short-pulse labeling experiment (92.2 ± 0.01%, mean ±

S.E.M., n=2, with ms-NG2 antibody). Again, we were not

able to find a large population of BrdU(+)/NG2(−) cells, as

had been described previously [6]. Even in a 7-day BrdU

labeling experiment, we did not find a large number of

BrdU(+)/NG2(−) cells, although there was a trend toward

an increased number of BrdU(+)/NG2(−) cells (preliminary

data not shown). Because some divided NG2(+) cells dif-

Table 2. Phenotypes of Ki67(+) cells in the intact cortical gray

matter of the adult rat brain

% of Ki67(+) ms-NG2(+) RECA-1(+)

92.80±0.93 (n=6) 8.38±0.43 (n=3)

± represents S.E.M.

Fig. 4. Stacked confocal microscopy images showing proliferating endothelial cell. Stacked images of (A) Ki67, (B) Olig2, (C) NG2, and (D)

Hoechst 33258 staining. (E) and (F) are merged images of (A–C) and (A–D) respectively. Note that a Ki67(+) proliferating endothelial cell was

Olig2(−) (arrowheads). Arrows indicate ms-NG2(+)/Olig2(+) cells. Asterisks indicate a large blood vessel. Bars=20 μm.
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ferentiate into oligodendrocytes very slowly [34, 35] with

down-regulating NG2 expression level, and some are elimi-

nated by cell death [8, 20], it is possible that almost all of the

BrdU(+)/NG2(−) cells differentiate into oligodendrocytes.

In fact, most BrdU(+) twin cells were BrdU(+)/NG2(+)/

Olig2(+), while in some of the BrdU(+) twin cells, one was

NG2(+)/Olig2(+) but the other was NG2(−)/Olig2(+)

(Fig. 5).

IV. Discussion

In this study, we systematically quantified and charac-

terized proliferating cells using immunohistochemical tech-

niques. We did not neglect the small number of proliferating

pericytes and leukocytes, which had been largely ignored in

previous studies. To our knowledge, this is the first time that

proliferating cells in adult cortical gray matter have been

precisely quantified.

In most immunohistochemical studies, 4% formalde-

hyde is used to fix tissues. We found that the fixation condi-

tion was critical for detecting NG2(+) cells. A mild fixative

was necessary for NG2 staining, but did not make an obvi-

ous difference to the other antigens used in the present study.

Although mild fixatives tend to spoil the fine structure of

sections, the conditions have to be adjusted depending on the

antigens being used.

Characterizing proliferating cells using anti-BrdU or

anti-Ki67 antibodies was difficult because these antibodies

only stained the nuclei. It is impossible to remove all of the

leukocytes from the blood vessels by perfusion, and we

found a substantial number of CD45(+) proliferating leuko-

cytes remained after perfusion. The nuclei of leukocytes

have a complex morphology with numerous segments and/

or foldings, and it was easy to identify leukocytes by stain-

ing the nuclei with Hoechst 33258. However, it was some-

times difficult to completely discriminate proliferating re-

sidual leukocytes from other cells in the brain parenchyma,

because, depending on the slice angle, some leukocytes in-

side the blood vessels appeared to have round nuclei. Such

cells might result in the false-positive identification of pro-

liferating cells. In this study, we used anti-BrdU antibody

raised in rats to exclude proliferating leukocytes from quan-

tification in the rat sections. This method was the easiest and

most effective way to precisely quantify the number of Br-

dU(+) cells with immunohistochemical analysis.

BrdU is a reliable tracer for the identification of

cell proliferation by immunohistochemistry [4]. However,

detecting BrdU by this method always requires the pre-

treatment of sections with HCl. In double staining, which

combines anti-BrdU antibody with another antibody, this

process might reduce the immunoreactivity of the other anti-

gen in the one-step staining method, or may dissociate the

antigen-antibody complex in the two-step staining method,

resulting in signal reduction. Our results indicate that the

two-step staining method was better than the one-step

method for double immunostaining. The anti-Ki67 anti-

body used in this study does not require antigen retrieval

Fig. 5. Single optical confocal microscopy images showing two

types of twin BrdU(+) cells in 7-day labeled brain. Triple immuno-

staining was done for BrdU (A, F), rb-NG2 (B, G), Olig2 (C, H),

and Hoechst 33258 (D, I). (E) and (J) are merged images. Most

BrdU(+) twin cells were BrdU(+)/NG2(+)/Olig2(+) (arrows,
A–E). While in small number of BrdU(+) twin cells, one was
NG2(−) (arrowheads, F–J), but both cells expressed oligodendro-

cyte lineage marker, Olig2 (F–J). These data suggest that BrdU(+)/
NG2(−) cells are differentiating into mature oligodendrocytes.

Bar=20 μm.
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treatment, unlike other commercially available anti-Ki67

antibodies. Although using this anti-Ki67 antibody might be

the mildest and best way to detect proliferating cells in the

double immunostaining method, it is sometimes difficult to

discriminate proliferating leukocytes, as discussed above.

We found differential staining intensities in pericytes

when stained with rb-NG2 and ms-NG2 antibodies. This

may derive from the different immunogens used in antibody

production. This led to the incompatibility between the

quantification results of the two anti-NG2 antibodies. Even

though the number of proliferating pericytes was small, for

the sake of precision they should not be neglected.

The present study strongly suggests that there were

no NG2(−) proliferating precursors in the intact adult rat

cortical gray matter. We cannot completely exclude the

possibility that NG2(−) proliferating precursors exist in

the brain parenchyma, but the likelihood that they are

present is very low. Olig2 was expressed in more than 90%

of proliferating cells in the intact brain. This value fits well

with the ratio of cycling NG2(+) cells. Olig2 is known to

be exclusively expressed in NG2(+) cells with stellate

morphology [23], but not in endothelial cells or pericytes

(unpublished observation). Thus, virtually all the prolif-

erating cells except pericytes and endothelial cells were

NG2(+)/Olig2(+) cells.

Except in the SEZ and GCL, astrocytes do not exhibit

the properties of neural stem cells in the intact adult brain.

However, it was reported that a subset of quiescent astro-

cytes respond to injury, begin to proliferate, and contribute

to glial scar formation [5] in concert with NG2(+) cells [2].

Notably, the astrocytes that respond to injury exhibit neural

stem cell properties in in vitro analysis, but this is not the

case with NG2(+) cells [5]. In addition, a subset of microglia

can acquire multipotency in specific culture conditions [38].

Based on our quantification analyses, there was a small pro-

portion of BrdU-labeled astrocytes and microglia, but no re-

ports have suggested that astrocytes or microglia can trans-

form or differentiate into NG2(+) cells in intact adult brains

in vivo. Throughout our analyses, there were no BrdU(+)/

NeuN(+) neurons, even during the long BrdU pulse-labeling

paradigm. Thus, NG2(+) cells were the only proliferating

precursor population in the intact adult cortical gray matter.

Recently it was suggested that NG2(+) cells might differen-

tiate into neurons in the intact adult cortex [9]. Neurogenesis

in the adult cortex is still controversial [18, 19], and further

studies are needed to clarify this possibility.

In conclusion, in the adult rat cortical gray matter, there

were just two populations of proliferating cells: the majority

were NG2(+) cells, including a small number of pericytes,

and the rest were endothelial cells.
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