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ABSTRACT 

Background: The mechanical characterization of skeletal muscle under high-rate loading regimes is 

important for predicting traumatic injuries due to traffic accidents and contact sports. However, it is 

difficult to perform dynamic mechanical tests at rates relevant to such rapid loading events. 

Methods: In the present study, a series of stress relaxation tests were conducted on rabbit hind-limb 

muscle fiber bundles using a custom tensile tester. Using relatively moderate loading conditions 

compared to those typically associated with traumatic injuries, the passive stress-decaying mechanical 

properties of muscle fiber bundles were characterized. In addition, stress relaxation responses to various 

ramp-hold stretches were theoretically predicted by a custom-built code. 

Findings: The results showed that the muscle fiber bundles exhibit greater stress relaxation at higher 

loading rates and greater stretch magnitudes. Based on these results, the data points representing the 

“elastic” stress–strain tensile behavior typical of traumatic injury were extrapolated using curve fitting. 

The theoretical model revealed rate-dependent characteristics of the muscle fiber bundles under traumatic 

loading conditions, which would result in tensile strengths of 300–500 kPa at the maximum engineering 

strain of 54%. This strength is on the order of magnitude as the maximum isometric stress of an active 

muscle contraction. 

Interpretation: The proposed numerical model is expected to serve as a powerful research tool to 

investigate injury mechanisms of the skeletal muscle. Moreover, the elastic response that was 

theoretically predicted here will be useful in the development of effective countermeasures to prevent 

traumatic injuries due to rapid loading events. 

 

Keywords: stress relaxation, muscle fiber bundle, uniaxial stretch, viscoelasticity, elastic response, 

traumatic injury 

  



3 

 

1. Introduction 1 

Viscoelastic soft tissue exhibits stress relaxation in response to externally applied displacements such 2 

as extension, compression, or shear deformation. When a step-like displacement is given instantaneously 3 

and the displacement is held constant, soft tissue initially behaves like a nonlinear spring by instantly 4 

exerting a reaction force that decays over the course of holding period (the duration in which the 5 

displacement is held constant). For skeletal muscle, this phenomenon has a damping effect on the 6 

quickly applied deformation, thereby stabilizing the musculoskeletal system. On the other hand, skeletal 7 

muscle works actively as an actuator in the human body, contracting at a rate of 1–2 s–1 during daily 8 

activity (Lieber, 1997) and reaching maximum rates ranging between 5–10 s–1 (Lai et al., 2018). Since 9 

most muscles in the body work in antagonistic pairs, it is important to investigate the mechanical 10 

properties of muscle during both passive tension and active contraction. For instance, when the 11 

biarticular muscle group contracts voluntarily or compulsively, not only agonist but also antagonist 12 

muscles are typically recruited and the rate of passive stretching is equivalent to that of active muscle 13 

contraction. 14 

Many nonlinear viscoelastic models have been formulated to characterize the complex passive 15 

mechanical properties of soft tissues. Of these models, the quasi-linear viscoelastic (QLV) theory, which 16 

was originally developed by Fung (1967, 1993), is the most widely accepted model for representing the 17 

viscoelasticity of soft biological materials. According to the QLV theory, the stress relaxation behavior 18 

can be expressed as a product of the separable functions of time, t, and strain, , as given by Eq. 1: 19 

 20 

 (t, ) = G(t)  e()        (Eq. 1) 21 

 22 

where  e() represents the instantaneous stress, which is defined as the elastic response to an idealized 23 

step-like strain, , at t = 0 (true zero). G(t) is the reduced relaxation modulus representing the 24 

time-dependent stress response normalized to the measurable peak stress,  
0+ at t = 0+, which is defined 25 

for a ramp displacement completed with a rise time (tR = 0+ was set to be as 0.4, 0.5, 1, or 6 s in the 26 

current work), as shown in Eq. 2; the QLV theory commonly assumes that the reduced relaxation 27 

modulus is independent of the applied strain. 28 

 29 

G(t) =  (t, ) / 
0+       (Eq. 2) 30 

 31 
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However, a major limitation of the QLV model is that the initial portion of the stress relaxation cannot 1 

be measured experimentally because it is impossible to ramp the strain at an infinite rate (i.e., apply a 2 

true step-like strain). Thus, the “elastic” response measured with a high-rate loading regime inevitably 3 

includes the effect of stress relaxation during the ramp-phase period (i.e., the rise time, tR). In such cases, 4 

a method of back-extrapolation is useful to modify the reduced relaxation modulus (Myers et al., 1991; 5 

Funk et al., 2000; Tamura et al., 2002). Nevertheless, it is impossible to perfectly compensate for the 6 

material behavior during the rise time (i.e., the initial stress relaxation). 7 

In soft biological materials, it is known that the magnitude of the instantaneous stress increases as 8 

the applied displacement is increased and decreases as the rise time is extended. It should be noted that a 9 

common injury in athletes is muscle strain, which often occurs in the weakened or injured muscle 10 

following a “ballistic” high-force eccentric contraction (LaStayo et al., 2003). Thus, it can be expected 11 

that the impact velocity affects the pattern and severity of a traumatic injury to the musculoskeletal 12 

system (e.g., muscle tears and contusions). Therefore, it is crucial to characterize the behavior of tissue 13 

at high strain rates in order to accurately represent the muscle mechanics in computational models. In 14 

our previous study (Tamura et al., 2016), we examined the rate sensitivity of muscle fiber bundles 15 

subjected to uniaxial stretching in the velocity range of 0.02–0.5 s–1. However, the passive mechanical 16 

properties of muscle fiber bundles in considerably high-rate loading conditions could not be examined 17 

due to the mechanical restriction of the custom tensile tester that was used (i.e., the applicable maximum 18 

velocity was limited to 20 mm/s). Since the rate sensitivity of soft tissue materials arises from the effects 19 

of stress relaxation, it is critically important to investigate its mechanical response to a step-like 20 

displacement (i.e., displacement with a “minimal” rise time). Hence, in the present study, we conducted 21 

a series of stress relaxation tests with a sub-traumatic but repeatable loading condition using freshly 22 

isolated muscle fiber bundles procured from the hind limbs of rabbits. Then, the obtained data were 23 

applied to theoretically predict the dynamic tensile behavior and elastic response of muscle fiber bundles 24 

that can be expected with a traumatic impact injury or ballistic loading conditions. 25 

 26 

2. Methods 27 

2.1 Mechanical testing 28 

The specimen preparation, construction of the custom tensile tester, and data analysis were 29 

conducted as described elsewhere (Tamura et al., 2016). In brief, four male Japanese white rabbits 30 

weighing 2.6 ± 0.1 kg (mean ± SD) were used. The handling of all study animals was performed with 31 
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the approval of the Committee of Animal Experimentation of Nagoya Institute of Technology. The 1 

hamstrings were dissected from the hind limbs of the rabbits at room temperature immediately after 2 

sacrifice. The samples were tied to glass rods to retain their natural lengths and stored in a 50% (v/v) 3 

glycerol relaxing solution overnight (16–18 h), at 4°C. Then, single muscle fiber bundles of 30–40 mm 4 

in length and approximately 1 mm in diameter were carefully separated from the tissue using fine 5 

forceps and a dissection needle. 6 

Each isolated specimen was mounted on the tensile tester with a pair of custom parallel-plate load 7 

cells (channels 1 and 2). Both ends of the specimen were glued to the tips of the cantilever arms using a 8 

cyanoacrylate adhesive. The initial distance between the innermost points of the grips on the two arms 9 

was adjusted to 20 mm (Fig. 1). The force data from each channel was recorded at a frequency of 1 kHz 10 

(NR-ST04, Keyence, Osaka, Japan); zero strain was defined as the first point at which the sum of the 11 

forces collected in the two channels constantly exceeded 0.1 mN. An image of the fiber bundle was 12 

captured by a digital camera (EX-ZR400, Casio, Tokyo, Japan) from both the top and side views using a 13 

mirror inclined a 45° angle to measure length, width, and height of the undeformed specimen. In 14 

addition, video was recorded during each test at 30 fps and consecutive still images were extracted for 15 

post-hoc image analysis. 16 

After the experiment, ImageJ version 1.50 (National Institutes of Health, Bethesda, MD, USA) was 17 

used to perform dimensional measurements of each sample. In this study, we assumed that the 18 

cross-section of a fiber bundle specimen had an oval shape and measured the length of its major and 19 

minor axes. Consequently, the cross-section area of the specimen was 0.657 ± 0.022 mm2 on average 20 

(mean ± SEM, n = 50), and the force data were converted to nominal stresses. The axial stretch along the 21 

fiber bundle was calculated as the engineering strain by dividing the current elongation by the initial 22 

grip-to-grip length of the specimen. 23 

 24 

   25 

(a) Undeformed configuration at zero strain.      (b) Deformed configuration at maximum stretch. 26 
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Fig. 1: Typical deformation of a muscle fiber bundle during stress relaxation test with a 6 mm stretch 1 

(Top view); black dots placed upon the specimen along axial direction were vanilla beans. Ch 1 and Ch 2 

2 indicate the left and right arm-tips of a pair of custom force transducers, respectively. 3 

 4 

2.2 Stress relaxation test 5 

The loading path included five cycles of preconditioning, a 120 s resting period, a rapid stretch up to 6 

a final displacement of 2, 4, 6, or 8 mm, each of which was followed by a 300 s holding period. During 7 

this period, the applied displacement was held constant throughout. In the preconditioning cycles, a 8 

uniaxial stretch was applied to fiber bundle at the rate of 2 mm/s until the specimen reached 9 

approximately 30% strain (6 mm displacement). The residual slack recovered completely during the 10 

resting period. The final stretch was applied at 5, 10, 15, and 20 mm/s (0.25, 0.5, 0.75, and 1 s–1) for 11 

final displacements of 2, 4, 6, and 8 mm, thus maintaining a rise time, tR, of 400 ms. The holding period 12 

of 300 s was considered to provide enough data points to identify the trend associated with the stress 13 

relaxation effects. In our previous work (Tamura et al, 2016), a muscle fiber bundle subjected to uniaxial 14 

stretch mechanically failed when a 12–16 mm displacement was applied. In the current work, therefore, 15 

the maximum displacement, 8 mm, was chosen as a range where a plastic deformation or any damage of 16 

the fiber bundle did not occur. The temperature of the specimen bath was maintained at 37°C by a hot 17 

plate (FHP-30S, TGK, Tokyo, Japan). All the experiments were completed within 30 h of harvesting. 18 

 19 

2.3 Statistical analysis 20 

Analysis of variance (ANOVA) was conducted for investigating the change in stress relaxation rates 21 

using SPSS version 24 (IBM, Armonk, NY, USA). P-values of 0.05 or less were considered to be 22 

statistically significant. 23 

 24 

2.4 Viscoelastic formulation 25 

Ideally, the parameters representing the stress relaxation should be uniquely identified by a fitting 26 

procedure with a step-like strain. Nevertheless, since it is physically impossible to apply a true step input, 27 

previous studies have employed a high-rate ramp as a close alternative to a step-like displacement 28 

(Tamura et al., 2007, 2008). With this approach, however, artifacts and measurement errors associated 29 

with the high strain rates (e.g., overshoot and vibration) might be introduced into the estimation of the 30 

parameters. Therefore, in the present study, the predictions were made based on the stress relaxation 31 
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responses to various ramp-hold stretches avoiding such unwanted contaminants or biases. This was done 1 

by collecting a series of relaxation curves under moderate loading conditions and approximating the 2 

elastic response using a least-squares method (Fig. 2). 3 

Troyer et al. (2012) previously proposed a systematic method to correct for a finite-ramp time in an 4 

experiment to characterize the stress relaxation of the spinal cord. Based on this approach, our group has 5 

demonstrated that the uniaxial nonlinear viscoelastic behavior of a spinal nerve root can be represented 6 

in a simplified manner as follows (Tamura et al., 2017): 7 

 8 

𝜎[𝜀(𝑡), 𝑡] = ∫ 𝐸[𝜀(𝜏), 𝑡 − 𝜏]
𝑡

0

𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏 + 𝜎0     (Eq. 3) 9 

 10 

where  is the stress,  is the strain, t is the time,  is the time variable of integration, and E (, t) is the 11 

material relaxation modulus that represents the time-dependent relationship between stress and strain. 12 

The relaxation modulus of a material can be approximated by Eq. 4 as a Prony series: 13 

 14 

𝐸(𝜀, 𝑡) = ∑ 𝐸i(𝜀)𝑒
−𝑡 𝜏i⁄5

i=1       (Eq. 4) 15 

 16 

where Ei () is a strain-dependent variable corresponding to the time constant, i (i = 1–5). In the present 17 

study, decadal time constants (1 = 0.1, 2 = 1, 3 = 10, 4 = 100, and 5 = 1000 s) were selected to 18 

capture both the short-term and long-term material behaviors. Thus, the material stiffness can be 19 

described by the parameters Ei (i = 1–5) while the stress relaxation process can be described by the time 20 

constants i (i = 1–5). With respect to the relaxation function, Quapp and Weiss (1998) have shown that a 21 

combination of exponentials is suitable as the original continuous function and allows efficient 22 

computational implementation. Preliminary testing revealed that five exponential terms were sufficient 23 

to fit the experimental data to Eq. 4. Since the equilibrium state stress at infinite time was not 24 

experimentally obtained, the stress relaxation was continued over 100 s to ensure that it is sufficiently 25 

long to study the relevant effects of ballistic behavior. For each test condition, the averaged stress 26 

relaxation data were fitted using a custom code in MATLAB R2017b, (MathWorks, Natick, MA, USA). 27 

Then, a nonlinear least-squares algorithm was used to identify the values of Ei (i = 1–5) yielding a stress 28 

response that is consistent with those obtained experimentally; specifically, the stiffness coefficients 29 

were obtained by minimizing the sum of the squared errors between the observed stress and the 30 

predicted stress during the ramp-hold stretch. 31 
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For further simplification, the passive elements of the muscle fiber bundle were assumed to work as 1 

linear springs during the ramp phase so that the reaction force would increase linearly in response to the 2 

applied displacement. Hence, the stress at any time point can be expressed in the form of an integral as 3 

shown in Eq. 5. 4 

 5 

𝜎[𝜀(𝑡), 𝑡] = 𝐸[𝜀(𝑡), 𝑡 − 𝑡]𝜀(𝑡) − 𝐸[𝜀(0), 𝑡 − 0]𝜀(0) − ∫
𝑑𝐸[𝜀(𝜏),𝑡−𝜏]

𝑑𝜏

𝑡

0
𝜀(𝜏)𝑑𝜏 + 𝜎0 (Eq. 5) 6 

 7 

The fitting procedure proposed herein was validated using two sets of load-relaxation curves: 1) data 8 

from preliminary stress relaxation experiments with a constant 6 mm stretch with different rise times, tR 9 

= 0.5, 1, 6 s (N = 1 for each condition), and 2) data from an additional series of stress relaxation 10 

experiments or main study with different ramp loadings up to 2–8 mm stretch with a constant rise time 11 

of tR = 0.4 s (N = 3 for each condition). Thus, the theoretical elastic response to each stretch level was 12 

calculated by substituting t = 0 into Eq. 6 as shown in Fig. 2. 13 

 14 

𝜎[𝜀(𝑡), 𝑡] = 𝐸[𝜀(𝑡), 0]𝜀(𝑡) − ∫
𝑑𝐸[𝜀(𝜏),𝑡−𝜏]

𝑑𝜏

𝑡

0
𝜀(𝜏)𝑑𝜏    (Eq. 6) 15 

 16 

 17 

Fig. 2: Curve fitted to the instantaneous elastic response data based on a series of stress relaxation 18 

responses; the maximum stretch was assumed to be 54% engineering strain as determined in our previous 19 

study (Tamura et al., 2016). 20 

 21 
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3. Results 1 

3.1 Effect of the rise time on the stress relaxation response 2 

As a preliminary study, a series of stress relaxation tests were conducted with a constant maximum 3 

displacement of 6 mm (N = 1; number of rabbit). During the test, the muscle fiber bundles were subjected 4 

to ramp-hold stretches of rise times, tR = 0.5, 1, and 6 s, which corresponded to rates of 12, 6, and 1 mm/s, 5 

respectively. As shown in Fig. 3a, the reduced relaxation modulus (i.e., the normalized mean stress 6 

relaxation response) did not change significantly following the ramp period until approximately 0.02 s 7 

after the maximum strain and ultimately reached an equilibrium state at 300 s that was consistent 8 

regardless of tR. However, the stress relaxation behavior of muscle fiber bundles depended on the 9 

assigned rise time (i.e., the given loading rate): when the stretch was applied more rapidly, the stress 10 

decayed more swiftly after the ramp period. 11 

 12 

3.2 Effect of the maximum stretch on the stress relaxation response 13 

Another series of stress relaxation tests were performed at a constant rise time, tR = 0.4 s (N = 3). 14 

Each of the normalized mean stress responses decayed over the period of 300 s as observed in the 15 

preliminary study (Fig. 3b). Nevertheless, the peak stress at the rise time,  0+ (i.e., the instantaneous 16 

maximum stress immediately after the ramp period), and equilibrium state stress,  100 (i.e., the stress 17 

measured after 100 s), increased significantly as the rate and the magnitude of the applied displacement 18 

were increased (Fig. 4). This is consistent with the results reported by Meyer et al. (2011) and Wheatley et 19 

al. (2016), which independently revealed that the stress relaxation response of skeletal muscle depends on 20 

the strain at the single fiber and tissue levels, respectively. In addition, to examine changes in material 21 

viscous behavior, a stress relaxation rate was determined, i.e., linear stress relaxation rates were computed 22 

based on the change in post-peak stress for four time periods of 0+ (tR) –0.1, 0.1–1, 1–10, and 10–100 s. It 23 

was found that the stress relaxation rate also significantly depended on the magnitude of the applied 24 

stretch (the differences were statistically significant as shown in Fig. 5). Notably, some degree of stress 25 

relaxation would be expected, even during the initial ramp period. The stress relaxation rate during the 26 

measurable zero (tR = 0+) and 0.1 s was much greater than that during other time periods (0.1–1, 1–10, 27 

and 10–100 s), indicating that significant energy dissipation occurred during the ramp period. 28 

Based on these results, we hypothesized that the instantaneous stress and maximum reaction force of a 29 

muscle fiber bundle in response to a ramp stretch explicitly depends on both the applied loading rate and 30 

the peak displacement. 31 

32 
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 1 

(a) Preliminary study: maximum stretch of 6 mm with rise times of tR = 0.5, 1, and 6 s (N = 1). 2 

 3 

(b) Main study: maximum stretch of 2–8 mm with a constant rise time of tR = 0.4 s (averaged for N = 3). 4 

Fig. 3: Normalized mean stress relaxation responses with various maximum stretches and rise times (N, 5 

number of rabbits), implicating that material relaxation should be described as a function of time and 6 

stretch. 7 
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 1 

(a) Stress relaxation under a 6 mm stretch with the different rise times of tR = 0.5, 1, and 6 s, which 2 

correspond to the rate of 12, 6, and 1 mm/s, respectively (N = 1). 3 

 4 

(b) Stress relaxation with four maximum stretches (2–8 mm) with a constant rise time of tR = 0.4 s (N = 5 

3). 6 
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Fig. 4: Stress relaxation over time (mean ± SEM) based on a preliminary study and an additional series of 1 

ramp-hold mechanical tests (present main study). Stress relaxation response of a muscle fiber bundle 2 

evidently depended on both the rate and the magnitude of a given stretch. 3 

  4 
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 1 

(a) Stress relaxation rates during the short intervals of 0+–0.1 and 0.1–1 s (*P < 0.05 and **P < 0.01). 2 

 3 

(b)  Stress relaxation rates during the long intervals of 1–10 and 10–100 s (*P < 0.05 and **P < 0.01). 4 

Fig. 5: Comparison of the stress relaxation rates after a constant rise time (tR = 0.4 s) for applied 5 

maximum stretch of 2–8 mm (N = 3); † and ‡ indicate P < 0.01 compared to 6 and 8 mm stretches. Most 6 
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of the stress relaxation occurred during the very early stage of the mechanical test. 1 

 2 

3.3 Curve fitting to the stress relaxation responses 3 

Ramp-hold mechanical responses with a maximum stretch of 6 mm and rise times, tR = 0.5, 1, and 6 s, 4 

were predicted using a custom program coded in MATLAB and compared with the measured stress 5 

relaxation responses obtained from the preliminary study. In Fig. 4a, the open circles with error bars 6 

represent the mean ± SEM of the experimental data while the dashed lines show the approximate fitted 7 

functions. It should be noted that the magnitude of the instantaneous stress response decreased gradually 8 

as the applied loading rate decreased. The theoretical curves indicate that the time-dependent mechanical 9 

response can be accurately predicted for various rise times, i.e., the curve fitting employed here could 10 

effectively capture the behavior of the data over the entire experiment. 11 

As a next step, the stress relaxation responses were similarly predicted for various maximum stretches 12 

in the range of 2–8 mm using an approach used for the various rise times in the range of 0.5–6 s (Fig. 4b). 13 

The results confirmed that theoretical curves were reasonably comparable with the experimental data, 14 

including that during the ramp phase (Fig. 6). Notably, the viscoelastic mechanical responses during the 15 

holding period were successfully reproduced within the range of test configurations, indicating that the 16 

proposed curve fitting method provides good predictions that are consistent with those obtained using the 17 

theoretical model, thus verifying the performance of the proposed approach. 18 

 19 

3.4 Predicted elastic response 20 

The material stiffness parameters, Ei (i = 1–5), and corresponding elastic responses,  0 (t = 0), are 21 

summarized in Table 1. Both of these properties were affected by the loading rate and the magnitude of 22 

the maximum stretch as evidenced by the behavior of the reduced relaxation modulus (Fig. 3) and the 23 

stress relaxation rate (Fig. 5). Based on the combination of identified coefficients Ei (i = 1–5), the 24 

maximum stress corresponding to an idealized step-like input can be computed theoretically by 25 

substituting t = 0 into Eq. 6. Further, the elastic stress–strain response can be predicted using a quadratic 26 

function with the least-squares method under the assumption that muscle fiber bundles fail at a 54% 27 

tensile strain (Tamura et al., 2016). As demonstrated in Fig. 7, the maximum stress reached approximately 28 

400 kPa at failure, which is equivalent to the maximum isometric contraction stress of skeletal muscle as 29 

reported elsewhere (Myers et al., 1998; Spyrou and Aravas, 2011; Davidovits, 2012). 30 

 31 
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 1 

Fig. 6: Comparison of the stress relaxation (mean ± SEM) over time in the early loading phase (t = 0–5 s) 2 

obtained with a constant rise time of tR = 0.4 s and four different maximum stretches 2–8 mm (N = 3). 3 

Theoretical curves fitted well with the recorded experimental responses, including the ramp-hold phase. 4 

 5 

Table 1: Identified stiffness coefficients Ei (i = 1–5) and estimated elastic response,  0, with four different 6 

maximum stretches (N = 3). 7 

Stretch% E1 (kPa) E2 (kPa) E3 (kPa) E4 (kPa) E5 (kPa)  0 (kPa) 

 8% (2 mm) 

16% (4 mm) 

24% (6 mm) 

32% (8 mm) 

284.1 

250.9 

338.9 

336.9 

67.1 

43.6 

47.5 

56.7 

34.8 

26.0 

26.7 

37.7 

34.8 

39.0 

90.7 

71.4 

97.9 

76.0 

89.5 

75.8 

 41.5 

 69.7 

142.4 

185.2 

The instantaneous stress,  0, was obtained by substituting t = 0 into Eq. 6 and was specific to each of the 8 

applied stretches (2, 4, 6, and 8 mm). Ei (i = 1–5) and i (1 = 0.1, 2 = 1, 3 = 10, 4 = 100, and 5 = 1000 9 

s) correspond to each other. 10 

 11 
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 1 

Fig. 7: Passive elastic response typical of a traumatic loading event as predicted by curve fitting; the solid 2 

circles were obtained based on a series of stress relaxation tests with a constant rise time, tR = 0.4 s, and 3 

four maximum stretches (2, 4, 6, and 8 mm) as summarized in Table 1. Peak stress would be on the order 4 

of 300–500 kPa at the maximum stretch, i.e., 54% engineering strain. 5 

 6 

4.  Discussion 7 

To precisely model highly dynamic or ballistic human movements using computational models, it is 8 

important to elucidate the mechanical responses of a skeletal muscle under high-rate loading regimes. 9 

Technically, however, to ramp the loading so rapidly is challenging and is likely to result in an overshoot 10 

in the applied displacement and the introduction of inevitable oscillations and contamination of the 11 

recorded data. Therefore, in practice, the initial input strain is usually more like a moderate ramp loading 12 

with a finite rise time that varies in terms of the strain rate, depending on the context of the study. 13 

Wheatley et al. (2016) conducted a series of stress relaxation tests using a tibialis anterior muscle tissue 14 

extracted from New Zealand white rabbits. Specimens were subjected to five steps ramp-hold cycles 15 

followed by a 300 s relaxation period. Their data typically showed 5–10 kPa for peak stress and 2–3 kPa 16 

for equilibrium stress at 10% strain, which is much smaller than our data because the tissues were 17 

elongated at the rate of 3.8 mm/s (~0.1 s−1) in their mechanical test. On the other hand, the relaxation ratio, 18 

 300
 / 0+ (the stress measured at 300 s divided by the peak stress obtained at tR = ~1 s), showed no 19 

0
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dependence on the applied strain and had a mean value of 0.211. This is comparable with the relaxation 1 

ratio,  300
 / 0+ = 0.250, obtained here (Fig. 3b). Abraham et al. (2013) also assessed the viscoelastic 2 

properties of muscle tissue isolated from New Zealand white rabbit hind limbs upon extension and 3 

reported that approximately 40% of the stress relaxation occurs during the first 100 s of the ramp-hold 4 

phase. Since they used whole and sectioned muscles as test specimens, the ramp loading was applied with 5 

a rise time of 10 s. On the contrary, it takes about 20 s to reach 40% stress relaxation against the ramp 6 

loading in our experiments (Fig. 3b), suggesting that a considerable amount of stress relaxation may have 7 

occurred during the very early stage following the applied loading. This is also in contrast to the results of 8 

a study by Tian et al. (2010, 2011) on the passive mechanical properties of human gastrocnemius muscle–9 

tendon units in vivo. By applying the QLV model to the experimental data, Tian et al. concluded that the 10 

loading rate does not have a significant effect on the muscle–tendon unit over the range of velocities 11 

tested. However, as the initial displacement was applied manually in their experimental setup, a rise time 12 

of tR = 3.4 ± 1.1 s (mean ± SD) was required before reaching the peak load. Moreover, the data was 13 

analyzed after 3tR = 10.2 s, meaning that the effective rise time was on the order of 10 s. Thus, the 14 

intrinsic viscous effects might have been overshadowed because the initial stress relaxation occurred 15 

during the early stage after applying the manual displacement. Indeed, the authors noted that the data 16 

reported in that study should not be interpreted as indicating that viscous effects are not important in 17 

muscle mechanics because their samples were muscle–tendon units; a broad spectrum of relaxation 18 

processes occurring within muscle tissue are associated with its hierarchical structure, which comprises 19 

micro to macro components of different lengths and structural scales, e.g., a sarcomere, myofibril, fiber, 20 

fascicle (fiber bundle), tissue, whole muscle, and muscle–tendon unit (Bilston and Tan, 2014). Thus, our 21 

findings suggest that the viscous effect is dominant in the scale of muscle fiber bundles. 22 

In our prior work (Tamura et al., 2016), we have shown that the ultimate tensile strain of muscle fiber 23 

bundles was almost constant at approximately 54% regardless of the magnitude of the externally applied 24 

loading rate. On the other hand, the tensile strength differed with the rate and was on the order of 100–25 

200 kPa. Meyers et al. (1998) investigated the effect of the strain rate on the tibialis anterior muscles of 26 

New Zealand white rabbits in vivo. Their results indicated that the stress–strain response of passive 27 

skeletal muscle is quite sensitive to the stretching velocity over a range of strain rates (1–25 s–1). 28 

Moreover, the failure stress was in the range of 0.5–1.1 MPa, which was higher than the tensile strength 29 

that we reported previously. In the Meyers et al. study, the exposed almost intact muscle–tendon unit was 30 

used as the test specimen in vivo; thus, it was protected by stiff membranous materials such as the 31 
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epimysium and aponeurosis. However, the muscle fiber bundles that were used in the experiments 1 

presented here were isolated from tissue samples so they contained relatively less stiff membranous 2 

materials and included endomysium and perimysium but did not contain epimysium and aponeurosis. 3 

Therefore, the difference in the reported mechanical failure stresses may be partly attributable to the 4 

additional strength provided by the extracellular matrix remaining in the test samples in the Meyers et al. 5 

study. The difference may also be ascribed to the rate dependence of the muscle fiber bundle of itself. If it 6 

is assumed that the failure strain is constantly at 54%, the tensile strength in a considerably high-rate 7 

loading regime would be on the order of 300–500 kPa (according to Fig. 7). Since this is equivalent to the 8 

maximum isometric contraction stress at an optimum length that was previously reported by Meyers et al. 9 

(1998), 440 ± 150 kPa (mean ± SD), it appears that the predicted failure stress fell within the range of 10 

reasonable values in terms of passive mechanical properties. In fact, our previous study (Tamura et al., 11 

2016) showed that the axial strain is distributed nonuniformly, even in a relaxed state when subjected to 12 

uniaxial stretching. This suggests that the nonuniformity of the strain distribution will be increased when 13 

the specimen is activated (i.e., contracted). Since the isometric axial load is essentially constant and 14 

balanced between both ends along the fiber direction regardless of the inhomogeneous strain distribution, 15 

the lack of an active contraction force must be compensated with a passive resistance force due to the 16 

additional elongation that is generated locally. At a sarcomere level, this nonuniformity-related 17 

phenomenon can be explained by the hypotheses of sarcomere popping and residual force enhancement, 18 

i.e., partially weak sarcomere or loose overlap between the thin and thick myofilaments stemming from 19 

focal overstretching at the intracellular level can be mechanically compensated for at the expense of the 20 

lengthening of the weakened sarcomeres of themselves (Givli, 2014). Since it can be expected that the 21 

macroscopic behavior of skeletal muscle is dictated by its microscopic properties, the predicted tensile 22 

strength should be on the same order as the maximum isometric contraction stress. Of another note, 23 

according to Meyer et al. (2011), a single muscle fiber passively shows instantaneous stresses of 70 kPa 24 

and 140 kPa when stretched at 30% and 50%, respectively, at a rate of 20 s−1. Based on the theoretical 25 

elastic response (Fig. 7), it can be estimated that a muscle fiber bundle would show instantaneous stresses 26 

of 170 kPa and 340 kPa at 30% and 50% strains, respectively. Thus, fibers would bear approximately 27 

40% of the applied load and the intramuscular connective tissues would bear the rest of it, i.e., ~60%. 28 

However, a further study will be required to precisely account for the contribution from each component 29 

independently, and it is difficult to conclude at this stage. 30 

There are couple of limitations to be addressed in this study. First, as shown in Figure 4, we observed 31 
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relatively significant deviations from the mean value in measured test data. In the current work, we 1 

minimized the potential difference among specimens by limiting the number of rabbits (N = 3) and the 2 

effect of rigor mortis by keeping a specimen’s natural length in the relaxing solution. We also well 3 

preconditioned specimens prior to conducting stress relaxation tests. Nevertheless, specimens might be 4 

degraded during the whole process of the mechanical test, because approximately 30 h were required to 5 

complete all the experiments after animal sacrifice. Another limitation is that our model is 6 

one-dimensional, while the skeletal muscle is inherently three-dimensional with a finite deformation as 7 

described in previous studies (Ferreira et al., 2017; Pouca et al., 2018). Since the material anisotropy and 8 

visco-hyperelasticity are also a critical factor for representing a muscle tissue in vivo, we need to take into 9 

account of it along with the effect of active contraction. The theoretical model proposed here, however, 10 

can be applied to a hyperelastic material, and we can easily implement a viscous effect in the constitutive 11 

law. In the future, stress relaxation tests should be conducted using greater stretch magnitudes around 10–12 

12 mm to encompass the entire elongation process up to the material failure. Nevertheless, extended 13 

stretches greater than 10 mm could cause micro-cracks or other damage in the fiber bundle specimen. 14 

Thus, to ensure the repeatability of the mechanical testing, the elastic tensile behavior in response to an 15 

idealized step-like input was obtained by extrapolation. During traumatic events, skeletal muscle may 16 

experience high strains over a short period. To represent impact-induced injury, replicating a ballistic 17 

loading condition is desirable; however, application of such loading condition would contaminate the test 18 

results. Due to the lack of experimental data at strain rates that may cause injury (𝜀̇ > 10 s–1, which is 19 

typical of a traumatic impact), the overall in vivo mechanics of traumatic injuries is still unclear. 20 

Therefore, this is the first study, based on relatively moderate loading conditions, to present critical 21 

information about the elastic tensile behavior of muscle fiber bundles and the stress–strain relationship 22 

typical of traumatic impact events. 23 

 24 

5. Conclusions 25 

We conducted a series of stress relaxation tests using freshly isolated muscle fiber bundles and 26 

demonstrated the applicability of the proposed fitting procedure to correct for the finite-ramp effect on the 27 

experimental stress relaxation. The experimental results revealed that muscle fiber bundles reach about 28 

400 kPa at the maximum stretch and that a considerable amount of stress relaxation may occur during the 29 

initial ramp period immediately after the rise time. Hence, to precisely predict the behavior of the human 30 

body under ballistic events using a computational model, it is important to take into consideration the 31 
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effects of the initial stress relaxation, which contribute to the muscle’s role as an intrinsic damper or 1 

stabilizer in the human musculoskeletal system. 2 
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