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a b s t r a c t

We develop Kω, an open-source linear algebra library for the shifted Krylov subspace methods. The
methods solve a set of shifted linear equations (zkI − H)x(k) = b(k = 0, 1, 2, . . .) for a given matrix
H and a vector b, simultaneously. The leading order of the operational cost is the same as that for a
single equation. The shift invariance of the Krylov subspace is the mathematical foundation of the
shifted Krylov subspace methods. Applications in materials science are presented to demonstrate
the advantages of the algorithm over the standard Krylov subspace methods such as the Lanczos
method. We introduce benchmark calculations of (i) an excited (optical) spectrum and (ii) intermediate
eigenvalues by the contour integral on the complex plane. In combination with the quantum lattice
solver HΦ , Kω can realize parallel computation of excitation spectra and intermediate eigenvalues for
various quantum lattice models.
Program summary
Program Title: Kω [kéi-óumig@]
CPC Library link to program files: https://dx.doi.org/10.17632/mt928nz5r3.1
Developer’s repository link: https://github.com/issp-center-dev/Komega
Licensing provisions: GNU Lesser General Public License Version 3.
Programming language: Fortran 90
External routines/libraries: BLAS library, LAPACK library (Used in the sample program), MPI library
(Optional).
Nature of problem: Efficient algorithms, called shifted Krylov subspace algorithms, designed to solve
the shifted linear equations.
Solution method: Shifted conjugate gradient method, Shifted conjugate orthogonal conjugate gradient
method, shifted bi-conjugate gradient method.
Additional comments: The present paper is accompanied by a frozen copy of Kω release 2.0.0 that
is made publicly available on GitHub (repository https://github.com/issp-center-dev/Komega, commit
hash fd5455328b102ec4fa13432496e41c404a0f5a9d).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The response of physical observables to an external field or
perturbation is an essential probe in the experimental and

✩ The review of this paper was arranged by Prof. D.P. Landau.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
ciencedirect.com/science/journal/00104655).
∗ Corresponding author.

E-mail address: hoshi@tottori-u.ac.jp (T. Hoshi).
ttps://doi.org/10.1016/j.cpc.2020.107536
010-4655/© 2020 The Authors. Published by Elsevier B.V. This is an open access art
theoretical studies of quantummany-body systems. Theoretically,
such a quantity can be formulated as a selected element of the
Green’s function,

a†G(z)b, (1)

with given states (or vectors) a and b, where z is the complex
energy parameter and the Green’s function G(z) is defined as the
inverse of the shifted Hamiltonian H ,

G(z) ≡ (zI − H)−1. (2)
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2020.107536
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107536&domain=pdf
https://github.com/issp-center-dev/Komega
https://github.com/issp-center-dev/Komega
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:hoshi@tottori-u.ac.jp
https://doi.org/10.1016/j.cpc.2020.107536
http://creativecommons.org/licenses/by/4.0/


2 T. Hoshi, M. Kawamura, K. Yoshimi et al. / Computer Physics Communications 258 (2021) 107536
Table 1
Classification of the Krylov subspace methods.
Type of A+ σ I Method Solver name

Real symmetric Shifted conjugate gradient (CG) method (using real vector) komega_cg_r
Hermitian Shifted conjugate gradient (CG) method (using complex vector) komega_cg_c
Complex symmetric Shifted conjugate orthogonal conjugate gradient (COCG) method komega_cocg
Otherwise Shifted bi-conjugate gradient (BiCG) method komega_bicg
a
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2

u

In computational quantum physics, the Hamiltonian H is usually
represented by a real-symmetric or Hermitian M × M sparse
matrix. A typical application of the Green’s function formalism is
calculating spectra in which the elements a†G(zk)b are calculated
at sampling points zk located near the real axis (zk ≡ ωk + iδ)
with a tiny imaginary part δ or where the elements a†G(zk)b
(a ̸= b) are calculated at sampling points zk for the numerical
contour integral on the complex plane. The dimension M is large,
e.g., M ≥ 109, and efficient numerical methods are essential to
treat such large matrices.

Formally, the Green’s function (2) can be decomposed as

G(z) =
∑

j

y jy
†
j

z − λj
(3)

where λj and y j are the jth eigenvalue and the corresponding
eigenvector of the matrix H , respectively, i.e.,

Hy j = λjy j. (4)

In practice, however, the numerical evaluation of all the eigen-
pairs is too expensive [the operational cost is O(M3) and the
memory cost is O(M2)] to treat large-scale matrices (M ≥ 109).
In computational quantum physics, a Lanczos-based algorithm
combined with the continued fraction technique has been pro-
posed and widely used to calculate the Green’s function [1,2].
The most expensive operation of the Lanczos-based algorithm is
the matrix–vector product, with an operational cost of O(M2).
Moreover, the sparseness of the Hamiltonian matrix reduces this
cost to O(m) where m is the number of nonzero elements in
the matrix. However, the calculation of the Green’s function is
restricted to diagonal components and it is not straightforward
to evaluate the convergences of the obtained results.

In the present paper, we describe the numerical library Kω
(https://github.com/issp-center-dev/Komega), which solves lin-
ear equations defined by

(zkI − H)x(k) = b (k = 0, 1, 2, . . . ,Neq − 1), (5)

instead of Eq. (4). Here, b is a given vector, {zk} are given scalars,
I is the identity matrix, and Neq is the number of linear equations.
Eq. (5) is called the shifted linear equation since the matrix on the
left hand side is different only by the ‘shift’ term, zkI . In general,
the scalar z is a complex number and the matrix of (zI − H) is
non-Hermitian. The solution vector x(k) is written as

x(k) = G(zk)b, (6)

and satisfies a†G(zk)b = a†x(k). An iterative algorithm is adopted
in Kω, based on the property that the result of the nth itera-
tion, regardless of zk, can be spanned in the Krylov subspace.
The operational cost is usually dominated by the matrix–vector
multiplication procedure for a vector v (v⇒ Hv).

The library Kω is based on efficient algorithms, called shifted
Krylov subspace algorithms, designed to efficiently solve the
shifted linear equations Eq. (5) with Neq > 1. The shifted Krylov
subspace algorithms and related techniques are briefly explained
in this paper and the details can be found in [3–17] and references
therein. Currently, shifted Krylov subspace algorithms are used
in many computational science fields such as quantum chro-
modynamics [3], electronic structure calculations [4,8,18,19], ex-

cited electron calculations [20], nuclear physics [21,22], transport H
calculations with non-equilibrium Green’s function theory [23],
and nano-structured superconducting systems [24]. However,
no open-source numerical library/solver of the shifted Krylov
subspace methods has yet been developed to our knowledge.

In this paper, we first review the algorithm implemented in Kω

briefly in Section 2. Next, the basic information such as installa-
tion and usage is introduced in Section 3. Then, some examples
using Kω as a library or software are illustrated in Section 4.
Finally, we summarize the paper in Section 5.

2. Algorithms

2.1. Overview

In this section, we briefly review the shifted Krylov subspace
methods implemented in Kω. The shifted linear equations of
Eq. (5) can be rewritten as

(A+ σ I)xσ
= b (7)

with A = z0I−H and σ ≡ zk−z0 for k = 0, 1, 2, . . . ,Neq−1. Here,
the suffix k in Eq. (5) is dropped for simplicity. Hereafter, Eq. (7)
with σ = 0 is called the seed equation, while the other equations
with σ ̸= 0 are called the shifted equations. The accuracy of the
approximate solution vector xσ

n can be checked by monitoring the
residual vector

rσ
n ≡ b− (A+ σ I) xσ

n , (8)

where n is the number of iteration steps.
Table 1 shows the four solver methods available in Kω. The

methods are classified according to the type of matrix A +
σ I . Users need to select an appropriate method depending on
whether the matrix H is real-symmetric or Hermitian and
whether the shift constant values {zk} are complex or real [25].

The mathematical foundation of Kω is an iterative algorithm
and the numerical solution of Eq. (7) at the nth iteration is
obtained in the Krylov subspace defined as

Kn(A, b) = span[b, Ab, A2b, . . . , An−2b, An−1b]. (9)

The common mathematical foundation of the shifted Krylov sub-
space methods is the shift invariance property of the Krylov
subspace

Kn(A+ σ I, b) = Kn(A, b), (10)

nd the collinear residual theorem [3], which is explained later in
his section.

This section explains the shifted conjugate gradient (CG)
ethod in Table 1, as an example. The other methods, the shifted
onjugate orthogonal CG method and the shifted BiCG method are
xplained in Appendices A and B, respectively.

.2. Shifted conjugate gradient method

The shifted CG method is based on the CG method [26] that is
sed for solving Ax = b, when the matrix A is real-symmetric (or

ermitian) and positive definite.

https://github.com/issp-center-dev/Komega
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Fig. 1. Collinearity of residual vectors. The shaded bottom surface and the cube
epresent the nth Krylov subspace Kn(A, b) and the (n + 1)th Krylov subspace
n+1(A, b), respectively. The two arrows depict the nth residuals, rn and rσ

n .

.2.1. Seed equation
The seed equation [Eq. (7) with σ = 0] is denoted as Ax = b

nd the solution vector at the nth iterative step is denoted as xn,
here x0 is set to be x0 = 0. The residual vector at the nth step

s denoted as rn = b− Axn. The three vectors, xn, rn, and pn, are
omputed by the following recurrence equations:

ρn = r†
nrn (11)

αn =
ρn

p†
nApn

, (12)

xn+1 = xn + αnpn, (13)

rn+1 = rn − αnApn, (14)

βn =
ρn+1

ρn
, (15)

pn+1 = rn+1 + βnpn (16)

with the initialization p0 = r0 = b.
Kω uses the three-term recurrence formula [7]

rn+1 =
(
1+

αnβn−1

αn−1
− αnA

)
rn −

αnβn−1

αn−1
rn−1, (17)

hich is obtained by eliminating pn from Eqs. (14) and (16). By
aking the inner product between rn and Eq. (17), we also obtain

n =
ρn

r†
nArn −

βn−1
αn−1

ρn
. (18)

These two recurrence equations start with β−1/α−1 = 0 because
α0 = ρ0/(p

†
0Ap0) = ρ0/(r

†
0Ar0). The reason for this implementa-

tion style will be presented in the following subsubsections.
It is crucial that the nth residual rn belongs to the (n + 1)th

Krylov subspace Kn+1(A, b) and is orthogonal to the nth Krylov
subspace Kn(A, b),

rn ∈ Kn+1(A, b) and rn ⊥ Kn(A, b). (19)

These mean that rn belongs to the one-dimensional orthogonal
complementary space of Kn(A, b) within Kn+1(A, b), say K⊥n (A, b).

2.2.2. Shifted equation and collinear residuals
When the CG method is applied to a shifted equation

((A+ σ I) x = b, σ ̸= 0) with xσ
0 = 0 and r0 = b, the residual

vector rσ
n belongs to the same one-dimensional subspace K⊥n (A, b)

because of Eq. (10). Consequently, the residual rσ
n is parallel to

that of the seed equation (rn)

rσ
n =

1
πσ
n
rn, (20)

where πσ
n is a constant [3] called the collinearity factor. Fig. 1 is

a schematic figure depicting the collinearity (rσ
∥ r ).
n n
Table 2
The operational costs per iteration are listed for (i) the conventional Krylov
method, (ii) the shifted Krylov subspace method for the whole elements of the
solution vectors, and (iii) the shifted Krylov subspace method for the projection
of the solution vectors [4]. The operational costs of the sparse matrix–vector
products (SpMV), the scalar–vector products (SV), and the inner products (Inner)
are listed separately.

Method SpMV SV Inner

Conventional MMNZNeq 3MNeq 3MNeq

Shift (whole) MMNZ 3MNeq 3M
Shift (projection) MMNZ 3M + 3Mleft(Neq − 1) 3M

The collinearity factor πσ
n satisfies the recurrence equation

πσ
n+1 =

(
1+

αnβn−1

αn−1
+ αnσ

)
πσ
n −

αnβn−1

αn−1
πσ
n−1 (21)

with the initialization πσ
0 = πσ

−1 = 1, because of Eqs. (17) and
20). By substituting πσ

n rσ
n into rn in Eq. (17), the recurrence

quations for the shifted equations are derived as

ασ
n =

πσ
n

πσ
n+1

αn, (22)

βσ
n =

(
πσ
n

πσ
n+1

)2

βn, (23)

xσ
n+1 = xσ

n + ασ
n p

σ
n , (24)

pσ
n+1 =

1
πσ
n+1

rn+1 + βσ
n p

σ
n (25)

ith xσ
0 = 0 and pσ

0 = b. It should be noted that the recur-
ences of Eqs. (21), (22), (23), (24), and (25) require no expensive
atrix–vector multiplication.

.2.3. Cost and projection
Table 2 compares the operational costs of the conventional

rylov method and the shifted Krylov subspace methods [4]. The
irst row of Table 2 represents the conventional Krylov method,
hich solves the Neq linear equations independently in each

Krylov subspace. Here M and MNZ are the dimension and the
average number of non-zero elements per column of matrix A,
respectively (MNZ ≤ M). The second row represents the cost of
the shifted Krylov subspace method for the case where all the
elements of the solution vectors xσ are calculated. We find that
the operational cost for the sparse matrix–vector product (SpMV)
is drastically reduced (MMNZNeq → MMNZ), since the explicit
SpMV appears only in the seed equation (σ = 0). The third row
represents the cost of the shifted Krylov subspace method for the
case where we do not need all the elements of the solution xσ ,
but only its projection, yσ

= Pxσ with the Mleft × M projection
matrix P (1 ≤ Mleft ≤ M). In the third case, we can replace the
recurrence equations, Eqs. (24) and (25), by

yσ
n+1 = yσ

n + ασ
n un (26)

uσ
n+1 =

1
πσ
n
Prn + βσ

n u
σ
n (27)

with yσ
0 = 0 and uσ

0 = Pb. By this replacement, the number
of scalar–vector products (SV) is reduced from 3MNeq to 3M +
Mleft(Neq − 1). For example, the calculation of an element of the
reen’s function by Eq. (1)

ab(z) ≡ a† (zI − H)−1 b = a†x(z) (28)

is a case with Mleft = 1. In typical applications, both Neq and
Mleft are much smaller than M (Neq,Mleft ≪ M), and thus the
operational costs in the third row in Table 2 are reduced to those
in the first row with N = 1. In other words, the operational cost
eq
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in the third case is reduced, typically, to that for solving a single
linear equation.

Kω implements the third case in Table 2, i.e., the shifted Krylov
subspace method with projection. For the seed equation, the
residual vector rn is updated by Eq. (17) and the coefficients ρn,
αn, and βn are updated by Eqs. (11), (18), and (15), respectively.
For the shifted equations, the projected solution vector yσ

n and the
projected search direction vector uσ

n are updated by Eqs. (26) and
(27), respectively, and the coefficients πσ

n , α
σ
n , and βσ

n are updated
by Eqs. (21), (22), and (23), respectively. The solution vectors xσ

n
for the shifted equations can be obtained by setting P = I or
Mleft = M , but users should accept the additional memory cost,
as explained below.

The present implementation of Kω offers a great advantage
not only in the operational cost but also in the memory cost,
because an M-dimensional vector v requires a large memory cost
in typical applications. In the present implementation, only three
M-dimensional vectors, the residual vectors for the seed equation
(rn+1, rn, and rn−1), are stored in the memory with a memory cost
of O(M1M0

eq). The residual vectors for the shifted equations, such
as rσ

n , can be obtained by Eq. (20) with a negligible memory cost
of O(M0M1

eq). To store the other M-dimensional vectors for the
shifted equations, such as xσ

n and pσ
n , the required memory size

will be O(M1M1
eq), which can be huge.

2.2.4. Seed switching
A mathematical technique called seed switching [7] is adopted

in Kω for an efficient convergence, because the convergence
speed of the CG method can be different among the energy points
{σk}. The residual vectors for several shifted equations (rσ

n , σ ̸=

0) can sometimes remain large, while that for the seed equation
is reduced to be negligible [4]. In this case, we can switch the seed
equation as A′ = A+ σseedI , where σseed is the shift that gives the
largest residual |rσseed

n |, or in other words, the smallest collinearity
factor |πσseed

n |. The residual vector for the new seed equation is
obtained by Eq. (20) to be rσseed

n = (1/πσseed
n )rn. It is noted that the

present implementation style does not require the solution and
search direction vectors for the new seed equation (xσseed

n , pσseed
n ).

Kω always performs the seed switching after an update.

2.3. Comparison with other methods

Here, we briefly describe the merits of calculating Gab(z) by
the shifted Krylov subspace method compared to the traditional
way based on the Lanczos-based algorithm [1,2]. In the Lanczos-
based algorithm, the Krylov subspace of Kn(A, b) is generated by
the Lanczos-type recurrence formula and the diagonal component
Gbb is given by a continued fraction form. In contrast, using the
shifted Krylov subspace method, both the diagonal components
Gbb and the off-diagonal components Gab can be calculated directly
and simultaneously with the same order of operational cost as
that of the Lanczos-based method. In addition, the accuracy of
the obtained results can be evaluated by monitoring the residual
vector of Eq. (8).

The characteristics of the shifted Krylov subspace method are
more clarified when compared with (i) independent computation
by the standard Krylov subspace method at each single shift
point (‘conventional method’ in Table 2) on a massively parallel
supercomputer and (ii) use of sparse-direct algorithms as in the
PEXSI solver [27]. As an advantage of the present method, it
meets the demand for extremely large problems, such as quan-
tum lattice models with matrix size M = 224

∼ 232. Such
problems are severe not only in the operational cost but also
in the memory cost. In the case of M = 232

≈ 4.3 × 109,
for example, the present method uses three double-precision
complex vectors in the recurrence relations and thus requires
memory of 3 × 16 B × M ≈ 200 GB, while the others re-
quire much larger memory cost. As a limitation of the present
Kω code, on the other hand, the code is not applicable to the
generalized shifted equations (zB − H)x = b with a positive-
definite matrix B, unlike the two methods. The generalized shifted
equations appear in many physical problems like the electronic
state calculation with the overlap matrix B. Some of the present
authors proposed the shifted Krylov-subspace algorithms for the
generalized shifted equations [8,11], and the implementation of
the generalized algorithm in Kω remains as a future issue.

3. Usage of Kω

In this section, the usage of Kω is introduced. We first intro-
duce how to install Kω. Kω provides libraries and a standalone
program ShiftK.out. In Section 3.2, the procedures for using
Kω are schematically shown.

3.1. Installation

The stable version of Kω is distributed on the release page with
the Lesser General Public License (LGPL) version 3. To build Kω a
Fortran compiler and a BLAS library are required. The following
is an example of compiling Kω:

$ ./configure --prefix=install_dir
$ make
$ make install

Here, install_dir indicates the full path of the directory where
the library is installed.

3.2. Schematic flow of Kω usage

In this subsection, the usage of Kω as a library or a standalone
program is explained. In Fig. 2, the schematic flow of the library
usage (a) and the corresponding flowchart in the standalone
program (b) are shown.

3.2.1. Library

(i) Preparation of a routine for matrix–vector multiplication
Kω provides a reverse communication interface for the

matrix–vector multiplication routine (v ⇒ Hv). The interface
requires the preparation of a routine to perform the matrix–
vector multiplication, to be called in Kω. This interface allows
extremely large matrices to be handled, since the matrix elements
are internally generated in the ‘matrix–vector multiplication’ and
not stored in the memory.

(ii) Selection of an appropriate solver
Kω provides four kinds of numerical solvers. An appropriate

solver should be selected depending on whether the type of
Hamiltonian H and the frequency z are complex or real, as shown
in Table 1. It is noted that H must be Hermitian or symmetric for
a complex or real matrix, respectively. For an efficient calculation,
the seed switching function [7] is introduced in all methods.

(iii) Calculation
The calculation is performed in the following steps:

(a) Initialization using *_init functions to set and initialize
internal variables in the library. For restart calculations, the initial
values of the coefficients and the vector should be inputted at this
step.
(b) Updating of the results iteratively using *_update func-
tions, which are called alternately with the matrix–vector product
routine in the loop to update the solution. *_update also per-
forms the seed switching. At each step, the values of the 2-norm
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Fig. 2. (a) Schematic flow of use of library and (b) calculation flow in shiftK.out. Here, * indicates the name of the solver, such as komega_cg_r, komega_cg_c,
komega_cocg, and komega_bicg.
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of the residual vector at each shift point are obtained using
*_getresidual functions.
(c) Finalization using *_finalize functions to release the mem-
ories of the arrays stored in the library.

Here, * indicates the name of the solver such as komega_cg_r,
komega_cg_c, komega_cocg, and komega_bicg.

We summarize this subsection by showing a pseudo code in
Algorithm 1, which solves (zI − H)x = b by the shifted BiCG
method (komega_bicg_*) implemented in Kω. Users can use the
shifted CG method (komega_cg_*) or the shifted COCG method
(komega_cocg_*) in a similar way (they do not require the
shadow vectors, r̃ and q̃.) The application using the library is
shown in Section 4.1.

Algorithm 1 Solve (zI − H)x = b by Shifted BiCG method with
Kω

procedure ShiftedBiCG(x,H, {zi}, b)
ndim← dim(H)
nz← dim({zi}) ▷ # of frequencies
x← 0 ▷ initialize output
allocate r[ndim] ▷ residual vector
r ← b
allocate r̃[ndim] ▷ shadow residual vector
r̃ ← b†

allocate q[ndim], q̃[ndim] ▷ storing Hr and Hr̃
call komega_bicg_init(ndim, nz, ndim, x, {zi})
repeat

q = Hr
q̃ = Hr̃
call komega_bicg_update(q, r, q̃, r̃, x) ▷ update and

seed switching
until converged
call komega_bicg_finilize()
deallocate r, r̃, q, q̃

end procedure
3.2.2. Standalone program
As described in the Introduction, Green’s functions are often

calculated to investigate the response of physical observables in
the quantum many-body systems. In Kω a simple standalone
program ShiftK.out is provided, which computes the diagonal
element of the Green’s function:

Gaa(z) = a†(zI − H)−1a. (29)

Here, a is expanded as
∑

i aini where ni is the ith basis vec-
tor of the Hilbert space. An off-diagonal element Gab can be
btained by ShiftK.out, when one calculates Gaa,Gbb,Gcc,Gdd
c ≡ a + b, d ≡ a + ib), and uses the relation Gab =

(Gcc − Gaa − Gbb)+ i(Gdd − Gaa − Gbb)] /2. [1] In the following,
the usage of ShiftK.out is explained.

(i) Preparation of an input file
The input parameters for ShiftK.out are categorized into

four sections: cg, dyn, filename, and ham.
The cg section sets the numerical condition for the CG (or

OCG, BiCG) method. maxloops is the maximum number
f iterations and convfactor is the threshold value for the
onvergence criterion of the residual norm, i.e., maxσ |rσ

n | <

0−convfactor.
The dyn section specifies the parameters for computing the

pectrum. By setting the parameters omegamin, omegamax, and
omega, the target frequencies are given as ωi = omegamin +
× (omegamax − omegamin)/nomega, (i = 0, . . . nomega − 1).
n ShiftK.out, the calculation mode is chosen from normal,
ecalc, and restart by specifying the parameter calctype.
ormal is the mode for computing with the Krylov subspace
rom scratch. recalc is the mode for computing with the Krylov
ubspace generated in the previous calculation (See (iv) for de-
ails). restart is the mode for restarting the calculation from
he previous run. In the computation of the Green’s function, the
hifted BiCG or shifted COCG method is automatically selected
hen H is real or complex, respectively.
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(a) Input of the matrix of the Hamiltonian
The filename section specifies the name of the input files for

the matrix of the Hamiltonian inham or the initial excited vector
invec. The file format of both files is the Matrix Market for-
mat [28]. If invec is not specified, a random vector is used as the
initial vector. An example input file for reading the Hamiltonian
matrix and excited vector is as follows:

&filename
inham = "Ham.dat"
invec = "Excited.dat"

/
&cg
maxloops = 100
convfactor = 6

/
&dyn
calctype = "normal"
nomega = 100
omegamin = (-2d0, 0.1d0)
omegamax = ( 1d0, 0.1d0)

/

(b) Generation of the matrix of the Hamiltonian
For the trial use, the matrix of the Hamiltonian is generated in

ShiftK.out mode. In this mode, the ham section is used instead
of inham in the filename section. In the ham section, model
parameters are specified to generate the Hamiltonian matrix for
a one-dimensional spin chain model:

H =
nsite∑
i=1

(
S(i)x S(i)y S(i)z

)( Jx Dz 0
−Dz Jy 0
0 0 Jz

)⎛⎜⎝ S(i+1)x

S(i+1)y

S(i+1)z

⎞⎟⎠ ,

(30)

where S(i)j is a spin-1/2 operator at a site i with component j =
x, y, z. In the ham section, the following parameters are specified:
he total site of the spin chain nsite and the parameters of the
trength for spin–spin interactions Jx, Jy, Jz, and Dz. An example
of using the mode to generate internally the Hamiltonian matrix
is as follows:

&filename
/
&ham
Jx = 1d0
Jy = 1d0
Jz = 1d0
Dz = 1d0
/
&cg
maxloops = 100
convfactor = 6

/
&dyn
calctype = "normal"
nomega = 100
outrestart = .TRUE.

/

(ii) Run
After preparing the input file, an executable ShiftK.out in

terminal is run as follows:

$ ShiftK.out namelist.def

Here, namelist.def is the name of the input file. The residual
values at each step are output to the residual.dat file in the
working directory.
(iii) Results
After running ShiftK.out, the output directory is auto-

matically generated. In this directory, dynamical Green’s func-
tions, the residual vector, and the coefficients are output to
dynamicalG.dat, ResVec.dat0, and TriDiagComp.dat, re-
spectively.

(iv) Recalculation for additional data (optional)
The standalone program ShiftK.out provides, as an optional

function, a recalculation function for additional data, as explained
below. After the successful completion of ShiftK.out, users
might like to obtain the solution at additional points σ that are
ot obtained in the completed calculation. In such cases, users
an calculate the solution at these points for the shifted equa-
ions with negligible operational costs, because the coefficients of
αn, βn} and the projected residual vectors {Prn} are saved in the
iles TriDiagComp.dat and ResVec.dat, respectively, and the
ecurrence relations for the shifted equation Eqs. (21), (22), (23),
26), and (27) can be solved without any expensive matrix–vector
ultiplications.

. Applications in material science

In this section, we present several numerical results of Kω
pplied to quantum lattice models, to demonstrate typical appli-
ations in computational quantum physics. The quantum lattice
odel plays a crucial role for quantum many-body systems and

s described by a large sparse matrix H . The applied studies in
his section use the quantum lattice solver package HΦ [29]. HΦ

as developed as an exact diagonalization solver and can treat
wide range of quantum lattice models, such as the Hubbard
odel, the Kondo model, and the Heisenberg model. Kω can be
alled from HΦ and the users of HΦ can use the shifted Krylov
ubspace solvers. Here, three typical examples are explained.

.1. Calculation of internal eigenpairs

The first example is the calculation of internal eigenvalues
y a contour-integral method [30]. The method is an efficient
ethod for obtaining eigenpairs (eigenvalues and eigenvectors)

n a specified eigenvalue range. Although a number of software
ackages for this method have already been developed (for exam-
le, zPares [31] and FEAST [32,33]), this example illustrates how
o use Kω in the contour-integral method.

Here, we briefly explain how to obtain eigenpairs by using the
ethod following Ref. [34]. In the contour-integral method, the
rojection matrix on the nth eigenvector,

n = yny
†
n, (31)

lays a key role. By multiplying Pn by a vector φ =
∑

n anyn, we
an extract the component of yn as

nφ = anyn. (32)

n the other hand, the projection matrix Pn can be expressed by
n integration in the complex plane as

Γ =

∑
λn∈Γ

Pn =
1

2π i

∮
Γ

1
zI − H

dz, (33)

here Γ represents a contour on the complex plain.
Using PΓ , we can extract only the eigenvectors whose eigen-

values exist within Γ as

0,0 = PΓ φ0 =
1

2π i

∮
Γ

1
zI − H

φ0dz

=
1

2π i

∮
φ′0dz =

∑
anyn. (34)
Γ λn∈Γ
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In this process, we can use Kω to obtain φ′0 = (zI − H)−1φ0.
The kth moment can be simply expressed as follows:

sk,0 = (H − z0I)kPΓ φ0 =
1

2π i

∫
Γ

(z − z0)k

zI − H
φ0dz, (35)

where z0 is an arbitrary complex number. Thus, once we obtain
φ′0 = (zI −H)−1φ0, we can calculate the Krylov subspace defined
as

KNk×1 = span[s0,0, s1,0, . . . , sNk−1,0], (36)

where Nk represent the number of moments. Taking other vectors
φl(l = 1 · · ·Nl − 1), we can extend the Krylov subspace as

KNk×Nl = span[s0,0, . . . , sNk−1,0;

s0,1, . . . , sNk−1,1; . . .

s0,Nl−1, . . . , sNk−1,Nl−1]. (37)

Then, the matrix S with vectors sk,l is constructed as

S = (s0,0, . . . , sNk−1,0,

s0,1, . . . , sNk−1,1, . . .

s0,Nl−1, . . . , sNk−1,Nl−1). (38)

By performing singular value decomposition for S, we obtain

S = UΣV †. (39)

The number of non-zero singular values in Σ is just that of the
independent vectors (Mnz) in NNk×Nl spanned by sk,l. By using only
the left-singular vectors with non-zero singular values, we can
construct the matrix Ũ ,

Ũ = (u0, . . . , uMnz−1). (40)

Using Ũ , we project the original Hamiltonian on the small matrix
(dimension Mnz ×Mnz) whose eigenvalues exist within Γ as

H̃ = Ũ†HŨ . (41)

By diagonalizing H̃ , we can obtain all the eigenvalues and eigen-
vectors which exist within Γ .

As an example, we apply the contour-integral method to the
12-site Heisenberg chain model defined in Eq. (45). For simplicity,
we obtain the eigenvalues around the ground state (the lowest
eigenvalue). To perform the integration on the complex plane, we
use the following points:

zj = γ + ρ exp
[2π i
Nz

(
j+

1
2

)]
, (42)

here we take γ = −5, ρ = 0.8, and Nz = 100 as an example.
In Table 3, we show the result of the method for the L =

12 Heisenberg chain, whose Hilbert dimension is 924. To see
the convergence of the contour-integral method, we show the
obtained eigenvalues for several different conditions. By taking
about 50 different bases, we can obtain the correct eigenval-
ues including degeneracies. To perform the above calculations,
the matrix data file in the Matrix Market format (Ham.dat) is
generated using HΦ as in Appendix C. Using Ham.dat, we can
perform the contour-integral method by Kω. Two sample codes
are provided in the web site [35]: One is a simple code for
obtaining φ′0 in Eq. (34) by BiCG method (see Algorithm 1) and
the other is for performing the contour-integral method.

4.2. Calculation of spectra using ShiftK.out

The second example is a spectral calculation of Eq. (29) by the
standalone program ShiftK.out explained in Section 3.2.2. A
typical application for a quantum lattice model is the calculation

of the dynamical correlation factor, since it is often used to a
Table 3
Eigenvalues obtained by HΦ (full diagonalization using LAPACK) and the
contour-integral method. For the contour-integral method, we show results for
several different Nk and Nl , denoted as SS(Nk , Nl). When the rank of SS(Nk , Nl)
is smaller than n, we do not obtain the nth eigenvalues. This case is indicated
as NA (not available) in the table. In the actual calculation, we discard singular
values that are smaller than 10−3 .
En HΦ SS(10,1) SS(10,2) SS(10,5)

0 −5.387391 −5.387391 −5.387391 −5.387391
1 −5.031543 −5.031543 −5.031543 −5.031543
2 −4.777389 −4.777389 −4.777389 −4.777389
3 −4.569374 −4.569374 −4.569374 −4.569374
4 −4.569374 −4.297689 −4.569374 −4.569374
5 −4.297689 NA −4.297689 −4.297689
6 −4.297689 NA −4.297689 −4.297689

analyze low-energy structures. The dynamical correlation factor
is defined as

D(ω, η) = −
1
π
Im
[
φ

†
0A [(ω − E0 − iη)I − H]−1 Bφ0

]
, (43)

here φ0 is the ground state vector, A and B are the matrices to
enerate excited states, ω represents the frequency, and η repre-
ents the smearing factor. For example, by taking A = B = Sz ,
e can calculate the dynamical spin structure factors, which can
e directly measured by the neutron scattering experiments. The
ey part in the calculation of the dynamical correlation factors is
olving the linear equation defined as
′
= [(ω − E0 − iη)I − H]−1 Bφ0. (44)

As an example of a calculation of dynamical Green’s functions
y ShiftK.out, we present the calculation of the dynamical spin
tructure factors on a one-dimensional Heisenberg chain, whose
amiltonian is defined as

= J
L−1∑
i=0

S i · S i+1, (45)

here S represents the spin 1/2 operator and we take a magnetic
interaction of J = 1 and system size of L = 12. The matrix data file
of the Hamiltonian H is generated by HΦ in the Matrix Market
format. The dynamical spin structure factors are defined as

S(q, ω, η) = −
1
π
Im
[
φ

†
0S

z(−q) [(ω − E0 − iη)I − H]−1 Sz(q)φ0

]
,

(46)

here Sz(q) =
∑L−1

j=0 eiqjSzj and q is the wave vector. The input
ile for ShiftK.out is given as follows (E0 = 0,−5.5 ≤ ω ≤ 0.0,
= 0.02):

&filename
inham = "Ham.dat"
invec = "excitedvec.dat"

/
&cg
maxloops = 1000
convfactor = 6

/
&dyn
calctype = "normal"
nomega = 1000
omegamin = (-5.5, -0.02d0)
omegamax = ( 0.0, -0.02d0)

/

ere, Ham.dat and excitedvec.dat are the input files for the
amiltonian matrix H and the excited vector Sz(q)φ0. These files
an be obtained using the quantum lattice solver HΦ . The details
re shown in Appendix C.
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Fig. 3. Dynamical Green’s function for the one-dimensional Heisenberg model.
In this calculation, we take η = 0.02, ωmin = −5.5, ωmax = 0.0, and the energy
shift E0 = −5.387, which is the energy of the ground state.

In Fig. 3, we show the numerical result of S(q = π, ω, η).
Here, we shift ω by the ground state energy E0 = −5.387. The
requencies where S(q = π, ω, η) have sharp peaks correspond
to the excitation energies induced by Sz(q = π ). The convergence
of the residuals can be checked in the standard output.

4.3. Calculation of optical conductivity using HΦ

The third example is the calculation of a spectrum or dynam-
ical correlation function using HΦ , demonstrating that using Kω

n HΦ can be a powerful tool for various problems. As an exam-
le, we show the optical conductivity in the extended Hubbard
odel, which is a typical model for strongly correlated electron
ystems. We note that the optical conductivity is often used
or examining the metallic or insulating behavior of correlated
lectron systems. The optical conductivity can be calculated from
he current–current correlation I(ω, η), which is defined as

x = i
∑
i,σ

(c†
r i+ex,σ cr i,σ − c†

r i,σ cr i+ex,σ ), (47)

I(ω, η) = Im
[
φ

†
0jx[H − (ω − E0 − iη)I]−1jxφ0

]
, (48)

where ex is the unit translational vector in the x direction. The
ground state vector φ0 is calculated by an exact diagonalization
solver built in HΦ . To obtain φ′0 = [H − (ω − E0 − iη)I]−1jxφ0,
we use Kω. From the current–current correlation, the regular part
(i.e., without the Drude part at ω = 0) of the optical conductivity
is defined as

σreg(ω) =
I(ω, η)+ I(−ω,−η)

ωNs
, (49)

where Ns is the number of sites.
To directly compare the optical conductivity with previous

studies [36], we calculate the optical conductivity in the extended
Hubbard model defined as

H =− t
∑
⟨i,j⟩

[
c†
iσ cjσ + c†

jσ ciσ
]
+ U

∑
i

ni↑ni↓

+ V
∑
⟨i,j⟩

NiNj + V ′
∑
⟨⟨i,j⟩⟩

NiNj, (50)

where ciσ and c†
iσ denote the annihilation and creation operators

of an electron at site i with spin σ , and niσ = c†
iσ ciσ represents

he number operator of an electron at site i with spin σ . We note
hat this model at quarter filling is an effective model for organic
Fig. 4. Optical conductivity for the extended Hubbard model. In this calculation,
we take η = 0.1, ωmin = 0, ωmax = 15.0, and the number of ω as 2000.

Fig. 5. Residual norm maxσ |rσ
n | of I(ω, η) for several iteration steps. For the

extended Hubbard model, we find that the residual for the high-energy part
remains large. This result indicates that it is necessary to perform more than 104

iterations to obtain a well-converged correlation function when the threshold
value is set to 10−12 .

conductors. We perform a calculation for an Ns = 4 × 4 system
with t = 1, U = 4, V = 3, and V ′ = 5.

In Fig. 4, we show the result of the optical conductivity in
the extended Hubbard model. This result is consistent with a
previous study [36]. We also show the residuals of I(ω, η) in
Fig. 5. By calculating the residuals, we can check whether the
obtained dynamical correlation functions are well converged. As
mentioned above, this is one of the main advantages of the
shifted Krylov subspace method. Furthermore, by examining the
ω dependence of the residuals we can also identify bottlenecks
for the convergence.

It is noteworthy that the matrix size becomes huge for the
calculation of realistic models. In such cases, the matrix–vector
product dominates the numerical cost of the shifted-Krylov
method. To address this problem, we designed the Kω library to
not directly include the matrix–vector product in the function,
as explained in Section 3.2.1. If users can prepare the matrix–
vector product function with high parallelization efficiency, the
calculation time is greatly suppressed. In fact, the calculation of



T. Hoshi, M. Kawamura, K. Yoshimi et al. / Computer Physics Communications 258 (2021) 107536 9

n

D

c
t

A

t
M
t
M
(
a
t
u
b
W
a
b
d
B
i
w
S
r

A
m

(
K
h
c

p
a

r

T
r

w
n

r

r

r

a
g
a

r

dynamical Green’s functions byHΦ shows high parallelization ef-
ficiency, since the matrix–vector product is well parallelized [29].
From this point of view, this library is considered to be suitable
for large-scale calculations.

5. Summary

We developed the numerical library Kω for solving shifted
linear equations with the shifted Krylov subspace methods. The
present paper details applications for quantum many-body prob-
lems that appear in condensed matter physics. As a demonstra-
tion, numerical results including dynamical Green’s functions,
optical conductivity, and eigenvalues through the contour-
integral method are shown. The method is also applicable to other
computational physics areas, and hence Kω could be a useful
umerical library in computational physics.
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ppendix A. Shifted conjugate orthogonal conjugate gradient
ethod

When all the shifted matrices A+ σ I are complex symmetric,
users should use the shifted conjugate orthogonal conjugate gra-
dient (COCG) method [7]. In the COCG method [37], recurrence
equations can be obtained by changing the inner products from
x†y to xTy in those for the CG method and in the definition of the
orthogonality and A conjugate. The nth residual rn is orthogonal
defined by the ordinary inner product) not to Kn(A, b) but to
n(A, b)∗. The collinearity of the shifted residuals still holds [7],
owever, since rn belongs to the one-dimensional orthogonal
omplementary space of Kn(A, b)∗ within Kn+1(A, b). In the result,
the shifted equations have the same form as those for the shifted
CG method.

Appendix B. Shifted bi-conjugate gradient method

When A+ σ I is not symmetric or Hermitian, users should use

the shifted bi-conjugate gradient (BiCG) method [3].
B.1. Bi-conjugate gradient method

The BiCG method [38] generates sequences of approximate
solutions xn, residuals rn, shadow residuals r̃n, search directions
n, and shadow search directions p̃n so that the pair of residuals
nd shadow residuals forms a bi-orthogonal system, that is,

˜
†
i r j = 0 (i ̸= j); r̃†

i r i ̸= 0. (B.1)

hese vectors are iteratively generated by the following recur-
ence equations, as for the CG method,

ρn = r̃†
nrn, (B.2)

αn =
ρn

p̃†
nApn

, (B.3)

xn+1 = xn + αnpn, (B.4)

rn+1 = rn − αnApn, (B.5)

r̃n+1 = r̃n − α∗nA
†p̃n, (B.6)

βn =
ρn+1

ρn
, (B.7)

pn+1 = rn+1 + βnpn, (B.8)

p̃n+1 = r̃n+1 + β∗n p̃n, (B.9)

with the initialization r0 = p0 = b − Ax0 and r̃0 = p̃0 = b̃,
here x0 is an input vector and b̃ is an arbitrary vector that is
ot orthogonal to b.
The residuals r and r̃ and the coefficient α follow three term

ecurrences:

n+1 =

(
1+

αnβn−1

αn−1
− αnA

)
rn −

αnβn−1

αn−1
rn−1, (B.10)

˜n+1 =

(
1+

(
αnβn−1

αn−1

)∗
− α∗nA

†

)
r̃n −

(
αnβn−1

αn−1

)∗
r̃n−1,

(B.11)

αn =
ρn

r̃†
nArn −

βn−1
αn−1

ρn
, (B.12)

with β−1/α−1 = 0. Kω adopts these three term recurrences.

B.2. Shifted equation

When starting the BiCG iteration for the seed equation Ax = b
nd some shifted equation (A + σ I)x = b with the same initial
uess x0 = xσ

0 = 0 and shadow residuals r̃0, the nth residuals rn
nd rσ

n are parallel to each other [3],

σ
n =

1
πσ
n
rn. (B.13)

The approximate solutions for the shifted equations are calcu-
lated via the same equations in the shifted CG method,
Eqs. (21)–(25).

Appendix C. Generate input files by HΦ

This appendix shows the Hamiltonian matrix in the Matrix
Market format and the excited vector generated using HΦ . These
files can be read by shiftK.out. As an example, we focus on the
12-site one-dimensional Heisenberg chain, whose Hamiltonian is
defined in Eq. (45) and the excited vector Sz(q)φ in Eq. (46).
0
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C

C.1. Output Hamiltonian matrix

An input file for HΦ is given as follows:

L = 12
model = "Spin"
lattice = "chain"
method = "FullDiag"
J = 1.0
2Sz = 0
HamIO = "out"

Using this input file, we can obtain the output file of the Hamilto-
nian matrix in the Matrix Market format (zvo_Ham.dat renamed
s Ham.dat in Section 4).

.2. Output the excited vector

To obtain the excited vector Sz(q)φ0 by HΦ , we first calculate
the ground state φ0 and then calculate the excited vector by
multiplying φ0 by Sz(q). The ground state φ0 can be obtained by
the following input file:

L = 12
model = "Spin"
lattice = "chain"
method = "CG"
J = 1.0
2Sz = 0
EigenVecIO = "Out"

The input file for calculating the excited state Sz(q)φ0 is given as
follows:

L = 12
model = "Spin"
lattice = "chain"
method = "CG"
J = 1.0
2Sz = 0
CalcSpec="Normal"
SpectrumQL = 0.5
EigenVecIO ="In"
OutputExcitedVec = "Out"

Here, the wave vector is specified using SpectrumQL. In the
above case, Sz(q = π )φ0 is obtained. For details, see HΦ user’s
manual. After the calculations are finished, the output file of
the excited vector zvo_excitedvec_rank_0.dat (renamed as
excitedvec.dat in Section 4) is obtained.
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